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Abstract
In this paper, we introduce a new structured financial product: the so-called Life

Nominal Chooser Swaption (LNCS). Thanks to such a contract, insurers could keep pure
longevity risk and transfer a great part of interest rate risk underlying annuity portfolios to
financial markets. Before the issuance of the contract, the insurer determines a confidence
band of survival curves for her portfolio. An interest rate hedge is set up, based on
swaption mechanisms. The bank uses this band as well as an interest rate model to price
the product. At the end of the first period (e.g. 8 to 10 years), the insurer has the right
to enter into an interest rate swap with the bank, where the nominal is adjusted to her
(re-forecasted) needs. She chooses (inside the band) the survival curve that better fits her
anticipation of future mortality of her portfolio (during 15 to 20 more years, say) given
the information available at that time.

We use a population dynamics longevity model and a classical two-factor interest rate
model to price this product. Numerical results show that the option offered to the insurer
(in terms of choice of nominal) is not too expensive in many real-world cases. We also
discuss the pros and the cons of the product and of our methodology. This structure
enables insurers and financial institutions to remain in their initial field of expertise.
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1 Introduction

Annuity providers like life-insurance companies and pension funds have to manage longevity
(biometric) risk, but also associated financial risks, because a significant part of the assets of
the insurer corresponds to bonds with long maturities for some of them. Consequently, interest
rate risk is very often the most important financial risk associated with traditional pension
portfolios, even if some products like variable annuities are subject to many other market risks
and to policyholder behavior risk (see e.g. Nguyen (2011)), and in particular to mass surrender
risk (see Loisel and Milhaud (2011)).
Some financial products like longevity swaps, q-Forwards, or longevity bonds have been pro-
posed and are theoretically useful to manage pure longevity risk and financial risks (see Blake
et al. (2006), Menoncin (2008), Barrieu et al. (2012) for more details on those products).
However, so far, only (customized or standardized) private transactions have been successful.
Indeed, investors are reluctant to take long term risks, i.e maturities exceeding 25 years, which
limits potential investors in such market to the reinsurance industry, and thus excludes nat-
urally the access to financial markets. Besides, the absence of a unique longevity index is an
obstacle for the development of liquid and tradable transactions. Hence, such contracts cannot
be set up without a common longevity benchmark that satisfies all market stakeholders.
Further significant barriers to longevity transfer rely on the difficulties surrounding the pricing
of such securities. Barrieu et al. (2012) argues that risk-neutral valuation is inappropriate
because of illiquidity and incompleteness of the longevity risk market. However, indifference
pricing would probably be a good way to tackle this issue, but yields to more expensive prices.
We should also mention that basis risk is very often present in those contracts, because payoffs
are usually based on national population indices that can evolve very differently from the ones
of the insurance portfolio, see Salhi and Loisel (2011). Therefore, indemnity-based payoffs are
difficult to set up due to the lack of transparency for investors, who are likely to be afraid
of asymmetry of information. Finally, for such transfers, counterparty risk is particularly im-
portant due to long maturities, and the recent crisis does not facilitate the emergence of a
longevity market, see e.g. Biffis et al. (2011) and (Biffis and Millossovich 2012).
It thus seems more feasible in the short term to enable the insurer exposed to longevity risk
to transfer most of the associated financial risk and to keep (mostly) pure biometric longevity
risk that she is used to manage and that can be (partially) mutualized with mortality risk and
some other insurance risks. For pension plans, the low-interest-rate environment introduces
higher discounting factors and thus increases the present value of future cash-flows to be paid
to pensioners. Even if in some countries the best estimate of liabilities may be computed with
a regulatory discounting rate different from the financial discounted rate obtained by yield
curves, low interest rates constitute a big economic issue, and also increase the potential ef-
fect of unexpected longevity improvements. If we neglect complex life insurance accounting
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aspects, we might consider that the insurer borrowed some money to the annuitant at a fixed
rate, which is closely related to discounting factors used to compute the premium paid by
the policyholder. Given her exposure to the bond market on the asset side of the balance
sheet, the insurer faces the risk that interest rates become too low to finance the cash-flows.
The insurer could try to manage this exposure with a strategy that includes a combination of
interest rate swaps with different maturities that try to match the expected cash-flow structure
of the insurance portfolio. The insurer wants to receive the fixed leg (which corresponds to
what she has to pay to annuitants), and to pay the floating leg (that corresponds to what she
is supposed to obtain from her investment strategy).
The problem is that this protection is imperfect, because the "size" of the required protection
(which is related to the nominal structure) is not known yet and depends on future longevity
of the policyholders. In this paper, we introduce a toy financial product that may enable
insurers to better manage interest rate risks associated with annuity portfolios: with the so-
called Longevity Nominal Choosing Swaption (LNCS), the insurer can choose after a first
period the nominal structure that best matches her current anticipation of the evolution of
the longevity of her portfolio, within two boundaries corresponding to extreme scenarios in
terms of biometric longevity risk. These limits can be chosen by the insurer at the initial date
from quantiles of some stochastic mortality model. The distance between those limit curves
must be large enough to provide a real protection. To avoid prohibitive costs, this distance
cannot be extremely large because the bank logically prices the product using the worst-case
scenario. Another advantage of the proposed product LNCS is that the bank can sell a "pure"
financial product (without biometric risk) that she is used to manage. The bank does not
have to believe in the stochastic mortality model used by the insurance company, because her
pricing could be operated on the basis of the worst-case scenario.
A straightforward question is the following: with LNCS the insurer is now able to hedge her
interest rate risk in a more dynamic way; however, to have the guarantee to be able to be
protected in the future, she purchases an option that might be too expensive; would LNCS
prices be reasonable in current market conditions? We use pricing software of an investment
bank1 and real market data2 to compute LNCS prices using a Heath-Jarrow-Morton (HJM)
two-factor model (see Heath et al. (1992)) for interest rates and a (micro-macro) population
dynamics model described in Bensusan (2010) in order to obtain extreme nominal structures
for a real insurance portfolio. The HJM two-factor model is widely used by banks. It may
underestimate uncertainty of interest rates for long-term risks, but it takes into account cor-
relation of interest rates that plays an important role for this kind of product.
Our results show that it would be currently affordable and interesting for insurance companies
to use this kind of instrument. However, as interest rates are now quite low and as the LNCS

