
HAL Id: hal-00768612
https://hal.science/hal-00768612v1

Submitted on 22 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generation for Grammar Engineering
Claire Gardent, German Kruszewski

To cite this version:
Claire Gardent, German Kruszewski. Generation for Grammar Engineering. INLG 2012, The seventh
International Natural Language Generation Conference., May 2012, Starved Rock, Illinois, United
States. pp.31-40. �hal-00768612�

https://hal.science/hal-00768612v1
https://hal.archives-ouvertes.fr


INLG 2012 Proceedings of the 7th International Natural Language Generation Conference, pages 31–39,
Utica, May 2012. c©2012 Association for Computational Linguistics

Generation for Grammar Engineering

Claire Gardent
CNRS, LORIA, UMR 7503

Vandoeuvre-l̀es-Nancy, F-54000, France
claire.gardent@loria.fr

German Kruszewski
Inria, LORIA, UMR 7503

Villers-lès-Nancy, F-54600, France
german.kruszewski@inria.fr

Abstract

While in Computer Science, grammar engi-
neering has led to the development of various
tools for checking grammar coherence, com-
pletion, under- and over-generation, in Natu-
ral Langage Processing, most approaches de-
veloped to improve a grammar have focused
on detecting under-generation and to a much
lesser extent, over-generation. We argue that
generation can be exploited to address other
issues that are relevant to grammar engineer-
ing such as in particular, detecting grammar
incompleteness, identifying sources of over-
generation and analysing the linguistic cover-
age of the grammar. We present an algorithm
that implements these functionalities and we
report on experiments using this algorithm to
analyse a Feature-Based Lexicalised Tree Ad-
joining Grammar consisting of roughly 1500
elementary trees.

1 Introduction

Grammar engineering, the task of developing large
scale computational grammars, is known to be er-
ror prone. As the grammar grows, the interactions
between the rules and the lexicon become increas-
ingly complex and the generative power of the gram-
mar becomes increasingly difficult for the grammar
writer to predict.

While in Computer Science, grammar engineer-
ing has led to the development of various tools for
checking grammar coherence, completion, under-
and over-generation (Klint et al., 2005), in Natu-
ral Langage Processing, most approaches developed
to improve a grammar have focused on detecting

under-generation (that is cases where the grammar
and/or the lexicon fails to provide an analysis for
a given, grammatical, input) and to a lesser degree
over-generation.

In this paper, we argue that generation can be ex-
ploited to address other issues that are relevant to
grammar engineering. In particular, we claim that it
can be used to:

• Check grammar completeness: for each gram-
mar rule, is it possible to derive a syntactically
complete tree ? That is, can each grammar rule
be used to derive a constituent.

• Analyse generation and over-generation: given
some time/recursion upper bounds, what does
the grammar generate? How much of the out-
put is over-generation? Which linguistic con-
structions present in a language are covered by
the grammar?

We present a generation algorithm called GRADE

(GRAmmar DEbugger) that permits addressing
these issues. In essence, this algorithm implements
a top-down grammar traversal guided with semantic
constraints and controlled by various parameteris-
able constraints designed to ensure termination and
linguistic control.

The GRADE algorithm can be applied to any gen-
erative grammar i.e., any grammar which uses a
start symbol and a set of production rules to gen-
erate the sentences of the language described by
that grammar. We present both an abstract descrip-
tion of this algorithm and a concrete implementation
which takes advantage of Definite Clause Grammars

31



to implement grammar traversal. We then present
the results of several experiments where we use the
GRADE algorithm to examine the output of SEM-
TAG, a Feature-Based Lexicalised Tree Adjoining
Grammar (FB-LTAG) for French.

The paper is structured as follows. Section 2
summarises related work. Section 3 presents the
GRADE algorithm. Section 4 introduces the gram-
mar used for testing and describes an implementa-
tion of GRADE for FB-LTAG. Section 5 presents
the results obtained by applying the GRADE algo-
rithm to SEMTAG. We show that it helps (i) to detect
sources of grammar incompleteness (i.e., rules that
do not lead to a complete derivation) and (ii) to iden-
tify overgeneration and analyse linguistic coverage.
Section 6 concludes.

