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ABSTRACT

The article focuses on a rather unexplored topic in NLP: parenthetical classification. Parenthet-

icals are defined as any text sequence between parentheses. They have been approached from

isolated perspectives, like translation pairs extraction, but a full account of their syntactic and

semantic properties is lacking. This article proposes a new comprehensive scheme drawn from

corpus-based linguistic studies on French news. This research is part of a project investigat-

ing the structural aspects of punctuation signs and their usefulness for Information Extraction.

Parenthetical classification is approached as a relation extraction problem split into three cor-

related subtasks: syntactic and semantic classification and head recognition. Corpus-based

studies singled out 11 syntactic and 18 semantic relation subtypes. The article addresses auto-

matic classification, using a combination of CRF and SVM. This baseline system reports 0.674

(head recognition), 0.908 (syntax), 0.734 (semantics), and 0.518 (end-to-end) of F1.

TITLE AND ABSTRACT IN ANOTHER LANGUAGE, FRENCH (FR)

Classification des parenthétiques pour l’extraction
d’information

Définies dans cet article comme du texte entre parenthèses, les parenthétiques ont été

jusqu’à présent peu étudiées en TALN. Si elles ont fait l’objet d’études particulières telles que

l’extraction de paires de traduction, il manque une approche globale des relations syntaxiques

et sémantiques qui les rattachent à leur contexte. Cet article propose un nouveau schéma

de classification élaboré à partir d’études de corpus de presse. Cette recherche s’inscrit

dans un projet explorant les aspects structurants des signes de ponctuation et leur utilité en

Extraction d’Information. La classification des parenthétiques est abordée sous l’angle de

l’extraction de relations et divisée en trois sous-tâches : classification syntaxique et sémantique

et reconnaissances des têtes. Les études de corpus ont fait émerger 11 classes syntaxiques

et 18 classes sémantiques. L’article propose d’évaluer un système combinant CRF et SVM. La

baseline obtenue est de 0,674 (reconnaissance des têtes), 0,908 (syntaxe), 0,734 (sémantique)

et 0,518 (toutes tâches confondues) de F-mesure.

KEYWORDS: Parentheticals, Punctuation, Information Extraction.

KEYWORDS IN FRENCH (FR): Parenthétiques, Ponctuation, Extraction d’information.



1 Condensed version in French (FR)

Cet article a pour objectif de contribuer à une meilleure connaissance des propriétés syntaxico-

sémantiques des parenthétiques, définies comme des empans de texte entre parenthèses. La

tâche y est abordée du point de vue de l’Extraction de Relations : (i) extraction des têtes

externe et interne des parenthétiques, (ii) classifications syntaxique et sémantique des couples

de têtes extraites.

La tête interne d’une parenthétique est son élément informationnel majeur. Sa tête externe

est l’élément du contexte auquel l’information entre parenthèses doit préférentiellement être

rattachée. Une particularité de ces têtes est de couvrir à peu près toutes les classes grammati-

cales : texte, phrase, Entités Nommées, noms, verbes, adjectifs, etc. Trois catégories spécifiques

ont dû être définies pour les têtes externes : a, p renvoient respectivement aux cas où la tête

externe est le texte entier et la phrase dans sa globalité alors que n renvoie au cas où il est

impossible de spécifier un rattachement particulier. Dans les exemples de la Table 1, les têtes

sont en caractères gras. La Table 2 (en bas à gauche) donne des précisions statistiques sur la

nature des têtes dans le corpus étudié.

L’étude d’un corpus de la presse française (Le Monde) a permis d’identifier 11 classes syntax-

iques, organisées suivant différents critères (voir détails section 4.2) : parenthétique de nature

propositionnelle (inter-clause) ou non (intra-clause), apposition/adjonction (exemples (1, 4,

5, 8)/ (2, 3, 6, 7), présence ou absence de mots introductifs (soulignés dans les exemples),

la parenthétique est (ou non) en coordination avec sa tête externe (exemples (3b), (7b)). La

Table 1 donne un exemple de chacune des 10 principales classes ainsi définies.