1We are highly indebted to the team of Interest rates Modeling of CACIB.
2Thanks to the French institute INSEE
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provides protection against low interest rates, LNCS prices could be much higher in a market
with high interest rates, because the risk that interest rate decrease would be more important.
Besides, pension funds hope that interest rates will soon increase after the end of intervention
of central banks, which could limit the influence of biometric risks. But this may take some
time and is likely to happen together with inflation. Consequently the impact might vary a
lot from one stakeholder to the other: part of the pensions are indexed on some inflation index
(which has recently changed in the United Kingdom), while some others are not (even in the
same pension fund, we might face both types of liabilities). For many insurers, pensions are not
necessarily indexed on inflation, but benefit from some profit sharing mechanism (revaluation
of pensions). In all cases, there might be adverse scenarios for pension providers which corre-
spond to particular movements of interest rates, inflation rate, and real interest rate (interest
rate minus inflation). For life insurers and reinsurers, risk analysis must be global, because
a sharp rise of interest rates could have severe consequences on savings contracts. For large
insurance groups offering non-life insurance in addition, inflation could arise some issues as
well because costs would then be likely to increase faster than expected. In this paper, for
simplicity we do not take inflation and profit sharing into account. We believe that for a large
part of inflation and interest rate risks, our reasoning could in practice be adapted to the risk
profile of the pension provider. The strategy could involve different products, similar to LNCS,
but with inflation or real interest rate components. The prices could of course be much higher
(or lower), and it could be more difficult to find liquid hedging instruments in some particular
cases.
The paper is organized as follows. In Section 2, we recall financial concepts related to swaps
and swaptions on interest rates. In Section 3, we describe LNCS cash-flows structure. Sec-
tion 4 deals with the interest rate and longevity risks models. In Section 5, we carry out a
quantitative analysis of the product on real data. We finally give directions for further research
in the conclusion.

2 Traditional Interest Rate Risk Transfer

2.1 Plain Vanilla Swap Contract

A plain vanilla swap contract is an agreement on the OTC market between two parties to
exchange, on specific dates, fixed-rate interest on a notional principal for a floating-rate interest
rate on the same notional. Initially, both legs should have the same value, otherwise it would
not be a fair deal, therefore swap contracts have a zero initial market value. Later on, prices
can differ depending on the evolution of the yield curve. For a given maturity, the market
quote convention consists for the swap market maker in setting the floating leg at LIBOR, and
then quoting the fixed rate, called the swap rate, that makes the value of the swap equal to
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zero. Swaps can be used to optimize the financial condition of the debt, or to hedge a portfolio
of fixed-income securities against any change in the yield curve. The OTC swap market is a
very liquid market. Different types of contracts may be negotiated, for instance inflation-linked
swaps.
In the precise definition of a plain vanilla swap, there are given a nominal amount N , a
floating LIBOR rates (with tenor δ, in general 3 or 6 months) and a pre-specified collection of
reset/settlement dates, [T] = [T1, · · · , Tn] referred to as the tenor structure and a starting time
T0 < T1. The year fraction between any two consecutive dates is denoted by δj = Tj−Tj−1 and
is in general constant and equal to the tenor δ of the LIBOR rates. The value of the LIBOR
floating rate at time Ti is denoted L(Ti, δ), but in a plain vanilla swap, the reference floating
rate is the one known at the previous date, so that the coupon paid in Ti is δL(Ti−1, δ) ×N .
The cash flows associated with the floating leg of the plain vanilla swap define also a cash flows
term structure [Cflex] = [NδL(T0, δ), NδL(T1, δ), · · · , NδL(Tn−1, δ)].

The floating leg of a swap with a one payment date is the interest paid at the end of a loan
with tenor δ and nominal 1. Then the present value at T0 of 1 + δL(T0, δ) paid in T0 + δ is 1,
and the one of the floating leg is FLL(T0, T0, T0, δ) = 1 − B(T0, T0 + δ), where B(t, T ) is the
price at t of a zero-coupon bond maturing at T . At any date t < T , the present value becomes
FLL(t, T0, T0, δ) = B(t, T0) − B(t, T0 + δ). Using the forward price of the zero-coupons bond
Bt(T0, T0 + δ) = B(t, T + θ)/B(t, T ), the forward price FLLt(T0, δ), that is the price at t for a
floating leg starting at T0, is 1−Bt(T0, T0 + δ).
For a general floating leg, the cash flows are still similar to the interests of a loan with variable
interest rate written on a nominal amount N ; and since the present value of the loan at
any settlement dates is equal to the nominal (at par) at any payment date in terms of zero-
coupon bond B(t,T), we obtain easily the value of the floating leg as FLL(T0, T0, [T], δ) =

N(1−B(T0, Tn)). Then the value at time t < T0 is FLL(t, T0, [T], δ) = N(B(t, T0)−B(t, Tn))

and the forward value FLLt(T0, [T], δ) = N(1−Bt(T0, Tn)).
The value of the fixed leg FIL(t, T0, [T], δ) for a given swap rate S(t, T0, [T], δ) is the sum of the
discounted future cash flows, FIL(t, T0, [T], δ) = NS(t, T0, [T], δ)

∑n
i=1 δB(t, Ti). By equating

both values, it follows that,

S(t, T0, [T], δ) =
B(t, T0)−B(t, Tn)∑n

i=1 δB(t, Ti)
=

1−Bt(T0, Tn)∑n
i=1 δBt(T0, Ti)

. (2.1)

The swap rate with forward start, and the forward swap rate are the same: S(t, T0, [T], δ) =

St(T0, [T], δ).
When the swap contract is more exotic, for example with a given decreasing nominal term
structure [N] = [N1, N2, · · · , NN ], (N1 ≥ N2 · · · ≥ Nn) the valuation of the floating leg may be
made by different methods. The simplest and well-suited for hedging purpose is to use a family
of plain vanilla swaps with different nominal and tenor structure, ([Tn] = [T1, · · · , Tn], [Nn] =
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[Nn, · · · , Nn]), ([Tn−1] = [T1, · · · , Tn−1], [Nn−1 −Nn] = [Nn−1 − Nn, Nn−1 − Nn, · · · , Nn−1 −
Nn]) and so on to the latter (T1, N1 −N2), whose the sum replicated exactly the cash flows of
the flex leg of the exotic swap. The present value of the floating leg is, with the convention
Nn+1 = 0, FLL(t, T0, [T], [N]) =

∑n
i=1

(
Ni − Ni+1

)(
B(t, T0) − B(t, Ti)

)
. By equating fix and

floating legs at time t, we fix the swap rate of the exotic swap,

δS(t, T0, [T], [N], δ) =

∑n
i=1

(
Ni −Ni+1

)(
B(t, T0)−B(t, Ti)

)∑n
i=1NiB(t, Ti)

. (2.2)

Example We start with a path of the LIBOR rate corresponding to a decline of interest rates
between years 2009 and 2012, and a sharp rise between 2012 et 2020. This type of scenario
will have a strong impact on the floating leg of the exotic swap, whose nominal term structure
has been estimated using our mortality model described in Section 4.
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Figure 1: Top panel: Simulated path of the LIBOR rate δL(t, δ) between 2009 and 2040.
Bottom panel: Cash flows of the fixed leg of swap with nominal term structure: δkNt (left) and
cash flows of the floating- leg of swap with nominal term structure: δL(t, δ)Nt (right).

