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Abstract 

When different technologies are present in an industry, assuming a homogeneous technology 

will lead to misleading implications about technical change and inefficient policy 

recommendations. In this paper a latent class modelling approach and flexible estimation of 

the production structure is used to distinguish different technologies for a representative 

sample of E.U. dairy producers, as an industry exhibiting significant structural changes and 

differences in production systems in the past decades. The model uses a transformation 

function to recognize multiple outputs; separate technological classes based on multiple 

characteristics, a flexible generalized linear functional form, a variety of inputs, and random 

effects to capture firm heterogeneity; and measures of first- and second-order elasticities to 

represent technical change and biases. We find that if multiple production frontiers are 

embodied in the data, different firms exhibit different output or input intensities and changes 

associated with different production systems that are veiled by overall (average) measures.  In 

particular, we find that farms that are larger and more capital intensive experience greater 

productivity, technical progress and labor savings, and enjoy scale economies that have 

increased over time.  
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Introduction 

In most industries different firms operate with different technologies or production systems.  

Recognizing these differences is key to understanding structural change, which is likely to involve 

varying technical change patterns for different systems or movements toward different systems.  That 

is, as an industry evolves, technical change does not just increase the amount of output possible from a 

given amount of inputs (productivity growth) and induce substitution among inputs (technical change 

biases), as is traditionally recognized in productivity analysis.  It also involves new production systems 

with different characteristics in terms of output and input mix, which may be in the form of a continuum 

with discrete changes or may involve entirely different production frontiers. 

The presence of different technologies in an industry means that empirical analysis of technical 

change, and its drivers and effects, is more complex than is typically modeled by shifts and twists in a 

common production frontier or function.  In fact, it will be misleading to assume that technology is the 

same for different firms, as estimated coefficients of a common technology will be econometrically 

biased (Griliches, 1957).  This has been recognized in the literature on localized technical change, which 

posits differential “drivers” of economic performance depending on the kind of technology used by a 

firm (Atkinson and Stigliz, 1969).  Modeling and measuring localized technical change in this context 

involves first distinguishing the different technologies, and then characterizing the production patterns 

associated with these technologies and how they change over time, as we do in this study.1   

 In particular, the technological specification used for empirical analysis of production 

technologies and technical change should accommodate both different points on a production frontier 

and separate frontiers for different firms, which we do using a latent class model (LCM) with multiple 

                                                           
1
 It also involves productive response to specific factors such as learning by doing and knowledge spillovers that 

may be technology-specific, which are beyond the scope of this study but will be addressed in subsequent work. 
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characteristics acting as separating variables.  We also accommodate firm heterogeneity through firm 

random effects and distinguishing two outputs and a variety of inputs.  

Recognizing the presence of different output and input mixes and technologies may reduce 

apparent substitution elasticities, as substitution possibilities for a specific technology are likely more 

limited than implied by a single common production frontier that combines movements within and 

between production systems or frontiers.  We thus distinguish different technical change patterns, 

including the rate of and input biases associated with technical change, using flexible transformation 

functions for the different classes that allow for multiple outputs, second-order substitution patterns 

and scale economies. 

One industry that has exhibited significant structural changes and production system differences 

in the past few decades, in both the U.S. and E.U. countries, is the dairy industry. Dairy farms have 

experienced a considerable increase in size and reduction in numbers, and have moved toward new 

production systems that might be expected to embody different technological characteristics and trends 

that we wish to explore.  To distinguish farms by their different technologies, researchers have 

sometimes categorized producers into, for example, organic versus conventional operations (e.g., 

Kumbhakar et al., 2009).  However, such a grouping may be both arbitrary and incomplete.  In this study 

we instead use our latent class model to group dairy producers into “classes” based on their probability 

of having a variety of characteristics (separating variables or q-variables) that proxy different 

technologies or production systems.   

For example, for dairy operations, one might use characteristics such as cows/hectare or 

fodder/cow to proxy the use of pasture or purchased feed (extensive vs. intensive production) and 

labor/cow or capital/cow to proxy input intensity (associated with different milking practices).  The 

latent class model allows us to represent a variety of classes (with the number of classes determined 

empirically), based on a combination of differences in such variables as well as multiple netput (output 
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and input) variables.  We then use our transformation function model of the production structure to 

characterize the technology of the farms in terms of output elasticities for the normalizing output (milk) 

that represent input mix, returns to scale, and technical change for each class or group of producers.    

The technological differences thus can be summarized by class in terms of summary statistics, estimated 

parameters of the underlying multinomial logit (MNL) model, and estimates of the technology.   

In particular, class-specific elasticities of the transformation functions with respect to variables 

representing technical change indicate the extent to which such factors enhance milk production.   As 

our focus is on distinguishing productivity growth and input biases for the different technologies, we 

represent disembodied technical change by including a time trend as an argument of the transformation 

function for each class, with cross-terms for all arguments of the function.  We consider which 

production systems appear to be the most productive overall, and then evaluate productivity growth 

patterns by class through first- and second-order elasticities with respect to the trend term that 

measure increased output production given input use and associated input intensity changes.     

We also evaluate technical change in terms of, for example, substitutability of chemicals and of 

fodder with other inputs.  That is, we evaluate the input intensity implications of input biases to 

consider trends in chemicals use (and thus environmental issues from leaching and runoff), or use of 

purchased feed (and thus environmental issues from intensive production and resulting animal waste).   

Additional information about technical change is gained by evaluating returns to scale patterns by 

technology, and assessing the extent to which producers switch between classes or production systems.   

Specifically, we apply our model to data on Danish dairy farms that are a representative sample 

of EU agricultural production and its substantial recent and evolving structural and technological 

change.  We use our data for 304 farms for 1986-2005, with 3188 observations (an unbalanced panel), 

to distinguish the technologies used by these producers and estimate technical change, returns to scale 

and substitutability for each group.  The separating- or q-variables representing technology differences 
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for these farms in our LCM model include proxies for intensive versus extensive and organic versus 

conventional production, input (labor) intensity, and production diversity.  Our flexible primal 

production structure model with random effects recognizes multiple (milk and non-milk) outputs and 

inputs, including separately materials inputs such as chemicals and fodder. 

We find that overall average measures do not well reflect individual firms’ production patterns if 

the technology of an industry is heterogeneous. That is, we find more than one type of production 

frontier embodied in the data, so farms exhibit different technical changes associated with different 

production systems, which should be recognized for policy design and implementation. In particular, 

larger more capital intensive farms experience greater productivity, technical progress, labor savings, 

and scale economies than other farms in our data, and have become more specialized over time, 

consistent with trends in the industry toward this type of farm structure. 

The Technological Model  

For our purposes, a transformation function is desirable for modeling technological processes because 

multiple outputs are produced by Danish dairy farms (milk, livestock and crops), precluding estimation 

of the production technology by a production function (as in Alvarez and del Corral, 2009), yet we wish 

to avoid the disadvantages of normalizing by one input or output, as is required for a distance function 

(see e.g. Sauer 2010). That is, imposing linear homogeneity on an input (output) distance function 

requires normalizing the inputs (outputs) by the input (output) appearing on the left hand side of the 

estimating equation.  This raises issues not only about what variable should be chosen as the numeraire, 

but also about econometric endogeneity because the right hand side variables are expressed as ratios 

with respect to the left hand side variable.  Although a common approach in input distance function-

based agricultural studies is to normalize by land (e.g., Paul and Nehring, 2005), to express the function 
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in input-per-acre terms, this is questionable when a key issue to be addressed is whether different kinds 

of farms with potentially different productivity use land more or less intensively. 

We thus rely on a transformation function model representing the most output producible from 

a given input base and existing conditions, which also represents the feasible production set.   This 

function in general form can be written as 0=F(Y,X,T), where Y is a vector of outputs,  X is a vector of 

inputs, and T is a vector of (external) shift variables, which reflects the maximum amount of outputs 

producible from a given input vector and external conditions.  By the implicit function theorem, if 

F(Y,X,T) is continuously differentiable and has non-zero first derivatives with respect to one of its 

arguments, it may be specified (in explicit form) with that argument on the left hand side of the 

equation.  Accordingly, we estimate  the transformation function Y1= G(Y-1,X,T), where, Y1 is the primary 

output of dairy farms (milk) and Y-1 the vector of other outputs, to represent the technological 

relationships for the dairy farms in our data sample.  Note that this specification does not reflect 

endogeneity of output and input choices, but simply represents the technologically most Y1 that can be 

produced given the levels of the other arguments of the F() function. 