Inter-clause

(1) le produit intérieur brut (PIB). [the gross domestic product (GDP).]

(2) il est (très) réussi. [it is (very) nice.]

(3a) son taux directeur (à 2,5%). [its reference rate (at 2.5%).]

(3b) elle a connu la liberté (et les pressions). [She experienced freedom (and pressure).]

(4) La cérémonie a lieu mercredi (cf. page 15) [Celebrations is held Wednesday (cf. page 15)]

Intra-clause

(5) elle est partie (Gustave avait 6 ans). [She left (Gustave was 6 years old).]

(6) elle est partie ce jour-là (Gustave ayant 6 ans). [She left that day (Gustave being 6 years old).]

(7a) elle est partie (alors que Gustave avait 6 ans). [She left (when Gustave was 6 years old).]

(7b) elle est partie (et Gustave avait 6 ans). [She left (and Gustave was 6 years old).]

(8) je ne suis pas (ici elle baissa la voix qui tremblait) de l’avis de sa majesté!

[I am not (here she lowered her shaking voice) of your Highness’s opinion!]

Table 1: Exemples pour la classification syntaxique. (Examples for syntactic Classification.)

La classification sémantique ne traite que d’une classe syntaxique particulièrement fréquente

(82%) : les parenthétiques appositives non introduites et intra-propositionnelles (exemple

(1) Table 1). Les études de corpus ont permis de mettre à jour 18 classes sémantiques

génériques, comme l’ancrage spatial ou temporel (section 4.3).

Des conventions d’annotation ont été élaborées pour permettre l’annotation complète d’un

corpus de 1000 parenthétiques. On pourra se reporter aux Tables 2 pour une description de

ce corpus en termes de classes et à la Table 4 pour l’accord inter-annotateurs. Bien que, dans

la classe des parenthétiques sémantiquement classées, la relation sémantique soit totalement

implicite, le bon accord inter-annotateur montre, s’il en était besoin, que le lecteur décode sans

difficultés la nature de l’information qui lui est donnée entre parenthèses.



Syntactic Class Frequency Semantic Class Frequency

Intra App NI 801 NULL 177

Intra Adj IN Not-Coord 60 CoRef-Abbreviation 150

Inter App NI 27 Sit-SA 87

Truncation 25 Cat-Instantiation 78

Intra Adj NI 21 Sit-ArgVal 72

Inter Adj IN NotCoord 22 Sit-Affiliation 72

Intra Adj IN Coord 21 Ref-IR 55

Inter Adj NI 1 CoRef-EntRef 49

Total 978 Other 43

Sit-PS 43

Cat-ValPrec 28

CoRef-ValRef 27

Cat-Type 25

CoRef-Translation 22

Head Class Frequency Sit-TA-Date 21

ID 869 Ref-PR 9

p 62 CoRef-Explanation 9

n 25 Sit-TA-Period 7

a 22 Ref-Coordinates 4

Total 978 Total 978

Table 2: Fréquences des classes dans le corpus. (Sample corpus class counts.)

Le système proposé comme baseline (Section 6) combine les CRF (pour la détection des candi-

dats) et les SVM (pour la classification), pour chaque tâche indépendamment et toutes tâches

confondues. L’évaluation de ce système (Table 3) a permis tout d’abord d’observer que les en-

sembles de variables (formes, étiquettes morpho-syntaxiques, Entités Nommées, etc.) avaient

un impact qui variait en fonction de la tâche : les étiquettes morpho-syntaxiques (T) sont par

exemple les plus utiles à la classification syntaxique. De plus, la détection des candidats est une

tâche cruciale, étant donné que le nombre de couples candidats aux frontières correctement

délimitées est responsable d’une chute de la F-mesure globale du système (0,674, indépen-

damment, 0,518 toutes tâches confondues). Ces résultats sont confirmés par ceux obtenus par

(Zhou et al., 2005) en Extraction de Relation à grand nombre de classes.