2.2 Swaptions

A European swaption is an option allowing the holder to enter into some pre-specified un-
derlying swap contract, on a pre-specified date, which is the expiration date of the swaption.
There are two kinds of European swaptions: the receiver swaption is an option that gives the
buyer the right to receive the fixed leg of the swap, the payer swaption is an option that gives
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to the buyer the right to pay the fixed leg of the swap. The strike rate is the specified fixed
rate at which the buyer can enter into the swap. The maturity or expiry date is the date when
the option can be exercised. The maturity can range from several months to ten years. The
premium of the plain vanilla swaption is expressed as a percentage of the principal amount of
the swap.
The pay-off of receiver swaption on a plain vanilla swap, at maturity T ≤ T0, is the positive part
sup(ΦT (T0, [T], N,K, δ), 0) of ΦT (T0, [T], N,K, δ) =

(
K−ST (T0, [T], δ)

)∑n
i=1NδB(T, Ti); us-

ing the properties of the floating leg, we also have ΦT (T0, [T], N,K, δ) =
(
K
∑n

i=1NδB(T, Ti)−(
B(T, T0) − B(T, Tn)

))
. In other terms, the pay-off is the positive part of the difference of

K times the market value of the fixed leg and the market value of the floating leg. The
swaption is said to be at the money, when the strike price is closed to the forward swap rate
K ∼ St(T, T0, [T], δ).
When the swaption has a variable nominal term structure, the pay-off becomes the positive
part sup(ΦT (T0, [T], [N], K, δ), 0) of

ΦT (T0, [T], [N], K, δ) =
(
K

n∑
i=1

NiδB(T, Ti)−
n∑
i=1

δ(Ni −Ni+1)
(
B(T, T0)−B(T, Ti)

))
. (2.3)

Unlike the swap contract whose pricing relies only on the yield curve today, the evaluation
of the premium of the swaption contracts requires a dynamic model of interest rates, as the
classical HJM two-factor model. When the swap contract has a nominal term structure, the
hedging strategy is complex and is based on a basket of vanilla swaptions, whose maturities
are adjusted to the tenor structure of the swap.

3 Longevity Nominal Chooser Swaption: Description and
Study

Let us consider a life-insurer with a large annuity book. She is doubly exposed to longevity
risk and financial risks. Longevity risk affects the nominal series and the duration of the future
payments, while interest rate risk affects long maturity liabilities (because the insurer must
obtain some fixed interest rate to fund them.) If it were possible to know in advance exactly
the amount of annuities to be paid to policyholders, the insurer might use swaps or swaptions
with (fixed) nominal term structure to reduce her exposure.
But the problem is that, due to longevity risk, nominals are random and depend on the
longevity of annuitants. To hedge this risk, the insurer could use longevity swaps (in addition
to the swaptions with fixed nominal term structure). However, longevity swaps correspond
only to private deals that may be very expensive.
The insurer could prefer to cross-hedge biometric longevity risk with mortality risk. As ma-
turities are in general longer for contracts exposed to longevity risk (30 to 50 years) than for
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contracts exposed to mortality risk (1-10 years), the main residual risk for the insurer would
then be interest rate risk associated with those portfolios. If mortality decreases faster than
expected, the insurer has to pay less than expected for short-term mortality contracts, but is
likely to pay more in the future for her annuity contracts. This increases the nominal amount
of the interest rate protection scheme associated to the annuity portfolio.
The proposed LNCS contracts would enable the insurer to re-adjust the nominals of the in-
terest rate coverage after 10 years, say, according to the evolution of longevity improvements
observed in this first period.
To help the reader to understand the difference between LNCS contracts and longevity swaps,
we recall the main characteristics of longevity swaps in the next subsection before introducing
LNCS contracts in more detail.

3.1 Longevity Swaps

3.1.1 Longevity swap transactions and basis risk

Over the last 4 years, some longevity swap transactions have been completed. They are very
private transactions and therefore their pricing remains confidential and subject to negotiation
between the various parties involved in the deal. Some of these swaps were contracted between
a life insurance company and a reinsurer as a particular reinsurance agreement. Others have
involved counterparts outside the insurance industry. Most of these transactions have a very
long maturity and incorporate an important counterparty risk, which is difficult to assess given
the long term commitment. As a consequence, the legal discussions around these agreements
make them particularly heavy to finalize.
Longevity swaps can mainly take two forms, depending on whether they are index-based or
customized. We now briefly present two longevity swaps arranged by JP Morgan in 2008.
Both are very different in terms of basis risk as detailed below. More precisely,

A customized swap transaction In July 2008, JP Morgan executed a customized longevity
swap with a UK life insurer for a notional amount of GBP 500 millions for 40 years. The life
insurer has agreed to pay fixed payments and to receive floating payments which replicates the
actual payments made on a run-off portfolio of retirement policies. The swap is before all a
hedging instrument of cash flows for the life insurer, with no basis risk.
At the same time, JP Morgan entered into smaller swaps with several investors who take
longevity risk at the end. In this type of indemnity based transaction, the investors are pro-
vided with the relevant information regarding the underlying portfolio for them to be able to
assess their risk. The back-to-back swap structure of this transaction means that JP Morgan
has no residual longevity exposure. Longevity risk is transferred from the insurer to the in-
vestors in return for a risk premium. Counterparty risk for this swap is important given the
long term maturity of the transaction, but also the number of agents involved.
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A standardized transaction: Lucida In January 2008, JP Morgan executed a standard-
ized longevity swap with the pension insurer Lucida for a notional amount of GBP 100 millions
for 10 years, and using LifeMetrics index for England and Wales as underlying index. This
swap structure enables a value hedge for Lucida, which has accepted in this case to keep the
basis risk. For more details on both transactions in particular and on longevity swaps, please
refer to Barrieu and Albertini (2009).

