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In autodyne interferometry, the beating between the reference beam and the signal beam 

takes place inside the laser cavity and therefore the laser fulfills simultaneously the roles of 

emitter and detector of photons. In these conditions, the laser relaxation oscillations play a 

leading role, both in the laser quantum noise which determines the signal to noise ratio 

(SNR) and also in the laser dynamics which determines the response time of the 

interferometer. In the present study, we have theoretically analyzed the SNR and the 

response time of a Laser Optical Feedback Imaging (LOFI) setup based on an autodyne 

interferometer. More precisely, we have compared the images quality of two lasers having 

the same output power, the same relaxation frequency, but having two different values of 

the LOFI gain induced by two different values of the laser response time. From this study, 

we have finally determined the best laser dynamical parameters and the best experimental 

conditions for high speed imaging at the shot noise limit. Finally, we conclude that a laser 

diode with a very short response time (in the nanosecond range) seems to be an interesting 
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candidate compared to solid-state microchip laser with a response time of several tens of 

microsecond. Analytical predictions are confirmed by numerical simulations.  

 © 2012 Optical Society of America  

OCIS codes: 110.3175, 280.3420.  
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1. INTRODUCTION 

When a frequency shift is introduced between the two beams of an interferometer, one realizes 

the so-called heterodyne interferometry. Resulting from this shift, the interference between the 

two waves produces an intensity modulation at the beat frequency, which can be measured by a 

photo-detector. In this paper, we refer only to autodyne laser interferometry where the 

heterodyne wave mixing takes place inside the cavity of the laser source and is finally indirectly 

detected by a photodiode.  

Since the development of the first laser in 1960, laser heterodyne interferometry has become a 

useful technique on which many high accuracy measurement systems for scientific and industrial 

applications are based [1]. Since the pioneer work of K. Otsuka, on self-mixing modulation 

effects in class-B laser [2] the sensitivity of laser dynamics to frequency-shifted optical feedback 

has been used in autodyne interferometry and metrology [3], for example in self-mixing laser 

Doppler velocimetry [4-7], vibrometry [8-10], near field microscopy [11,12] and laser optical 

feedback imaging (LOFI) experiments [13-16]. Compared to conventional optical heterodyne 

detection, frequency-shifted optical feedback shows an intensity modulation contrast higher by 

several orders of magnitude and the maximum of the modulation is obtained when the shift 

frequency is resonant with the laser relaxation oscillation frequency [17]. In this condition, an 

optical feedback level as low as -170 dB (i.e. 10
17

 times weaker than the intracavity power) has 

been detected [5].  

In previous papers [17-19], we have demonstrated that in autodyne interferometry, the main 

advantage of the resonant gain (defined by the ratio between the cavity damping rate and the 

population-inversion damping rate of the laser) is to raise the laser quantum noise over the 

detector noise in a relatively large frequency range around to the laser relaxation frequency. 
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Moreover if the detection bandwidth is narrower than the laser dynamical relaxation width, the 

signal to noise ratio (SNR) of a LOFI setup is frequency independent, and more importantly, shot 

noise limited. We have also established that to maximize the dynamical range of a LOFI setup, 

the best value of the shift frequency is not the relaxation frequency, but the frequency at which 

the amplified laser quantum noise is equal to the detection noise level [18,19].  

For high-speed imaging, we need to decrease the signal acquisition time of our LOFI setup and 

therefore to work with a detection bandwidth larger than the laser dynamical relaxation 

bandwidth. Under this condition the laser transient dynamic cannot be ignored and the LOFI 

SNR becomes frequency dependent. The main objective of this paper is to determine the best 

laser dynamical parameters and the best experimental conditions to obtain high quality images 

(i.e. shot-noise limited) as fast as possible. 

This paper is organized as follows. Firstly, after a basic description of our LOFI set-up (i.e. our 

autodyne interferometer) for confocal imaging, we briefly recall the expression of the LOFI 

permanent signal induced by the beating inside the laser cavity. Secondly, we determine the 

stationary LOFI SNR for different values of the experimental acquisition time compare to the 

laser dynamical response time. Thirdly, for autodyne imaging, we calculate the level of the 

transient LOFI signal appearing when during the laser scanning (i.e. from one image pixel to the 

next one), the target under investigation presents discontinuous physical properties. Finally, we 

determine the best laser parameters for high speed autodyne imaging with a shot-noise limited 

detection (i.e. highest quality image as fast as possible). In each section, analytical predictions 

are confirmed by numerical simulations.  
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2. AUTODYNE SIGNAL  

A. LOFI set up 

A schematic diagram of the LOFI experimental setup (i.e. the autodyne experimental 

interferometer) is shown in Fig. 1. Typically the laser is a CW microchip with an output power 

out
P  of several milliwatts and a typical relaxation oscillation frequency 

R
F  in the megahertz 

range and a damping rate of the relaxation oscillation (
R

1 ) in the kilohertz range [19-20]. The 

laser is therefore a class-B laser (
RR

F 1 ). The laser beam is sent on the target, through a 

frequency shifter. A part of the light diffracted and/or scattered by the target is then reinjected 

inside the laser cavity after a second pass through the frequency shifter. Therefore, the optical 

frequency of the reinjected light is shifted by 
e

F . This frequency can be adjusted and is typically 

of the order of the laser relaxation frequency 
R

F . For the geometrical point of view, the laser 

beam waist and the laser focal spot on the target under investigation are optically conjugated. At 

this point, one can already notice that, compared to a conventional heterodyne setup, the 

autodyne setup shown here does not require complex alignment. Indeed, the LOFI setup is even 

always self-aligned because the laser simultaneously fulfills the function of the source (i.e. 

photons-emitter) and of the photo-detector (i.e. photons-receptor). 

