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Abstract

This article is devoted to the construction of a numerical scheme to solve the equations of radiative
hydrodynamics. We use this numerical procedure to compute shock profiles and illustrate some earlier
theoretical results about their smoothness and monotonicity properties. We first consider a scalar toy
model, then we extend our analysis to a more realistic system for the radiative hydrodynamics that
couples the Euler equations and an elliptic equation.

1 Introduction

The aim of this paper is to construct a numerical scheme to compute shock profiles for some models of
radiative hydrodynamics. Such models couple a hydrodynamics part, typically the Euler equations of
compressible gas dynamics, with a nonlocal source term. In what follows, the nonlocal operator will be a
convolution operator on the real line. Our numerical procedure is based on a splitting strategy. In a first
time substep, we solve the hydrodynamics part by means of a conservative low-diffusive scheme (either
the Godunov scheme or the so-called Lagrange-projection scheme). In a second time substep, we solve
the radiative part of the equations. This amounts to solving a differential equation where the source term
is an integral operator. In the models we are interested in, the integral operator stems from the resolution
of an elliptic equation. There are two possible approaches to discretize the radiative part : we can either
try to solve the elliptic equation, or use a quadrature formula for the integral. We shall compare both
methods.

Our main motivation is the computation of shock profiles and the checking of some theoretical results
that were derived in [18, 9] for a scalar model, and in [14, 15] for a more complete model. Because
shock profiles are asymptotically constant at ±∞, we shall see that it is reasonable to truncate the
elliptic equation on the bounded domain where the solution is computed by forcing Dirichlet boundary
conditions. If one is interested in solving the equations in a general situation, namely for a very general
class of initial data, the nonlocal operator will raise some additional difficulties because it precludes the
finite speed of propagation. Therefore, the choice of the computational domain will play a major role.
Another motivation for this work is the behavior of large amplitude shock profiles. This is well understood
for the scalar model studied in [18, 9], where it was shown that shock profiles of arbitrary strength are
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monotone functions. For the more complete model studied in [14, 15], there are no theoretical results
and we want to check that shock profiles for this model capture the main features of radiative shocks,
see e.g. [16, 21]. In particular, we shall check numerically that large shock profiles exhibit a post-shock
region where the temperature is non-monotone. This property was already displayed for other models in
radiative hydrodynamics, see e.g. [2, 3] and [16, 21]. The main point is that our method does not require
any mesh refinement near the shock to exhibit these peaks in the temperature profile.

The paper is divided as follows. In section 2, we present the scalar toy model for radiating gases and
develop two numerical methods. Our first method is based on the discretization of an elliptic equation,
while the second method is based on a quadrature rule for the integral representation of the solution to this
elliptic equation. In section 3, we introduce a more involved model that couples the Euler equations and
an elliptic equation. We develop some numerical methods for this system that have some similarities with
the methods introduced for the toy model. We illustrate both sections with some numerical experiments
that confirm some earlier theoretical results.

2 Numerical schemes for a toy model

2.1 The numerical schemes

In this section, we propose a numerical procedure to solve the toy model :{
∂tu+ ∂x(u2/2) = q − u , t ≥ 0, x ∈ R ,
−∂xxq = u− q .

(1)

Observe that the elliptic equation for q can be solved explicitly using a convolution :

q(t, x) =
1

2

∫
R

e−|x−y| u(t, y) dy . (2)

However, it is not clear whether it is more efficient to use a quadrature formula for this integral represen-
tation rather than to discretize the elliptic equation. In what follows, we shall compare these two possible
approaches. Both methods will satisfy the maximum principle at the discrete level. Recall that entropic
solutions of (1) satisfy the maximum principle, see [13, 19] for a complete study of the Cauchy problem
for (1) and of various asymptotic regimes.

Our main goal is to compute shock profiles, that are traveling waves u(x− σ t) that connect two end
states ul and ur :

lim
ξ→−∞

u(ξ) = ul , lim
ξ→+∞

u(ξ) = ur , ul > ur , σ =
ur + ul

2
.