3.1.2 Differences between longevity swaps and swaption-type strategies

In a longevity swap with cash flows occurring each year 1 ≤ i ≤ p, the insurer exchanges
series of nominals [Ñ] = [Ñ1, · · · , Ñp] that are random (because of longevity risk associated
to her population or to an index) with fixed nominals [N̄] = [N̄1, · · · , N̄p]. Each N̄i is equal
to the mathematical expectation of Ñi (under the historical probability measure) plus some
risk margin ρi > 0. The bank and the insurer have to agree on the values of the N̄i’s at the
beginning of the contract, which is often complicated. The risk margin takes into account
longevity risk transfer reward, as well as the interest rate risk associated with the cash-flow
Ñi− N̄i. Part of this risk margin might be replaced with an upfront payment from the insurer
to the hedge provider. In addition to counterparty risk and/or basis risk (depending on the
type of longevity swap), the insurer who purchases longevity swap remains with the interest
rate risk associated to deterministic cash flows [N̄] = [N̄1, · · · , N̄p], and might use swaps or
swaptions to hedge it. It is also possible to define forward-start or deferred longevity swaps, for
which cash-flows start after some lag. For example, for portfolios of 50-year-old policyholders,
it would be interesting to start exchanging payments after a lag of 10 to 15 years, because
pensions would be paid after retirement only.
However, as mentioned before, instead of using longevity swaps (or deferred longevity swaps)
and some traditional interest rate coverage, due to heavy costs and due to cross-hedging
possibilities with mortality risk, the insurer might prefer to manage longevity risk and to
only transfer interest rate risk associated with her annuity portfolio to financial markets. The
insurer would then be interested in some interest rate hedging solution for random nominals.
We now introduce some new contract that enables such an insurer to re-adjust the nominal
series after some time according to her new anticipation of future longevity improvements for
her population of annuitants.

3.2 Description of the Longevity Nominal Chooser Swaption

Products like swaptions would allow the insurer to hedge dynamically her interest rate risk
if there were no longevity risk. We introduce now a new product that enables the insurer to
propose some series of nominals at the beginning and to choose the most suitable one after
some lag.
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Insurer’s point of view Due to longevity risk, it is impossible to know initially, at time T0,
the level of future nominals. However, the insurer may estimate (at time T0) two nominal term
structures (quantile estimated) starting at time T > T0, [N+

T] = [N+
1,T , N

+
2,T , · · · , N

+
n,T ] and

[N−T] = [N−1,T , N
−
2,T , · · · , N

−
n,T ] (N−i,T < N+

i,T ), in such a way that for each time, the probability
that the realized cashflow is between the two corresponding extreme levels is larger than a
given level, 95% for instance. Given that the forecasts are made at time T0, our proposed
LNCS contract gives the insurer the right to re-adjust her forecasts at time T , by choosing (at
time T ) a new nominal term structure, convex combination (with parameter αT ∈ [0, 1]) of
the two extreme structures (that had previously been estimated at time T0),

[Nα
T] = αT [N−T] + (1− αT )[N+

T] = [N+
T]− αT [∆NT],

where [∆NT] = [N+
T]− [N−T]. The parameter αT is chosen by the insurer at time T , depend-

ing on the actual annuity portfolio and the new estimate at time T of the future nominal
term structure. This has motivated the choice of the name of the product, Longevity Nominal
Chooser Swaption. To recap, the insurer wishes to transform her fixed annuity rate k into a
floating rate, by contracting a receiver swaption: she pays the floating rate and receives fixed
rate (swap rate) on the appropriate nominal. She is waiting for a fixed rate close to the an-
nuity rate; this can be obtained by adding a spread or margin m at the floating rate (because
capital is consumed), and by fixing the strike K of the swaption very close to (k −m), which
corresponds to the notion of technical interest rate for the insurance company. For instance,
when the floating rate is fluctuating around 2.1% and the annuity rate around 4% the margin
will be 1.9%.

Seller’s point of view From the seller’s point of view, the contract is priced on the basis
of the worst scenario, corresponding to the maximum of the payoffs, that is the maximum of the
positive part of the family of random variables ΦT (T0, [T], [Nα

T],K, δ) = ΦT(T0, [T], [N+
T],K, δ)−

αTΦT(T0, [T], [∆NT],K, δ), where ΦT (T0, [T], [NT],K, δ) is defined in Equation (2.3). Thanks
to this affine representation, the maximum is reached when ΦT (T0, [T], [∆NT],K, δ) is neg-
ative, and α∗T is the indicator function of the set {ΦT (T0, [T], [∆NT],K, δ) < 0}. Then, an
easy calculation yields to the maximum underlying pay-off, (where we omit the symbol δ to
simplify the writing)

ΦT (T0, [T], [Nα∗T ],K)+ =

ΦT (T0, [T], [N+
T],K)+ if ΦT(T0, [T], [∆NT],K) ≥ 0

ΦT (T0, [T][N−T],K)+ if ΦT(T0, [T], [∆NT],K) < 0.
(3.1)
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3.3 Practical Aspects

Of course, contrary to customized longevity swaps, LNCS contracts only offer protection
against interest rate risk, but not against biometric longevity risk that must be managed
by the insurer. However the insurer knows exactly what is covered and can adapt the interest
rate protection to her specific longevity risk profile.
Although it requires a specific "design" because of two curves of future nominal, it better
suits to the real problems of the insurer. In this structured product, the only longevity risk
supported by the seller (the bank) concerns the maturity of the underlying swap, since the
more expensive scenario is easily identifiable. Then, the Longevity Nominal Chooser Swaption
is a pure interest rate exotic product, whose hedging instruments are swaptions of different
maturities, and different strikes. Maturity Tn must reflect the time at which all policyholders
have died, or more realistically the time at which the number of policyholders still alive is
smaller than some threshold: after this date, the cost of the residual annuities is very low.
Regarding pricing and hedging of this exotic swaption, the seller can rely on a model of interest
rates, as in Section 4, rich enough to provide sufficiently significant correlations between long
maturity interest rates.
It is not compulsory to consider convex combinations of the two extreme series of nominals.
In our example, this was satisfactory, but it may happen that it is better to consider instead
quantile curves of regular levels (5%, 10%, 15%, . . . , 95%). This could be important when
the quantile curve of level 50% is quite different from the one obtained with the half sum of
extreme levels. Finally, to estimate the extreme curves of policyholder survivor, the insurer
has to reduce basis risk, reflecting the selection bias between policyholders and the general
population. We suggest to use the micro-macro framework, recently introduced in Bensusan
(2010) (see also Barrieu et al. (2012)).

4 Modeling Longevity and Interest Rate Risks

Longevity basis risk is strongly present in longevity swap contracts, because longevity exposure
is usually based on national population demographic behavior that may significantly differ from
the one of policyholders. It often relates to mismatches in demographic characteristics of both
populations, as gender, age, socioeconomic classes, geographic location. For the LNCS, and
more generally from a modeling perspective, longevity basis risk comes from the difference
between the calibration data and the mortality rates specific to the insured population. The
following model is a way to reduce basis risk.
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4.1 Dynamic Individual Mortality Model

All classical models are referring to the same mortality indicators, as:
(i) the survival probability function St,a(T ), at date t for an individual aged a, defined as the
probability St,a(T ) = P(τa > T |τa > t), where τa is the death time and the mortality force
(intensity) at time t,
(ii) the mortality force (intensity) at time t, µ(a, t) = −∂T logSt,a(T ).
(iii) the one-year death probability (q(a, t)) depending on calendar year and age.
Indeed, in practice, we can only estimate the discrete mortality on an annual basis. The chal-
lenge is to model simultaneously the dynamics of all mortality rates, (q(a, t))a,t.