Feature Pre-detection Exact-Rec. Soft-Rec Syntax Semantics

F 0.965 0.426 0.680 0.861 0.512

C 0.914 0.499 0.705 0.859 0.637

T 0.955 0.470 0.714 0.908 0.582

Ab 0.888 0.318 0.642 0.818 0.312

Pre-detection - 0.349 0.719 - -

Size 0.886 - - 0.796 0.286

All 0.963 0.674 0.774 0.902 0.716

Baseline 0.888 0.3 0.649 0.818 0.182

Table 3: Résultats obtenus par le système en fonction des ensembles de variables utilisés.

(Independent task results on each feature set.)

Les expériences à venir feront intervenir les informations syntaxiques pour évaluer leur apport.

La robustesse du schéma d’annotation nécessite d’être également mise à l’épreuve; les expéri-

ences préliminaires menées en ce sens sur des corpus encyclopédiques, littéraires, juridiques

et scientifiques n’ont jusqu’à présent donné lieu qu’à des modifications minimes.



2 Introduction

As Say and Akman (1996) point out, punctuation has not attracted much theoretical attention

in Linguistics nor in NLP (see however (Briscoe, 1996; Jones, 1996; Nunberg, 1990)). Never-

theless, it is pervasive in written texts and commonly used in NLP systems: phrase boundaries,

sentence boundaries, and so on.

This work is a part of a discourse-oriented project investigating how punctuation interacts

with different linguistic levels such as syntax and semantics. It attempts to provide answers as

to why and how punctuation helps comprehension, through the analysis of text segments be-

tween parentheses, named parentheticals. This punctuation structure should not be confused

with the definition of parentheticals as optional embedded segments.

The article introduces a new scheme designed for robustness and large coverage from an In-

formation Extraction perspective. The task is divided into three subtasks, Head recognition,

Syntactic and Semantic classification. The choice of the classes is based on a linguistic corpus

study on French news: 11 syntactic relations and 18 semantic relations have been defined,

according to several levels of granularity or dimensions.

The article describes the application and results of an annotation experiment on a sampled

corpus of a thousand parenthetical observations. It provides baselines for each subtask, using

various feature sets. The results, along with an analysis of feature set impact, call for further

experiments as well as for a generalization of the task to different corpora.

Section 3 discusses related work on parentheticals and section 4 introduces the classification

scheme. Section 5 details the annotated corpus. The systems are described in section 6 and

their evaluation is presented in section 6.3.

3 Parentheticals in Information Extraction (IE)

It is commonly stated that parentheticals provide optional information: they can be removed

without affecting understanding. For instance, they are deleted in sentence compression ap-

plications (e.g. equation (31) in (Clarke and Lapata, 2008)). However, they have recently

aroused interest in IE.

IE (Sundheim, 1991; Sarawagi, 2008) is the NLP field concerned with (i) the identification

of Named Entities (NE) from text, (ii) their co-referring units (anaphora, acronyms), and

(iii) their interactions (e.g. Affiliation, Location). Two text types have particularly been stud-

ied in IE: newswire and biomedical articles. In both types, parentheticals are pervasive. For

instance, Bretonnel Cohen et al. (2010), report finding about 17,000 parentheses in a corpus

of 97 scientific articles (about 600,000 words). Comparatively, we found more than 4 paren-

theses per article in newswire texts (136,000 on 17,000,000 words).

Parentheticals have mainly been studied under the topics of Abbreviation, Translation and

Transliteration pairs extraction. Abbreviation recognition (extracting co-referring full and

short forms) is a well-defined task which has both been conducted on biomedical literature

(Pustejovsky et al., 2001; Schwartz and Hearst, 2003) and on newswire (Okazaki et al., 2008):

systems generally record more than 0.9 in F1. Okazaki et al. (2008) analyzed 7,887 frequent

parenthetical instances and classified them into Acronym, Translated Acronym, Alias and Other.

In their study, the Other category covers 81.9% of all studied instances. The authors propose

to split it into alphabetic transcription, location, or affiliation.