2 Related Work

Two main approaches have so far been used to im-
prove grammars: treebank-based evaluation and er-
ror mining techniques. We briefly review this work
focusing first, on approaches that are based on pars-
ing and second, on those that exploit generation.

Debugging Grammars using Parsing Over the
last two decades,Treebank-Based evaluationhas be-
come the standard way of evaluating parsers and
grammars. In this framework (Black et al., 1991),
the output of a parser is evaluated on a set of sen-
tences that have been manually annotated with their
syntactic parses. Whenever the parse tree produced
by the parser differs from the manual annotation, the
difference can be traced back to the parser (timeout,
disambiguation component), the grammar and/or to
the lexicon. Conversely, if the parser fails to re-
turn an output, undergeneration can be traced back
to missing or erroneous information in the grammar
or/and in the lexicon.

While it has supported the development of ro-
bust, large coverage parsers, treebank based evalu-
ation is limited to the set of syntactic constructions
and lexical items present in the treebank. It also
fails to directly identify the most likely source of
parsing failures. To bypass these limitations,error
mining techniqueshave been proposed which per-
mit detecting grammar and lexicon errors by pars-
ing large quantities of data (van Noord, 2004; Sagot
and de la Clergerie, 2006; de Kok et al., 2009). The

output of this parsing process is then divided into
two sets of parsed and unparsed sentences which are
used to compute the “suspicion rate” of n-grams of
word forms, lemmas or part of speech tags whereby
the suspicion rate of an item indicates how likely a
given item is to cause parsing to fail. Error mining
was shown to successfully help detect errors in the
lexicon and to a lesser degree in the grammar.

Debugging Grammars using Generation Most
of the work on treebank-based evaluation and error
mining target undergeneration using parsing. Re-
cently however, some work has been done which ex-
ploits generation and more specifically, surface real-
isation to detect both under- and over-generation.

Both (Callaway, 2003) and the Surface Realisa-
tion (SR) task organised by the Generation Chal-
lenge (Belz et al., 2011) evaluate the output of sur-
face realisers on a set of inputs derived from the
Penn Treebank. As with parsing, these approaches
permit detecting under-generation in that an input
for which the surface realiser fails to produce a
sentence points to shortcomings either in the sur-
face realisation algorithm or in the grammar/lexicon.
The approach also permits detecting overgeneration
in that a low BLEU score points to these inputs
for which the realiser produced a sentence that is
markedly different from the expected answer.

Error mining approaches have also been devel-
oped using generation. (Gardent and Kow, 2007) is
similar in spirit to the error mining approaches de-
veloped for parsing. Starting from a set of manu-
ally defined semantic representations, the approach
consists in running a surface realiser on these repre-
sentations; manually sorting the generated sentences
as correct or incorrect; and using the resulting two
datasets to detect grammatical structures that sys-
tematically occur in the incorrect dataset. The ap-
proach however is only partially automatised since
both the input and the output need to be manually
produced/annotated. More recently, (Gardent and
Narayan, 2012) has shown how the fully automatic
error mining techniques used for parsing could be
adapted to mine for errors in the output of a surface
realiser tested on the SR input data. In essence, they
present an algorithm which enumerate the subtrees
in the input data that frequently occur in surface re-
alisation failure (the surface realiser fails to gener-

32



ate a sentence) and rarely occur in surface realisa-
tion success. In this way, they can identify subtrees
in the input that are predominantly associated with
generation failure.

In sum, tree-bank based evaluation permits de-
tecting over- and under-generation while error min-
ing techniques permits identifying sources of er-
rors; Treebank-based evaluation requires a refer-
ence corpus while error mining techniques require
a way to sort good from bad ouput; and in all cases,
generation-based grammar debugging requires input
to be provided (while for parsing, textual input is
freely available).

Discussion The main difference between the
GRADE approach and both error mining and tree-
bank based evaluation is that GRADE is grammar
based. No other input is required for the GRADE

algorithm to work than the grammar1. Whereas ex-
isting approaches identify errors by processing large
amounts of data, GRADE identifies errors by travers-
ing the grammar. In other words, while other ap-
proaches assess the coverage of a parser or a genera-
tor on a given set of input data, GRADE permits sys-
tematically assessing the linguistic coverage and the
precision of the constructs described by the grammar
independently of any input data.

