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PHONON  ENERGY  IN  AN  ANHARMONIC  QUASI-ONE-DIMENSIONAL 

SOLID  

By  M.A. Grado-Caffaro and M. Grado-Caffaro  

Permanent address: M.A. Grado-Caffaro and M. Grado-Caffaro- Scientific Consultants, 

C/ Julio Palacios 11, 9-B, 28029-Madrid (Spain); www.sapienzastudies.com; e-mail 

address: ma.grado-caffaro@sapienzastudies.com 

Abstract.- For the first time, the phonon energy per unit volume in a large anharmonic 

quasi-one-dimensional solid is determined by considering all polarizations of the 

various modes of phonon propagation and by assuming the solid as a lattice of atoms 

behaving as Morse oscillators. In this context, the equilibrium phonon occupation 

number, which is given by the Bose distribution, replaces formally the vibrational 

quantum number into the expression for the Morse-oscillator energy. In addition, the 

quasi-harmonic solid is discussed within the above framework so that the phonon 

energy per unit volume is calculated for a large quasi-harmonic and quasi-one-

dimensional solid.       

Key words: D. Phonon energy; D. Anharmonic solid; D. Morse oscillator; D. Bose 

distribution; D. Quasi-harmonic solid     

1. Introduction.- Anharmonic solids appear as very relevant entities in the context of 

non-conventional solid-state physics. In this respect, building a complete and accurate 

theory to characterize an anharmonic solid is not certainly an easy task. Work related 
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directly or indirectly to the subject as, for example, refs.[1-11] has been done but a lot 

of questions remain open. In order to fix the main points in relation to describe 

anharmonicity in the physics of solid state, first we will remember what is a harmonic 

solid and related issues. A solid is denominated harmonic if the atoms of the 

corresponding crystalline or distorted lattice behave as quantum harmonic oscillators, 

that is, the above atoms vibrate harmonically around their respective equilibrium 

positions. The displacement of an atom from its equilibrium position gives rise to the 

propagation of vibrational modes in the lattice, these modes carrying energy which is 

quantized so that every vibrational quantum is called a phonon. A phonon is conceived 

as a quasi-particle and may be viewed as a packet of travelling waves with a certain 

frequency, a certain group velocity and involving an energy which equals the Planck 

constant multiplied by the frequency (see, for instance, refs.[12-16]).  

 

It is well-known that phonons play a notorious role in the physics of condensed matter 

in conjunction with other elementary excitations as, for example, excitons and polarons. 

We may consider electron-phonon scattering and phonon-phonon scattering as very 

relevant processes. In particular, phonon-phonon scattering is an anharmonic 

mechanism of notable importance. Other significant processes are phonon-assisted 

optical transitions where, for instance, problems relative to wave-vector conservation 

acquire a special relevance. On the other hand, note that there are four types of phonon 

polarization namely: both longitudinal and transversal acoustic phonons as well as both 

longitudinal and transversal optical ones. In this respect, it is well-known that only 

acoustic phonons contribute to thermal processes contrary to electronic and optical 

processes in which only optical phonons contribute [12-16].             

 

With respect to harmonicity or anharmonicity, that is, linearity or nonlinearity, it is clear 

that assuming anharmonic solids is a framework more realistic and powerful than 

considering only harmonicity [1-11]. Anharmonicity is a very relevant subject in the 

context of new and complex materials whose behaviour involves great departures from 

the conventional, simple models of solid-state physics. Even for simple solids, 

anharmonicity becomes important for large deviations of the atoms from their 

respective equilibrium positions. Moreover, the anharmonic character of the atomic 

motion in solids may bring relevant information to the classical theory of elasticity. 

Within this context, the Morse potential is a very suitable potential since it allows us to 
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envisage corrections to the harmonic oscillations. On the other hand, it is well-known 

that the so-called Einstein´s oscillator model is not realistic (see, for example, refs.[1-

11]). The limitations of the above model are certainly well-known; considering, for 

instance, the zero-point vibrational energy (which is well defined only when the 

crystalline solid may be conceived within the harmonic approximation [5,11]), then the 

Einstein´s model does not provide the exact value of the aforementioned energy even in 

a fully harmonic classical crystal [11]. As a matter of fact, the effective potentials in real 

crystals exhibit appreciable anharmonic contributions whose evaluation is really hard 

(see, for instance, ref.[11]). At this point, let us regard quantum crystals as, for example, 

solid hydrogen, in which anharmonic effects are important; really, these quantum 

lattices are strongly anharmonic [6,11]. At any rate, in practice, perhaps the notion of 

quasi-harmonic solid is more realistic and, consequently, more fruitful than the purely 

anharmonic solid since the atoms of the major part of crystalline or amorphous solids 

behave as quantum quasi-harmonic oscillators, that is, the above atoms vibrate almost 

harmonically around their respective equilibrium positions. The fundamental vibrational 

quanta are called quasi-harmonic phonons (see, for instance, refs.[1,2]). The aim of the 

present article is, on the one hand, determining the phonon energy per unit volume in a 

large anharmonic quasi-one-dimensional solid as an arrangement of atoms behaving as 

Morse oscillators and, on the other hand, finding approximate formulas for the quasi-

harmonic phonon energy per unit volume at both lower and higher temperatures. In this 

context, the phonon density of states plays a key role which will be examined within the 

quasi-harmonic approximation. The paper is organized as follows: section 2 is dedicated 

to calculate the anharmonic phonon energy per unit volume; section 3 deals with 

determining the phonon energy per unit volume in a quasi-harmonic solid; section 4 is a 

discussion of results; concluding remarks are given in section 5.            