Parentheticals have also been studied in the field of Machine Translation. Cao et al. (2007)



observe that many terms (very frequently NE) are followed by their English translation inside

parentheses on Chinese monolingual webpages. They use parentheticals to extract a bilingual

dictionary automatically, and find that the majority of pairs are not covered by a standard lex-

icon. In a similar experiment, Kaji and Kitsuregawa (2011) propose to classify transliteration

pairs in order to help segmenting complex katakana compounds.

A recent much larger scheme was proposed for the biomedical domain (Bretonnel Cohen et al.,

2011). The authors propose to classify parenthetic content into 20 categories. They note that

some categories are ambiguous if only the content inside parentheses is taken into account.

The scheme introduced in the next section builds on previous works and aims to be generic

and rich at the same time.

4 Annotation scheme

The annotation scheme is the result of an in-depth corpus-based linguistic study. It proposes

to identify, when possible, the most prominent unit inside parentheses (internal head) and the

word in the host sentence (external head) to which it is most preferably linked. This link is

syntactically characterized. Besides, most of the time, deleting parentheses affects sentence

grammaticality (cf. ex. (4)), so the relation between parenthetical and its environment needs

to be inferred by the reader. In this case (and only in this case), the scheme provides semantic

categories.

4.1 Head Detection

Internal heads are most straightforwardly detected, because they tend to correspond to the

syntactic head of the first information group. When more than one head can be selected, only

the first is kept.

External heads are very frequently multi-word units (cf. example (1), Table 1), but is not

necessarily the head of its own syntactic phrase. In the following example (9), the relation

holds between a color and its interpretation, but it is “niveau” which is the syntactic head of

the prepositional phrase.

(9)...maintenir le niveau d’alerte antiterroriste au niveau orange (très élevé) [keeping the an-

titerrorism threat level at level orange (very high)]

In some rarer cases, the external head may follow (and not precede) the parenthetical, as in

ex. (2), Table 1. More examples can be found in bold type in Table 1.

Three labels are provided when no words can be singled out as head: p for the whole proposi-

tion, n for no head, for example in the case of truncation (cf. end of 4.2) and a is used when

the parenthetical provides information on the whole document.

4.2 Syntactic classification

Ten syntactic categories were organized along four criteria. An example for each of them is

given Table 1.

• The first criterion is the distinction between intra(-clause) and inter(-clause). A paren-

thetical is inter if its content can be viewed as a finite clause (cf. examples (5), (6), (7a),

(7b) and (8) of Table 1.). In contrast, an intra corresponds to non-finite clauses (cf. (1),

(2), (3a), (3b) and (4)).



• The second criterion discriminates between adj(-oined) and app(-ositionnal) (non-

adjoined) parentheticals. In the case of adj parentheticals, the sentence remains correct

when the brackets are removed (cf. (2), (3a), (3b), (6), (7a) and (7b), Table 1.). In app

parentheticals, the deletion of the parentheses breaks the progression of the sentence (cf.

(1), (4), (5) and (8)).

• The third criterion divides parentheticals into intro(-duced) (IN) and not-intro(duced)

(NI) parentheticals. A parenthetical is intro when an expression introduces its head, and

links it with the outer context (cf. (3a), (3b), (4), (7a), (7b) and (8) of Table 1, where

introducing elements are underlined).

Eight classes are obtained by applying the previous three criteria. A fourth criterion splits intro

adj parentheticals (inter or intra) and discriminates between coord(-inated) and not-coord(-

inated) parentheticals. In coord parentheticals, the internal head has the same syntactic cate-

gory as the external head (word or clause) (cf. (3b) and (7b)).

The last and eleventh class concerns the case of punctuation marks in brackets ( (...), (!),

etc.), called truncation. All cases have been found in corpus, though with high distribution

differences (Table 2, left).

4.3 Semantic classification

Eighteen semantic categories, organized into four dimensions, were defined for intra app NI

(intra-clause appositional not-introduced) parentheticals, which lack an explicit link. Classifying

other syntactic classes was left for further investigation.