The optical feedback is characterized by the electric field complex reflectivity 

(  
eee

jRr exp ) of the target, where the phase 
e

 describes the optical round trip between the 

laser and the target, while the effective power reflectivity (
2

ee
rR  ) takes into account the 

target albedo, the numerical aperture of the collection optics, the frequency shifters efficiencies 

and the transmission of all optical components (except for the beam splitter which is addressed 
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separately) and the overlap of the retro-diffused field with the Gaussian cavity beam (confocal 

feature). 

 
 

Fig. 1. Schematic diagram of the LOFI interferometer setup for scanning microscopy. L1, L2 and L3: Lenses, 

BS: Beam Splitter with a power reflectivity Rbs, GS: Galvanometric Scanner, FS Frequency Shifter with a 

round trip frequency-shift Fe, PD: Photodiode with a white noise spectrum. The lock-in amplifier is 

characterized by its integration time
int

T . The laser is characterized by its output power 
out

p  (photons/s), its 

relaxation frequency 
R

F  and its dynamical response time
R

 . The target is characterized by its effective 

reflectivity 1R
e
 . 

 

 The coherent interaction (beating) between the lasing electric field and the frequency-shifted 

reinjected field leads to a modulation of the laser output power. For the detection purpose, a 

fraction of the output beam of the microchip laser is sent to a photodiode by means of a beam 

splitter characterized by a power reflectivity
bs

R . The photodiode is assumed to have a quantum 

efficiency of 100%. The voltage delivered by the photodiode is finally analyzed by a lock-in 

amplifier which gives the LOFI signal (i.e. the magnitude and the phase of the retro-diffused 

electric field) at the demodulation frequency 
e

F  [15,16]. The lock-in amplifier is characterized 

by its integration time 
int

T . Experimentally, the LOFI images are obtained pixel by pixel (i.e. 
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point by point, line after line) by a full 2D galvanometric scanning and the necessary time needs 

to obtain an image composed of N pixels is roughly given by: 
int

TN  . For high speed imaging 

(i.e. high cadence imaging), one needs to use a value of 
int

T  as small as possible. To determine 

the SNR of the obtained LOFI images, 
int

T  needs to be compared with the response time of the 

class-B laser (
R

 ). In this paper, whatever the temporal values of 
int

T  (in the millisecond or 

microsecond range), we refer to a fast response time laser when: 
int

T
R
  and to a slow 

response time laser when: 
int

T
R
 .  

 

B. LOFI Modelling 

In the case of weak ( 1
e

R ) frequency shifted optical feedback, the dynamical behavior of a re-

injected solid-state laser can be described by the following set of equations [10, 17,18]:  

  tFEBNNN
dt

dN
Nc


2

101
 , (1a) 

        tFtFERREBN
dt

dE

cEeecbseccc

c
  2cos1

2

1
, (1b) 

where, N is the population inversion, 
c

E  is the slowly varying amplitude of the laser electric 

field, B is related to the Einstein coefficient, 
1
  is the decay rate of the population inversion, 

c
  

is the laser cavity decay rate and 
01

N  is the pumping rate. Regarding the noise, the laser 

quantum fluctuations are described by the conventional Langevin noise functions  tF
N

 and 

 tF
cE

, which have a zero mean value and a white noise type correlation function [21-23].  
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The laser model presented above can be applied to three levels or four levels lasers with the 

condition that the lifetime of the upper level of the pumping transition is very short compared to 

the lifetime of the upper level of the laser transition. For example, this is condition is satisfied in 

a three levels laser such as erbium lasers as well as for a four levels laser such as neodymium 

laser. In the set of Eqs. (1), the  feedback time delay ( ), linked to the optical round trip between 

the laser and the target  is completely neglected.  It means, that we only consider the case where 

the round trip time is shorter than the frequency shift ( 12 
e

F ). 

C. LOFI stationary signal 

In the set of Eqs. (1), the periodic functions express the beating (i.e. the coherent interaction) 

between the lasing and the feedback electric fields. The net gain of the laser is then modulated by 

the re-injected light at the optical shift frequency
e

F . In the linear regime, the photon output rate 

 
2

ccout
tE)t(p   (number of photons per second) is therefore periodically modulated [17]: 

      
eeoutebseouteeout

tFpRRFGpRFtp  2cos1)(2,, ,  (2)  

where  11  r
B

p
cout


  is the mean value the photon output rate with 

B

N
r

c


0
  the 

normalized pumping parameter. In Eq. (2), )F(G
e

 describes the amplification gain of the 

autodyne waves mixing with:  

 
   

          
22122222

22

1)22(

1

2
2222

22
)(

ReR

c

F
eReR

eR

ce

FFFFF

F
FG

R

R














 



  (3) 
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where for a class-B laser (
RR

F 1 ),  2)1(2
1

 rF
cRR

is the frequency of the 

laser relaxation oscillations and  r
R 1

2    is the damping time of the relaxation oscillations 

[23]. At this point one can notice that for a class-B laser, 
R

  which is very long compared to the 

photon lifetime in the cavity (
cR

 1 ), is therefore the laser characteristic response time [23]. 

