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Third virial coefficient of the unitary Bose gas

Yvan Castin1 and Félix Werner1

1Laboratoire Kastler Brossel, École Normale Supérieure,

CNRS and UPMC, 24 rue Lhomond, 75231 Paris, France

By unitary Bose gas we mean a system composed of spinless bosons with s-wave interaction of
infinite scattering length and almost negligible (real or effective) range. Experiments are currently
trying to realize it with cold atoms. From the analytic solution of the three-body problem in a
harmonic potential, and using methods previously developed for fermions, we determine the third
cumulant (or cluster integral) b3 and the third virial coefficient a3 of this gas, in the spatially
homogeneous case, as a function of its temperature and the three-body parameter Rt characterizing
the Efimov effect. A key point is that, converting series into integrals (by an inverse residue method),
and using an unexpected small parameter (the three-boson mass angle ν = π/6), one can push the
full analytical estimate of b3 and a3 up to an error that is in practice negligible.

PACS numbers: 67.85.-d

I. INTRODUCTION

The field of quantum gases has been exploring, in the
last decade, the strongly interacting regime, thanks to
the possibility of tuning the s-wave scattering length a to
arbitrarily large values (in absolute value) with the Fes-
hbach resonance technique [1, 2]. This opens up the per-
spective of studying a fascinating object, the unitary gas,
such that the interactions among particles have an infi-
nite s-wave scattering length and a negligible range. The
two-body scattering amplitude then reaches the maximal
modulus allowed by unitarity of the S matrix, and the
gas is maximally interacting.
For the spin-1/2 Fermi gases, the experimental real-

isation and characterisation of the strongly interacting
regime have been fully successful [3, 4], recently culmi-
nating with the measurement of the equation of state
of the unitary gas, both at high and low temperature
T [5–7]. In the unpolarized case, this has allowed a pre-
cise comparison with the theoretical predictions, that are
pushed to their limits. At zero temperature, in practice
T/TF ≪ 1 where TF is the Fermi temperature, the mea-
surements have confirmed the precision of the most recent
variational fixed-node calculations, as far as the universal
number ξ = µ/(kBTF ) is concerned, µ being the chemical
potential of the gas [8]. For the superfluid phase transi-
tion, the experiments confirm the expected universality
class and find a value of the critical temperature Tc that
slightly corrects the result of the first Quantum Monte
Carlo calculations [9] and that confirms the one of most
recent Quantum Monte Carlo calculations [10]. Above
Tc, the measurements at MIT are in remarkable agree-
ment with the diagrammatic Monte Carlo method [11].
Finally, in the non-degenerate regime T > TF , the exper-
iments at ENS have been able to confirm the value of the
third virial coefficient a3 of the spatially homogeneous
gas, already theoretically deduced [13] from the analyti-
cal solution of the three-body problem in a harmonic trap
[14] and reproduced later on by a diagrammatic method
[15]; these experiments are even ahead of theory in get-
ting the value of a4, not yet extracted by theory in a

reliable way from the four-body problem [16].

For the strongly interacting gases of spinless bosons,
the experimental studies are less advanced, due to the
Efimov effect [17]: The effective three-body attraction
predicted by Efimov, and leading to his famous weakly
bound trimers, for which there is now an experimental
signature [18], leads to a strong increase of atomic losses
in the gas, due to three-body collisions with strongly
exothermic formation of deeply bound dimers. In the
unitary limit, one can at the moment prepare a stable and
thermal equilibrium Bose gas only in the non-degenerate
regime ρλ3 ≪ 1 [19], where ρ is the gas density and
λ = (2π~2/mkBT )

1/2 is the thermal de Broglie wave-
length: The two-body elastic collision rate, scaling as
~

mρλ, then overcomes the three-body loss rate scaling as
~

mρλ
4 [20][51]. Fortunately, there exists a few ideas to

explore to reduce losses, such as taking advantage of the
loss-induced Zeno effect in an optical lattice [22], or sim-
ply the use of narrow Feshbach resonances [23, 24].