Classical stochastic mortality models Many stochastic mortality models have been de-
veloped recently by Lee and Carter (1992), Lee and Miller (2001), Cairns et al. (2006, 2007)
among others. Based on the observed linear behavior (at least for the 40-90 age range) of the
logit3 transform of the yearly death rate (q(a, t)), Cairns et al. (2006) propose a simple yet
robust methodology for projecting mortality featuring both age a and period effect t for long
time horizon with a reasonable confidence interval. A particular example is the CDB model
well-suited to our problem, featuring both the cohort effect and the age-period effect. It is is
a regression model, of type

logitq(a, t) = α1(t) + aα2(t) + ε(a, t), ε(a, t) ∼ N (0, σ(t)2). (4.1)

A model is necessary to specify the time behavior of estimated parameters α(t) =
(
α1(t)α2(t)

)T ,
viewed for instance as the realization of two-dimensional autoregressive process, as

α(t+ 1) = α(t) + µ+ CZ(t+ 1), (4.2)

where µ is a 2 × 1 constant vector, C is a 2 × 2 lower triangular matrix and Z(t + 1) is a
two-dimensional standard normal variable.
This model can be extended to take into account the cohort effect (as in Cairns et al. (2007))
by adding a new component γ(t− a). To take also into account the catastrophic behavior due
to some exogenous events impacting the mortality, e.g. flu pandemics, heat waves, and other
relevant catastrophic factors, we can add a jump component BtEt where Bt is a Bernoulli
distributed variable with parameter p and Et is an exponentially distributed variable with
parameter λ.
To capture basis risk, we enrich the two-factor model by integrating some additional indi-
vidual characteristics, also called traits in the sequel (among others, gender, socioeconomic
status, education level and matrimonial status, and also global factors as geographical loca-

3The logit function is defined as: logit(x) = log
x

1− x
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tion, country, and environmental factors). These factors affect some homogeneous age classes
A = {Al, 1 ≤ l ≤ N}. All these new variables take finite qualitative or quantitative values
x = (xi)1≤i≤Mx .

We henceforth denote by q(a, t, x) the one-year death probability under the new specifica-
tion, which is given by the following equation:

logit(q(a, t, x)) = α1(t) + aα2(t) + γ(t− a) +
Mx∑
i=1

βli(t)
>xi +BtEt + ε(a, t, x, y). (4.3)

Here, (βli)1≤i,l≤Mx,N are the coefficients of the logistic regression over specific one-year death
probabilities.

Dynamic micro-macro stochastic longevity models In the previous models for mor-
tality, the variance of the mortality process exponentially grows in time, leading to inaccurate
long-term estimations. In order to assess the future patterns of the survival function of an-
nuitant portfolio, we propose a microscopic approach taking into consideration the age and
the characteristics (or traits) of each individual in the portfolio. The model may be adapted
to include some epidemiological considerations. We are inspired from stochastic models for
age-structured population with variable traits used in biology as in Ferrière and Tran (2009);
detailed explanations may be found in the PhD thesis of Bensusan (2010).
As in the CDB model, we consider that the annuitants share some global traits that evolve
during their lifetime with a rate depending on their age, and others parameters, influencing
their yearly death probability.
Starting with an annuitant portfolio of N0 individuals, our goal is to derive future evolution of
the individuals still alive at each time; we simulate by recursion a succession of events occurring
at random dates (Tk) and modifying the size and the characteristics of the population. At time
(Tk), the size of the population is NTk . The latter events are simulated using a sequence (τk,`)

of possible event dates following a Poisson point process with an intensity depending on the
size of the population and on the threshold death probability λ(NTk , Tk). On the time interval
[τk,`, τk,`+1), only aging occurs. We assimilate the population to a box denoted Box(Tk+τk,`+1)−

that initially contains NTk individuals, characterized by their traits at time Tk and their age
at time Tk + τk,`+1. Choosing randomly an individual in the box, we simulate its future state
(still alive, dead, with new traits) given the probability of this evolution calibrated in the CDB
model. When nothing happens, we reiterate the algorithm until we obtain the k + 1th event,
and then generate a new box called BoxTk+1

, with either one person missing or some change
in the traits for one individual. That is, if the number of individuals is high we might inspect
the box more often, and changes occur due to death or changes on the characteristic of the
individual.
Given its flexibility, the model may be adapted to more complex situations. Since it is par-
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simonious in the exploration of individuals evolution, it is efficient for long term simulations,
and gives information on the proportion of individuals with different characteristics still alive
at the horizon of the simulation. Moreover, it provides an easy way to estimate future annuity
cash-flows, and to generate stress tests.

4.2 Modeling Interest Rates via HJM Two-Factor Models

A major milestone in interest modeling was the one-factor Gaussian mean reverting model
proposed by Vasicek (1977) for the short-term interest rate, using a time-homogeneous set-up
of the Ornstein-Uhlenbeck process. Its tractability and numerical efficiency made the model
popular among practitioners for many years. The extension to time dependent parameters to
fit the yield curve or to bi-dimensional Gaussian case is straightforward. It is motivated by
the impact of the slope of the yields curve on the pricing of exotic swaptions. Based on the
instantaneous correlation of the Gaussian factors, this two-dimensional extension leads to non
trivial correlation between two forward rate with successive maturities. For more details on
the model, see Rebonato (1998), or Acar and Natcheva-Acar (2009).
Formally, given the yield curve today and the HJM framework, the yield curve dynamics is
determined by the term structure of the volatility of spot forward rates f(t, T ) = −∂TB(t, T )

where B(t, T ) is the zero-coupon bond maturing in T , given that

df(t, T ) = µ(t, T )dt− γ(t, T )dW
>

t , µ(t, T ) = γ(t, T )
>
∫ T

t

γ(t, s)ds,

where W is a two-dimensional Brownian motion on the risk neutral probability Q. A classical
choice for the volatility vector is as follows, where a(t), b(t) and θ(t) are deterministic real
functions:

γ(t, T ) = a(t)b(T )

(
cos θ(t)

sin θ(t)

)
.

Function a defines the volatility level, while function b is useful when modeling forward volatil-
ity. Moreover the correlation between two forward rates with successive maturities denoted by
ρi, for i = 1, · · · , N , is given by cor(f(., Ti), f(., Ti+1)) = cos(θ(Ti+1)− θ(Ti)). The function θ
is the first function to calibrate on historical market data.