Currently, the output of GRADE needs to be man-
ually examined and the sources of error manually
identified. Providing an automatic means of sorting
GRADE ’s output into good and bad sentences is de-
veloped however, it could be combined with error
mining techniques so as to facilitate interpretation.

3 The GraDE Algorithm

How can we explore the quirks and corners of a
grammar to detect inconsistencies and incorrect out-
put?

In essence, the GRADE algorithm performs a top-
down grammar traversal and outputs the sentences
generated by this traversal. It is grammar neutral in
that it can be applied to any generative grammar i.e.,
any grammar which includes a start symbol and a
set of production rules. Starting from the string con-
sisting of the start symbol, the GRADE algorithm
recursively applies grammar rules replacing one oc-

1Although some semantic input is possible.

currence of its left-hand side in the string by its right-
hand side until a string that contains neither the start
symbol nor designated nonterminal symbols is pro-
duced.

Since NL grammars describe infinite sets of sen-
tences however, some means must be provided to
control the search and output sets of sentences that
are linguistically interesting. Therefore, the GRADE

algorithm is controlled by several user-defined pa-
rameters designed to address termination (Given that
NL grammars usually describe an infinite set of sen-
tences, how can we limit sentence generation to
avoid non termination?), linguistic control (How can
we control sentence generation so that the sentences
produced cover linguistic variations that the linguist
is interested in ?) and readibility (How can we con-
strain sentence generation in such a way that the out-
put sentences are meaningful sentences rather than
just grammatical ones?).

3.1 Ensuring termination

To ensure termination, GRADE supports three user-
defined control parameters which can be used simul-
taneously or in isolation namely: a time out parame-
ter; a restriction on the number and type of recursive
rules allowed in any derivation; and a restriction on
the depth of the derivation tree.

Each of these restrictions is implemented as a re-
striction on the grammar traversal process as fol-
lows.

Time out. The process halts when the time bound
is reached.

Recursive Rules. For each type of recursive rule,
a counter is created which is initialised to the values
set by the user and decremented each time a recur-
sive rule of the corresponding type is used. When
all counters are null, recursive rules can no longer
be used. The type of a recursive rule is simply the
main category expanded by that rule namely, N, NP,
V, VP and S. In addition, whenever a rule is applied,
the GRADE algorithm arbitrarily divides up the re-
cursion quotas of a symbol among the symbol’s chil-
dren. If it happens to divide them a way that can-
not be fulfilled, then it fails, backtracks, and divides
them some other way.

33



Derivation Depth. A counter is used to keep track
of the depth of the derivation tree and either halts (if
no other rule applies) or backtracks whenever the set
depth is reached.

3.2 Linguistic Coverage and Output
Readibility

GRADE provides several ways of controlling the lin-
guistic coverage and the readibility of the output
sentences.

Modifiers. As we shall show in Section 5, the re-
cursivity constraints mentioned in the previous sec-
tion can be used to constrain the type and the number
of modifiers present in the output.

Root Rule. Second, the “root rule” i.e., the rule
that is used to expand the start symbol can be con-
strained in several ways. The user can specify which
rule should be used; which features should label
the lhs of that rule; which subcategorisation type it
should model; and whether or not it is a recursive
rule. For instance, given the FB-LTAG we are using,
by specifying the root rule to be used, we can con-
strain the generated sentences to be sentences con-
taining an intransitive verb in the active voice com-
bining with a canonical nominal subject. If we only
specify the subcategorisation type of the root rule
e.g., transitive, we can ensure that the main verb of
the generated sentences is a transitive verb; And if
we only constrain the features of the root rule to in-
dicative mode and active voice, then we allow for
the generation of any sentence whose main verb is
in the indicative mode and active voice.

Input Semantics. Third, in those cases where the
grammar is a reversible grammar associating sen-
tences with both a syntactic structure and a seman-
tic representation, the content of the generated sen-
tences can be controlled by providing GRADE with
an input semantics. Whenever a core semantics
is specified, only rules whose semantics includes
one or more literal(s) in the core semantics can be
used. Determiner rules however are selected inde-
pendent of their semantics. In this way, it is possi-
ble to constrain the output sentences to verbalise a
given meaning without having to specify their full
semantics (the semantic representations used in re-
versible grammars are often intricate representations

which are difficult to specify manually) and while
allowing for morphological variations (tense, num-
ber, mode and aspect can be left unspecified and will
be informed by the calls to the lexicon embedded in
the DCG rules) as well as variations on determin-
ers2. For instance, the core semantics{run(E M),
man(M)} is contained in, and therefore will gen-
erate, the flat semantics for the sentencesThe man
runs, The man ran, A man runs, A man ran, This
man runs, My man runs, etc..