 In a LOFI interferometer, a particularly interesting situation is the resonance case (
Re

FF  ) 

where the LOFI signal gain (i.e. the autodyne gain) becomes: 

  
2

)(
Rc

R
FG


 . (4) 

For a microchip laser, this ratio is typically of the order of 10
4
-10

6
 [17,19] and the main 

advantage of the LOFI detection technique seems to come from this resonant amplification of the 

optical wave mixing [3, 13, 17]. 

 

Using Eq. (2), one can define the modulation contrast (MC) of the autodyne wave mixing:  

    
ebse

out

eeout

ee
RRFG

p

RFp
RFMC 


 1)(2

),(
, . (5) 

In a LOFI experiment, because the laser simultaneously fulfills the functions of the source and of 

the detector, we assume to simply define the saturation level as the effective reflectivity 

corresponding to a maximum modulation of the laser output power (MC=1):  

  
   

22
1

11

4

1

bse

eSat

RFG
FR


  (6) 

Finally, using a lock-in amplifier, the LOFI signal at the demodulation frequency 
e

F  is given by:  
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  
    

2

12

2

,
,

outebse

bs

eeout

bseeLOFI

pRRFG
R

RFp
RRFS





  .  (7) 

3. STATIONARY SNR OF AN AUTODYNE INTERFEROMETER 

A. Stationary LOFI SNR  

Without optical feedback ( 0
e

R ), the set of Eqs. (1) allows us to study the laser quantum 

fluctuations induced by the Langevin noise terms (  tF
N

 and  tF
cE

). Using the Wiener-

Khintchine theorem, on can obtain the power density spectrum of the laser output power 

quantum fluctuations [17, 21, 22]:  

  
   

        
   FGtp

FFF

F
pFPD

out

RR

R

coutLaser

2

22222

22

2
2

2222

22
2 









 .  (8) 

The LOFI noise power obtained after the photodiode detection (i.e. after the beam splitter 

reflection) and the lock-in amplifier filtering at the modulation frequency (
e

F ) is then given by: 

      





 dFTFFFFPDRTFN
eLaserbseLaser

2

intintint

2
,2,   (9a) 

where for an integration time 
int

T :  

  

 
2

2

int

2

int

2

intint

2
1

11
,

F
T

T
TFF



   (9b) 
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is assumed to be a first order power filter . 

By combining Eqs. (8) and (9), one finally obtains for a class-B laser (
R

R
F



1
 ), the following 

analytical expression of LOFI noise induced by laser quantum noise:  

    

 






































2

2

int

2

intint

int

2

22
11

11

2

1
,

Re

R

c

R

R

outbseLaser

FF
T

TT
tpRTFN









,  (10) 

and by combining Eqs. (7) and (10), one finally obtains the stationary LOFI SNR: 

  
 

 
int

int
,

,
,,

TFN

RFS
TRFSNR

eLaser

eeLOFI

ee
 . (11) 

Fig. 2 shows the evolution of the stationary LOFI SNR (
LaserLOFI

NS ) versus the normalized 

shift frequency (
Re

FF ) for different values of the lock-in integration time (
int

T ) compared to 

laser response time (
R

 ). 
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Fig. 2. Stationary LOFI SNR (
LaserLOFI

NS ) versus the normalized shift-frequency (
Re

FF ) for different 

values of the lock-in integration time: a) 
R

T  10
int

, b) 
R

T 
int

 c) 10
int R

T  . The experimental 

conditions are 
11

e
102R


  and 2/1R

bs
 . The laser is a class-B laser with: 

sphotonsp
out

/102.3
17

  ( mWP
out

60 at nm1064 ) kHzF
R

356  and 14
RR

F   

( 02.1r , 
19

105


 s
c

 , 
13

1
105


 s ). For each integration time the continuous line shows the exact 

value of the LOFI SNR [Eq. (11)], while the dash line shows the corresponding LOFI shot-noise limit [Eq. 

(13)].   

B. Acquisition with a fast response time laser (
R

T 
int

) 

If the lock-in integration time is long compare to the laser response time (
R

T 
int

), the noise 

[Eq. (10)] is then simply given by: 

    
  int

22
int

2

1

1)22(

1

2
2,

TFF

tpRTFN

ReR

c

outbsReLaser








   (12a)  
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or identically, by introducing the expression of the gain given by Eq. (3): 

      
int

int

2

1
2,

T
FGtpRTFN

eoutbsReLaser
  . (12b) 

At this point, one can notice that the resonant amplification gain )F(G
e

 present in the LOFI 

signal [see Eq. (7)], is also present in the LOFI noise and, as a result, the SNR of the LOFI setup 

is frequency independent: 

    
intint

1,, TpRRRTRFSNR
outbsbseRee

  , (13) 

As mentioned above, the relaxation frequency seems to be of no particular importance [see Fig. 