The speed σ of the traveling wave is given by the Rankine-Hugoniot conditions for the Burgers equation,
and the inequality ul > ur is the entropic condition. It has been shown in [9, 18] that such shock profiles
exist for all ul > ur. (The traveling wave is even unique up to a shift.) However, the smoothness of the
traveling wave depends on the amplitude ul − ur of the shock. In particular, when ul − ur >

√
2, the

shock profile is discontinuous at the origin (it is C∞ everywhere else). From the integral representation
of q, we see that q has the same limits as u at ±∞ if u is a shock profile. This fact will be helpful in our
numerical scheme below.

The numerical procedure we propose is based on a splitting strategy. We first solve the convective term
∂x(u2/2) by means of the Godunov scheme. Then we solve the source terms q − u. Let us first introduce
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some notations. Let L > 0 denote the half-length of the space interval where the numerical solution will
be computed, and let M denote the number of interior cells. The space step is ∆x = 2L/(M +2), and we
let ∆t > 0 denote the time step. Eventually, we let unj denote the approximation of the entropic solution
u to (1) at time tn = n∆t, n ∈ N, and at the position xj = −L+2 (j−1/2)L/(M+2), j ∈ {1, . . . ,M+2}.
Similarly, the approximation of q is denoted qnj .

The definition of the numerical scheme is the following. We first initialize the numerical solution :

∀ j ∈ {1, . . . ,M + 2} , u0
j =

{
ul , if 2 j ≤M + 2,

ur , if 2 j > M + 2,
(3)

where ul,r are the end states of the shock profile that we are going to compute. Assume now that the
ukj ’s are known for all j ∈ {1, . . . ,M + 2}, and all integer k ∈ {0, . . . , n}. We first update the numerical
solution by solving the convective terms and set :

∀ j ∈ {2, . . . ,M + 1} , u
n+1/2
j = unj −

∆t

∆x

(
G(unj , u

n
j+1)−G(unj−1, u

n
j )
)
, (4)

where G is the Godunov flux for the Burgers equation :

∀ (u, v) ∈ R2 , G(u, v) =

{
max (u2/2, v2/2) , if u ≥ v,

minw∈[u,v] w
2/2 , if u ≤ v.

The second and final step consists in solving the radiative part of (1). To this end, we can first compute

the radiative density (q
n+1/2
j ) by solving the linear system :


2 + ∆x2 −1
−1 2 + ∆x2 −1

. . .
. . .

. . .

−1 2 + ∆x2 −1
−1 2 + ∆x2



q
n+1/2
2

...

q
n+1/2
M+1

 = ∆x2


u
n+1/2
2

u
n+1/2
3

...

u
n+1/2
M

u
n+1/2
M+1

+


ul
0
...
0
ur

 . (5)

In terms of the elliptic equation, this amounts to solving :

q − ∂xxq = un+1/2 , q(−L) = ul , q(L) = ur ,

by means of the classical finite difference approximation. Of course, the Dirichlet boundary conditions
are meaningful only if L is chosen large enough so that q does not vary too much outside of the interval
[−L,L]. The matrix of the linear system (5) is symmetric positive definite, so the linear system (5) defines

the q
n+1/2
j ’s in a unique way.

Eventually, we update the numerical solution as follows :

∀ j ∈ {2, . . . ,M + 1} , un+1
j = e−∆t u

n+1/2
j + (1− e−∆t) q

n+1/2
j . (6)

The end points j = 1, j = M + 2 are fixed in order to match the asymptotic conditions for the shock
profile, that is un+1

1 = ul, and un+1
M+2 = ur. The formula (6) is nothing but Duhamel’s formula for the

ordinary differential equation ∂tu = q − u, where q is assumed to be independent of time (in our case,
q is the solution of the discretized elliptic equation with the source term un+1/2 and Dirichlet boundary
conditions).
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The other possibility we consider is to compute the radiative density at time (n+ 1/2) ∆t by means of
a quadrature formula, and to update the numerical solution accordingly. Observe that (2) can be written
equivalently as :

q(t, x) =
1

2

∫ +∞

0
e−y

(
u(t, x+ y) + u(t, x− y)

)
dy . (7)

We can use the Gauss-Laguerre quadrature formula :

q(t, x) ' 1

2

K∑
i=1

ωi
(
u(t, x+ yi) + u(t, x− yi)

)
,

where K is a given integer, y1, . . . , yK are the (real and distinct) roots of the K-th Laguerre polynomial,
and ω1, . . . , ωK satisfy (see e.g. [1, 17]):

∀ i = 1, . . . ,K , ωi > 0 , ω1 + · · ·+ ωK = 1 .