4 Implementation

In the previous section, we provided an abstract de-
scription of the GRADE algorithm. We now describe
an implementation of that algorithm tailored for FB-
LTAGs equipped with a unification-based composi-
tional semantics. We start by describing the gram-
mar used (SEMTAG), we then summarise the im-
plementation of GRADE for FB-LTAG.

4.1 SemTAG

For our experiments, we use the FB-LTAG described
in (Crabb́e, 2005; Gardent, 2008). This grammar,
called SEMTAG, integrates a unification-based se-
mantics and can be used both for parsing and for
generation. It covers the core constructs for non
verbal constituents and most of the verbal construc-
tions for French. The semantic representations built
are MRSs (Minimal Recursion Semantic representa-
tions, (Copestake et al., 2001)).

More specifically, a tree adjoining grammar
(TAG) is a tuple〈Σ, N, I, A, S〉 with Σ a set of ter-
minals, N a set of non-terminals,I a finite set of
initial trees,A a finite set of auxiliary trees, andS
a distinguished non-terminal (S ∈ N ). Initial trees
are trees whose leaves are labeled with substitution
nodes (marked with a downarrow) or terminal cate-
gories3. Auxiliary trees are distinguished by a foot
node (marked with a star) whose category must be
the same as that of the root node.

2The rules whose semantics is not checked during derivation
are specified as a parameter of the system and can be modified
at will e.g., to include adverbs or auxiliaries. Here we choosed
to restrict underspecification to determiners.

3Due to space limitation we here give a very sketchy defini-
tion of FB-LTAG. For a more detailed presentation, see (Vijay-
Shanker and Joshi, 1988).

34



Two tree-composition operations are used to com-
bine trees: substitution and adjunction. Substitu-
tion inserts a tree onto a substitution node of some
other tree while adjunction inserts an auxiliary tree
into a tree. In a Feature-Based Lexicalised TAG
(FB-LTAG), tree nodes are furthermore decorated
with two feature structures (calledtop andbottom)
which are unified during derivation; and each tree
is anchored with a lexical item. Figure 1 shows an
example toy FB-LTAG with unification semantics.

NPj

John

l0:proper q(c hr hs)

l1:named(j john)

qeq(hr l1)

Sb

NP↓c VPb
a

Va

runs

lv:run(a,j)

VPx

often VP*x
lo:often(x)

⇒ l0:proper q(c hr hs) l1:named(j john), qeq(hr, l1),
lv:run(a,j), lv:often(a)

Figure 1: MRS for “John often runs”

4.2 GraDe for FB-LTAG

The basic FB-LTAG implementation of GRADE is
described in detail in (Gardent et al., 2011; Gar-
dent et al., 2010). In brief, this implementation
takes advantage of the top-down, left-to-right, gram-
mar traversal implemented in Definite Clause Gram-
mars by translating the FB-LTAG to a DCG. In the
DCG formalism, a grammar is represented as a set of
Prolog clauses and Prolog’s query mechanism pro-
vides a built-in top-down, depth-first, traversal of the
grammar. In addition, the DCG formalism allows
arbitrary Prolog goals to be inserted into a rule. To
implement a controlled, top-down grammar traver-
sal of SEMTAG, we simply convert SEMTAGto a
Definite Clause Grammar (DCG) wherein arbitrary
Prolog calls are used both to ground derivations with
lexical items and to control Prolog’s grammar traver-
sal so as to respect the user defined constraints on
recursion and on linguistic coverage. In addition,
we extended the approach to handle semantic con-
straints (i.e., to allow for an input semantic to con-
strain the traversal) as discussed in Section 3. That
is, for a subset of the grammar rules, a rule will only
be applied if its semantics subsumes a literal in the
input semantics.