We approximate the transformation function by a flexible functional form (second order 

approximation), to accommodate various interactions among the arguments of the function including 

non-constant returns to scale and technical change biases.  A flexible functional form can be expressed 

in terms of logarithms (translog), levels (quadratic), or square roots (generalized linear).2  We use the 

generalized linear functional form suggested by Diewert (1973) to avoid any mathematical 

transformations of the original data (e.g. taking logs of variables which would lead to modelling 

problems based on zero netput values).  This form can be written for our data as: 

                                                           
2
 This is sometimes erroneously called a generalized Leontief for a primal function.  For example, See Nicholson 

and Snyder (2008), pp. 310-311. 
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1) YM,it = F(YNMQ,it,Xit,T)  

      = a0 + 2a0NMQYNMQ
0.5 + 2a0kXk

0.5 + aNMQNMQYNMQ + akkXk + aklXk
0.5Xl

0.5 + akNMQXk
0.5YNMQ

0.5  

+ bTT + bTTTT + bkTXk
0.5T + bNMQTYNMQ

0.5T, 

for farm i in period t, where Y1=YM=total milk quantity, Y2= YNMQ=non-milk outputs is the only component 

of Y-1, X is a vector of Xk inputs XLD=land, XLAB=labor, XKAP=capital, XCOW=cows, XFOD= fodder, XEN= energy, 

XCHM=chemicals, and XVET=veterinarian services, and a time trend T is the only component of T.  

When estimating the technology for a group of observations, if the firms (farms) in the sample 

are using different technologies estimating a “common” technological frontier is misleading.  With a 

flexible functional form, differences are partly accommodated because different netput mixes are 

allowed for in the production structure estimates; for example, estimated output elasticities with 

respect to an input will depend on all other arguments of the function, and so will differ by observation.  

Unobserved technological heterogeneity is also partially accommodated by a standard error term for 

econometric estimation, but the factors underlying the heterogeneity are not directly represented and 

will bias parameter estimates if they are correlated with the explanatory variables (Griliches, 1957).  To 

more fully recognize and evaluate heterogeneity among production systems, we wish to explicitly 

distinguish technologies by estimating the technology separately for different groups or “classes” of 

farms.  This is particularly important to explore technical change specific to technology types. 

To group firms or farms with different technologies, researchers sometimes group their 

observations by exogenous classifications, such as farms that define themselves as “organic,” or by a 

particular input threshold such as hectares per animal.  However, such divisions are at least somewhat 

arbitrary, and usually rely on only one distinguishing factor.   It seems preferable to group observations 

by their probability of exhibiting certain characteristics that differ among technologies, especially if 
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multiple characteristics may distinguish production systems, as well as to estimate the groups and the 

technology together to allow for differences in netput levels and mix.  To accomplish this, we combine 

the estimation of the production structure with a latent class structure (Greene, 2002, 2005).   

The Latent Class Model  

Various methods to explicitly allow for heterogeneity in a dairy production model have been used in the 

production literature.  Some researchers have chosen their data sample based on some criterion of 

homogeneous production, such as Tauer and Belbase (1987) who delete farms in their sample with 

technologies too different from the norm.3  Some have chosen particular characteristic to divide the 

sample and estimate different frontiers, such as location, breed, production process or conventional 

versus organic (Hoch, 1962; Bravo-Ureta, 1986; Newman and Matthews, 2006; Tauer, 1998; Kumbhakar 

et al., 2009; Gillespie et al., 2009).   

Researchers such as Maudos et al. (2002) and Alvarez et al. (2008) accommodate multiple 

criteria for separating farms using cluster analysis based on output and input ratios, which divides the 

sample according to similarities in specific characteristics by maximizing the variance between groups 

and minimizing the variance within groups.  Further, Kalirajan and Obwona (1994), Huang (2004), and 

Greene (2005) rely on random coefficient models that essentially model each farm as a separate 

technology in the form of continuous parameter variation. 

It has increasingly been recognized, however, particularly in the stochastic frontier (technical 

inefficiency) context that is the focus of most of these studies, that latent class models are desirable for 

representing heterogeneity (Balcombe et al. 2006; Greene, 2002, 2005; Orea and Kumbhakar, 2004 or 

                                                           
3
 Tauer and Belbase (1987) deleted dairy farms from their data sample that participated in a particular (dairy 

diversion) program, that purchased most of their feed or replacement livestock, or that had a large proportion of 

non-milk sales. 
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Quiroga and Bravo-Ureta 1992).   This approach separates the data into multiple technological “classes” 

according to estimated probabilities of class membership based on multiple specified characteristics.  

Each firm/farm can then be assigned to a specific class based on these probabilities.  This method 

distinguishes the classes based on homogeneity among firms/farms in terms of both the estimated 

technological and probability (multinominal logit, MNL) relationships, rather than looking for similarity 

in specific variables. 

The LCM structure estimates a MNL model together with the estimation of the overall 

technological structure (although the number of parameters that may be estimated simultaneously by 

LIMDEP is limited by degrees of freedom for multiple output/input specifications). Statistical tests can 

be done to choose the number of classes or technologies that should be distinguished.  A random 

effects model assuming firm-specific random terms along with the technological groupings can be 

incorporated to further capture firm heterogeneity, as developed by Greene (2005) and Cameron and 

Trivedi (2005) and applied by Abdulai and Tietje (2007) and Alvarez and del Corral (2009).  As we focus 

on the technological structure and technical change rather than on unobserved “inefficiency,” we do not 

include a one-sided error as in a stochastic frontier model.  Our specification of multiple technologies 

based on multiple characteristics, outputs and inputs, along with random effects and a flexible 

functional form, instead accommodates heterogeneity in our sample of Danish dairy farms. 

More specifically, we can write the latent class model in general form as equation (1) for class j: 

 2) YM,it = F(YNMQ,it,Xit,T) j  

where j denotes the class or group containing farm i and the vertical bar means a different function for 

each class j.   As we are assuming that the error term for this function is normally distributed, the 

likelihood function for farm i at time t for group j, LFijt, has the standard OLS form.  In addition, as in 
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Greene (2005), the unconditional likelihood function for farm i in group j, LFij, is the product of the 

likelihood functions in each period t, and the likelihood function for each farm, LFi, is the weighted sum 

of the likelihood functions for each group j (with the prior probabilities of class j membership as the 

weights): LFi = j Pij LFij. 

 The prior probabilities Pij are typically parameterized as a multinomial logit (MNL) model, based 

on the farm-specific characteristics used to distinguish the technologies or determine the probabilities 

of class membership (called separating- or q-variables), qi, and the parameters of the MNL to be 

estimated for each class (relative to one group chosen as numeraire), j.  That is,  

3)  Pij = exp(jqi)/[j exp(jqi)], or,  

4) Pij=exp(0j + n nj qnit)/[j exp (0j + n nj qnit)], 

where the qnit are the N q-variables for farm i in time period t.   

For our application we include four types of features that are key to distinguishing technologies 

and may be represented by alternative ratios.4  One important feature of dairy farms is the intensive or 

extensive nature of production, which may be reflected by pasture versus purchased feed; two variables 

that could capture this are thus qCOW,HA=cows/hectare and qFOD,COW=fodder/cow.  The extent of organic 

production may be captured by qCHM,HA=chemicals/hectare or qORG,TOT= organic milk revenue/total 

revenue.5  The input intensity of production may be represented by qLABCOW=labor/cow or 

                                                           
4
 Variables in levels such as the numbers of cows or hectares could also be included.  However, as they are 

essentially “size” variables that  are already included as production structure arguments, and thus are also taken 

into account in the LCM model, we only included the ratio measures.  In preliminary investigation when we did try 

including such variables, however, their estimated coefficients tended to be quite significant. 

5
We initially used a organic subsidies/total subsidies variable but it had many missing values as there is only limited 

information for these categories of farms before 1990, and is also quite highly correlated with the chemicals ratios. 
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qKAP,COW=capital/cow.6   Finally, production diversity or specialization is reflected in the ratio of outputs, 

qM,TOT=milk/total output.   

We chose our preferred q-variables by trying different combinations of the four types of 

indicators and evaluating the latent class model (LCM) q-variable coefficient’s estimates’ significance 

and the resulting posterior probabilities for the individual classes.  The number of classes is determined 

by AIC/SBIC tests suggested by Greene (2002, 2005) that “test down” to show whether fewer classes are 

statistically supported.  Further, the base model incorporates a panel data specification where each 

farm is recognized as a separate entity that is assigned to a particular class: 

5) yM,it j = a0 + 2a0NMQ,j yNMQ,it
0.5 + 2a0k,j xk,it

0.5 + aNMQNMQ,j yNMQ,it + akk,j xk,it + akl,jxk,it
0.5xl.it

0.5 + akNMQ,j xk,it
0.5 

yNMQ,it
0.5 + bT,j tit + bTT,j tittit + bkT,j xk,it

0.5 tit + bNMQT,j yNMQ,it
0.5 tit + it j, 

for farm i in time period t and class j, with  denoting an iid standard error term. However, as an 

alternative specification we allow each observation to be a separate entity, allowing farms to switch 

between classes to identify changes in production systems over time (i.e. a cross-sectional specification): 

6) yM,i j = a0 + 2a0NMQ,j yNMQ,i
0.5 + 2a0k,j xk,i

0.5 + aNMQNMQ,j yNMQ,i + akk,j xk,i + akl,jxk,i
0.5xl.i

0.5 + akNMQ,j xk,i
0.5 

yNMQ,i
0.5 + bT,j ti + bTT,j titi + bkT,j xk,i

0.5 ti + bNMQT,j yNMQ,i
0.5 ti + i j, 

for observation i and class j. 