The second possibility to compute the radiative energy is therefore to set :

∀ j = 2, . . . ,M + 1 , q̃
n+1/2
j =

1

2

K∑
i=1

ωi
(
u
n+1/2
j+di

+ u
n+1/2
j−di

)
, di =

⌊ yi
∆x

⌋
. (8)

In (8), there might be some indices j and i such that j + di exceeds M + 2, or j − di is less than 1. In
that case, we impose the values ur and ul, which amounts to considering that the numerical solution is
constant outside of the interval [−L,L]:{

u
n+1/2
k = ur if k ≥M + 2,

u
n+1/2
k = ul if k ≤ 1.

Then the numerical solution is updated as in (6), but this time with the radiative energy q̃n+1/2 given by
(8):

∀ j ∈ {2, . . . ,M + 1} , un+1
j = e−∆t u

n+1/2
j + (1− e−∆t) q̃

n+1/2
j . (9)

This procedure can be seen as a parallel of the Dirichlet boundary conditions. As previously, we also let
un+1

1 = ul, and un+1
M+2 = ur.

The following Lemma states that both schemes (3), (4), (5), (6) and (3), (4), (8), (9) are monotone,
provided that the CFL condition is satisfied :

Lemma 1. Let ul > ur, and vl > vr be two pairs of end states, and let (unj ), (vnj ) denote the corresponding
numerical solutions produced by the scheme (3), (4), (5), (6). Assume that the classical CFL condition :

∆t max (|ul|, |ur|, |vl|, |vr|) ≤ ∆x ,

is satisfied. Then if the inequalities ul ≤ vl, and ur ≤ vr hold, we have unj ≤ vnj for all j and all n. The
same property holds for the scheme (3), (4), (8), (9).

The proof follows from a basic induction argument using the monotonicity of the Godunov scheme
(see e.g. [8]), the monotonicity properties of the matrix in (5), and the properties of the weights ωi in
(8). We skip the proof that is almost straightforward. (Observe that Lemma 1 would hold if we had
considered any monotone scheme for the Burgers equation.)

An important consequence of Lemma 1 is the fact that both schemes introduced above satisfy the
maximum principle. All the unj ’s are valued in the interval [ur, ul]. (Use first vl = vr = ul, then
vl = vr = ur in Lemma 1.) Before showing some numerical tests, we make a few remarks.
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Remark 1. • The schemes introduced above can be relevant only in the case where the expected theoretical
solution is approximately constant at the end points of the interval [−L,L]. Since we expect that the shock
profile will be the large time asymptotics of the numerical solution, this requires that the shock is stationary
(σ = 0). In that case, L should be chosen sufficiently large so that the solution is indeed approximately
constant near L and −L. Since shock profiles converge exponentially fast towards their end states (see
[18, 9]), the numerical value of L is not so large, see the numerical tests below. For nonstationary shocks,
one should change the space coordinate in order to make the shock stationary, which amounts to adding
a transport term σ ∂xu in (1). (The numerical flux G should be changed accordingly.)
• We expect to obtain the shock profile as the large time asymptotics of the numerical solution. In

order to obtain this convergence, the initial data should be a zero mass perturbation of the exact shock
profile, see [9] (if the initial mass of the perturbation is nonzero, the numerical solution should converge to
a translation of the shock profile so the asymptotic solution may get out from the reference frame [−L,L]).
However, we know from [9] that the shock profile is symmetric with respect to the end states ul and ur,
that is :

∀ ξ ∈ R , u(ξ)− ul + ur
2

=
ul + ur

2
− u(−ξ) .