2(a) for comparison]. At this point, one can notice that the condition: 

  1,,
intmin,


Ree

TRFSNR  , physically, means that during the integration time (
int

T ), only 

bs
R1  back-reflected photons are detected:  

  
bs

outbse
R

TpRR
1

1
int

2

min,
 .   (14) 

The LOFI set-up is therefore shot noise limited and the beam splitter reflectivity (
bs

R ) appearing 

in Eqs. (7) and (10) and finally in the right hand term of Eq. (14), can be interpreted as the 

quantum efficiency of the LOFI detection where the laser modulation produced inside the laser 

cavity signal is finally indirectly detected by the photodiode after the beam splitter. 

Consequently, and throughout the rest of the manuscript, Eq. (13) is what we will call the LOFI 

shot noise limit. 
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C. Acquisition with a slow response time laser (
R

T 
int

) 

If now the lock-in integration time is short compared to the laser response time (
R

T 
int

), the 

laser quantum noise [Eq. (10)] is then approximately given by: 

   

 
intint

2

2

int

int

2

1

224
2

2,
TT

FF
T

tpRTFN
R

Re

c

outbsReLaser























  (15) 

Now, to analyze the LOFI SNR, three different cases need to be studied depending on the 

interval between the shift frequency and the relaxation frequency.  

Firstly, if we work very far away from resonance (  
R

Re
T

FF


11

int

 ), then the LOFI noise 

[Eq. (15)] and LOFI signal [Eq. (7)] can respectively and approximately be given by: 

    
intint

int

2

1

224
2,

TTFF
tpRTFN

R

Re

c

outbsReLaser









  (16) 

  
 

Re

coutebs

bseeLOFI
FF

pRR
RRFS










2

1

22

12
,  (17) 

and finally one obtains (far away from the resonance frequency), the following approximate 

expression of the LOFI SNR:  

    
R

outbsbseRee

T
TpRRRTRFSNR


 int

intint
1,,   (18) 
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A brief comparison of Eq. (18) and of Eq. (13) (which gives the LOFI shot noise limit), shows 

that for: 
R

T 
int

, the LOFI SNR is lower than the LOFI shot noise limit and becomes 

frequency independent when working very far away from the resonance frequency. In agreement 

with the theoretical predictions, Fig. 2(c) shows that the LOFI SNR (continuous line) saturates 

and therefore becomes frequency independent at very low and very high frequencies. One can 

also observe that in these conditions, the LOFI SNR is smaller than the corresponding LOFI shot 

noise limit (dash line) by a multiplicative factor given by: 1
int



R

T


. 

Secondly:  if we now work at resonance (
Re

FF  ), then the LOFI noise and the LOFI signal are 

given by: 

    
R

Rc

outbsRRLaser
tpRTFN






2

1

2
2,

int
  (19) 

  
 

22

12
,

Rcoutebs

bseRLOFI

pRR
RRFS


  (20) 

and finally one easily obtains the resonant value of the LOFI SNR:  

      
int

intint
11,,

T
TpRRRpRRRTRFSNR

R

outbsbseRoutbsbseReR


  (21) 

The middle part of Eq. (21) shows that the LOFI SNR is now independent from the integration 

time (
int

T ). This surprising effect arises because the laser noise power spectrum [Eq. (8)] have a 

Lorentzian type profile leading to a limit noise value [See Eq. (20)] when the detection 
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bandwidth is large compared to the resonance width (
R

T 

11

int

 ). A brief comparison of Eq. 

(21) and Eq. (13) shows that, for a laser with a slow response time (
R

T 
int

), the LOFI SNR at 

resonance is higher than the standard LOFI shot noise limit. In agreement with Eq. (21), Fig. 2(c) 

shows that the LOFI SNR (continuous line) at resonance is higher than the corresponding LOFI 

shot noise limit (dash line) by a multiplicative factor given by: 1

int


T

R


.  

Thirdly, in the intermediate situation, where:  
R

Re
FF

T 

11

int

 , one can determine the 

frequency shift (
e

F ) for which the LOFI SNR is equal to the LOFI shot noise limit. By 

equalizing Eqs. (12a) and (15) one obtains: 

  

int
2

1

T
FF

R

Re


  (22) 

Finally, we conclude this section, by reminding that the stationary LOFI SNR (
LaserLOFI

NS ) is 

frequency independent [see Fig. 2(a)] and above all shot noise limited for a laser with fast 

response time (
R

T 
int

). On the other hand, for a laser with slow response time (
R

T 
int

), 

the stationary LOFI SNR is frequency dependent [Fig. 2(c)], larger than the LOFI shot-noise 

limit near the relaxation frequency (i.e. when: 

int
2

1

T
FF

R

Re


 ) and smaller than the LOFI 

shot-noise limit far way from the relaxation frequency (i.e. when:
int

2

1

T
FF

R

Re


 ). More 

precisely the LOFI SNR is larger (by a factor given by 1

int


T

R


) than the LOFI shot noise limit 
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when working at the resonance frequency and smaller (by a factor given by 1
int



R

T


) when 

working very far away from the resonance frequency.  

 

D. Numerical simulation of the stationary LOFI SNR 

By using a Runge-Kutta method, we have numerically solved the set of differential 

equations (1) to determine the stationary LOFI SNR for different experimental conditions (i.e. 

for different values of 
int

T  compared to
R

 ). More precisely, we have compared the dynamical 

behavior of two lasers having the same output power (
out

p ) and the same relaxation frequency 

(
R

F ), but having two different values of the LOFI gain (   2
RcR

FG  ) induced by two 

different values of the laser response time (
R

 ). Here, our aim is to determine the best laser for 

high quality imaging (i.e. large LOFI SNR).  