The probabilities Pij are therefore functions of the parameters of the MNL model, and the 

likelihoods LFij are functions of the parameters of the technology for class j farms, so the likelihood 

function for firm i is a function of both these sets of parameters.  The overall log-likelihood function for 

                                                           
6
 A measure of labor per total output rather than labor per cow was also tried in preliminary estimations. 
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our model, defined as the sum of the individual log-likelihood functions LFi, can be maximized using 

standard econometric methods.   

For purposes of our analysis, due to degree of freedom problems in LIMDEP for the LCM model 

from the many outputs and inputs in our data, we initially characterize our classes based on an 

approximation to the GL transformation function that does not include second-order interaction terms.  

The resulting (first-order and own second-order) elasticities thus represent the average contributions of 

each output and input to production, as well as overall technical change and returns to scale, for each 

class.  To accommodate and measure the second order effects involving output and input technical 

change biases and substitution, we then estimate the full GL form for the full sample and the separate 

classes.  If the distinctions among classes capture key differences in technology, as we find, the 

elasticities for the constrained and fully flexible functional forms will be comparable but incorporating 

the interaction terms will allow assessment of cross effects.  

The Measures 

More specifically, to represent and evaluate the technological or production structure, the primary 

measures we wish to compute are first- and second-order elasticities of the transformation function, 

which are largely equivalent to those for the production function.  The first-order elasticities of the 

transformation function in terms of milk output YM represent the (proportional) shape of the production 

possibility frontier (given inputs) for output YNMQ, and the shape of the production function (given other 

inputs and YNMQ) for input Xk – or output trade-offs and input contributions to milk output respectively. 

That is, the estimated output elasticity with respect to the “other” (non-milk) output, M,NMQ= 

YM/YNMQ(YNMQ/YM), would be expected to be negative as it reflects the slope of the production 

possibility frontier, with its magnitude capturing the (proportional) marginal trade-off.  The estimated 

Page 12 of 44

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

13 

 

output elasticity with respect to input k, M,k= YM/Xk(Xk/YM), would be expected to be positive, with its 

magnitude representing the (proportional) marginal productivity of Xk.   

Second-order own-elasticities may be computed to confirm that the curvature of these 

functions satisfies regularity conditions; the marginal productivity would be expected to be increasing at 

a decreasing rate, and the output trade-off decreasing at an increasing rate, so second derivatives with 

respect to both YNMQ and Xk would be negative (concavity with respect to both outputs and inputs). 

Returns to scale may be computed as a combination of the YM elasticities with respect to the 

non-milk output(s) and inputs.  For example, for a production function returns to scale is defined as the 

sum of the input elasticities.  Similarly for a transformation function such a measure must control for the 

other output(s).  Formally, returns to scale are defined for the transformation function similarly to the 

treatment for the distance function in Caves, Christensen and Diewert (1982) – for our purposes as 

M,X=k M,kM,NMQ).7 

Technical change is measured by shifts in the overall production frontier over time.  As our only 

technical change variable is the trend term T, productivity/technical change is estimated as the output 

elasticity with respect to T, M,T=lnYM/T= YM/T(1/YM).  This represents how much more milk may be 

produced on an annual basis in proportional terms, given the levels of the inputs and other output(s).  

These measures may be computed for each observation and presented as a averages over a 

subset of observations (such as for the full sample, a farm, a time period or a particular class), or may be 

                                                           
7
 The adaptation of this treatment for the transformation function was outlined by W. Erwin Diewert in private 

correspondence. Essentially, given the transformation function defined in equation (1), if all inputs are increased 

by a scale factor S, and one looks for another scalar factor (US) such that U times the initial vector of outputs Y is 

still on the transformation function, U(S) is implicitly defined by: U(S)Y1=F(U(S)Y2,SX,T).  The implicit function rule 

can then be used to calculate the derivative U’(S) evaluated at S=1: U’(1) = (kdlnF(Y2,X)/dlnXk)/(1-dlnF(Y2,X)/dlnY2).  

If this measure exceeds one, it implies increasing returns to scale.    
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computed for the average values of the data for the subset of observations.  The latter approach – the 

delta method – evaluates the elasticities at one point that represents the average value of the elasticity 

for a particular set of observations, allowing standard errors to be computed for inference even though 

the elasticity computation involves a combination of econometric estimates and data8  9 

In addition to computing technical change in terms of relative shifts in production frontiers, we 

can compute the relative levels of productivity among different groups or classes.  This requires 

determining whether one frontier is above the other, in terms of predicted output levels for a given 

amount of inputs, as in Kumbhakar et al. (2009) and Alvarez and del Corral (2009). 

Further, we can compute second order or cross elasticities to evaluate output and input 

substitution as well as output and input-using or -saving technical change (technical change biases) with 

our flexible functional form.   These elasticities involve second-order derivatives such as, for input 

substitution, k,l = 2YM/XkXl[Xl/(YM/Xk)].  As MPM,k=YM/Xk is the marginal product of YM with 

respect to Xk, this elasticity, k,l = MPM,k/Xl(Xl/MPM,k), represents the extent to which the marginal 

product of Xk changes when Xl changes.  Similarly, for technical change,  k,T = 2YM/XkT[1/(YM/Xk)] = 

MPM,k/T(1/MPM,k) represents whether technical change is input k-using or -saving – or tends to 

increase or decrease the input-intensity of input k – as  K,T is positive or negative.  We can also measure 

                                                           
8
 The “delta method” computes standard errors using a generalization of the Central Limit Theorem, derived using 

Taylor series approximations, which is useful when one is interested in some function of a random variable rather 

than the random variable itself (Gallant and Holly, 1980, Oehlert, 1992).  For our application, this method uses the 

parameter estimates from our model and the corresponding variance covariance matrix to evaluate the elasticities 

at average values of the arguments of the function.     

9
 Such computations for a particular “Class” are based on using the highest posterior probability to assign farms to 

a particular group.  If some farms have a reasonable probability of being in another class, it may be misleading to 

choose one reference technology.  One way to deal with this is instead to compute a posterior-probability-

weighted sum of the measures (Orea and Kumbhakar, 2004, Greene, 2002).  However, if these probabilities are 

very high this is not likely to be a problem.  As our average posterior probabilities range from 0.97 to 0.99 for the 

different classes, it does not make a substantive difference.   

Page 14 of 44

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

15 

 

whether returns to scale are increasing or decreasing over time (with technical change) for each class by 

computing Y,X,T= Y,X/T.   

The Data 

The Danish dairy sector is undergoing a strong restructuring where the traditional farm model – herds of 

about 40 tied-up cows based on grazing – rapidly is disappearing.  It is being replaced by another model 

which emphasizes larger herds (100 to 120 cows) in loose-housing systems with cubicles, based on 

mixed feed and fodder. 

Danish dairy farms have on average a herd of 94 cows for an agricultural area of 95 hectares, 

and with a national milk quota of about 4.5 million tons provide approximately 3% of the milk 

production of the European Union (EU 27).  In comparison to other European countries, Danish dairy 

farms are characterized by very high labor productivity (Perrot et al 2007); for example, in 2005 5,900 

Danish dairy farms, mainly located in Jutland (the West border of the country), produced as much milk 

as the French region Brittany where there are three times as many producers. Along with Spain and Italy 

(where farms remain, however, much smaller), restructuring of the Danish dairy sector has been the 

most spectacular in the EU: the herd size has doubled during the last ten years (from 45 cows in 1995) 

and the number of farms correspondingly halved. The mean annual milk production per farm reached 

850,000 kg in 2006, a record level in the EU (Perrot et al. 2007 and Karantininis et al. 2010). 