 

 

2. Calculation of the phonon energy per unit volume in an anharmonic solid.- First of 

all, we consider the equilibrium phonon occupation number, which is given by the Bose 

distribution namely:                                       
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where the aforementioned occupation number is the expectation value of the particle-

number operator AAn ˆˆˆ AA   ( Â and Â  being the corresponding creation and 

annihilation operators, respectively), �  is the reduced Planck constant,  denotes 

phonon angular frequency, Bk  is the Boltzmann constant, and T  stands for temperature 

which, for a given medium under thermodynamic equilibrium, is a well defined 

quantity.                

 

On the other side, we wish to determine the phonon energy per unit volume assuming a, 

say, typical anharmonic quasi-one-dimensional solid as a lattice under an interatomic 

Morse potential. At this point, we want to remark that, obviously, although 

anharmonicity can be described by a number of potential types, the Morse approach is 

the most realistic model in the physics of anharmonic solids since the aforementioned 

approach is an extension of the harmonic-oscillator model as we appreciate when we 

consider the following expression for the quantized energy of a single-particle Morse 

oscillator [3,4,17]:  

 

        
42

1 2 nnnEn �              (2)   

where ,...2,1,00n  and  is a relatively small anharmonic coefficient (of course,  is 

positive such that D4��  where D  is the potential-well depth). Note that  is a  

parameter whose role is corrective with respect to the quantum harmonic oscillator so 

that, by setting 00  into eq.(2), one gets the energy of a one-particle quantum 

harmonic oscillator. This fact arises from that the Morse potential energy of a given 

particle, when its position is sufficiently near the equilibrium position, is approximately 

equal to the potential energy of the particle as harmonic oscillator as we will show as 

follows. The Morse potential energy reads:             

 

  2exp1 exxaDxV xaeD            (3)  

where ex  is the position of equilibrium and a  is a parameter which controls the 

potential width. Then, when exx x , the first-order Taylor expansion of (3) around 

exx x , given that  222 2mDa m , yields 222
exxmxV xm 2m . On the other hand, 

note the well-known fact that the Morse potential leads to a finite number of bound 
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states; in this respect, see formula (2) or perhaps the more manageable following 

expression:  

 

      
2
1
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so, by considering relations (2) or (4), we have that 212max 12 �Dn .  

 

We consider an anharmonic solid whose atoms behave as Morse oscillators. In order to 

determine the total phonon energy per unit volume, we take into account the 

contribution from all the possible polarizations of the various modes of phonon 

propagation namely longitudinal and transverse acoustic as well as longitudinal and 

transverse optical. This gives a discrete summation over an index that will be denoted 

by p (polarization). There is another discrete summation over the wave-vector range 

which is the first Brillouin zone. However, we will assume the solid as sufficiently large 

which implies that the wave-vector space is very dense so it can be regarded as 

continuous which permits that this last contribution can be approximated as a definite 

integral over the wave-vector space and, since the first Brillouin zone is assumed to be 

isotropic, then integration over the wave-vector space becomes integration over the 

angular-frequency space [12-16]. Then, substituting formally n  into eq.(2) by n̂ , 

under the above approximation, the energy (per unit volume) in question reads:                                      

 

dgnnnU
p

ggg
4

ˆˆ
2
1ˆ 2�            (5) 

where g  denotes phonon density of states and  is the range of phonon angular 

frequency; this range corresponds, in the wave-vector space, to the first Brillouin zone 

(note the wave-vector dependence of ).                             

 

Now we are interested in determining an approximate expression for the equilibrium 

phonon occupation number at relatively low temperature, that is, when ��TkB . 

Under this condition, it is clear that formula (1) becomes:  
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We are also interested in finding another approximate relationship for relatively high 

temperature, that is, when ��TkB . This condition, by approximating the 

exponential in (1) with a first-order Taylor expansion around the origin, reduces (1) to:  

 

                   
�
Tkn B

T �
kˆ            (7) 

 

Note that expanding the right-hand side of (1) is not possible because this -dependent 

quantity is discontinuous at 00 .       

 

Then, knowing g  and replacing formula (6) (formula (7)) into (5), it is feasible, in 

principle, to obtain an approximate relation for U  at lower (higher) temperatures. 