For more details, on the FB-LTAG implementa-
tion of the GRADE algorithm and of the conversion
from FB-LTAG to DCG, we refer the reader to (Gar-
dent et al., 2011; Gardent et al., 2010).

5 Grammar Analysis

Depending on which control parameters are used,
the GRADE algorithm can be used to explore the
grammar from different viewpoints. In what fol-
lows, we show that it can be used to check grammar
completeness (Can all rules in the grammar be used
so as to derive a constituent?); to inspect the vari-
ous possible realisations of syntactic functors and of
their arguments (e.g., Are all possible syntactic real-
isations of the verb and of its arguments generated
and correct?); to explore the interactions between
basic clauses and modifiers; and to zoom in on the
morphological and syntactic variants of a given core
semantics (e.g., Does the grammar correctly account
for all such variants ?).

5.1 Checking for Grammar Completeness

We first use GRADE to check, for each grammar
rule, whether it can be used to derive a complete
constituent i.e., whether a derivation can be found
such that all leaves of the derivation tree are ter-
minals (words). Can all trees anchored by a verb
for instance, be completed to build a syntactically
complete clause? Trees that cannot yield a complete
constituent points to gaps or inconsistencies in the
grammar.

To perform this check, we run the GRADE algo-
rithm on verb rules, allowing for up to 1 adjunc-
tion on either a noun, a verb or a verb phrase and
halting when either a derivation has been found or
all possible rule combinations have been tried. Ta-
ble 1 shows the results per verb family4. As can be
seen, there are strong differences between the fam-
ilies with e.g., 80% of the trees failing to yield a
derivation in the n0Vs1int (Verbs with interrogative
sentential complement) family against 0% in the ilV

4The notational convention for verb types is from XTAG and
reads as follows. Subscripts indicate the thematic role of the
verb argument. n indicates a nominal, Pn a PP and s a sentential
argument. pl is a verbal particle. Upper case letters describe
the syntactic functor type: V is a verb, A an adjective and BE
the copula. For instance, n0Vn1 indicates a verb taking two
nominal arguments (e.g.,like) .

35



Tree Family Trees Fails Fails/Trees
CopulaBe 60 1 1%
ilV 2 0 0%
n0V 10 0 0%
n0ClV 9 0 0%
n0ClVn1 45 2 4%
n0ClVden1 36 3 8%
n0ClVpn1 29 3 10%
n0Vn1 84 3 3%
n0Vn1Adj2 24 6 25%
n0Van1 87 3 3%
n0Vden1 38 3 7%
n0Vpn1 30 3 10%
ilVcs1 2 0 0%
n0Vcs1 30 23 74%
n0Vas1 15 10 66%
n0Vn1Adj2 24 0 0%
s0Vn1 72 9 12%
n0Vs1int 15 12 80%
n0Vn1n2 24 0 0%
n0Vn1an2 681 54 7%

Table 1: Checking for Gaps in the Grammar

(impersonal with expletive subject, “it rains”) and
the n0V (intransitive, “Tammy sings”). In total, ap-
proximatively 10% (135/1317) of the grammar rules
cannot yield a derivation.

5.2 Functor/Argument Dependencies

To check grammar completeness, we need only find
one derivation for any given tree. To assess the de-
gree to which the grammar correctly generates all
possible realisations associated with a given syn-
tactic functor however, all realisations generated by
the grammar need to be produced. To restrict the
output to sentences illustrating functor/argument de-
pendencies (no modifiers), we constrain adjunction
to the minimum required by each functor. In most
cases, this boils down to setting the adjunction coun-
ters to null for all categories. One exception are
verbs taking a sentential argument which require one
S adjunction. We also allow for one N-adjunction
and one V-adjunction to allow for determiners and
the inverted subject clitic (t’il). In addition, the lex-
icon is restricted to avoid lexical or morphological
variants.

We show below some of the well-formed sen-
tences output by GRADE for the n0V (intransitive
verbs) family.