5 Quantitative Analysis

To settle a LNCS coverage, we must distinguish two key steps. At the starting date of the
contract, the insurer determines upper and lower scenarios of the nominals, i.e. [N+

T] and
[N−T], of her annuitant portfolio. This step is critical to ensure the effectiveness of the interest
rate hedge by forecasting as accurately as possible the evolution of annuitant survival curve.
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Using the model previously introduced allows us to develop a refined projection of mortality by
leveraging all available information at individual level. In practice, we cannot calibrate such a
model directly on the insurer dataset, because it is far too small. We would first use national
detailed mortality data like the échantillon démographique permanent provided by INSEE in
France in order to calibrate the proposed longevity model that takes traits into account. Then,
the insurer would use this model to determine quantiles of cash-flow nominals for her popula-
tion of policyholders, using their current observed real traits of the annuitants. The nominals
are thus intimately dependent on the traits of individuals of a group of individuals that display
some degree of heterogeneous mortality. Using this approach, longevity basis risk is strongly
reduced. Second, at the first maturity T of the LNCS, the insurer chooses a nominal stream
[Nα

T] among one of the convex combinations of the quantile pre-estimated (at initial time T0)
nominal streams [N+

T] and [N−T].

In the sequel, we explore a real-world application. Due to the unavailability of a more
detailed dataset, the only considered traits are the age and the gender of each individual of a
real-world annuitant portfolio. Of course, a real insurer could refine the computation of the
extreme nominal series thanks to additional traits that might be available in her dataset. In
general, this would not change much our conclusions about how affordable LNCS contracts
are in present market conditions, even if prices may vary from one insurer to the other due to
basis risk.

5.1 Description of the Real Insurance Portfolio

Let us consider a real-world insurance portfolio with 62482 French, male policyholders in 2012,
with the age structure shown in Figure 2.
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Figure 2: Age structure of policyholders
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The micro-macro approach described in Section 4 with the partial information consisting in
ages and genders only, allows us to evaluate the 5% (dotted line) and 95% (do-dashed line)
quantiles as well as the median (solid line) of the size of the (not discounted) future cash-flows
(see Figure 3).
To simplify, each policyholder are assumed to receive 1 euro per period, but it is possible to
introduce heterogeneity and to take it into account in the micro-macro model. It is often
necessary because rich policyholders are likely to have larger pensions and tend to live longer
in average. As nominals can be substantial, it is important for the insurer to manage interest
rate risks dynamically.
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Figure 3: Scenarios of the real-world portfolio evolution

From the micro-macro longevity model, the number of survivors in 10 years is likely to be
comprised between 48049 and 51223, with a median equal to 49888. After 10 years, the insurer
uses her current information to choose the value of αT such that the nominal term structure
corresponds to her updated mortality projections. This can be done in different ways. A first
naive method consists in matching the number of survivors in 10 years: as shown in Figure 4,
if there were 49000 survivors in 2022, we could choose

αT =
N+
T −NT

N+
T −N

−
T

=
51223− 49000

51223− 48049
∼ 0.7.

We could also use weighted least squares method in order to find the nominal structure that
best matches the whole series of cash-flows.
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Figure 4: An example of possible choice of the parameter αT in 2022

Alternatively, if the insurer detects a change in longevity trends, she could be interested in
more complex nominal structures (than weighted sums of the two extreme ones) to take them
into account. Such products would essentially have the same features. However, giving more
freedom to the insurer in terms of nominal structure choice could rapidly become expensive
and complicated to manage for the bank. The study of such products with more options is
left for further research.

5.2 About the Yield Curve

An example of yield curve The Euro is the currency used by European insurers whose
policyholders are from the Euro zone. We assume that only Euro is involved and we do not
introduce exchange rates. The configuration of the European yield curve has varied a lot in
the past. We have also studied the impact of reversed curves, or of curves with bumps, but
for conciseness we only present results obtained by calibrating the HJM two-factor model on
a set of relevant swaption prices and on the European yield curve of January 2nd, 2012 (see
Figure 5). This yield curve exhibits a strong difference between short term and long term
interest rates, with levels around 2.5%. This configuration leads to quite high prices because
Longevity Nominal Chooser Swaptions provide a hedge against a decrease in interest rates.
Recall that in any case, the yield curve gives us the present value of nominal term structure
of deterministic cash-flows as

PVt([N]T) =

p∑
i=1

1{Ti≥t}NTi B(t, Ti) (5.1)
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Figure 5: European yield curve of January 2, 2012

Impact of Correlation of Interest Rates As LNCS is an option on maximum, its price is
always higher than the one of the most expensive swaption with variable nominal. Besides, the
price of the product is strongly dependent with correlations between swap rates for different
maturities. These correlations are explained by the one of successive spot forward rates given in
Subsection 4.2 by ρ = cor(f(., T ), f(., T +dt)) = cos(θ(T +dt)−θ(T )). We study the behavior
of the product for different values of correlation between swap rates with maturities 10Y and
12Y, keeping reasonable θ (low correlation between short and long-term interest rates). The
motivation for this choice is given by the average maturity4, also called duration, for the lower
and upper term structures, equal to TN−moy = 10Y and TN+

moy = 12Y respectively.

5.3 Cost on Annuity and Interpretation of Numerical results

Notion of Cost on Annuity We also assume that the insurer must choose α in { l
10
, 0 ≤ l ≤

10}. Given a yield curve, from Equation (5.1), for any annuity rate k, annuity price PVt(k, α)

on nominal term structure k[Nα] = k(α[N−] + (1− α)[N+]) is the present value of the future
cash-flows, discounted using the yield curve,

PVt(k, α) = k PVt([N
α]) = k

[
αPVt([N

−]) + (1− α)PVt([N
+])
]
.

The insurer might choose any α. The special case α = 1/2 corresponds to the case where the
insurer chooses a more basic interest rate protection, based on central longevity projections.
We define c as follows in order to quantify the cost of LNCS contracts proportionally to this
reference price:

Pproduct = c [PVt(
1

2
[N−] +

1

2
[N+] )] .

4For a given term structure [N], the duration is defined by TN
moy =

∑N
i=1 TiNTi∑N
i=1 NTi

.
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The value of c/k provides an estimation of the additional proportional cost arising from the
purchase of the product in the case where the insurer would not need to exercise the option,
and pay c instead of an annuity rate k. It is reported in the last column of Tables 1, 2 and 3.

Note also that if the insurer partly hedges interest rate risk on the basis of average longevity
scenarios (case α = 0.5), then the cost would correspond to the one of the set of swaptions
associated with α = 0.5. The extra cost for better protection offered by LNCS products is very
reasonable (it represents very often around 10% or 15% of the cost of the classical swaption
strategy in the current market conditions).

Numerical implementation We study the product for different values of correlation be-
tween swap rates with maturities 10Y and 12Y .
− Here the prices are given in basis points (bps) by multiplying by a ratio equal to 10000

N0
∼ 6.25

− The annuity rate k is assumed to be equal to 4.5%.
− The series of amounts NTi is given in Appendix A which provides the price of the annuities
which is equal to 6528 bps and PVt(1, α) = PVt([N

α]) =
Pannuity

k
= 145065 bps.