 

 

3. Determination of the quasi-harmonic phonon energy per unit volume.- Our purpose is 

now determining the phonon energy per unit volume within the quasi-harmonic 

approximation. In other words, we wish to calculate the energy per unit volume due to 

quasi-harmonic phonons. To get this end, we begin by considering the following 

expression for the phonon density of states in a quasi-harmonic solid (see, for instance, 

refs.[18,19]): 

          
N

a
N

g
1

21 a            (8) 

where a  is the matrix element of the oscillator strength,  denotes the thth  

eigenfrequency corresponding to every normal mode of the solid,  designates Dirac´s 

delta function, and N  is the number of atoms of the solid; given that the solid is 

assumed to be quasi-one-dimensional, N  is approximately equal to the number of 

normal vibrational modes of the solid. 

                   

On the other hand, one has to find an approximate formula from the second factor of the 

integrand in (5) for sufficiently small  (quasi-harmonic approximation). To get this 
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end, neglecting 4 , the factor in question except 21   becomes 

nnnn ˆˆ1ˆˆ1  so we set 00  into the first 

term of the first factor and into the second factor of this last expression which reduces to 

nn ˆ1ˆ . This scheme can be viewed as superharmonic approximation; by 

contrast, setting 00  into the second factor (or only into the first term of this factor) 

and into the first factor, one gets an expression proportional to n̂ . In order to gain 

accuracy, we will employ the superharmonic approximation. On this basis and replacing 

relationships (6) and (8) into (5), we obtain, at low temperature:  

 

TkTk
a
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N

2
3
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and, at high temperature, under the approximation in question and substituting (7) and 

(8) into (5), it follows:          
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 For the sake of brevity of notation and since, in practice, only one type of polarization 

takes place, from now on we will omit the summation symbol relative to polarization. 

 

When N  (large solid), by using Stolz´s theorem, expressions (9) and (10) become 

respectively: 
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From formula (11) it follows:  

 

          NNN
aNTU N

2lim
2

;0 aimm
2

0 �              (13)      

                   

On the other hand, since typically 1.00  and NBTk N�101 , from relation (12) we get: 

 

         2lim2; NNB aTkNTU aimm2;N               (14)     

 

 

4. Discussion.- In the spirit of taking into account anharmonic effects, we have treated 

the determination of the phonon energy per unit volume in a large anharmonic quasi-

one-dimensional solid as a crystalline or distorted lattice in which the atoms vibrate as 

Morse oscillators around their respective equilibrium positions. Moreover, the phonon 

energy per unit volume has been calculated for a large quasi-harmonic quasi-one-

dimensional solid. In order to calculate the energy density in question, we have taken 

into consideration the four possible modes of phonon propagation namely: longitudinal 

and transversal acoustical as well as longitudinal and transversal optical. In this respect, 

we want to remark the following well-known facts: the contribution of optical phonons 

to thermal transport is certainly small and the contribution of acoustical phonons to 

electronic transport is also small. In order to study electronic transport and the optical 

properties of an anharmonic solid or a quasi-harmonic one, it is evident that only optical 

phonons must be considered. In this context, we can mention, as a notorious example, 

optical absorption in both crystalline and amorphous solids. For instance, the coefficient 

of infrared absorption in an amorphous solid due to structural disorder reads 

cgs 2  where   is the dipole-moment matrix element in the 

angular-frequency domain,   stands for refractive index, and c  is the speed of light in 

vacuum (see, for example, ref.[20]) while the total coefficient of infrared absorption is 

cgg g2  where the asterisk denotes convolution (see, for 

instance, ref.[21]). Therefore, the coefficient of infrared absorption relative to 

dynamical disorder reads sd . As a relevant example, we can 

mention that this coefficient depends only on transverse optical phonons in amorphous 
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III-V compounds [20]. From the above-mentioned relationship for s , one has that 

22scg   which, inserted into (5) and taking into account eq.(1), 

allows the evaluation of  U  when we know s .   

 

 

5. Concluding remarks.- Integrating both sides of relationship (8) over a suitable 

angular-frequency range and by using Stolz´s theorem, one has that 2lim~
NN
aN aimml

N
  

where N~  is the number of phonon states in the above range for a sufficiently large 

solid. In terms of this number of states, formulas (13) and (14) become respectively    

NN

NNTU Nlim
2

~
;0 � , NTkNTU B

~2; 2N; . Therefore, from these 

expressions, we infer that U  (at zero T  and also at sufficiently high T ) is 

approximately proportional to the number of phonon states in a large enough solid. In 

contrast, when N  is relatively small, the above two expressions are obviously not 

applicable so that we can use formulae (9) and (10), which refer to finite N . This 

situation presents interest in elucidating diverse mechanisms related to elementary 

excitations in nanosystems [22,23].  
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explanation is supported sufficiently by refs.[1-4] (already mentioned in the former 

version) and 7 additional references. Consequently, the revised version of the paper is 

manifestly accessible to the readers so it satisfies clearly the questions formulated by 

reviewer 3.  
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                          RESEARCH  HIGHLIGHTS 

 

            1. Phonon energy of an anharmonic solid is found.  
 

2. Atoms are assumed as Morse oscillators.  
 
3. Quasi-harmonic phonon energy is also found.  
 
4. All phonon propagation modes are considered. 
 
  