Elle chante (She sings), La tatou chante-
t’elle? (Does the armadillo sing? ),
La tatou chante (The armadillo sings),
La tatou qui chante (The armadillo which
sings), Chacun chante -t’il (Does every-
one sing? ), Chacun chante (Everyone
sings ), Quand chante chacun? (When
does everyone sing?), Quand chante la
tatou? (When does the armadillo sing?
) Quand chante quel tatou? (When does
which armadillo sing? ), Quand chante
Tammy? (When does Tammy sing?),
Chante-t’elle? (Does she sing?) Chante
-t’il? (Does he sing?), Chante! (Sing!
), Quel tatou chante ? (Which armadillo
sing? ), Quel tatou qui chante ..? (Which
armadillo who sings ..?) Tammy chante-
t’elle? (Does Tammy sing?), Tammy
chante (Tammy sings), une tatou qui
chante chante (An armadillo which sings
sings), C’est une tatou qui chante (It is an
armadillo which sings), ...

The call on this family returned 55 distinct MRSs
and 65 distinct sentences of which only 28 were cor-
rect. Some of the incorrect cases are shown below.
They illustrate the four main sources of overgener-
ation. The agreement between the inverted subject
clitic and the subject fails to be enforced (a); the in-
verted nominal subject fails to require a verb in the
indicative mode (b); the inverted subject clitic fails
to be disallowed in embedded clauses (c); the inter-
rogative determinerquel fails to constrain its nomi-
nal head to be a noun (d,e).

(a) Chacun chante-t’elle? (Everyone
sings?) (b) Chant́ee chacun? (Sung every-
one?) (c) La tatou qui chante-t’elle? (The
armadillo which does she sing?) (d) Quel
chacun chante ? (Which everyone sings?)
(e) quel tammy chante ? (Which Tammy
sings?)

5.3 Interactions with Modifiers

Once basic functor/argument dependencies have
been verified, adjunction constraints can be used to

36



explore the interactions between e.g., basic clauses
and modification5. Allowing for N-adjunctions for
instance, will produce sentences including determin-
ers and adjectives. Similarly, allowing for V ad-
junction will permit for auxiliaries and adverbs to
be used; and allowing for VP or S adjunctions will
licence the use of raising verbs and verbs subcate-
gorising for sentential argument.

We queried GRADE for derivations rooted in n0V
(intransitive verbs) and with alternatively, 1N, 2N,
1V and 1VP adjunction. Again a restricted lexicon
was used to avoid structurally equivalent but lexi-
cally distinct variants. The following table shows
the number of sentences output for each query.

0 1S 1VP 1V 1N 2N
36 170 111 65 132 638

As the examples below show, the generated sen-
tences unveil two further shortcomings in the gram-
mar: the inverted subject clitic fails to be constrained
to occur directly after the verb (1) and the order and
compatibility of determiners are unrestricted (2).

(1) a. Semble-t’il chanter? / * Semble chanter
t’il? (Does he seems to sing?)

b. Chante-t’il dans Paris? / * Chante dans
Paris-t’il? (Does he sing in Paris?)

c. Chante-t’il beaucoup? / * Chante
beaucoup-t’il? (Does he sing a lot?)

d. Veut-t’il que Tammy chante? / * Veut que
Tammy chante-t’il? (Does he want that
Tammy sings?

(2) * Un quel tatou, *Quel cette tatou, Ma quelle
tatou (Un which armadillo, Which this ar-
madillo, My which armadillo)

5.4 Inspecting Coverage and Correctness

In the previous sections, GRADE was used to gen-
erate MRSs and sentencesex nihilo. As mentioned
above however, a core semantics can be used to re-
strict the set of output sentences to sentences whose
MRS include this core semantics. This is useful for

5Recall that in FB-LTAG, adjunction is the operation which
permits applying recursive rules (i.e., auxiliary trees). Hence
allowing for adjunctions amounts to allowing for modification
with the exception already noted above of certain verbs subcat-
egorising for sentential arguments.