Consequently, the initial condition (3) is a zero mass perturbation of the shock profile. Another possible
initial condition for the numerical scheme is :

∀ j ∈ {1, . . . ,M + 2} , u0
j =

ul + ur
2

+
ur − ul

2
tanhxj ,

which is supposed to be a smaller perturbation of the shock profile (the convergence towards a continuous
shock profile should therefore be quicker).
• Even though we are looking for an asymptotic solution, we use a first order scheme since the equation

is scalar and the computational effort is not so important. The numerical solution attains its asymptotic
value rather quickly, as we shall see in the next paragraph.

In the following paragraph, we check the behavior of the scheme on some examples.

2.2 Numerical examples

We first implement the schemes (3), (4), (5), (6) and (3), (4), (8), (9) for a ’small’ shock profile. In
this example, we have ul = −ur = 1/2. The shock is stationary and according to the results in [9], the
associated shock profile is smooth (at least within C2(R)). The scheme is initialized with the hyperbolic
tangent profile as suggested in the preceding remark. According also to the results in [9], the continuous
shock profile u should satisfy the second order differential equation:(

u− ul + ur
2

)
u′′ + (u′)2 + u′ − 1

2
(u− ur) (u− ul) = 0 . (10)

It is natural to check how our numerical solution satisfies the discretized version of this differential
equation, with u′ replaced by its second order approximation (uj+1 − uj−1)/(2 ∆x), and u′′ replaced by
(uj+1 + uj−1 − 2uj)/∆x

2. This gives a measure of how far from the true shock profile the numerical
solution is. In figure 1 we plot the numerical solution obtained after running sufficiently many time
iterations for both schemes (using either the discretization of the elliptic equation or the Gauss-Laguerre
quadrature formula), and we plot the logarithm of the error in order to check that our solution is a
reasonable approximate solution of the differential equation (10). The computations are run using the
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Figure 1: Shock profile for ul = −ur = 1/2 (left), and logarithm of the numerical error (right).

parameters L = 20, M = 10000, K = 10, and the number of time iterations is 5000. The CFL condition
is chosen in an optimal way. We refer to [1, chapter 29] for the numerical values of the yi, ωi’s.

The second example we deal with is ul = −ur = 2. In this case, the associated shock profile is
discontinuous. The main question to investigate is the number of points that the scheme produces in the
discontinuity. As shown in figure 2, the results are very satisfactory. The parameters are still L = 20,
M = 10000, K = 10, and the number of time iterations is 5000. The error is small away from the origin,
that is in the region where the profile is smooth and (10) is supposed to be valid. At the origin, the
conservation law (1) has to be understood in a weak sense and (10) does not hold anymore. In conclusion,
our schemes capture in a very satisfactory way the shock profiles for (1).

Observe that as the amplitude of the shock increases, the convergence to the end states at ±∞ is
quicker. This property is also predicted by the analysis in [9] where it appears that the convergence
rate towards the end states is an increasing function of the amplitude. Observe also that when the
quadrature formula is used to compute the radiative energy, the method is not able to capture accurately
discontinuous shock profiles. The peaks in the error correspond to the points used in the quadrature
formula. The reason for this misbehavior is that while the quadrature formula is exact for polynomials
of degree less than 2K − 1, the accuracy falls down for discontinuous functions. Using the discretization
of the elliptic equation ensures a better smoothness for the numerical solution. This phenomenon pleads
for using the discretization (5) over the quadrature formula (8), at least for this scalar model.

When the amplitude ul−ur of the shock is very small, the (exponential) convergence rate of the shock
profile towards its end states tends to 0, see [9]. To compute such solutions we therefore need to consider
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Figure 2: Shock profile for ul = −ur = 2 (left), and logarithm of the numerical error (right).

a large value of L, which in turn leads to a large value of M (because the space step should not be too
large). The number of time iterations also increases.

3 Numerical schemes for radiative hydrodynamics

3.1 The numerical schemes

The aim of this section is to derive a numerical scheme to compute the shock profiles for the following
model of radiative hydrodynamics (see [16]), written in a dimensionless form :

∂tρ+ ∂x(ρ u) = 0 ,

∂t(ρ u) + ∂x(ρ u2 + p) = 0 , t ≥ 0, x ∈ R ,
∂t(ρE) + ∂x(ρE u+ p u) = σ (q − θ4) ,

−∂xxq = θ4 − q .