On a theoretical point of view, the study of the uni-
tary Bose gas is just starting. Most of the works do
not take into account in an exact way the three-or-
more-body correlations [25–27]; they cannot thus quan-
titatively account for the fact that resonant interactions
among bosons involve the three-body parameter Rt, a
length giving the global energy scale in the Efimov trimer
spectrum (no energy scale can be given by the scattering
length here, since it is infinite). As a consequence, the
various phases under which the unitary Bose system may
exist at thermal equilibrium, as functions of temperature,
remain to be explored. At zero temperature, inclusion of
a hard-core three-body interaction, allowing one to ad-
just the value of Rt and to avoid the system collapse, has
allowed one to show, with numerical calculations limited
to about ten particles, that the bosons form a N -body
bound state, with an energy that seems to vary linearly
with N [28], which suggests a phase of bounded density
at large N , for example a liquid. At high temperature
(more precisely at low density ρλ3 → 0), the natural
theoretical approach is the virial expansion [29], that we
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recall here for the spatially homogeneous gas [30]:

Pλ3

kBT
=

∑

n≥1

an(ρλ
3)n (1)

where P is the gas pressure. The coefficient an is pre-
cisely the nth virial coefficient. In practice, it will be
more convenient to determine the coefficients bn of the
expansion of the grand potential Ω in powers of the fu-
gacity z = eβµ, with the chemical potential µ tending to
−∞:

Ω = − V

λ3
kBT

∑

n≥1

bnz
n, (2)

with V the system volume and β = 1/(kBT ). The co-
efficients bn are called cluster integrals in reference [30].
Since −βΩ is the logarithm of the grand canonical par-
tition function, it is natural to call bn the nth cumu-
lant, as we shall do in this paper. The knowledge of
all cumulants up to order n included allows one to de-
termine all the virial coefficients up to the same order.
Note that a1 = b1 = 1 by construction; the higher order
expressions that are useful here are deduced in a simple
way from the thermodynamic equalities Ω = −PV and
N = −∂µΩ [30]:

a2 = −b2 and a3 = 4b22 − 2b3. (3)

Contrarily to the fermionic case, the cumulant b3 and
the virial coefficient a3 of the bosons in the unitary limit
are not pure numbers, they rather are not yet explicitly
determined functions of the three-body parameter. Af-
ter the pioneering works [31], there exist for sure formal
expressions of b3 in the general quantum case involving
Faddeev equations [32], the S-matrix [33], Mayer dia-
grams [34], an Ursell operator [30, 35]. The most opera-
tional form seems to be the one of [32] written in terms
of a three-body scattering amplitude [36], but its evalua-
tion for the unitary Bose gas is, to our knowledge, purely
numerical, and for three different values of Rt only [36].
Here, we show on the contrary that b3 can be obtained an-
alytically, from the solution of the harmonically trapped
three-boson problem [12, 14].
In the first stage of the solution, one considers the

system at thermal equilibrium in the harmonic poten-
tial U(r) = 1

2mω
2r2, ω being the free oscillation angular

frequency, and one expresses the third cumulant B3(ω)
of the trapped gas, defined by the expansion (5) to come,
in terms of the partition functions of n-body problems in
the trap, 1 ≤ n ≤ 3. In theoretical physics, a formal
“harmonic regularisator” was already introduced to ob-
tain the second [37] and third [38, 39] virial coefficients
of a gas of anyons. The same technique was then used
in the case of cold fermionic atoms [13], to take advan-
tage of the fact that the three-body problem is solvable
in the unitary limit; note that it is then not a pure cal-
culation trick anymore since the trapping can be realised
experimentally.

In the second stage, one takes the limit of a vanish-
ing trap spring constant. As shown by the local density
approximation [13], which is actually exact in that limit,
the cumulants bn of the homogeneous gas are then given
by [13, 37]

bn
n3/2

= lim
ω→0

B3(ω) ≡ B3(0
+). (4)

In [13], this limit is evaluated purely numerically for the
fermions. We shall insist here on showing that one can
actually go much farther analytically.