Our data are for 304 Danish dairy farms for 1986-2005, with 3188 observations.  The data used 

for our empirical investigation are for milk (total and organic) and non-milk outputs, and land, labor, 

capital, cow, fodder, energy, veterinary and chemicals inputs, as well as deflators (producer price 

indexes for milk and dairy products, agricultural materials, and machinery and buildings).  The data are 

taken from Landscentret, Denmark (“Regnskabsdatabase”: an economic farm account database 

Page 15 of 44

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

16 

 

collected for various years) and Danmark Statistic (various agricultural price indexes).  Summary 

statistics for the data overall, and by the final preferred (3) classes and for the first and last years of our 

data sample are presented in Appendix Table A1. 

 Overall, milk was about two-thirds of total production for these farms, which averaged about 77 

hectares with about 68 cows, 4300 labor hours/year, 6.2 million Danish Kronor in capital, and about 

5600 Kronor in feed/cow/year, with revenue of about 1,800,000 Kronor/year (in 1986 monetary units).   

When divided into classes (as discussed below), class 1 farms tend to be larger operations with about 

2,500,000 Kroner/year in revenue, more cows and land (about 93 cows and 109 hectares), less labor and 

more capital input per cow, and more organic production and fodder/cow on average – although the 

range for all of the variables is very large.  Class 3 is the reverse – seemingly more traditional farms that 

are smaller, somewhat more diversified, with more labor and less land, capital and fodder per cow.  

Class 2 is in the middle in terms of size, with the least milk/total revenue (more diversification) and 

organic/total production.   

 Differences over time for the data for the first and last years of the sample show a dramatic 

increase in milk production per farm (nearly three-fold) and proportion of organic milk while non-milk 

output was dropping, combined with much more capital and land, less chemicals use, more than twice 

as many cows per farm, and less labor and fodder per cow.  These trends are consistent with those for 

dairy farms in other EU countries and especially the U.S. toward larger more specialized farms and more 

capital-intensive production systems (see e.g. Haghiri et al 2004). 

The Results 

We estimated our LCM model by Maximum Likelihood (ML) methods using LIMDEP 9.0.  As noted, our 

base production structure model includes all first order and own second order terms, but it does not 
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include cross-terms between outputs and inputs as there were too many parameters to distinguish 

classes with the fully flexible model in the LIMDEP algorithm.  The first-order elasticities representing 

output and input composition and technical change would be expected, however, to be well 

approximated by such estimates (as we will see below), so the fundamental characteristics of the 

different farms are taken into account for the separation of the farms into classes.   

The parameter estimates for this production structure model are presented in the first panel of 

Appendix Table A2 for the full sample.10  As discussed above, however, the measures of interest for our 

analysis are computed as combinations of these parameters.  The first measures to evaluate are thus 

the elasticity measures presented in the first panel of Table 1 for the full data sample.  These first order 

output (milk, YM) elasticity estimates reflect output tradeoffs, input contributions, returns to scale and 

technical change, evaluated at the mean values of the variables for all farms in our data.  

(table 1) 

The (proportional) tradeoffs between the outputs are given by the M,NMQ elasticity, where M 

and NMQ denote YM and YNMQ.  The estimate for this elasticity of approximately -0.17 shows that 

producing one percent more milk, given input use, on average involves about 17 percent less “other” 

outputs for the farms in our data.  The (proportional) productive contributions of the inputs are given by 

the M,k elasticities (k= LD, LAB, KAP, COW, FOD, EN, VET, CHM).  These output elasticities with respect to 

the inputs show that livestock (XCOW) comprises the largest marginal input “share” or contribution to 

output at about 50 percent, fodder is about 21 percent, capital is next at about 16 percent, and land and 

veterinary care follow at about 12-13 percent.  Labor has a small productive contribution of about 6 

percent, and chemicals and energy even less at about 2 percent.  In combination, these estimates result 

                                                           
10

 We did not provide all the estimates for all the classes as the elasticities rather than the parameter estimates are 

our primary results to analyze.  However, the full set of estimates is available from the authors upon request. 
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in a slightly increasing returns to scale (Y,X) estimate of 1.04; a one percent increase in all netputs 

generates an increase in milk production of about 1.04 percent.   

In turn, our technical change measure presented in the first panel of Table 1, reflecting changes 

in potential output (milk) production over time holding input use and non-milk production constant, is 

statistically as well as economically significant at about 0.013; on average milk output per unit of input 

has increased about 1.3 percent per year for the farms in our sample.  Note also that second order own-

elasticity estimates confirm the appropriate curvature on the relationships represented by the first 

order output elasticities; as non-milk production YNMQ increases the opportunity cost in terms of milk 

production increases on the margin, and the (proportional) marginal products of all inputs are (positive 

but) diminishing.  The rate of technical change is also decreasing over time. 

 A fundamental premise of our study, however, is that such overall (average) measures over the 

whole sample do not well reflect individual firms’/farms’ production patterns if the technology is 

heterogeneous.  That is, if there is more than one type of production frontier embodied in the data, it 

should be recognized that different farms may exhibit different output or input intensities and changes 

associated with different production systems.   

 To distinguish and evaluate such technologies and associated technical change, we needed to 

specify the q- or separating-variables underlying the different technologies, and determine the number 

of different technologies or classes in which to group our data.  For the first of these problems, we used 

different combinations of possible variables reflecting four distinctions among farm technologies we 

believe to be important for dairy farms – extensive/intensive, organic/conventional, input (labor and 

capital) intensity, and diversification/specialization.  Although the models using different subsets of 

these potential q-variables are not nested and thus cannot be directly tested, we evaluated their 
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relevance based on the significance of the resulting MNL coefficient (nj) estimates.  These experiments 

suggested that the empirically most relevant variables for grouping were qFOD,COW=fodder/cow, qORG,TOT= 

organic revenue/total revenue, qLAB,COW=labor/cow  and qM,TOT=milk/total output.   

 (table 2) 

To determine how many classes are statistically supported, it is now recognized in the literature 

that one should “test down” from the most classes to determine whether restricting classes is justified 

by statistical tests.  Although likelihood ratio tests may be used, Greene (2005) showed that it is 

preferable to use AIC and SBIC tests – in this case to test down from four classes.  Such tests showed for 

our specification that three classes were statistically supported but two classes were not.   

The o and n estimates for this model are presented in Table 2.  All of the constant terms are 

statistically significant at the 1 percent level, suggesting that even without the q-variables the different 

farm production structures show significantly distinct technologies.  However, the q-variables identify 

additional separating characteristics.  Also note that the prior probabilities for our preferred three class 

model are about 0.39. 0.08 and 0.54 for classes 1-3 but the average posterior probabilities for the farms 

within each of these classes are about 0.99, 0.97 and 0.98 (for the 110, 74 and 120 farms in those 

categories), respectively, indicating a very good “fit” for our classification scheme.  

A primary distinguishing factor among these farms – in terms of statistical significance – appears 

to be the amount of milk relative to total output.  For our three class model, Class 3 becomes the base 

class with the highest prior probability, and the estimated parameters show that farms in other classes 

have a lower milk share, holding all else constant, although summary statistics show a slightly lower milk 

share for Class 3 overall.  Farms in both Class 1 and Class 2 also use less labor/cow than those in Class 3, 
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and those in Class 1 sell relatively more organic milk and in Class 2 (with a less than 10 percent prior 

probability of being in this class) purchase less fodder/cow, as evident from the summary statistics. 

 Given the division of classes into three groups based on the chosen q-variables and first order 

technological specification, the next step is representing the full production technology for the separate 

classes to identify substitution patterns.  First, to evaluate the desirability of including additional cross-

terms, as well as the appropriateness of using the base constrained (first order) model for distinguishing 

the classes, we estimated a fully flexible version of equation (1) for comparison.  The parameter 

estimates for this model are presented in the second panel of Appendix Table A1, and the first order and 

own second order elasticities in the second panel of Table 1.  Tests of the joint significance of the cross-

effects relative to constraining them to zero showed that a fully flexible form is statistically supported.11  

For our full analysis of the production structure, therefore, we wish to use the fully flexible model. 

Although degrees of freedom problems with the LIMDEP LCM algorithm precludes using such a 

model for the first step, the validity of using the base model for distinguishing classes but the flexible 

model for evaluating the full production structure may be inferred by comparing the elasticities for the 

constrained and unconstrained models from Table 1.  Such a comparison shows that, although the cross-

terms will provide us with additional insights about underlying substitution relationships, the overall 

netput composition patterns are effectively captured by the constrained model.   

In particular, although the first order input elasticities for land and labor are somewhat smaller 

when interactions among the other arguments of the function are allowed for, they are roughly within 

two standard deviations of each other and the remaining elasticities are statistically equivalent.  The 

most substantial differences are the technical change term that is nearly twice as large for the full GL 

                                                           
11

 The P-value for likelihood ratio tests for the different sets of constraints are all zero to at least six decimal places. 
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model (but similarly significant), and the non-milk output elasticity that is somewhat smaller but 

comparable in terms of both magnitude and significance.  The estimated second order elasticities are 

also all the same sign and mainly similar in magnitude, with some insignificance evident.  This supports 

using the unconstrained model to explore the class production structure further.  