Fig. 3 shows a comparison of the stationary LOFI SNR obtained with the two lasers, for different 

values of the shift frequency (
e

F ) and for different values of the lock-in integration time (
int

T ). 

For each experimental condition (
e

F , 
int

T  ), the stationary LOFI signal (obtained with 

10
101




e
R ) and the LOFI noise (obtained with 0

e
R ) have been determined from an average 

of 100 measurements each (no scanning occurs) to reduce the SNR uncertainty.  

For the laser having the shortest time response time ( µs
R

4 ) and therefore the lowest value of 

the LOFI gain (   4
101

R
FG ), the numerical results shown on Fig. 3(a) are in good agreement 

with the analytical predictions given by Eq. (13). Indeed, using a laser with a fast response time 

(
R

T 
int

), the simulated LOFI SNR is almost frequency independent and the numerical 
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simulations show values that are very close to the analytical predictions. Indeed, by using Eq. 

(13), with a laser output power of mWP
out

60 , a target effective reflectivity of 10
104




e
R  

and a beam splitter reflectivity 5.0
bs

R  one obtains for the LOFI SNR the values given in Table 

1, which correspond to the LOFI shot noise limit. A closer look at the results of Fig. 3(a) shows a 

small frequency dependence which seems to be more important for the shortest integration time. 

This small frequency dependence is also in agreement with the theoretical prediction [see Fig. 

2(b) for comparison]. 

  

For the laser having the longest time response ( µs
R

333 ) and therefore the highest value of 

the LOFI gain (   5
108 

R
FG ), the results of the numerical simulations shown on Fig. 3(b) are 

now frequency dependent and much more complicated to analyze.  

Firstly, using Eq. (6), with a LOFI gain   5
108 

R
FG  and a beam splitter reflectivity 

5.0
bs

R , one obtains   1012
104105.1




eRsat
RFR  and 

  109
1041081.1




eRsat
RFR . The LOFI signal is therefore saturated at the relaxation 

frequency 
R

F  and non-saturated for shift frequencies with: 
Re

FF  1.1 .   

Secondly, the LOFI SNR shows an anti-resonance phenomenon for the longest integration times 

and a resonance phenomenon for the shortest integration times. In Fig. 3(b), the anti-resonance 

phenomenon observed for µsT 200
int

  and µsT 600
int

  comes simply from the saturation of 

the LOFI signal. The SNR resonance phenomenon observed for 
R

µsT 018.06
int

  and 

R
µsT 06.020

int
  can be explained by the analytical results shown on Fig. 2(c), with 

nevertheless a resonance height less important due to the saturation of the LOFI signal.  
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Finally for 
Re

FF  1.1  and  
R

T 
int

, the following condition is satisfied: 
int

1 TFF
Re
 and in 

agreement with Eq. (18) one can observe on Fig.3(b) that the LOFI SNR is always smaller (by a 

factor approximately given  by 1
int



R

T


) than the LOFI shot noise limit values given in Table 1. 

b)

a)

  5
108 

R
FG

  4
101 

R
FG

R
T 018.0

int


R
T 06.0

int


R
T 18.0

int


R
T 8.1

int


R
T 5.1

int


R
T 5

int


R
T 15

int


R
T 150

int


µs
R
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R
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int
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
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Fig. 3. SNR (
LaserLOFI

NS ) of a class-B laser ( mWP
out

60 ; kHzF
R

356 , 
10

104



e

R  5.0
bs

R ) 

versus the normalized shift-frequency (
Re

FF ) for different values of the lock-in integration time: 
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(■) µsT 600
int

 , () µsT 200
int

 , (▲) µsT 60
int

 , (▼) µsT 20
int

 , () µsT 6
int

 . Upper graph 

  4
101 

R
FG  and µs

R
4  (

4

1
10

c
, 002.1r ); Lower graph:   5

108 
R

FG  and 

µs
R

333  (
6

1
10

c
, 2.1r ). 

 

 

int
T  6 µs 20 µs 60 µs 200 µs 600 µs 

SNR 9.7 17.7 

 

30.6 55.9 96.8 

Table 1. LOFI SNR [Eq. (13)] obtained with the laser output power mWP
out

60 (i.e. 

sphotonsp
out

/102.3
17

  at nm1064 ), a target effective reflectivity 
10

104



e

R  and a beam 

splitter reflectivity 5.0
bs

R . 