We calculate the swap rate SV (0, T0, [N]) such that the fixed leg is equal to the funding
leg. We obtain SV (0, T0, [N]) = 2.7%. Then, the new series of amounts is given by [N′] =

k
SV (0,T0,[N])

[N] (see Appendix A). Then, we present the price of the product and the cost on
annuity given by c =

Pproduct

PVt( 1
2
[N−]+ 1

2
[N+])

.

Correlation swaps Price Price of Cost on

10Y/12Y α = 0 α = 0.5 α = 1 product annuity

99.6% 1098 bp 983 bp 871 bp 1109 bp 0.764%
99.3% 1072 bp 965 bp 860 bp 1086 bp 0.749%
99% 1046 bp 945 bp 849 bp 1066 bp 0.735%

98.7% 1018 bp 925 bp 837 bp 1043 bp 0.719%
98.3% 988 bp 903 bp 824 bp 1019 bp 0.702%
97.8% 957 bp 879 bp 809 bp 994 bp 0.685%
97.3% 924 bp 854 bp 793 bp 967 bp 0.667%

Table 1: Evolution of price as a function of correlation between swap rates with maturities
10Y and 12Y .

Correlation plays an important role, impacting both marginal prices (for swaptions with
fixed α) and the price of the product. The notion of switch option corresponds to the difference
between the price of the product and the one of the most expensive swaption and is useful to
quantify the exotic character of the product.
As correlation decreases, the price of each swaption decreases, and so does the difference be-
tween the prices of the different swaptions. However, the difference between the price of the
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product and the one of the most expensive swaption strongly increases: the lower the cor-
relation, the more exotic the product. For example, when correlation between swap rates
with maturities 10Y and 12Y is 99.6%, the difference between prices of swaptions on extreme
nominals (α = 0 and α = 1) is 1098 − 871 = 227 bps and the price of the switch option is
1109− 1098 = 11 bps. When correlation between swap rates with maturities 10Y and 12Y is
97.3%, the difference between prices of swaptions on extreme nominals is 924− 793 = 131 bps
while the price of the switch option is 967− 924 = 43 bps.
To describe this product as precisely as possible, it seems important to use an interest rate
model that incorporates a more relevant structure for the correlation between successive inter-
est rate, like the affine model detailed in Bensusan (2010).

The price difference is not very high for this product and enables the insurer to choose
the value of α that suits her best in 10 years. For extreme values of (de)correlation, the
additional cost only represents 6043−5774

5774
= 4.6% of the most expensive swaption, which can

still be interesting for an insurer.
In this first example, the most expensive swaption is always the one associated with α = 0

(extremely high longevity improvements). Let us see whether the strike price (modified by the
spread) may modify this behavior.

Strike Price Impact Based on a technical, flat interest rate (around 2.7%), the insurer
wants to be able to fund future cash-flows with returns of the initial investment. The fact
that policyholders die provides the insurer with a spread (around 1.8%) that enables her to
serve the annuity rate (around 4.5%) to annuitants. Even if the strike price (corrected by the
spread) is supposed to be chosen in such a way that the option is close to be at the money (for
corrected strike price close to 2.7%), we vary the corrected strike and fix correlation between
swap rates with maturities 10Y and 12Y equal to 98.7%. We observe an inversion for corrected
strike prices between 0% and 1%. After 0.8%, the swaption with the upper nominal structure
is the most expensive. Below 0.8%, this is the one with the lower nominal structure.

The passage from one situation to the other at level 0.8% (which is quite far from the
at-the-money level 2.7%) could be explained thanks to the analysis of so-called Longevity
Maturity Chooser Swaptions introduced in Bensusan (2010) and the level of the considered
yield curve that is close to 0.8% (see Figure 5), because the duration of cash-flows may vary
from 10 year in the N− scenario to 12 years in the N+ scenario.

6 Conclusion

We have introduced Longevity Nominal Chooser Swaptions in order to transfer interest rates
risk from pension funds and annuity providers to investment banks and more generally to
financial markets. The product structure was described in detail and further extension and
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Correlation swaps Strike price Price Price of Cost on

10Y/12Y (corr. w. spread) α = 0 α = 0.5 α = 1 product annuity

98.7% 0% 76 bp 79 bp 87 bp 97 bp 0.067%
98.7% 1% 244 bp 237 bp 235 bp 274 bp 0.189%
98.7% 2% 606 bp 563 bp 525 bp 637 bp 0.439%
98.7% 3% 1225 bp 1108 bp 996 bp 1248 bp 0.86%
98.7% 4% 2102 bp 1874 bp 1652 bp 2114 bp 1.457%
98.7% 5% 3182 bp 2820 bp 2462 bp 3287 bp 2.197%
98.7% 6% 4390 bp 3883 bp 3379 bp 4392 bp 3.028%
98.7% 7% 5666 bp 5010 bp 4356 bp 5666 bp 3.906%

Table 2: Price of product as a function of strike price

Correlation swaps Strike price Price Price of Cost on

10Y/12Y (corr. w. spread) α = 0 α = 0.5 α = 1 product annuity

98.7% 0% 76 bp 79 bp 87 bp 97 bp 0.067%
98.7% 0.1% 86 bp 89 bp 97 bp 109 bp 0.075%
98.7% 0.2% 98 bp 101 bp 108 bp 122 bp 0.084%
98.7% 0.3% 111 bp 113 bp 120 bp 136 bp 0.094%
98.7% 0.4% 125 bp 127 bp 149 bp 151 bp 0.104%
98.7% 0.5% 141 bp 141 bp 157 bp 168 bp 0.116%
98.7% 0.6% 158 bp 157 bp 162 bp 186 bp 0.128%
98.7% 0.7% 177 bp 175 bp 178 bp 205 bp 0.142%
98.7% 0.8% 197 bp 194 bp 196 bp 226 bp 0.156%
98.7% 0.9% 220 bp 215 bp 215 bp 250 bp 0.172%
98.7% 1% 244 bp 237 bp 235 bp 274 bp 0.189%