First consider the different productivity levels implied by the different production technologies.   

One way to consider whether different technologies are more or less productive is to evaluate the fitted 

output (milk quantity) levels for the data for the different classes based on the parameters of the other 

classes (Kumbhakar et al., 2009, Alvarez and del Corral, 2009).  To pursue this, we used the average data 

for the variables for each class, as reported in Table 3. 

 Table 3:   Fitted Productivity Levels, average data for different groups 

Sample 

Technology 
full sample 

Class 1 
sample 

Class 2 
sample 

Class 3  
sample 

1st class 497.19 717.31 459.62 354.59 

2nd class 403.03 540.29 381.60 301.86 

3rd class 483.22 643.77 387.49 316.02 

 

For example, for the average data for the full sample, the fitted value of YM is highest for farms 

in Class 1 and lowest for those in Class 2, suggesting that the Class 1 technology is generally the most 

productive.  The fitted values for the different classes support this conclusion; for example, the fitted 

values for Class 1 farms using their own estimated technological parameters is 717.31, but using those 

for the other classes is lower and for Class 2 is the lowest.  For the data for the other classes, in reverse, 

using the Class 1 parameters gives a higher fitted output level than using the parameters for their own 
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class.  This supports the implication from our discussion of the descriptive statistics that Class 1 farms 

are more productive.12,13  

Next consider the first-order and own second-order elasticities for the separate classes and the 

fully flexible model, presented in Table 4, which represent the production characteristics of each 

technology.14  Note that, as the first order elasticities reflect each output’s and input’s marginal product 

weighted “share” (e.g., M,k=[( YM/Xk)Xk]/YM), high values of these elasticities may arise either from a 

large marginal product or a large amount of input Xk.  Note also that the primary interpretation of the 

second order elasticities is in terms of curvature; all the estimates are negative, consistent with the 

concavity requirements of the transformation function. 

(table 4) 

The first-order elasticities for non-milk outputs for all classes are negative, as they should be by 

regularity conditions, and the larger (in absolute value) estimate for Class 1 indicates for that technology 

that an increase in milk production on the margin involves a greater decrease in other outputs – 

consistent with the summary statistics that suggest somewhat more specialization for these farms.   The 

marginal contributions of cows, and especially land and chemicals, are also larger for Class 1 than the 

other classes.  This appears consistent with high marginal products for each of these inputs, as their 

                                                           
12

 Note that this might underestimate the efficiency of class 2 farms as they are more diversified and this only 

represents the milk production rather than total production. 

13
 If these fitted values are based on less aggregated data the results are roughly the same, although for class 3 the 

fitted values for either the class 1 or class 3 technology is virtually equivalent, potentially because the smaller 

farms’ characteristics are not commensurate with taking advantage of the scale economies of the larger farms in 

class 1.  This is true both when the fitted values are computed by observation and then averaged (this also results 

in a virtually identical fitted value for each own-class compared to the descriptive statistics) and when the results 

are fitted for the average values for each farm and then averaged. 

14
 These estimates are again comparable to those for the constrained model for each class; those estimates are 

available from the authors upon request.   
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levels are comparable (relative to milk production) or lower (for chemicals) for this class relative to the 

other classes, again confirming the relatively high productivity of these farms.  In reverse, the marginal 

contribution of capital is higher for Classes 2 and 3, suggesting that more capital investment might 

enhance productivity.    

In turn, returns to scale are essentially constant for Class 3 farms, even though they are 

somewhat smaller, suggesting that the production systems of these farms must be adapted to take 

advantage of returns to scale as they grow – for example to become more capital and less labor 

intensive.  Increasing returns to scale are evident for the other two technologies – especially for Class 2.  

Further, technical progress is evident for all the technologies, but the most for the farms in Class 1; milk 

output given non-milk production and input use is growing at about three percent per year for farms in 

Class 1 and roughly half that for the other two kinds of farms.  It is also increasing at a decreasing rate, 

as evident from the second order elasticity.     

The fully flexible model also provides insights about the input- and output-specific patterns or 

“biases” of technical change, which underlie the overall technical change elasticity.  This is evident from 

the cross elasticities reported in Table 5 in matrix form for the full sample.  The bottom row of this table 

presents the elasticities of M,NMQ and each M,k elasticity with respect to T, which are primarily 

significant.  These elasticities show that on average for the full sample milk production growth over time 

has been associated with: (i) a greater trade-off between milk and non-milk production (consistent with 

a trend toward more specialization) ; (ii) a slightly greater marginal contribution of land (while land has 

been increasing slightly faster on average than cows), (iii) a greater marginal contributions of both labor 

and capital (while labor and capital use per cow have been falling and rising, respectively); (iv) a smaller 

marginal contribution of cows (as cows per farm has expanded); (v) a greater marginal contribution of 

fodder (while fodder purchases have not increased on average as much as cows); and (vi) essentially the 
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same contributions of chemical and vet use (while chemical use per hectare has been decreasing 

substantially  and vet services per cow have stayed approximately stable).  Note also that returns to 

scale have been increasing over time even while farm size has been increasing. 

(table 5) 

When these elasticities are presented for the different classes, in Table 6, it is clear that 

different technical change bias patterns are occurring for the different technologies.  In particular, for 

Class 1 the marginal contribution of labor is larger and of capital is smaller and less significant – 

apparently due to a larger marginal product of labor with its lower levels and a marginal product of 

capital that has fallen somewhat with higher capital levels.  Returns to scale are also increasing even 

faster than on average, even though these farms tend to be the largest farms.  By contrast, both the 

marginal contributions of labor and capital are smaller for both other classes.     

(table 6) 

Another question about technical change is the extent to which (and which) farms switch 

between classes (move to different production systems) or exit the industry.  Our “preferred” estimates 

with random effects for each farm and based on a panel data specification, however, group the 

observations into class by farm rather than by observation, precluding consideration of such changes.  

To address this question we thus must categorize the observations rather than the farms into classes.  

This model is not nested and thus not directly comparable to the random effects farm-based 

specification, and in fact would be expected to yield biased estimates without the panel-related random 

effects.  Estimating the model allows us, however, to consider whether the results are comparable and 

assess farm switching and exit patterns. 
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Although exploring such a model in detail is beyond the scope of this paper,15 the classification 

into categories by observation is roughly consistent with the farm random effects model.  1099 of the 

observations fell into Class 1, 693 into Class 2, and 1396 into Class 3.  Class 1 again contained the largest, 

most specialized and most organic-oriented farms – even larger in terms of land and cows than for the 

farm model (which might be expected as the industry was evolving toward such a farm structure over 

time).  Class 2 observations were again for the least specialized farms, in between Class 1 and 3 in size, 

with the most labor and fodder per cow.   In terms of switches, 344 farms moved from Class 3 into other 

classes – 226 of them to Class 1 – over the time period.  172 farms moved from Class 2, but most of 

these moved to Class 3 (165) rather than Class 1.  There is therefore a general trend from Classes 2 to 3 

and 3 to 1, as would be expected by their measured productivities.   

Note also that 26 of the 30 farms that exited the industry were categorized as Class 2 farms in 

their last year by this model.  However, the classifications for these farms were nearly evenly divided 

among the different classes in the random effects farm model, suggesting that farms that became less 

productive over time tended to transition into Class 2 farms before they left the industry.  Thus, the 

categorization of farms into classes over 20 years could be misleading in terms of which will exit the 

industry, as they may initially have been relatively productive farms that fell behind over time.   

Finally, we can consider general substitutability patterns from the estimated cross-elasticities in 

Tables 4 and 5.   Overall, the cross-terms that reflect substitutability among inputs are largely significant.  

For the full sample, interesting patterns found in Table 4 are that more non-milk production is 

associated with a higher contribution of labor and lower contribution of fodder, as one would expect for 

more pasture-based farms.  More land and more fodder imply a greater, but more labor and cows a 

                                                           
15

 Results for this model are available from the authors upon request. 
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lower, contribution of chemicals – perhaps as the marginal product of chemicals is larger for larger 

farms.  Further, more capital is associated with greater contributions of both cows and fodder, 

consistent with trends toward larger farms with more intensive production.   

When the sample is broken down into classes these patterns are quite different.  For example, 

more non-milk production is not associated with labor contribution for any class, and only implies a 

lower fodder contribution for Class 1.  It is, however, associated with a greater marginal contribution of 

cows for Class 3, and of chemicals for both Class 2 and Class 3.  More cows are also associated with a 

greater contribution of chemicals for Class 2 but both more cows and more land imply a lower 

contribution of chemicals for Class 3, while there is very little association of any other netput with 

chemicals use for Class 1.  Distinguishing the technologies thus appears important for representing 

substitutability, but seems to imply different substitutability rather than lower overall substitutability. 