 

4. AUTODYNE IMAGING  

A. Transient LOFI signal 

Suppose now that due to the scanning of the laser beam on the target under investigation, the 

target properties suddenly change at a time t=0 (for example at the edge of the target) with: 

 
1,1,1,

exp
eee

jRr   for 0t  and  
2,2,2,

exp
eee

jRr   for 0t  . Under these conditions, the 

laser output power modulation is composed of a stationary signal, for 0t : 

      
1,1,1,

2cos1)(2,,0
eeoutebseouteeout

tFpRRFGprFtp     (23a) 

 and for 0t , of the sum of a stationary and of a transient signal: 

 

     

   
cRoutbse

R

eeoutebseouteeout

tFpCRFG
t

tFpRRFGprFtp
























2cos1)(2exp

2cos1)(2,,0
2,2,2,

 (23b) 
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where for a class-B laser (
RR

F 1 ), we assume that the transient signal is an oscillating  

signal centered at the relaxation frequency 
R

F . The constants C  and 
c

  can be determined by 

ensuring the continuity of the signal and of its first derivative. 

      
ceeee

CRR  coscoscos
2,2,1,1,

 (24a)  

        
c

RR

ce

R

e

ee

R

e

e
C

F
C

F

F
R

F

F
R  cos

2

1
sinsinsin

2,2,1,1,


 (24b) 

 

For a class-B laser(
RR

F 1 ),  Eqs. (24) shows that, whatever the experimental conditions, a 

good approximation of the amplitude of the transient oscillations (i.e. the order of magnitude of 

C ) is given by:  

  
1,2,2,1,2,1,

cos2
eeeeee

RRRRC    (25a) 

and therefore 

  1,2,1,2, eeee
RRCRR 

 (25b) 

If 
2,1, ee

RR  , Eqs. (25) show that the amplitude of the transient signal ( C ) and of the 

stationary signal (
2,e

R ) are approximately equal (
2,e

RC  ), while in the contrary case 

2,1, ee
RR  , the transient signal is higher than the stationary signal 

2,1, ee
RRC  . 
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In the most general case, 
1,e

R  and 
2,e

R  are of the same order of magnitude (
2,1, ee

RR  ) and the 

transient signal is at maximum of the same order of magnitude than the stationary signal 

(
2,

20
e

RC  ). 

At the output of the lock-in amplifier, using an integration time 
int

T  and a first order filter, the 

transient LOFI signal at the demodulation frequency 
e

F  can be express in the time domain by:  

        



















0 intint

int
2exp1)(22exp

1
,, dttFjtTpCRFGR

T

t

T
TCFT

eRoutbsebseLOFI
 (26) 

with the transient shape:    
cR

R

R
t

t
tT 














 cosexp


, and where the averaging shape 
















intint

exp
1

T

t

T
 corresponds simply to the Fourier Transform of the first order filter  

intint
,TFF  

defined previously by Eq. (9b).  

For 1
int


e

FT  (i.e. no frequency mismatch), one obtains:  

  
  

 
2

2

int

int

int

22
11

11

2

12
,,

Re

R

outbse

bseLOFI

FF
T

T

pCRFG
RTCFT





















 .  (27a) 

or identically by introducing the LOFI signal given by Eq. (7): 

     

 
2

2

int

int2,

2,int

22
11

11
,,,

Re

R

e

eeLOFIeLOFI

FF
T

TR

C
RFSTCFT




















  (27b) 
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Fig. 4 shows the normalized ( 1/
2,

CR
e

) ratio between the stationary and the transient LOFI 

signals (
LOFILOFI

TS ) versus the normalized shift frequency (
Re

FF ) for different values of the 

lock-in integration time (
int

T ) compared to the transient time (
R

 ).  
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100

1000

c)
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S
L

O
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L
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e
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Fig. 4. Normalized ( 1
2,

CR
e

) ratio between the stationary and the transient LOFI signals (
LOFILOFI

TS ) 

versus the normalized shift frequency (
Re

FF ) for different values of the lock-in integration time (
int

T ) 

compared to the transient time (
R

 ): a) 
R

T  10
int

, b) 
R

T 
int

 c) 10
int R

T  . The laser is a class-B 

laser with 14
RR

F  .  

 

B. Imaging with a fast response time laser (
R

T 
int

) 
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With a fast response time laser and with 
2,e

RC  (corresponding to the most general case), Eq. 

(27b) gives:  

       22int

int2,
221,,,

RRe

R

ReLOFIeeLOFI
FF

T
TCFTRFS 


   (28) 

 which can be reduce to the following inequality:  

    
ReLOFIeeLOFI

TCFTRFS 
int2,

,,,   (29) 

Fig. 4(a) confirms that by using a laser with a fast response time, the stationary LOFI signal is 

generally higher than the transient LOFI signal, whatever the working frequency 
e

F  is. 

 

C. Imaging with a slow response time laser (
R

T 
int

) 

With a slow response time laser and with 
2,e

RC  (corresponding to the most general case), Eq. 

(27b) becomes: 

       2

int

2

int2,
221,,, TFFTCFTRFS

ReReLOFIeeLOFI
  ,  (30) 

and two different cases need to be analyzed. Firstly, if we work near the resonance frequency, 

with 
int

1

T
FF

Re
 , Eq. (30) reduces to:  

    
RReLOFIeReLOFI

TCFFTRFFS 
int2,

,,,   (31).  
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Fig. 4(c) confirms that by using a laser with a slow response time, the stationary LOFI signal and 

the transient signal are of the same order of magnitude near the relaxation frequency:  

Secondly, if we work far away from the resonance frequency, (
int

1

T
FF

Re
 ), Eq. (30) gives: 

     
ReLOFIeeLOFI

TCFTRFS 
int2,

,,,   (32) 

and the transient dynamics can be ignored compared to the stationary dynamics.  