Table 3: Price of product as a function of strike price

enhancement could be considered. Our analysis focused on the interest risk and the quanti-
tative sensitivities of the price with respect to the long-term interest rates correlation and to
the strike. In a context where interest rates are low, even if many economists anticipate a rise
of interest rates and inflation, it might be interesting for some pension providers to protect
themselves against low values of interest rates that would last too long, as our analysis shows
that prices seem to be reasonable.
A microscopic modeling approach is used to project future cash flows of the product. We have
mainly discussed the heterogeneity arising from the age structure and how such an approach
should be efficient when further information about policyholders is available, e.g. marital sta-
tus, socioeconomic status, ... The fact that annuity amounts may differ among policyholders
adds another source of heterogeneity. This could be tackled similarly using the microscopic
approach.
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So far, we have supposed that the annuitant portfolio is closed to new entries. In case new
policyholders entered the portfolio, mortality models would have to be adapted by assimilating
the immigration rate to an entry rate on the portfolio (see Bensusan (2010)). The interest
rates follow the HJM two-factor model and the impact of the successive forward rates has been
considered. We have shown that the correlation has a high impact on the LNCS prices due
to long maturities. More complex models could be used to address this issue, such as models
involving stochastic volatilities of interest rates yield curve, e.g. Wishart model.
Various other sources of risk should be taken into account. Indeed, given the specific long-
run maturity of the proposed security, we should lay the emphasis on counterparty risk. It
should be addressed carefully in view of the last global banking crisis. A possible way to
enhance counterparty risk is to post collateral, but this is of course not enough, and coun-
terparty risk remains certainly a big obstacle to some risk transfers in the pension industry,
be it for protections against longevity risk, interest rate risk or inflation risk. As mentioned
in the introduction, inflation may have different impacts, and the main inflation and interest
rate risk drivers must be carefully identified before designing a hedging strategy project. The
risk of change in the inflation index used by regulators is also important, because it is quite
likely on a long period. Of course, the pension provider could use LNCS contracts to manage
financial risks, but she would continue to face all biometric risks. Note also that if longevity
started to improve only after 10 years (and had remained steady during the 10 first years), the
insurer could not foresee the change in the mortality trend after 10 years, and her re-forecast of
future nominal amounts would be inaccurate. However this risk is acceptable for the insurer:
longevity risk is a trend risk, and consequently a change in the trend that would start after
ten years would not have a huge impact before 20 years from now. Nevertheless, this kind of
event is clearly an adverse scenario for which interest rate would not be completely hedged by
our proposed product. Moreover, it should be noted that the longevity market is characterized
by huge exposed notional amounts. The prices we have investigated so far for LNCS contracts
must be regarded as minimal prices that do not take into account liquidity risk.
To conclude, let us mention that in the present paper, we implicitly assumed that longevity
risk and economic factors, including interest rates, were independent. This assumption should
be relaxed in theory, for several reasons. First, pandemics, if they occur, are likely to cause
both mortality catastrophes and economic disruption at the same time, because many eco-
nomic activities would be impossible or delayed. Second, longevity improvements might be
reduced in case of poor economic conditions, because health care budgets would be likely to
be cut. Third, future age pyramids and life expectations might have some economic impacts
due to retirement funding issues and potential changes in consumption habits. Little is known
about correlation between middle-term longevity improvements and interest rates, but this
correlation should in principle be taken into account in the pricing of LNCS contracts. Never-
theless, even if their limitations and residual risks have to be assessed carefully, LNCS contracts
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seem to represent an interesting way to split financial and biometric risks between financial
institutions and insurers at a currently affordable price.
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7 Appendix

Appendix A : Evolution of Future Survival

Year Low Median High Year Low Median High
scenario scenario scenario scenario scenario scenario

2012 62482 62482 62482 2041 12124 16457 20825
2013 61259 61414 61519 2042 10553 14813 19214
2014 59984 60304 60529 2043 9136 13229 17642
2015 58675 59150 59498 2044 7826 11749 16097
2016 57302 57961 58433 2045 6629 10351 14646
2017 55881 56723 57327 2046 5546 9063 13233
2018 54405 55444 56182 2047 4608 7862 11902
2019 52888 54120 54995 2048 3767 6773 10674
2020 51332 52755 53782 2049 3040 5783 9501
2021 49721 51343 52521 2050 2435 4896 8414
2022 48049 49888 51223 2051 1910 4110 7413
2023 46341 48388 49895 2052 1483 3421 6496
2024 44588 46841 48520 2053 1132 2818 5666
2025 42814 45251 47109 2054 860 2302 4938
2026 40951 43619 45665 2055 636 1865 4258
2027 39076 41942 44170 2056 465 1498 3656
2028 37162 40223 42629 2057 333 1192 3134
2029 35176 38468 41078 2058 235 941 2674
2030 33154 36678 39482 2059 164 737 2261
2031 31164 34860 37850 2060 112 572 1911
2032 29126 33009 36179 2061 76 441 1605
2033 27111 31145 34487 2062 51 337 1350
2034 25062 29262 32820 2063 33 259 1132
2035 23074 27368 31092 2064 21 195 945
2036 21112 25497 29344 2065 14 146 788
2037 19171 23614 27592 2066 8 108 658
2038 17295 21750 25866 2067 5 81 540
2039 15485 19930 24140 2068 3 60 446
2040 13752 18169 22471 2069 0 43 367

Table 4: Prospective survivals of the annuitants in the real-world portfolio (in 2012).
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Year Low Median High Year Low Median High
scenario scenario scenario scenario scenario scenario

2012 104137 104137 104137 2041 20207 27428 34708
2013 102098 102357 102532 2042 17588 24688 32023
2014 99973 100507 100882 2043 15227 22048 29403
2015 97792 98583 99163 2044 13043 19582 26828
2016 95503 96602 97388 2045 11048 17252 24410
2017 93135 94538 95545 2046 9243 15105 22055
2018 90675 92407 93637 2047 7680 13103 19837
2019 88147 90200 91658 2048 6278 11288 17790
2020 85553 87925 89637 2049 5067 9638 15835
2021 82868 85572 87535 2050 4058 8160 14023
2022 80082 83147 85372 2051 3183 6850 12355
2023 77235 80647 83158 2052 2472 5702 10827
2024 74313 78068 80867 2053 1887 4697 9443
2025 71357 75418 78515 2054 1433 3837 8230
2026 68252 72698 76108 2055 1060 3108 7097
2027 65127 69903 73617 2056 775 2497 6093
2028 61937 67038 71048 2057 555 1987 5223
2029 58627 64113 68463 2058 392 1568 4457
2030 55257 61130 65803 2059 273 1228 3768
2031 51940 58100 63083 2060 187 953 3185
2032 48543 55015 60298 2061 127 735 2675
2033 45185 51908 57478 2062 85 562 2250
2034 41770 48770 54700 2063 55 432 1887
2035 38457 45613 51820 2064 35 325 1575
2036 35187 42495 48907 2065 23 243 1313
2037 31952 39357 45987 2066 13 180 1097
2038 28825 36250 43110 2067 8 135 900
2039 25808 33217 40233 2068 5 100 743
2040 22920 30282 37452 2069 0 72 612

Table 5: New nominal series [N′] = k
SV (0,T0,[N])

[N] with k = 4.5% and SV (0, T0, [N]) = 2.7%
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