(11)

In (11), ρ is the density of the fluid, u is the velocity, p is the pressure, E = e+ u2/2 is the total energy,
e is the internal energy, θ is the temperature, q is the radiative energy and σ is a positive constant. The
equations are closed by assuming that the fluid obeys the perfect gas pressure law :

p = Rρ θ = (γ − 1) ρ e ,

where R is the perfect gas constant, and γ > 1 is the ratio of specific heats at constant pressure and
constant volume. In all what follows, we choose ρ, u, θ as the unknown functions in (11) and we consider
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p, e as functions of ρ, θ. The motivation for this choice comes from the expression of the source terms in
(11). Shock profiles for (11) are traveling waves connecting some end states (ρl, ul, θl) and (ρr, ur, θr) that
satisfy the Rankine-Hugoniot conditions for the standard Euler equations as well as the entropy inequality.
When the amplitude of the shock is sufficiently small, smooth shock profiles have been shown to exist in [14]
(see [12] for related results when the elliptic equations is linear). It is believed that shock waves of bigger
amplitude admit a piecewise smooth shock profile, as for the toy model (1). However, this question has not
yet received a rigorous treatment. The aim of this section is to check numerically the properties of smooth
shock profiles, in particular the monotonicity of the main quantities (density, pressure, temperature) when
the shock amplitude is small, but also to observe what should be the properties of shock profiles associated
to a large shock wave. In most models of radiative hydrodynamics, see e.g. the classical textbooks [21, 16],
the temperature profile experiments a post-shock peak and is non-monotone. We shall check numerically
this behavior for our simple model (11).

We keep the same notations as in the preceding section for the computational domain [−L,L], the
space and time steps ∆t, ∆x. The approximations of ρ, u... are denoted ρnj , u

n
j and so on. Our numerical

schemes for (11) are still based on a splitting strategy. Given some end states (ρl, ul, θl) and (ρr, ur, θr)
that define a stationary shock wave solution to the Euler equations, we initialize the numerical solution
as before :

∀ j ∈ {1, . . . ,M + 2} , (ρ0
j , u

0
j , θ

0
j ) =

{
(ρl, ul, θl) , if 2 j ≤M + 2,

(ρr, ur, θr) , if 2 j > M + 2.

Assuming that the numerical solution is known up to time tn = n∆t, the time evolution is defined through
the splitting formula :

(ρn+1, un+1, θn+1) = X∆t Y ∆t (ρn, un, θn) ,

where X∆t denotes the numerical approximation at time ∆t of the solution of the differential equation :
ρ̇ = 0 ,

˙(ρ u) = 0 ,
˙(ρE) = σ (q − θ4) ,

−∂xxq = θ4 − q ,

(12)

and Y ∆t denotes the numerical approximation at time ∆t of the solution of the standard Euler equations
: 

∂tρ+ ∂x(ρ u) = 0 ,

∂t(ρ u) + ∂x(ρ u2 + p) = 0 ,

∂t(ρE) + ∂x(ρE u+ p u) = 0 .

(13)

Below we are going to give the precise definition of the operators X∆t and Y ∆t. There are many numerical
methods available for the Euler equations in the literature, so we shall mainly focus on the definition of
the approximation X∆t of (12).

3.1.1 Computation of the convective terms

We shall use two different ways to solve numerically the Euler equations. This will enable us to compare
the accuracy of both methods. The first method is the classical Godunov method, see e.g. [8] for an
extensive description. If we write the Euler equations in the conservative form :

∂tU + ∂xf(U) = 0 , U = (ρ, ρ u, ρE)T ,
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and if we start from some distribution (Unj )1≤j≤N+2, then Godunov’s method reads :

∀ j ∈ {2, . . . ,M + 1} , U
n+1/2
j = Unj −

∆t

∆x
(f(W (0, Uj , Uj+1))− f(W (0, Uj−1, Uj))) ,

where W (ξ, U, V ) is the solution of the Riemann problem at ξ = x/t with left and right states U and
V . Of course this definition coincides with (4) for Burgers’ equation. Godunov’s method is very precise
but has a serious computational cost because it requires to solve a Riemann problem at each cell. For
the Euler equations, this requires to find the intersection of wave curves, which is done numerically by a
Newton type algorithm that can be found in [20, chapter 4.9].