Conclusions 

In this study we use a latent class modelling approach to distinguish different technologies for a 

representative sample of E.U. dairy producers, as an industry exhibiting significant structural changes 

and differences in production systems in the past decades. The production technologies and 

productivity patterns are then modelled and evaluated for the different kinds of farms using a flexible 

form of a transformation function and measures of first- and second-order elasticities. 

 We find that overall (average) measures of technical change and biases do not well reflect 

individual firms’ experiences if the technology of an industry is heterogeneous, potentially leading to 

misleading policy implications.  For our application, measures of various farm characteristics reflecting 

intensive vs. extensive production, input intensity, organic production and specialization were used to 

divide our sample of Danish farms into three classes with different technological characteristics.  A fully 
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flexible form of the transformation function is supported for our data but the overall characteristics of 

production in terms of netput composition seem appropriately represented by the constrained model 

used to distinguish the technologies.  Farms in class 1 tend to be the largest and most productive farms 

with more capital intensity relative to labor.  They also enjoy economies of scale that are increasing over 

time, which is not evident for the smaller more traditional class 3 farms, and have the greatest rate of 

technical progress.  Technical change biases show a trend toward increased specialization, and 

increasing marginal contributions of land, labor and fodder (which have been falling in input intensity 

relative to capital and cows).  Switches over time in farm types also tended to be toward the more 

productive farm “model” of class 1, while substitution within technologies appears different across 

technologies but somewhat limited. 

 These results show that overall (average) measures do not well reflect individual firms’ 

production patterns if the technology of an industry is heterogeneous. That is, if there is more than one 

type of production frontier embodied in the data, firms with different technologies can be expected to 

have different technical change patterns, both in terms of overall magnitudes and associated relative 

output and input mix changes. Assuming a uniform homogenous technology, as is typical for policy 

implementation and evaluation, would result in inefficient policy recommendations leading to 

suboptimal industry outcomes.  

In particular, the reforms of the EU dairy sector, in line with the CAP (Common Agricultural 

Policy) reform in general and in anticipation of the final CAP Health Check decisions, has aimed at a 

greater market orientation of production. Direct revenue support is now fully decoupled and subject to 

public and animal health and environmental standards.  The current quota system will be adapted over 

time by increasing quotas by 1% each year from 2009 until 2013.   Support for "dairy restructuring" was 

acknowledged as a priority theme under the second pillar of the CAP, which targets funds to support 
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dairy farmers in preparing for the end of quotas. These measures are meant to support increased 

competitiveness and help milk producers prepare for future challenges on the international scene, while 

providing limited income support by way of direct payments (see Commission 2009).  

However, implementation and evaluation of these policy measures treat farm’s technology as a 

homogenous black box, which our results show will result in suboptimal industry guidance.   That is, our 

results suggest that European dairy firms at different restructuring levels exhibit different output and 

input intensities, operate with different technologies and show different technical change patterns.   

Policy measures aiming to foster, change or slow down such industry restructuring have to take these 

technological heterogenities into account when designing effective and efficient incentive mechanisms 

to trigger desired production decisions at the firm level.  This seems to be especially relevant for 

environmentally motivated policy measures to support less intensive production systems.   
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Table 1: First-order and own second-order production structure elasticities  

Full sample, constrained and full generalized linear model   

(standard errors from the delta method)     

        

FIRST ORDER       

 No cross terms   Full cross-terms  

elasticity estimate t-stat  elasticity estimate t-stat  

M,NMQ -0.168 -15.34  M,NMQ -0.128 -10.61  

M,LD 0.121 9.34  M,LD 0.104 7.20  

M,LAB 0.056 3.10  M,LAB 0.039 2.11  

M,KAP 0.156 10.58  M,KAP 0.159 10.61  

M,COW 0.504 28.79  M,COW 0.495 26.28  

M,FOD 0.212 18.51  M,FOD 0.233 18.75  

M,EN 0.023 3.70  M,EN 0.032 4.19  

M,VET 0.129 19.74  M,VET 0.110 16.19  

M,CHM 0.017 3.02  M,CHM 0.023 3.24  

M,T 0.013 4.70  M,T 0.025 4.30  

Y,X 1.043 106.80  Y,X 1.060 93.43  

        

OWN SECOND ORDER      

elasticity estimate t-stat  elasticity estimate t-stat  

NMQ,NMQ -0.0002 -8.89  NMQ,NMQ -0.0002 -4.60  

LD,LD -0.003 -1.08  LD,LD -0.013 -3.02  

LAB,LAB -0.157 -0.08  LAB,LAB -1.470 -0.43  

KAP,KAP -1.025 -3.25  KAP,KAP -3.046 -4.95  

COW,COW -0.040 -8.05  COW,COW -0.020 -3.07  

FOD,FOD -0.0003 -3.26  FOD,FOD -0.001 -4.56  

EN,EN -0.007 -5.20  EN,EN -0.003 -2.14  

VET,VET -0.014 -3.16  VET,VET -0.029 -3.08  

CHM,CHM -0.011 -1.71  CHM,CHM -0.006 -0.80  

T,T -0.045 -4.16  T,T -0.068 -6.65  
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Table 2: q-variable coefficients for technology classes       

            

   Three classes      

    Class 1 estimate t-stat      

    0 4.851 2.60      

    FOD/COW 0.049 0.66      

    ORG/TOT 2.434 3.16      

    LAB/COW -32.173 -3.79      

    MLK/TOT -13.445 -2.12      

    Class 2        

    0 15.369 5.38      

    FOD/COW -0.176 -1.82      

    ORG/TOT -0.027 -0.01      

    LAB/COW -51.947 -3.94      

    MLK/TOT -51.116 -5.52      

    Class 3        

    0 0       

  FOD/COW 0       

    ORG/TOT 0       

    LAB/COW 0       

    MLK/TOT 0       

            

    prior class probabilities      

    Class 1 Class 2 Class 3      

    0.388 0.077 0.535      

            

    posterior probabilities       

    (average for each class grouping)     

    0.987 0.974 0.978    
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Table 4:  1st order and own 2nd order elasticities for different 
classes 

    

Full generalized linear model          

            

FIRST ORDER            

 Class 1    Class 2    Class 3   

elasticity estimate t-stat  elasticity estimate t-stat  elasticity estimate t-stat  

M,NMQ -0.184 -10.19  M,NMQ -0.080 -4.68  M,NMQ -0.058 -5.33  

M,LD 0.138 6.32  M,LD 0.032 1.46  M,LD 0.029 2.47  

M,LAB 0.109 3.96  M,LAB 0.245 8.85  M,LAB 0.089 5.80  

M,KAP 0.124 5.40  M,KAP 0.196 9.16  M,KAP 0.208 15.64  

M,COW 0.523 18.57  M,COW 0.451 16.79  M,COW 0.463 25.81  

M,FOD 0.203 11.39  M,FOD 0.144 8.16  M,FOD 0.201 17.09  

M,EN 0.023 2.43  M,EN 0.055 4.06  M,EN 0.012 1.64  

M,VET 0.087 8.61  M,VET 0.041 4.15  M,VET 0.057 9.40  

M,CHM 0.029 3.23  M,CHM 0.001 0.06  M,CHM 0.006 1.16  

M,T 0.029 3.07  M,T 0.013 1.90  M,T 0.016 2.63  

Y,X 1.043 65.63  Y,X 1.079 63.04  Y,X 1.008 97.27  

            

OWN SECOND ORDER           

elasticity estimate t-stat  elasticity estimate t-stat  elasticity estimate t-stat  

NMQ,NMQ -0.0004 -0.98  NMQ,NMQ -0.0002 -2.88  NMQ,NMQ -0.0001 -0.91  

LD,LD -0.002 -0.41  LD,LD -0.011 -1.69  LD,LD -0.004 -0.65  

LAB,LAB -11.239 -2.01  LAB,LAB -3.329 -0.75  LAB,LAB -8.442 -2.62  

KAP,KAP -1.465 -1.83  KAP,KAP -2.376 -3.18  KAP,KAP -1.640 -1.61  

COW,COW -0.017 -2.24  COW,COW -0.014 -0.99  COW,COW -0.049 -3.31  

FOD,FOD -0.0002 -1.35  FOD,FOD -0.001 -4.44  FOD,FOD -0.001 -3.28  

EN,EN -0.004 -2.64  EN,EN -0.004 -2.65  EN,EN -0.002 -1.15  

VET,VET -0.034 -2.77  VET,VET -0.031 -2.24  VET,VET -0.059 -4.87  

CHM,CHM -0.002 -0.24  CHM,CHM -0.010 -1.41  CHM,CHM -0.020 -2.03  

T,T -0.068 -3.01  T,T -0.050 -4.70  T,T -0.062 -8.68  

            