II. EXPRESSION OF ∆B3 IN TERMS OF

CANONICAL PARTITION FUNCTIONS

When the chemical potential µ → −∞ at fixed tem-
perature, which corresponds to a low density limit, the
grand potential of the trapped unitary Bose gas can be
expanded as

Ω = −kBTZ1

∑

n≥1

Bnz
n (5)

where ZN is the canonical partition function with N
particles, z = exp(βµ) is the fugacity, and Bn(ω) is
the nth cumulant of the trapped gas. By construc-
tion, B1(ω) ≡ 1. One also has, by definition, Ω =
−kBT ln(1 +

∑

N≥1 ZNz
N). By order-by-order identifi-

cation in z, as for example in [13], one finds

B2 =
Z2

Z1
− 1

2
Z1 and B3 =

Z3

Z1
− Z2 +

1

3
Z2
1 . (6)

In reality, one shall calculate the deviation from the ideal
gas,

∆Bn = Bn −B(0)
n (7)

where B
(0)
n (ω) is the nth cumulant of the trapped ideal

gas. Similarly one introduces ∆ZN = ZN − Z
(0)
N , noting

that ∆Z1 = 0. As there is furthermore separability of the
center of mass in a harmonic trap, both for the ideal gas
and for the unitary gas, and as the spectrum of the center
of mass is the same as the one of the one-body problem,
one is left with partition functions of the n-body relative
motion, denoted by “rel”:

∆B2 =
∆Z2

Z1
= ∆Zrel

2 (8)

∆B3 =
∆Z3

Z1
−∆Z2 = ∆Zrel

3 −∆Z2. (9)

It remains to use the expressions for the relative motion
spectrum, known in the unitary limit up to n = 3 [12, 14].
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A. Case N = 2

The interactions modify the spectrum of the rela-
tive motion only in the sector of angular momentum
l = 0, and in the unitary limit, their effect reduces to
a downward shift by ~ω of the unperturbed spectrum,

E
(0)
l=0,n = (2n+ 3/2)~ω [40], so one finds

∆Zrel
2 = (ex − 1)

∑

n≥0

e−x(2n+3/2) =
e−x/2

1 + e−x
= ∆B2

(10)
where x = β~ω. As a consequence, using equation (8)
and Z1 = [e−x/2/(1− e−x)]3:

∆Z2 =
e−2x

(1 − e−x)2(1− e−2x)
. (11)

Another consequence is that the second cumulant of the
spatially homogeneous unitary Bose gas is obtained from

the expression B
(0)
2 (ω) = 1

2 (
1

2 ch(x/2) )
3 (deduced by a di-

rect calculation) by taking the ω → 0 limit and using
(4):

b2
23/2

=
1

2
+

1

24
. (12)

B. Case N = 3

As shown in [14], the problem of three trapped bosons
has a particular class of eigenstates, called laughlinian
in what follows, with a wavefunction that vanishes when
there is at least two particles in the same point. These
eigenstates thus have energies that are independent of the
scattering length a and they do not contribute to ∆Z3. It
therefore remains to sum over the non-laughlinian eigen-
states for the non-interacting case (a = 0) and for the
unitary limit (1/a = 0).
In the case a = 0, using as in [13] the Efimov ansatz

for the three-body wavefunction [52] one finds that the
non-laughlinian eigenenergies of the relative motion are

E
(0)
rel = (u

(0)
l,n + 1 + 2q)~ω of degeneracy 2l+ 1, (13)

where l, n, q span the set of natural integers, with l quan-
tifying the angular momentum and q the excitation of the
hyperradial mode [41]. The u(0) ≥ 0 are the roots of the
function s 7→ 1/Γ( l−s

2 + 1) :

u
(0)
l,n = l + 2 + 2n. (14)

In reality, one must keep in the spectrum (13) the physi-
cal roots only, such that the Efimov ansatz is not identi-
cally zero. The two known unphysical roots are u(0) = 4
for l = 0, and u(0) = 3 for l = 1. But this will not play
any role in what follows.

In the case 1/a = 0, using the Efimov ansatz as in
[14], subjected to the Wigner-Bethe-Peierls contact con-
ditions, one gets the transcendental equation Λl(s) = 0,
with [42]

Λl(s) = cos ν − (− sin ν)l
Γ( l+1+s

2 )Γ( l+1−s
2 )

π1/2Γ(l + 3
2 )

× 2F1

(

l+ 1+ s

2
,
l + 1− s

2
, l +

3

2
; sin2 ν

)

(15)

where 2F1 is the Gauss hypergeometric function and the
usual mass angle what introduced, which is given for
three bosons by

ν = arcsin
1

2
=
π

6
. (16)

In practice, we shall also use the representation derived
in [43] for fermions and easily transposed to the bosonic
case, in terms of Legendre polynomials Pl(X) :

Λl(s)
l even
= cos ν − 2

sin ν

∫ ν

0

dθPl

(

sin θ

sin ν

)

cos(sθ)

cos(sπ/2)
(17)

Λl(s)
l odd
= cos ν +

2

sin ν

∫ ν

0

dθPl

(

sin θ

sin ν

)

sin(sθ)

sin(sπ/2)
,(18)

which allows us to explicitly write Λl(s) with the sine
function and rational fractions of s.