1. The first, Co-reference (CoRef), corresponds to cases where both heads refer to the same

entity, but use different names.

(a) Abbreviation: the parenthetical contains an abbreviation of the external head (its

full form; cf. example (1)).
(b) Explanation: the definition of an acronym (the reverse of the previous relation).
(c) Translation: it contains a translation of the external head in an other language.
(d) Reformulated Entity (RefEnt): other co-referential relations not covered by the pre-

vious classes; for example, the name an actor has in a movie.
(e) Reformulated Value (RefVal): it translates the value expressed by the external head

in another unit of measurement.

2. The second broad class, Categorization (Cat), refers to asymmetric relations between

entities and categories.

(a) Type: it provides the category of the entity of the external head (as hyponyms).
(b) Instantiation: the reverse of the previous relation. It provides an instance of the

category expressed by the external head.
(c) Value Precision (ValPrec): it precises the value of its external head, which is already

a quantity category (drop, growth, etc.).

3. The third class relates to Situational relations (Sit). Most correspond to standard seman-

tic relations defined for relation extraction (ACE, 2008).

(a) Product Source (PS): it refers to the producer, editor, etc. of a product referred by

the external head (e.g. book).



(b) Affiliation: it contains the organization to which its external head (person or orga-

nization) is affiliated.

(c) Spatial Anchoring (SA): it sets the spatial location of an entity.

(d) Temporal Anchoring (TA) is split into Date and Period (of any kind of entity).

(e) Argument Value (ArgVal): it gives a value related to its external head (as age).

4. The fourth class concerns Referencing (Ref), where parentheticals attribute references or

indexes to the external head.

(a) Inter-textual Reference (IR): it makes a reference to the journal, media as source of

the external head (citation).

(b) Para-textual Reference (PR): it refers to para-textual elements of the document (fig-

ure, footnote, etc.)

(c) Coordinates: It provides the code value indexing entities in a given coding scheme

(phone number, postal address, etc.).

(d) Indexing: it refers to the marks (numbers) indexing document elements (such as

examples) and to which parentheticals may elsewhere refer to.

Contrary to Okazaki et al. (2008), translated acronyms are here considered as abbreviations.

In principle, most classes defined by Bretonnel Cohen et al. (2011) could be fitted in this

scheme, like p-values (ArgVal) or Figure references (IR).

5 Corpus Annotation

The scheme was tested on a sample of French news (114 parentheticals) by two highly-trained

annotators. The results of inter-annotator agreement for the three tasks are illustrated in

Table 4. Kappa indexes show that parenthetical syntactic (0.89) and semantic (0.79) categories

could easily be recognized by annotators. The Kappa was not computed for Head recognition

since head spans vary greatly. It is thus hard to approximate the random baseline on which

the Kappa is based (Grouin et al., 2011).

Task # agr. # disagr. Total Kappa

Syntax 109 5 114 0.89

Semantics 88 13 101 0.79

Head 103 11 114 /

Table 4: Inter-annotator agreement synthesis.

As can be seen in Table 2 (left), the intra app NI class is the most frequent syntactic class. This

validates the use of a semantic scheme designed especially for this class (other syntactic classes

being semantically classified as NULL). Heads are mostly words, though the “p” class covers

6% of examples.

The counts of semantic classes (Table 2, right) shows that the semantic class Other, used

for the examples of intra app NI parentheticals which don’t match with the defined semantic

categories covers less than 5% of examples.

At last, the annotated corpus was sampled (stratified sampling) according to the concatenated

labels to build the training and testing corpora (half each).



6 System design and Evaluation

6.1 Overview

Relation Extraction (RE) systems typically (i) extract Named Entity (NE) pairs to filter positive

targeted instances (recognition step), before (ii) they attribute a label to them (classification

step). The recognition step is problematic since it requires that all possible NE instances be

extracted: Sun et al. (2011) indicate that the number of negative instances is about 8 times

higher than the number of positive ones. The current best classification systems on complex

schemes rely on feature-based approaches (Zhou et al., 2005). Such methods typically use in-

formation on candidate NE pairs (such as NE tag, POS tag, form, etc.), along with information

on the words in between (Zhou et al., 2005) for prediction.