 

Page 34 of 44

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

35 

 

 

Table 5: Cross-elasticities for full generalized linear model 

       

 Full Sample      
 NMQ LD LAB KAP COW FOD EN VET CHM T 

LD -0.00001          

 -0.04          

LAB 0.046 0.067         

 5.10 0.75         

KAP 0.003 -0.030 -0.530        

 0.86 -0.84 -0.51        

COW -0.0005 0.008 -0.074 0.183       

 -1.08 1.64 -0.54 3.43       

FOD -0.0002 0.0004 0.017 0.022 -0.001      

 -3.20 0.74 1.01 3.35 -0.68      

EN -0.0003 -0.005 -0.003 -0.009 0.009 0.0002     

 -1.73 -2.69 -0.06 -0.41 3.64 0.72     

VET 0.002 -0.003 -0.486 -0.008 0.027 0.0001 0.0002    

 5.54 -0.78 -5.17 -0.20 5.58 0.23 0.12    

CHM -0.0003 0.019 -0.535 -0.029 -0.010 0.002 0.004 -0.00008   

 -0.64 4.73 -4.83 -0.56 -1.90 2.98 2.17 -0.02   

T -0.002 0.018 0.177 0.209 -0.030 0.002 -0.005 0.004 -0.003  

 -5.27 4.82 1.92 4.39 -5.92 2.93 -2.69 0.98 -0.61  

RTS 0.049 0.044 -3.161 -3.457 0.121 0.041 -0.005 -0.499 -0.555 0.371 

 5.43 0.50 -3.03 -3.41 0.85 2.43 -0.11 -5.34 -4.85 4.19 
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Table 6: Cross-effects for different classes  

      

 Class 1     
 NMQ LD LAB KAP COW FOD EN VET CHM T 

LD 0.0004          

 1.18           

LAB 0.023 -0.071          

 1.82 -0.60         

KAP 0.003 0.013 -2.229        

 0.83 0.31 -1.57        

COW -0.0005 -0.011 -0.007 0.202       

 -0.81 -1.79 -0.04 2.79       

FOD -0.0002 0.002 0.015 -0.002 -0.002      

 -2.66 3.29 0.64 -0.22 -2.38      

EN -0.001 0.003 -0.122 0.004 0.002 0.0004     

 -2.48 1.34 -1.77 0.14 0.74 0.87     

VET 0.002 -0.016 -0.513 -0.057 0.037 -0.001 -0.006    

 5.62 -4.03 -4.20 -1.13 5.75 -0.80 -2.18    

CHM -0.001 0.004 -0.056 -0.019 -0.004 0.001 0.001 0.016   

 -1.69 0.70 -0.34 -0.25 -0.57 1.29 0.53 2.51   

T -0.003 0.017 0.611 0.109 -0.027 0.002 -0.005 0.011 0.010  

 -5.66 2.84 3.42 1.33 -3.29 1.91 -1.56 1.82 1.26  

RTS 0.026 -0.078 -14.549 -3.563 0.200 0.013 -0.120 -0.574 -0.059 0.726 

 2.10 -0.66 -9.99 -2.55 1.00 0.59 -1.69 -4.83 -0.36 4.43 
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Table 6 (contd.): Cross-effects for different classes  

       

 Class 2       

 
NMQ LD LAB KAP COW FOD EN VET CHM T 

LD 0.0003 
         

 
0.62 

         LAB 0.008 0.241 
        

 
0.67 1.90 

        KAP -0.004 0.078 1.338 
       

 
-0.87 1.40 0.94 

       COW 0.0003 -0.004 -0.199 -0.048 
      

 
0.42 -0.53 -1.10 -0.75 

      FOD -0.00005 -0.002 0.046 0.016 -0.0001 
     

 
-0.06 -1.83 1.98 1.50 0.05 

     EN -0.0003 -0.002 -0.068 0.057 0.001 0.0001 
    

 
-1.53 -1.16 -1.10 1.78 0.24 0.16 

    VET 0.001 0.002 -0.106 -0.067 0.016 -0.001 0.006 
   

 
2.69 0.46 -0.83 -1.32 2.42 -1.15 2.36 

   CHM 0.001 -0.006 -0.176 -0.047 0.027 -0.001 0.006 -0.023 
  

 
2.96 -1.36 -1.23 -0.75 4.00 -1.32 2.50 -4.30 

  T -0.001 -0.003 0.064 0.148 -0.005 0.003 -0.005 0.006 0.009 
 

 
-2.13 -0.71 0.59 2.63 -0.79 2.98 -2.01 1.51 1.96 

 RTS 0.007 0.297 -2.271 -1.043 -0.221 0.057 -0.004 -0.203 -0.231 0.216 

 
0.55 2.26 -1.70 -0.76 -1.11 2.43 -0.06 -1.56 -1.61 2.09 
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Table 6 (contd.): Cross-effects for different classes 
      

 Class 3     

 

NMQ LD LAB KAP COW FOD EN VET CHM T 

LD -0.0001 

         

 

-0.19 

         LAB -0.008 -0.012 

  

  

     

 

-0.78 -0.12 

        KAP 0.006 -0.149 2.202 

       

 

1.20 -2.33 1.72 

       COW 0.002 0.016 0.149 0.225 

      

 

2.87 1.86 0.90 2.86 

      FOD -0.0001 -0.004 0.003 0.004 0.0005 

     

 

-0.78 -4.10 0.13 0.33 0.33 

     EN -0.0001 0.002 -0.072 -0.010 -0.006 0.001 

    

 

-0.29 0.51 -1.13 -0.34 -1.34 2.48 

    VET -0.001 0.025 -0.082 -0.323 0.011 0.001 -0.002 

   

 

-2.11 4.78 -0.79 -5.56 1.60 0.72 -0.67 

   CHM 0.001 -0.013 0.151 0.084 -0.017 0.001 0.004 -0.003 

  

 

2.14 -2.02 1.17 1.20 -2.04 0.65 1.33 -0.58 

  T -0.001 -0.003 0.019 0.084 -0.015 0.002 0.002 0.006 0.006 

 

 

-2.73 -0.78 0.27 1.72 -2.73 3.70 0.88 1.76 1.43 

 RTS 0.000 -0.139 -6.054 0.394 0.330 0.004 -0.085 -0.432 0.187 0.101 

 

0.03 -1.19 -5.03 0.31 1.81 0.19 -1.24 -3.72 1.31 1.30 
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Table A1:  Summary Statistics of the data (whole sample, classes, and over time)  

       

Full Sample       

 Mean Std. Dev. Minimum Maximum No. observations 

Milk (1000 kg) 453.91 263.35 2.50 1624.37 3188  

Milk 1204.06 647.73 7.01 3785.38   

Non-Milk Output 624.09 445.50 0.00 5298.58   

Total output 1828.15 925.92 51.51 6590.93   

Land (hectares) 76.80 44.33 14.30 270.00   

Labor (000 hours/year) 4.27 1.49 1.20 11.80   

Capital (million Kronor) 6.23 4.60 0.76 33.00   

Cows (number) 68.21 33.59 2.00 223.00   

Fodder (purchased) 357.51 228.38 8.00 2165.06   

Energy (Mwh) 62.60 49.29 0.21 369.40   

Veterinary 40.88 29.14 0.00 286.64   

Chemicals 26.27 22.73 0.00 154.73   

       

Milk/total (revenue) 0.661 0.126 0.004 1.000   

Organic/total (revenue) 0.069 0.218 0.000 1.000   

Fodder/Cow 5.311 2.525 0.364 36.084   

Labor/Cow 0.071 0.071 0.027 3.800   

       

Note:  All variables for which units are not specified are in thousands of Danish Kroner  

deflated to the base year 1986 using a producer price index (for agricultural materials,  

milk and dairy products, or machinery and buildings, as appropriate)   

Source:  Landscentret Denmark and Danmark Statistic     
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Table A1 (contd):  Summary Statistics of the data (classes)    

       

Class 1       

 Mean Std. Dev. Minimum Maximum No. observations 

Milk (kg) 676.69 285.31 6.91 1624.37 1054  

Milk 1728.28 674.03 16.13 3785.38    

Non-Milk Output 855.56 520.84 0.00 5298.58    

Total output 2583.84 896.63 606.41 6590.93    

Land (hectares) 108.58 42.67 23.60 270.00    

Labor (hours/year) 5.19 1.45 2.11 11.80    

Capital 9.16 5.16 1.90 28.48    

Cows (number) 92.81 34.38 2.00 221.00    

Fodder (purchased) 495.08 263.94 51.02 2165.06    

Energy (Mwh) 78.78 63.69 0.21 369.40    

Veterinary 57.86 35.10 0.00 286.64    

Chemicals 33.01 28.23 0.00 153.34    

        