The second method we shall use is the so-called Lagrange-projection method introduced in [11, 5, 6, 7,
10, 4]. This method is divided in two substeps. The first substep solves the Euler equations in Lagrangian
coordinates by means of a finite volume approximation. In the second substep, the numerical solution is
projected on the Eulerian grid by means of an antidiffusive procedure. We refer to the above mentionned
references for the precise definition of the numerical fluxes.

3.1.2 Computation of the radiative part

Here we focus on the numerical resolution of the differential equation (12). Let an initial distribution

(ρ
n+1/2
j , u

n+1/2
j , θ

n+1/2
j )1≤j≤M+2 be given by the resolution of the convective part. We first reduce the

differential equation (12) to the equivalent system:
ρ̇ = u̇ = 0 ,

θ̇ =
σ

cv ρ
(q − θ4) ,

−∂xxq = θ4 − q ,

(14)

where cv = R/(γ − 1) is the specific heat at constant volume, and ρ denotes the constant value of the
density. It is not possible to use Duhamel’s formula anylonger to solve (14) because the differential
equation is not linear in the variable θ. Therefore, we solve (14) by an implicit/semi-implicit method.
The need of an implicit method is motivated by the fact that, if θ is larger than 1, the source terms
increase very rapidly, so that the differential equation gets stiffer and stiffer.

Our first numerical method for (14) is the following. Starting from (ρ
n+1/2
j , u

n+1/2
j , θ

n+1/2
j ), we first

compute the radiative energy by solving the elliptic equation by standard finite differences. More precisely,
we first solve the linear system :

2 + ∆x2 −1
−1 2 + ∆x2 −1

. . .
. . .

. . .

−1 2 + ∆x2 −1
−1 2 + ∆x2



q
n+1/2
2

...

q
n+1/2
M+1

 = ∆x2


(θ
n+1/2
2 )4

...

(θ
n+1/2
M+1 )4

+


θ4
l

0
...
0
θ4
r

 . (15)

We can also compute the radiative energy through the Gauss-Laguerre quadrature rule as in the previous
section. We omit the detailed definitions for the sake of simplicity.

Using this radiative energy qn+1/2, we solve the ordinary differential equation:

θ̇j =
σ

cvρ
n+1/2
j

(q
n+1/2
j − θ4

j ) ,

9



on a time step ∆t. To compute the solution of the ODE, we use an implicit Euler method, that ensures
the stability : we then have to solve at each step the following polynomial equation:

θn+1
j − θn+1/2

j

∆t
=

σ

cv ρ
n+1/2
j

(q
n+1/2
j − (θn+1

j )4) ,

that amounts to solving the 4th degree equation:

θ4 +
θ

∆̃t
= y , (16)

with y = q
n+1/2
j + θ

n+1/2
j /∆̃t > 0 and ∆̃t = σ∆t/(cvρ

n+1/2
j ). Performing classical computations on this

last equation, one finds that the only positive root of (16) reads:

θ =

−
√

2 p+

√ √
2

∆̃t
√
p
− 2 p

2

where:

p =

3

√√√√√√1 +

√
1 +

256 ∆̃t
4
y3

27

16
+

3

√√√√√√1−

√
1 +

256 ∆̃t
4
y3

27

16
.

The ’numerical’ approximation of the differential equation (12) at time ∆t is then defined as follows :

X∆t(ρ
n+1/2
j , u

n+1/2
j , θ

n+1/2
j )1≤j≤M+2 = (ρ

n+1/2
j , u

n+1/2
j , θn+1

j )1≤j≤M+2 .

Remark 2. Using the same solver for the polynomial equation (16), we could have used a second-order

resolution through the Crank-Nicolson scheme with y = 2 q
n+1/2
j − (θ

n+1/2
j )4 + θ

n+1/2
j /∆̃t > 0 and ∆̃t =

σ∆t/(2 cv ρ
n+1/2
j ).