C. Efimovian channel

In the zero-angular-momentum sector, l = 0, Λl(s) has
one and only one root u0,0 ∈ iR+ [14], usually noted as

u0,0 = s0 = i|s0|, |s0| = 1, 006 237 825 . . . (19)

This root gives rise to the efimovian channel, where the
eigenenergies ǫq(ω) of the relative motion solve a tran-
scendental equation [12, 14] that one can rewrite as in
[21] to make explicit and univocal the dependence with
the quantum number q ∈ N :

Im ln Γ
(1 + s0 − ǫq/(~ω)

2

)

+
|s0|
2

ln
(2~ω

Et

)

+ qπ = 0,

(20)
the function ln Γ(z) being taken with its standard deter-
mination (branch cut in R

−). In the limit ω → 0 for a
fixed q, this reproduces the geometric sequence of Efimov
trimers:

ǫq(ω) → ǫq(0
+) = −e−2πq/|s0|Et, (21)

which shows that Et = 2 exp[ 2
|s0| Im lnΓ(1 +

s0)]~
2/(mR2

t ), Rt being the three-body parameter
according to the convention of [14]. In a strict zero-
range limit, q would span Z and the spectrum would
be unbounded below, which would prevent thermal
equilibrium of the system. As noted by Efimov [17],



4

however, in any given interaction model of finite range
b, including experimental reality, the geometric form
(21) of the spectrum only applies to the trimers of
binding energy much smaller than ~

2/(mb2), possible
more deeply bound trimers being out of the unitary
limit and non universal. Here, the quantum number
q = 0 thus simply corresponds to the first state having
(almost) reached the unitary limit. For an interaction
to allow for the realisation of the unitary Bose gas at
thermal equilibrium, q = 0 must correspond to the
true ground trimer, and this is indeed the case for the
model of [28] and for the narrow Feshbach resonance
[44–47]: in both situations, Et is indeed of the order of
e−2π/|s0|~2/(mb2) ≪ ~

2/(mb2) and the trimer spectrum
can be considered as being entirely efimovian, as it is
assumed in the present work.

D. Universal channels

The real positive roots (u0,n)n≥1 of Λ0(s), and the
roots (ul,n)n≥0 of Λl(s) for l > 0, which are all real [14]
and taken in what follows to be positive, give rise to uni-
versal, that is non-efimovian, states, with eigenenergies
of the relative motion that are independent of Rt:

Erel = (ul,n + 1 + 2q)~ω of degeneracy 2l+ 1, (22)

where (l, n) spans N
2∗, and q spans N, and the star in-

dicates that the vanishing element [here (0, 0)] has to be
excluded. One can note the similitude with the non-
interacting case (13), the quantum number q having the
same physical origin [14]. As in the non-interacting case,
one must eliminate from the spectrum (22) the unphys-
ical roots u, that give a vanishing Efimov ansatz. These
unphysical roots, however, are exactly the same ones in
both cases [53], which allows us formally to include them

in the partition functions Z3 et Z
(0)
3 , since their (unphysi-

cal) contributions exactly compensate in ∆Z3. Collecting
the contributions of the systems with and without inter-
action of common quantum numbers, we finally obtain:

∆Zrel
3 =

∑

q≥0

[

e−βǫq(ω) − e−x(u
(0)
0,0+1+2q)

]

+
∑

(l,n)∈N2∗

∑

q≥0

(2l+1)
[

e−x(ul,n+1+2q) − e−x(u
(0)
l,n+1+2q)

]

.