Milk/total (revenue) 0.669 0.134 0.004 1.000    

Organic/total (revenue) 0.153 0.306 0.000 1.000    

Fodder/Cow 5.500 3.119 0.724 36.084    

Labor/Cow 0.064 0.117 0.027 3.800     
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Table A1 (contd):  Summary Statistics of the data (classes)    

       

Class 2       

 Mean Std. Dev. Minimum Maximum No. observations 

Milk (kg) 354.47 167.97 7.48 1144.15 810  

Milk 1053.95 516.28 11.80 3213.86    

Non-Milk Output 606.31 400.01 0.00 2759.72    

Total output 1660.26 750.72 213.34 5080.33    

Land (hectares) 71.36 42.33 14.50 238.50    

Labor (hours/year) 4.27 1.49 1.60 10.10    

Capital 5.75 4.17 1.06 33.00    

Cows (number) 64.87 28.14 20.00 177.00    

Fodder (purchased) 322.62 154.59 33.90 1309.90    

Energy (Mwh) 65.13 44.91 0.41 286.11     

Veterinary 35.04 21.65 0.00 172.12    

Chemicals 28.35 23.52 0.00 154.73    

         

Milk/total (revenue) 0.639 0.138 0.036 1.000    

Organic/total (revenue) 0.018 0.107 0.000 0.868    

Fodder/Cow 5.226 2.235 0.997 24.470    

Labor/Cow 0.070 0.019 0.029 0.143   
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Table A1 (contd):  Summary Statistics of the data (classes)    

       

Class 3       

 Mean Std. Dev. Minimum Maximum No. observations 

Milk (kg) 337.40 160.75 2.50 1217.62 1324  

Milk 878.58 383.87 7.01 3308.76    

Non-Milk Output 450.70 302.29 39.74 2413.22    

Total output 1329.28 599.53 51.51 5594.88    

Land (hectares) 54.82 29.71 14.30 215.00    

Labor (hours/year) 3.54 1.04 1.20 7.10    

Capital 4.19 2.83 0.76 21.83    

Cows (number) 50.66 22.28 3.00 223.00    

Fodder (purchased) 269.34 178.83 8.00 1923.43    

Energy (Mwh) 48.17 31.14 0.27 232.34    

Veterinary 30.94 20.71 0.00 178.55    

Chemicals 19.63 13.74 0.00 101.30    

        

Milk/total (revenue) 0.668 0.109 0.034 0.980    

Organic/total (revenue) 0.034 0.156 0.000 0.980    

Fodder/Cow 5.211 2.126 0.364 25.485    

Labor/Cow 0.077 0.029 0.030 0.500   
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Table A1 (contd):  Summary Statistics of the data (over time)    

       

1986       

 Mean Std. Dev. Minimum Maximum No. observations 

Milk (kg) 301.777 156.482 75.139 950.082 129  

Milk 915.331 461.519 219.477 2761.700    

Non-Milk Output 504.774 300.388 92.386 1754.710    

Total output 1420.110 681.512 381.295 3849.400    

Land (hectares) 50.928 27.927 14.300 196.900    

Labor (hours/year) 3.954 1.420 1.983 9.280    

Capital 3.979 1.997 1.144 15.565    

Cows (number) 50.686 23.680 12.000 134.000    

Fodder (purchased) 309.318 173.805 41.934 862.802    

Energy (Mwh) 50.420 36.050 0.331 269.188    

Veterinary 26.139 18.784 2.366 141.088    

Chemicals 22.863 19.033 0.141 106.392    

        

Milk/total (revenue) 0.647 0.108 0.190 0.884    

Organic/total (revenue) 0.014 0.090 0.000 0.689     

Fodder/Cow 6.168 2.563 2.621 24.016    

Labor/Cow 0.085 0.028 0.039 0.250    

       

2005       

 Mean Std. Dev. Minimum Maximum No. observations 

Milk (kg) 825.933 329.882 134.332 1437.830 84  

Milk 1915.090 766.010 253.643 3475.080    

Non-Milk Output 275.649 223.870 0.000 1214.960    

Total output 2190.740 863.214 319.824 3800.040    

Land (hectares) 113.169 51.582 14.500 243.700    

Labor (hours/year) 4.806 1.356 2.404 9.100    

Capital 13.902 5.832 3.705 26.854    

Cows (number) 105.607 34.755 31.000 189.000    

Fodder (purchased) 498.717 242.046 93.021 1827.950    

Energy (Mwh) 63.886 84.033 0.415 369.400    

Veterinary 56.701 31.275 5.057 148.190    

Chemicals 15.445 21.616 0.000 74.143    

        

Milk/total (revenue) 0.873 0.083 0.635 1.000    

Organic/total (revenue) 0.409 0.446 0.000 1.000    

Fodder/Cow 4.731 1.394 0.943 9.672    

Labor/Cow 0.048 0.013 0.028 0.103    
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Table A2: Transformation function estimates       

Full sample, constrained and full generalized linear model      

 No cross-terms  Full cross-terms      

coefficient estimate t-stat  coefficient estimate t-stat     

a0 -69.430 -1.89  a0 -17.680 -0.41  aLDEN -1.276 -2.69 

a0NMQ 6.764 6.52  a0NMQ 0.157 0.06  aLDVET -0.584 -0.78 

a0LD 9.891 1.81  a0LD -16.857 -1.91  aLDCHM 3.416 4.73 

a0LAB 4.560 0.10  a0LAB 25.762 0.41  aLABKAP -10.939 -0.51 

a0KAP -23.565 -1.65  a0KAP -34.823 -1.20  aLABCOW -5.056 -0.54 

a0COW -41.561 -5.40  a0COW -0.392 -0.03  aLABFOD 2.667 1.01 

a0FOD 9.088 4.99  a0FOD 0.289 0.08  aLABEN -0.168 -0.06 

a0EN -8.799 -4.80  a0EN -6.232 -1.43  aLABVET -25.674 -5.17 

a0VET 15.674 5.01  a0VET 13.261 2.25  aLABCHM -22.684 -4.83 

a0CHM -3.042 -1.29  a0CHM 20.401 3.37  aKAPCOW 15.074 3.43 

bT 5.031 4.31  bT 3.291 1.13  aKAPFOD 4.224 3.35 

bTT -0.197 -3.06  bTT -0.507 -5.17  aKAPEN -0.746 -0.41 

aNMQNMQ -0.257 -13.63  aNMQNMQ -0.307 -6.71  aKAPVET -0.492 -0.20 

aLDLD 0.154 0.54  aLDLD -1.327 -2.10  aKAPCHM -1.492 -0.56 

aLABLAB 4.884 0.44  aLABLAB -8.398 -0.29  aCOWFOD -0.360 -0.68 

aKAPKAP 16.077 7.23  aKAPKAP -26.330 -3.54  aCOWEN 2.336 3.64 

aCOWCOW 5.870 13.58  aCOWCOW 0.560 0.63  aCOWVET 5.615 5.58 

aFODFOD 0.029 0.68  aFODFOD -0.189 -1.80  aCOWCHM -1.758 -1.90 

aENEN 0.722 5.72  aENEN 0.557 3.25  aFODen 0.150 0.72 

aVETVET 0.204 0.89  aVETVET -1.332 -3.84  aFODVET 0.063 0.23 

aCHMCHM 0.587 2.44  aCHMCHM 0.083 0.22  aFODCHM 0.923 2.98 
    aNMQLD -0.009 -0.04  aENVET 0.046 0.12 

    aNMQLAB 9.543 5.10  aENCHM 0.710 2.17 

    aNMQKAP 0.688 0.86  aVETCHM -0.010 -0.02 

    aNMQCOW -0.411 -1.08  bNMQT -0.568 -5.27 

    aNMQFOD -0.334 -3.20  bLDT 1.933 4.82 

    aNMQEN -0.254 -1.73  bLABT 4.614 1.92 

    aNMQCHM 1.127 5.54  bKAPT 6.565 4.39 

    aNMQVET -0.138 -0.64  bCOWT -3.104 -5.92 

    aLDLAB 4.838 0.75  bFODT 0.461 2.93 

    aLDKAP -2.638 -0.84  bENT -0.523 -2.69 

    aLDCOW 2.373 1.64  bVETT 0.284 0.98 

    aLDFOD 0.278 0.74  bCHMT -0.164 -0.61 
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