Tree Family MRS Sent. S/MRS
ilV 7 52 7.4
n0V 65 161 2.4
n0ClV 30 62 2.0
n0ClVn1 20 25 1.25
n0ClVden1 10 15 1.5
n0ClVpn1 40 63 1.57
n0Vn1 20 110 5.5
n0Van1 30 100 3.33
n0Vden1 5 15 3.00
n0Vpn1 25 76 3.04
ilVcs1 1 1 1.00
n0Vcs1 200 660 3.3
n0Vas1 35 120 3.42
n0Vn1Adj2 10 15 1.5
s0Vn1 4 24 6.00
n0Vn1n2 10 48 4.80
n0Vn1an2 5 45 9.00

Table 2: Producing Variants

instance, to systematically inspect all variations out-
put by the grammar on a given input. These varia-
tions include all morphological variations supported
by the lexicon (number, tense, mode variations) and
the syntactic variations supported by the grammar
for the same MRSs (e.g., active/passive). It also in-
cludes the variations supported by GRADE in that
some rules are not checked for semantic compati-
bility thereby allowing for additional materials to be
added. In effect, GRADE allows for the inclusion of
arbitrary determiners and auxiliaries.

Table 2 shows the number of MRSs and sen-
tences output for each verb family given a match-
ing core semantics and a morphological lexicon in-
cluding verbs in all simple tenses (3rd person only)
and nouns in singular and plural6. The ratioS/M of
sentences on MRSs produced by one GRADE call
shows how the underspecified core semantics per-
mits exploring a larger number of sentences gener-
ated by the grammar than could be done by gener-
ating from fully specified MRSs. For the n0Vn1an2
class, for instance, the GRADE call permits generat-
ing 9 times more sentences in average than generat-
ing from a single MRS.

6The lexicon used in this experiment includes more mor-
phological variants than in the experiment of Section 5.2 where
the focus was on syntactic rather than morphological variants.
Hence the different number of generated sentences.

37



6 Conclusion

When using a grammar for generation, it is essen-
tial, not only that it has coverage (that it does not
undergenerate) but also that it be precise (that it
does not overgenerate). Nonetheless, relatively lit-
tle work has been done on how to detect overgener-
ation. In this paper, we presented an algorithm and
a methodology to explore the sentences generated
by a grammar; we described an implementation of
this algorithm based on DCGs (GRADE ); and we
illustrated its impact by applying it to an existing
grammar. We showed that GRADE could be used
to explore a grammar from different viewpoints: to
find gaps or inconsistencies in the rule system; to
systematically analyse the grammar account of func-
tor/argument dependencies; to explore the interac-
tion between base constructions and modifiers; and
to verify the completeness and correctness of syn-
tactic and morphological variants.

There are many directions in which to pursue
this research. One issue is efficiency. Unsurpris-
ingly, the computational complexity of GRADE is
formidable. For the experiments reported here, run-
times are fair (a few seconds to a few minutes de-
pending on how much output is required and on the
size of the grammar and of the lexicon). As the com-
plexity of the generated sentences and the size of the
lexicons grow, however, it is clear that runtimes will
become unpractical. We are currently using YAP
Prolog tabling mechanism for storing intermediate
results. It would be interesting however to compare
this with the standard tabulating algorithms used for
parsing and surface realisation.

Another interesting issue is that of the interac-
tion between GRADE and error mining. As men-
tioned in Section 2, GRADE could be usefully com-
plemented by error mining techniques as a means
to automatically identify the most probable causes
of errors highlighted by GRADE and thereby of im-
proving the grammar. To support such an integration
however, some means must be provided of sorting
GRADE ’s output into “good” and “bad” output i.e.,
into sentences that are grammatical and sentences
that are over-generated by the grammar. We plan to
investigate whether language models could be used
to identify those sentences that are most probably
incorrect. In a first step, simple and highly con-

strained input would be used to generate from the
grammar and the lexicon a set of correct sentences
using GRADE . Next these sentences would be used
to train a language model which could be used to
detect incorrect sentences produced by GRADE on
more complex, less constrained input.