(23)

E. Some useful transforms

In order to treat one by one the problems that arise
in taking the limit ω → 0, it is useful to split (23) as
the sum of a purely efimovian contribution S(ω) and of
a purely universal contribution σ(ω), up to additive re-
mainders R(ω) and ρ(ω). In what follows we shall study

the efimovian series

S(ω) ≡
∑

q≥0

[

e−βǫq(ω) − e−2qx
]

, (24)

that reproduces the first sum in (23) up to the remainder

R(ω) =
∑

q≥0

[

e−2qx − e−x(u
(0)
0,0+1+2q)

]

=
1− e−3x

1− e−2x
. (25)

We shall see that it is a doubly clever idea to introduce
the universal series

σ(ω) =
∑

(l,n)∈N2∗

∑

q≥0

(2l+1)
[

e−x(ul,n+1+2q)−e−x(vl,n+1+2q)
]

,

(26)
with

vl,n = l + 1 + 2n. (27)

First, this provides a numerical advantage [13], since vl,n
is the large-l-or-n equivalent of ul,n introduced in equa-
tion (17) of reference [14][54], so that the series σ rapidly
converges. Second, as it is apparent in the form (15),
the (vl,n)n≥0 are the positive poles of the function Λl(s);
the writing (26) is thus reminiscent of the residue theo-
rem, and we shall soon take advantage of this fact. As

vl,n = u
(0)
l,n − 1, σ reproduces the second sum of (23) up

to the remainder

ρ(ω) =
∑

(l,n)∈N2∗

∑

q≥0

(2l+1)
[

e−x(vl,n+1+2q)−e−x(u
(0)
l,n+1+2q)

]

.

(28)
With the generating function method, one gets

∑

l≥0(2l+

1)e−lx = (1 − 2 d
dx)

1
1−e−x = (1 + e−x)/(1 − e−x)2. This,

together with the identities (11) and (25), leads to ρ(ω) =
∆Z2 + 1−R(ω), and (9) reduces to the simple writing

∆B3(ω) = S(ω) + σ(ω) + 1. (29)

This equation (29) is the bosonic equivalent of the
fermionic expressions (56,58) of reference [13], from
which it differs mainly through the contribution S(ω) of
the efimovian channel.

III. ANALYTICAL TRANSFORMS AND ω → 0
LIMIT

The most relevant physical quantity being the third
cumulant of the spatially homogeneous gas, we must now,
according to (4), take the limit of a vanishing trap spring
constant. An explicit calculation for the trapped ideal
gas gives

B
(0)
3 (ω) =

1

3

(

e−x(1− e−x)

1− e−3x

)3

→
ω→0

1

34
. (30)

In the unitary case, the method of reference [21] allows
one to determine S(0+) exactly; furthermore, as we shall
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see, the sum over n in equation (26) and the x→ 0 limit
can be performed analytically, and the resulting integrals
in σ(0+), that are very simple to evaluate numerically,
can also be usefully evaluated by taking the mass angle
ν as a small parameter.

A. Working on the efimovian contribution S(ω)

For an arbitrary positive number A, with A ≫ 1, we
split as in [21] the series (26) into three pieces, S = S1 +
S2 + S3.

In the first (quasi-bound) piece, that contains the
states such that ǫq(ω) < −A~ω, the three bosons oc-
cupy a spatial zone much smaller than the ground-state
harmonic oscillator length [~/(mω)]1/2, so that the spec-
trum is close to the free-space spectrum (21):

ǫq(ω) = ǫq(0
+)

[

1− 1 + |s0|2
6

(

~ω

ǫq(0+)

)2

+ . . .
]

(31)

As ǫq(0
+) is a geometric sequence, approximating ǫq(ω)

with ǫq(0
+) in S1 induces an error of the order of the error

on the last term, that vanishes as x/A. From the same
geometric property, the maximal index q1 in that first

piece diverges only logarithmically, as |s0|
2π ln[Et/(2~ω)],

which allows one to replace each term e−2qx by 1, the
resulting error on S1 vanishing as xq21 . One thus has

S1 =

q1
∑

q=0

[

e−βǫq(0
+) − 1

]

+ o(1). (32)

The second piece contains the intermediate states, such
that |ǫq(ω)| < A~ω. As the level spacing between the
ǫq(ω) is of order ~ω at least[55], it contains a finite num-
ber O(A) of terms, and each terms vanishes when ω van-
ishes, so that S2 = o(1).