Whereas, for the Euler implicit scheme, it is clear that the temperature θn+1 belongs to the interval
[min(θn+1/2),max(θn+1/2)], this property is not straightforward anylonger for the Crank-Nicolson scheme.
Furthermore, since we chose a scheme of order one for the Euler equations, it seems reasonable to stick
to the fully implicit Euler scheme that is also of order 1.

3.2 Numerical examples

The stationary 1-shock waves for the Euler equations can be parametrized by the quantities ρl > 0,
ul ∈ R, β ∈ (1, (γ + 1)/(γ − 1)), see [8]:

ρr = β ρl , ur =
ul
β
, j = ρl ul ,

pl = j2 γ + 1− β (γ − 1)

2 γ ρr
, pr = pl

(γ + 1)β − (γ − 1)

γ + 1− β (γ − 1)
, θl =

pl
Rρl

, θr =
pr
Rρr

.

For our numerical tests, we chose R = 1, γ = 1.4 (diatomic molecules) and σ = 1 for simplicity. We
first show in Figures 3, 5, 4, 6 the results for an expected smooth profile (ρl = 1, β = 1.05, ul = 1.2,
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M = 1000, L = 40 and 1000 time iterations), then we show a discontinuous profile in Figures 7, 9, 8, 10
(ρl = 1, β = 3, ul = 3 for M = 2000, L = 40 and 2000 time iterations). We have used the implicit Euler
scheme to solve the differential equation (14). The results with the Crank-Nicolson scheme are similar.

As in the previous section, a measure of the relevance of the numerical simulation is given by the
computations of the errors: remembering that we only consider stationary shocks, we focus here on

• how the conservation of mass and momentum is satisfied: observe that, in the continuous setting,
the Rankine-Hugoniot condition implies that, ρu = ρlul = ρrur =: J and ρu2 + p = ρl(ul)

2 + pl =
ρr(ur)

2 + pr =: JC,

• how the numerical velocity profile matches the underlying second-order differential equation:(
u− γC

γ + 1

)
u′′ + (u′)2 − 4(γ − 1)

J (γ + 1)R4
(C − u)3 u3 (C − 2u)u′ − 1

2
(u− ul)(u− ur) = 0 ,

where ρ (resp. u) is the continuous profile of density (resp. velocity).

3.3 Conclusion

The numerical methods that we have developed here capture how smooth the temperature profile is for
shocks of small amplitude. Note that the Lagrange-projection scheme is more accurate than Godunov’s,
and that when we use the Gauss-Laguerre rule to compute the radiative energy, the post-shock error
is bigger than when we use the discretization method. This is particularly highlighted in the case of
discontinuous profiles where we can see that the error produced by the discretization method decreases
rapidly after the shock. Again, the Lagrange-projection method seems to be more accurate. Let us say
in favor of Godunov’s scheme that there are less points in the discontinuity.

We also noted that the post-shock peak in temperature seems to be going bigger when the amplitude
β of the shock increases. (More simulations are available at http://profilchoc.gforge.inria.fr/.)

Furthermore, despite what is announced in [16, p. 563], we have found no example of strong shocks
that admit a smooth shock profile. The model (11) seems to present the same dichotomy as the toy model
(1): there is a critical threshold for the shock amplitude under which the profile is continuous and above
which the profile is discontinuous. Although we conducted a huge panel of numerical tests (varying β for
different values of ul), we have not been able to deduce general properties concerning monotonicity nor
to find numerical thresholds characterizing the loss of continuity. The main obstacle is the fact that the
time needed to reach the asymptotic profile turns out to vary too much with the various parameters (ρl,
ul, β).
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Figure 3: Shock profile obtained by Godunov’s scheme.
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Figure 4: Shock profile obtained by the Lagrange-projection scheme.

Figure 5: Error obtained by Godunov’s scheme.
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Figure 6: Error obtained by the Lagrange-projection scheme.

Figure 7: Shock profile obtained by Godunov’s scheme.
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Figure 8: Shock profile obtained by the Lagrange-projection scheme.

Figure 9: Error obtained by Godunov’s scheme.
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Figure 10: Error obtained by the Lagrange-projection scheme.

17