Other issues we are currently pursueing are the
use of GRADE (i) for automating the creation of
grammar exercises for learners of french and (ii) for
creating a bank of MRSs to be used for the evalua-
tion and comparison of data-to-text generators. The
various degrees of under-specification supported by
GRADE permit producing either many sentences out
of few input (e.g., generate all basic clauses whose
verb is of a given subcategorisation type as illus-
trated in Section 5.2); or fewer sentences out a more
constrained input (e.g., producing all syntactic and
morphological variants verbalising a given input se-
mantics). We are currently exploring how seman-
tically constrained GRADE calls permit producing
variants of a given meaning; and how these vari-
ants can be used to automatically construct gram-
mar exercises which illustrate the distinct syntac-
tic and morphological configurations to be acquired
by second language learners. In contrast, more un-
derspecified GRADE calls can be used to automat-
ically build a bank of semantic representations and
their associated sentences which could form the ba-
sis for an evaluation of data-to-text surface realis-
ers. The semantics input to GRADE are simplified
representations of MRSs. During grammar traver-
sal, GRADE reconstructs not only a sentence and
its associated syntactic tree but also its full MRS.
As a result, it is possible to produce a generation
bank which, like the Redwook Bank, groups to-
gether MRSs and the sentences verbalising these
MRSs. This bank however would reflect the linguis-
tic coverage of the grammar rather than the linguis-
tic constructions present in the corpus parsed to pro-
duce the MRS. It would thus provide an alternative
way to test the linguistic coverage of existing surface
realisers.

Acknowledgments

The research presented in this paper was partially
supported by the European Fund for Regional De-
velopment within the framework of the INTERREG
IVA Allegro Project.

38



References

Anja Belz, Michael White, Dominic Espinosa, Eric Kow,
Deirdre Hogan, and Amanda Stent. 2011. The first
surface realisation shared task: Overview and evalua-
tion results. InProc. of the 13th European Workshop
on Natural Language Generation.

E. Black, S. Abney, D. Flickinger, C. Gdaniec, R. Gr-
ishman, P. Harrison, D. Hindle, Ingria R., F. Jelinek,
J. Klavans, M. Liberman, M. Marcus, S. Roukos,
B. Santorini, and T. Strzalkowski. 1991. A proce-
dure for quantitatively comparing the syntactic cov-
erage of english grammars. InProceedings of the
DARPA Speech and Natural Language Workshop,
page 306311.

Charles B. Callaway. 2003. Evaluating coverage for
large symbolic NLG grammars. In18th IJCAI, pages
811–817, Aug.

Ann Copestake, Alex Lascarides, and Dan Flickinger.
2001. An algebra for semantic construction in
constraint-based grammars. InProceedings of the
39th Annual Meeting of the Association for Compu-
tational Linguistics, Toulouse, France.

Benoit Crabb́e. 2005. Reprsentation informatique de
grammaires d’arbres fortement lexicalisées : le cas de
la grammaire d’arbres adjoints.Ph.D. thesis, Nancy
University.

Danïel de Kok, Jianqiang Ma, and Gertjan van Noord.
2009. A generalized method for iterative error mining
in parsing results. InACL2009 Workshop Grammar
Engineering Across Frameworks (GEAF), Singapore.

Claire Gardent and Eric Kow. 2007. Spotting overgener-
ation suspect. In11th European Workshop on Natural
Language Generation (ENLG).

Claire Gardent and Shashi Narayan. 2012. Error mining
on dependency trees. InProceedings of ACL.

Claire Gardent, Benjamin Gottesman, and Laura Perez-
Beltrachini. 2010. Benchmarking surface realisers. In
COLING 2010 (Poster Session), Beijing, China.

Claire Gardent, Benjamin Gottesman, and Laura Perez-
Beltrachini. 2011. Using regular tree grammar to
enhance surface realisation.Natural Language En-
gineerin, 17:185–201. Special Issue on Finite State
Methods and Models in Natural Language Processing.

Claire Gardent. 2008. Integrating a unification-based
semantics in a large scale lexicalised tree adjoining
grammar for french. InCOLING’08, Manchester, UK.

Paul Klint, Ralf L̈ammel, and Chris Verhoef. 2005.
Toward an engineering discipline for grammarware.
ACM Transactions on Software Engineering Method-
ology, 14(3):331–380.

Benoit Sagot and Eric de la Clergerie. 2006. Error min-
ing in parsing results. In ACL, editor,Proceedings of
the ACL 2006, pages 329–336, Morristown, NJ, USA.

Gertjan van Noord. 2004. Error mining for wide-
coverage grammar engineering. In ACL, editor,Pro-
ceedings of the ACL 2004, pages 446–454, Morris-
town, NJ, USA.

K. Vijay-Shanker and Aravind Joshi. 1988. Feature
Structures Based Tree Adjoining Grammars.Proceed-
ings of the 12th conference on Computational linguis-
tics, 55:v2.

39