The third piece contains the states A < ǫq(ω), that re-
construct the free space efimovian scattering states when
ω → 0. On can use for these states the large-q expansion

ǫq(ω)

~ω
= 2q +∆

(

ǫq(ω)
)

+O(1/q) (33)

where the dimensionless function of the energy ∆(ǫ) is
given by equation (C6) of [21]. In each term of S3, one
uses the approximation e−2qx ≃ e−βǫq [1 + x∆(ǫq)], and
one replaces the sum over q by an integral over energy;
since the level spacings are almost constant, ǫq+1 − ǫq =
2~ω[1 +O(~ω/ǫq)] [48], one gets

S3 = −1

2

∫ +∞

A~ω

dǫ e−βǫβ∆(ǫ) + o(1). (34)

Collecting the three pieces and writing up ∆(ǫ) explicitly

as in [21], one finally obtains for ω → 0:

S(0+) =
{

∑

q≥0

[

e−βǫq(0
+) − 1

]}

+
|s0|
π

{1

2
ln(eγβEt)

−
∑

p≥1

e−pπ|s0|Re
[

Γ(−ip|s0|)(βEt)
ip|s0|

]}

, (35)

where γ = 0.577 215 . . . is Euler’s constant, and the free
space trimer energy ǫq(0

+) is given by (21). One can

note that the bound state contribution
∑

q≥0 e
−βǫq(0

+) is
divergent, and has thus to be collected with the contri-
bution of the continuum to obtain the counter-term −1
ensuring the convergence of the sum in (35); in the case of
the second virial coefficient of a plasma, the (two-body)
bound states have an hydrogenoid spectrum, which re-
quires the more elaborated counter-term −(1 + βǫq) to
get a converging sum [49][56].

B. Working on the universal contribution σ(ω)

Let us extract from the definition (26) of σ(ω) the con-
tribution of the angular momentum l and let us sum over
q, to obtain

σ =
∑

l≥0

σl, with σl =
l+ 1

2

shx

∑

n≥δl,0

(

e−xul,n − e−xvl,n
)

.

(36)
The key point is now that the function Λl(s) has a simple
root[57] in ul,n and a simple pole[58] in vl,n, so that its
logarithmic derivative has a pole in both points, with
a residue respectively equal to +1 et −1. By inverse
application of the residue formula, one thus finds for l > 0
that

σl(ω)
l>0
=

l+ 1
2

shx

∫

C

dz

2iπ

Λ′
l(z)

Λl(z)
e−xz (37)

where the integral is taken over the contour C that comes
from z = +∞+ iη (η > 0), moves parallelly to and above
the real axis, crosses the real axis close to the origin and
then tends to z = +∞−iη moving parallelly to and below
the real axis. This contour indeed encloses all the positive
roots (ul,n)n≥0 and all the positive poles (vl,n)n≥0 of the
function Λl(z). As Λl(z) (l > 0) has no other roots or
poles in the half-plane Re z ≥ 0, one can unfold C around
the origin and map it to the purely imaginary axis z = iS:

σl(ω)
l>0
=

l+ 1
2

π shx

∫ +∞

0

dS
Λ′
l(iS)

Λl(iS)
i sin(xS) (38)

where the fact that Λ′
l(iS)/Λl(iS) is an odd function al-

lows one to omit the cos(xS) and to restrict integration
to S > 0. It is then elementary to take the x → 0 limit,
and a simple integration by parts leads to the nice result:

σl(0
+)

l>0
= −2l+ 1

2π

∫ +∞

0

dS ln
(Λl(iS)

cos ν

)

. (39)



6

According to (17,18), the function Λl(iS)/ cos ν exponen-
tially tends to 1 at infinity, so that the integral in (39)
rapidly converges.
The case l = 0 requires some twist of the previous rea-

soning. First, the pole v0,0 of the function Λ0(s) does
not contribute to σ(ω), since (l, n) = (0, 0) is in the efi-
movian channel. Second, the existence of the efimovian
roots ±i|s0| of Λ0(s) prevents one from folding back the
integration contour C on the purely imaginary axis. Both

points are solved by considering the function
s2−v2

0,0

s2−s20
Λ0(s)

rather than the function Λ0(s) itself: The rational prefac-
tor suppresses the poles ±v0,0 and the roots ±s0 without
destroying the parity invariance that we have used. In
the limit ω → 0, this leads to[59]