Fig. 4(c) confirms that by using a laser with a slow response time, the stationary LOFI signal is 

higher than the transient signal when working far way the relaxation frequency 

At this point one can also notice that by using a laser with a slow response time (
R

T 
int

), the 

minimization of the transient signal far away from the resonance is made to the detriment of the 

LOFI gain. Indeed for 
R

RRe
F

T
FF



11

int

 , the value of usable LOFI gain [Eq. (3)] is 

limited by the following inequality:  

  
R

R

e
FG

T
FG



int
)(    (33) 

 

Finally, we conclude this section by reminding that the transient signal can be neglected 

compared to the stationary signal if one uses a laser with a fast response time (
R

T 
int

)  

whatever the working frequency is, and also with slow response time laser (
R

T 
int

) if the 

working frequency is far away enough from the relaxation frequency (
int

1

T
FF

Re
 ). In a 

previous experimental paper [19] we have shown that the best working frequency called 
,e

F  is 
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the frequency at which the laser quantum noise is equal to the detector noise level. In the 

mentioned paper, the laser time response is s
R

 20 , the laser relaxation frequency is 

MHzF
R

8.1  and we have experimentally determined MHzF
e

6
,



. Under these conditions, 

the transient dynamics can be neglected if the following inequality is verified: 

 sµ
FF

T

Re

2.0
1

,

int







. Therefore one can use 
10

2
int

R
µsT


  to obtain high speed LOFI 

imaging without any perturbation from the transient signal 

(     53,,,
int2,2,




TRFTRFS
eeLOFIeeLOFI

). Note also that these experimental conditions are also 

compatible with our starting hypothesis ( 112
int


e

FT ).   

D. Numerical simulation 

In the most general situation, the LOFI SNR is given by the ratio between the LOFI signal 

divided by the detector noise plus the laser quantum noise plus the transient fluctuation. Here, 

our main objective is to compare the laser quantum noise with the transient fluctuations which 

can become important for short integration times (i.e. fast imaging condition). We have therefore 

neglected the detector noise in the current numerical study. 

To show the effect of the transient dynamics on LOFI imaging, we have compared 1D 

scans extracted from the measured output power modulation. These scans have been obtained 

from the numerical integration of the set of Eqs. (1) (with no averaging). The target under 

investigation is a symmetric reflectivity pyramid composed of four levels which allows the 

observation of the transient dynamics effects during the scan in the case of  an effective 

reflectivity increase (
2,1, ee

RR  ) or decrease (
2,1, ee

RR  ).  For the current numerical study, we 

have chosen very low values of the effective reflectivity to study the LOFI sensitivity under 
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ultimate conditions where the transient dynamics can be of the same order of magnitude than the 

laser quantum noise. Fig. 5 shows the numerical results obtained with the two lasers already 

studied in the section 3 of the present manuscript. To visually separate the transient dynamics 

effects from the noise effects on the LOFI images, the solid curves are numerically realized 

without laser quantum noise (i.e. without the Langevin noise forces), while the curves with 

circles combine both effects (transient signal and quantum noise).  

RRe
sTFFa  520,)

int


RRe
sTFFb  520,5.1)

int


RRe
sTFFd  06.020,5.1)

int
RRe

sTFFc  06.020,)
int


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Fig. 5. Numerical 1D scan obtained from the measured laser output power MC of a LOFI set-up, when the 

laser is scanned on a symmetric reflectivity pyramid composed of 4 levels. Experimental conditions: 

mWP
out

60 (i.e. sphotonsp
out

/102.3
17

  at nm1064 ), kHzF
R

356 , µsT 20
int

 . Level 

1: (pixels 1-10 & 61-70), 0
e

R ; level 2: (pixels 11-20 & 51-60), 
12

104



e

R ; level 3: (pixels 21-30 & 41-
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50), 
10

101



e

R ; level 4: (pixels 31-40), 
10

104



e

R . Top row:   4
101

R
FG  with µs

R
4 ; 

bottom row:   5
108 

R
FG  with µs

R
330 ;; left column: 

Re
FF  ; right column: 

Re
FF  5.1 . 

Curves with circles (○): results with laser quantum noise; Solid curves (—): results without laser quantum 

noise. 

 

For the laser having the lowest value of the LOFI gain (   4
101

R
FG ), i.e. the shortest 

response time ( µs
R

4 ), the numerical results shown on Figs. 5(a) and 5(b) are in good 

agreement with the analytical predictions of the section 3. Indeed, the transient dynamics 

fluctuations are always smaller than the laser quantum noise fluctuations, which confirms the 

fact that by using a laser with a fast response time (
R

µsT  20
int

), the transient dynamics is 

negligible whatever the working frequency is. Note also that when the effective reflectivity is 

multiplied by a factor 100 (level n°2 to level n°4), the MC increases by a factor 10, while when 

the effective reflectivity is multiplied by a factor 4 (level n°3 to level n°4) the MC increases by a 

factor 2.  

Moreover, in Table 2, the MC and the SNR, numerically determined using the curves with the 

circles of Figs. 5(a) and 5(b) and analytically calculated [from Eqs. (5) and (11)], are very close. 

One can notice that the good agreement comes from the fact that for this laser, the optical 

feedback level is below the saturation level of the laser (   810

4,
101104




Rsate
FRR ) 

 and because the transient fluctuations are negligible in the amount of noise. With this laser, one 

also observes that by increasing the shift frequency, the values of the MC is smaller but that the 

SNR remains approximately unchanged, which confirms again the fact that by using a laser with 

a fast time response (
R

T 
int

) the LOFI SNR is approximately frequency independent, in 

agreement with Eq. (13). 