In our case, candidate pairs (heads) do not correspond uniquely to NE, but also to whole

sentences, quotations, verbs, adjectives, etc.: the number of candidate pairs is huge. This is

why, instead of elaborating a preprocessing system, the recognition step was approached as a

sequence labeling task (6.2).

What is more, annotators had the choice between using labels and select word spans to identify

parenthetical heads. Therefore, the system first discriminates labeled instances (a, p, and

n) from others (ID class). In a second step, it detects head boundaries from previously pre-

detected ID instances. This first step (pre-detection), along with syntactic and semantic

classification, is approached as a classification task performed on each parenthetical instance.

6.2 System

Two systems were used : CRF++ (Kudo, 2007) for head recognition and SVM (Hall et al.,

2009) for parenthetical classification as they are recognized as very efficient algorithms 1. The

features used for CRF Recognition include:

• forms (F) without any processing.

• categories (C) provided by a linguistic analyzer, which includes NE recognition and

semantic labels (Rosset et al., 2006). This tagset was transformed into BIO format

(Tjong Kim Sang and De Meulder, 2003).

• POS tags (T) provided by the Tree-tagger (Schmid, 2003).

• Abbreviation pairs (Ab) from the system provided by Schwartz and Hearst (2003).

• pre-detection labels (a, p, n, ID) propagated on all the words,

Unigrams, bigrams, and label bigrams (Kudo, 2007) occurring in the most optimal window

size (cf. 6.3.2) were used for all feature sets.

The same features were used for classification, except removing predetection labels and adding

parenthetical size (Size). For the other sets (F, C, and T), each feature value was combined

with positional parameters to distinguish between the first and second words before and after

the opening brace.

6.3 Evaluation

Evaluation was performed on the test corpus (490 instances) using the standard metrics of

precision, recall and F1 (F-measure). All results are displayed in Table 3.

1Different algorithms were tested to confirm this.



6.3.1 Head Label pre-detection

Pre-detection is a straightforward task: most corpus instances are annotated with one label

(ID), which results in a high baseline of 0.888, just by assigning this label to all examples. The

SVM beats this baseline with 0.963 of overall F1. Detailed feature analysis shows that the Ab

and Size features do not individually help for this task since the resulting models behave like

the baseline. The best feature set is F (forms): the SVM perfectly classifies a and n classes (1

in F-measure). This is due to the fact that the a class corresponds to a parenthetical which only

contains punctuation signs such as “...”. The n class instances generally occur at the end of an

article and are immediately preceded by dashes. The real challenge is therefore to discriminate

the p class (0.667) from the ID class (0.981).

6.3.2 Head recognition

Only external heads were evaluated for this task. The baseline selects the word immediately

preceding the parenthetical as the head, because most heads occupy this position. An exam-

ple can be considered correctly labeled if (i) all the labeled words need to be correct (exact

evaluation), or if (ii) at least one word needs to be correctly labeled (soft evaluation). The

baseline F1 is very low (0.3) in the first case, and reaches 0.649 in the second case. The best

results (0.674) recorded for the CRF were obtained with a window size of 4 words [-1,2]. The

best feature set is C (0.499), i.e. the categories provided by the linguistic analyzer, including

Named Entities. These results are still much lower than the system using the combination of all

feature sets (0.674 in F1 for exact matching; 0.774 for soft matching). The latter takes benefit

of the pre-detection features (best feature set for p and n classes) but also largely improves

exact head recognition (+0.146 compared to C).

The high difference between Soft and Exact head recognition across feature sets indicates that

multi-word units management play a large part in system performances.