σ0(0
+) = − 1

2π

∫ +∞

0

dS ln
( S2 + 1

S2 − |s0|2
Λ0(iS)

cos ν

)

. (40)

From the writing (17,18) of the functions Λl(s = iS), and
using the numerical tools of formal integration software,
one obtains in a few minutes, the value of the constant
term in ∆B3(0

+):

1 + σ(0+) = 1− 0, 364 037 . . . = 0, 635 962 . . . (41)

One observes that (σl(0
+))l≥1 is an alternating sequence

with a rapidly decreasing modulus, so that the error due
to a truncation in l is bounded by the first neglected
term. Analytically, one can obtain the elegant asymp-
totic form[60]

σl(0
+) ∼

l→∞

( l

π

)1/2 (− tan ν
2 )

l

cos ν
2 (cos ν)

3/2
, (42)

where ν is the mass angle (16).

C. An entirely analytical evaluation

The fact that σl(0
+) is rapidly decreasing with the

angular momentum, even in the absence of physical in-
terpretation, can be understood from the fact that, for
l > 0, the deviations of Λl(iS)/ cos ν from unity vanish
as −(−ν)l, this is obvious on the writing (15):

δl(S) ≡
Λl(iS)

cos ν
− 1 =

ν→0
O(νl). (43)

For ν = π/6, one finds that, already for l = 1, the max-
imum of |δl(S)|, reached in S = 0, has the small value
≃ 0, 273. This gives the idea of treating each δl (for l > 0)
as an infinitesimal quantity of order l. The series expan-
sion of ln[1 + δl(S)] in powers of δl in (39) is convergent
and generates a convergent expansion of σl(0

+) :

σl(0
+)

l>0
=

∑

n≥1

σ
(n)
l , with σ

(n)
l = (2l+1)

(−1)n

n

∫

R

dS

4π
[δl(S)]

n.

(44)

The resulting integral can in principle be calculated an-
alytically by the residue formula, for 0 < ν < π/2, which
leads to series that can be expressed in terms of the
Bose functions gα(z) =

∑

k≥1 z
k/kα, also called poly-

logarithms, but this rapidly becomes tedious at large l or
n. We thus restrict ourselves to the order 3 included. For
n ≤ 2, it is actually simpler to directly calculate the sum

over all l ≥ 1 of σ
(n)
l , that we note as σ

(n)
1:∞. We finally

keep as the desired approximation:

σ(0+) ≈ σ0(0
+) + σ

(1)
1:∞ + σ

(2)
1:∞ + σ

(3)
1 . (45)

The second and third terms of the approximation (45)
can be expressed simply for an arbitrary ν as [61]

σ
(1)
1:∞=

1

π cos ν (1 + sin ν)
− argth(sin ν)

π cos ν sin ν
(46)

σ
(2)
1:∞=

2ν

π2 sin ν cos3 ν
− 4[ 78ζ(3)− ReC3 − ν ImC2]

(π sin ν cos ν)2
(47)

with ζ the Riemann function and Cα = gα(e
2iν) −

1
2α gα(e

4iν). For ν = π/6, one has simply ReC3 = 7
18 ζ(3)

and ImC2 =
√
3

72 [ψ
′(16 )−ψ′(56 )], where ψ is the digamma

function and ψ′ its first order derivative. To be concise,
we give the value of the last term of (45) for ν = π/6
only:

σ
(3)
1 =

64

π3
√
3

(

17D3

432
− 14ζ(3)

3
− 403ζ(5)

27
+ 2

)

+
16

9π2

(

17D3

54
+ 5D1 −

322ζ(3)

3
− 36

)

+
32

3π
√
3

(

5D1

9
− 112ζ(3)

27
+

8

3
− 2 ln 3

)

, (48)

with Dk = ψ(k)(13 ) − ψ(k)(23 ), ψ
(k) being the kth deriva-

tive of the digamma function, see relation 8.363(8) of
reference [50].
It remains to analytically evaluate the first term of