6.3.3 Classification

The Syntax and semantic tasks were first carried out independently. The Syntax task consists

of 7 labels (4 rare inter categories are missing) and the semantic task, of 19 classes (Indexing

is missing). The baseline model assigns the most frequent class to all examples (0.818 in

F1 for syntax, 0.182 for semantics). Table 3 shows the superiority of the T set for syntax.

T is composed of precise syntactic labels; for instance, it discriminates between various verb

forms such as past and present participles (contrary to the C set which only divides between

auxiliaries, modals, actions and gerunds).

Concerning Semantics, it is the C feature set which is the most effective. This said, the system

reaches higher scores when all the features are taken together. It is also clear from the table

that POS tags (T) have a greater impact than forms (F) on this task.

A second experiment was conducted to analyze the impact of syntax on semantics: only the

examples predicted as Intra App NI (the most frequent class to be semantically labeled) by SVM-

T were extracted for semantic classification (the rest being considered as NULL). This filtering

method prove successful (0.734; +0.018 improvement): even if 8 examples are incorrectly

filtered (semantically NULL), the system correctly classifies 31 semantic instances. Detailed

class analysis indicate that improvements mostly affect ValPrec (+0.22), NULL (+0.2), and

Other (+0.15).



6.3.4 End-to-end Evaluation

The aim of the end-to-end evaluation is to observe how Head recognition affects both syntactic

and semantic classification. An example was considered correct when all task labels were

correctly assigned. F1 significantly drops drops to 0.518 on exact matching, and to 0.586

on soft matching. These results are consistent with previous work in RE. Zhou et al. (2005)

report 0.55 of F1 when recognition and classification are evaluated together on subtypes (0.68

on supertypes), and attribute 73% of errors to recognition (53% in our case).

It is interesting that the Situational dimension, which contains traditional RE broad categories

(SA and Affiliation), obtains the best scores. These scores are even higher than reported in RE

literature (Sun et al., 2011), though the dataset is barely comparable. Abbreviation experiences

comparably lower results than reported in the literature: Okazaki et al. (2008) report 95.7%

accuracy (0.887 of F1).

7 Conclusion and discussion

Parenthetical classification is a rather unexplored topic and this article aims at providing in-

sights into this punctuation pattern. An annotation scheme was designed to cover most fre-

quent cases for three tasks: syntactic and semantic classification and head recognition.

Corpus analyses revealed that most parentheticals lack an explicit link to the external context

(the App syntactic class), but are nonetheless similarly understood by annotators. Only the

Intra App NI class was semantically labeled (81% of instances) and tested. Analyzing inter app

parentheticals was left for further investigation because it is believed that they must be studied

on the discourse level (see for example (Marcu, 2000)): proposition links may be characterized

as causal for instance.

Other annotation experiments have been started on different text types (encyclopedic, legal,

scientific or fictional documents), to assess the robustness of the scheme across text types,

and evaluate automatic systems in the light of domain adaptation. Preliminary results are

encouraging in the sense that the same scheme can be used with little adaptation.

The evaluation proposed a baseline using CRF and SVM for each task separately, with various

feature sets based on POS tags, Named Entities, Forms, etc. The best model reported 0.908

for syntax, 0.734 for semantics, and 0.674 for head recognition. It is interesting that different

feature sets have had different impacts on classification tasks. All tasks except semantics have

shown better performance on isolated feature sets. Besides, Zhou et al. (2005) have shown

that chunking improves performances ACE Relation Extraction. Following evaluations should

investigate the benefits of feature sets like chunking and semantic lexicons (as hyperonym

lexicon for Type and Instanciation categories).

Since classification tasks such as syntax or semantics reported better results, it would also be

interesting to investigate what gain results from their use as feature sets, much like what was

done for pre-detection. Overall, it seems that improving recognition performances would rely

on careful feature construction.

As suggested in section 6.3.4, the results obtained for Affiliation and SA are higher than usu-

ally reported on standard RE. This could simply be due to the fact that parenthetical structures

impose strong constraints which facilitate classification. If these results are confirmed in sub-

sequent evaluations, it would mean that parentheticals could be used as a small window to

extract valuable seeds for general RE.
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