(45), that is the universal contribution at zero angular
momentum σ0(0

+) given by (40). Since a series expan-
sion of the logarithm around 1 is not suited to this case,
we directly expand to second order in powers of the mass
angle[62]: according to (17),

Λ0(iS)

cos ν
= 1− 2

ch(Sπ/2)
− 4

3
ν2

1 + S2/4

ch(Sπ/2)
+O(ν4). (49)

This first allows one to evaluate the efimovian root

|s0| = θ +
8ν2

3π
√
3
(1 + θ2/4) +O(ν4) (50)

where θ = 2
π argch2 = 0, 838 401 . . ., in a way that re-

produces (for ν = π/6) its exact value (19) within one
part per thousand. Then, after a few applications of the
residue formula, one obtains the desired approximation
up to order 3 included:

σ0(0
+) ≃ −1 + θ2

8
− 2ν2

9π
√
3
θ(1 + θ2/4). (51)
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FIG. 1: Third cumulant b3 of the spatially homogeneous uni-
tary Bose gas: b3 is multiplied by e−βEt and plotted as a
function of temperature T as a solid line. The dashed lined
to the left and to the right respectively correspond to the
approximations (54) and (55), that have been multiplied by
e−βEt . (−Et) is the energy of the ground state (efimovian)
trimer, and β = 1/(kBT ).

For ν = π/6, our analytical approximation (45) then
leads to

1 + σ(0+) ≃ 1− 0, 364 613 . . . = 0, 635 386 . . . (52)

which reproduces the exact value (41) within one part
per thousand. Such a precision is sufficient in practice,
considering the present uncertainty on the measurements
of the equation of state of the ultracold atomic gases [5–
7] and the fact that b3 is the coefficient of a term that
has to be small in a weak density expansion.

IV. CONCLUSION

We have shown that one can entirely analytically de-
termine the third cumulant b3 of the spatially homoge-
neous unitary Bose gas of three-body parameter Rt and
thermal de Broglie wavelength λ: The result[63]

b3 = 3
√
3[S(0+) + C] with C = 0, 648 . . . (53)

is the sum of a function S(0+) of λ/Rt exactly given by
equation (35), and of a constant C; we have found an
original integral representation of C that makes its nu-
merical evaluation straightforward, and that allows one
to perform a perturbative expansion of C, in principle
to arbitrary order but restricted here to third order in-
cluded, taking the mass angle ν = π/6 as a small param-

eter. This gives access to the third virial coefficient a3 of
the unitary Bose gas, combining relations (3) and (12).

As shown by the figure, our result has the physical
interest of describing the crossover between two limiting
regimes, the low-temperature regime kBT ≪ Et, where
b3 is dominated by the contribution of the ground state
trimer of energy −Et:

b3 ≃ 3
√
3 eβEt , (54)

with Et ∝ ~
2/(mR2

t ), and the regime kBT ≫ Et, where
the trimers are almost fully dissociated:

b3 ≃ 3
√
3
|s0|
2π

ln(eγ+2πC/|s0|βEt). (55)

The exponential approximation (54) agrees with the ex-
pression (193) of reference [31], that was very simply de-
duced from the chemical equilibrium condition of the gas.
The logarithmic approximation (55) can also be recov-
ered, within a constant factor inside the logarithm, by a
calculation that totally differs from ours, the extraction
of the loss rate constant L3 from the free-space inelastic
scattering problem of three bosons [19], further combined
with equation (25) of [21] that relates (through general
arguments) ∂b3/∂(lnRt) to L3 in the weak inelasticity
limit of that scattering problem.

In practice, in the temperature range where the log-
arithmic approximation (55) well reproduces our values
of b3, it may be difficult to ensure that the unitary limit
is reached, i.e. that the finite (real or effective) range
of the interaction is indeed negligible. In particular, it is
not guaranteed that the change of sign of b3 at high tem-
perature, as predicted by the zero-range efimovian theory
used in this paper[64], may really be observed for a more
realistic model such as the ones of references [28, 44–
46], or in ultracold-atom experiments. Answering this
question requires the study of a specific model for the
interaction and must be kept for future investigation.
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[43] adapted to the bosonic case. In (46), this equation

led to an expression of σ
(1)
l in terms of the associated

Legendre function Ql(X), that one writes as in relation
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