 

 



 29 

Re 0 12
104


x  10

101


x  10
104


x  

Re
FF   

MC(%) 

SNR 

 

0.8 (0) 

1 (1) 

 

2.2 (2.0) 

2.1 (1.9) 

 

 10.2 (10.2) 

10.2 (9.7) 

 

20.1 (20.5) 

24.1 (19.4) 

Re
FF  5.1  

MC(%) 

SNR 

 

0.2 (0) 

1 (1) 

 

0.6 (0.5) 

2.5 (1.6) 

 

 2.7 (2.6) 

10.1 (8.2) 

 

5.2 (5.2) 

18.7 (16.3) 

Table 2. MC and SNR of the LOFI images [Figs. 5(a) and 5(b)] obtained with the laser having the lower value 

LOFI gain (
  4

R
101FG 

). Numerical results are in bold while the analytical results (Eq.11) are written 

in italics between parentheses. In the numerical results the noise is composed of the transient fluctuation plus 

the laser quantum noise while in the analytical results, the noise corresponds only to the laser quantum noise. 

 

 

Re 0 12
104


x  10

101


x  10
104


x  

Re
FF   

MC(%) 

SNR  

 

22.2 (0) 

1 (1) 

 

42.3 (166.7) 

2.8 (7.4) 

 

57.6 (833.3) 

3.1 (37.2) 

 

70.4 (1667.0) 

4.6 (74.3) 

Re
FF  5.1  

MC(%) 

SNR  

 

0.8 (0) 

1(1) 

 

1.1 (0.5) 

2 (0.4) 

 

2.8 (2.7) 

4 (2.1) 

 

5.2 (5.4) 

5 (4.2) 

 

Table 3. MC and SNR of the LOFI images [Figs. 5(c) and 5(d)] obtained with the laser having the higher 

value LOFI gain (   5
108 

R
FG ). Numerical results are in bold while the analytical results [Eq.(11)] are 

written in italics between parentheses. In the numerical results the noise is composed of the transient 

fluctuation plus the laser quantum noise while in the analytical results, the noise corresponds only to the laser 

quantum noise.  

 

Now, if the value of the LOFI gain (   5
108 

R
FG ) is increased, by increasing the laser 

response time ( µs
R

330 ), one can observe [compare Figs. 5(c) and 5(a)] that the MC is 

higher but that the SNR is lower with the laser having the highest LOFI gain (i.e. the longest 

response time). The degradation of the SNR comes from the high value of the transient LOFI 

signal [see Eq. (31)], characterized on Fig. 5(c) by transient dynamic fluctuations as high as the 

the laser quantum noise fluctuations. The degradation of the LOFI SNR also comes from the 

saturation of the LOFI signal of this oversensitive laser 
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(   1212
104100105.1




eRsat
RFR ). The saturation effect is also visible in Table 3 where 

for both SNR and MC, the numerical results [obtained from Fig. 5(c)] are always lower than the 

analytical ones, obtained from Eq. (5) for the MC and from Eq. (11) for the calculation of the 

SNR [24].  

 

At this point one can also notice that due to the very high value of the transient LOFI signal 

(linked to the slow response time of the laser:
R

T 06.0
int

 ) and due to the saturation of the LOFI 

signal (induced by the high value of the LOFI gain:   5
108 

R
FG ), the LOFI signal is hardly 

perturbed. In these conditions, the observation at the relaxation frequency 
Re

FF  , of a LOFI 

SNR higher than the LOFI shot noise limit [see Eq. (21) and Fig. 2(c)] is unfortunately 

unobtainable (i.e. experimentally unobservable) in the imaging condition [25].   

To decrease the transient dynamics effects and to avoid the laser dynamic saturation observed on 

Fig. 5(c), one needs to work far away from the resonance frequency. If we now compare Figs. 

5(c) and 5(d), one can observe that for 
Re

FF  5.1 the MC is lower but that the LOFI SNR has 

increased (the pyramid is roughly distinguishable). In Fig. 5(d) one can also observe that the 

SNR is now limited by the laser quantum noise (circles fluctuations) which is higher than the 

LOFI transient fluctuations (solid curve fluctuations). In agreement with Eq. (25), one can also 

observe on Fig. 5(d) that the transient dynamics effect is much more important for a decreasing 

step (
2,1, ee

RR  ) than for an increasing step (
2,1, ee

RR  ) if we look at the solid curve. If we 

now look at the curve with the circle, one can also observed that this dissymmetric effect is 

completely hide by the laser quantum noise. 
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Finally, the comparison of Figs 5(b) and 5(d) shows that far away from the resonance, the two 

lasers have approximately the same gain ( 3
102)5.1( 

R
FG ) and therefore the same MC [Eq. 

(5)]. One can also clearly observe that for the same integration time ( µsT 20
int

 ), the best LOFI 

image (the best SNR) is clearly obtained when using the laser with the lowest response time 

allowing the following condition (
R

T 
int

) and therefore a shot noise limited LOFI detection 

[see Eq. (13)]. 

 

Finally for fast imaging, we need a time value of 
int

T  as short as possible and to be shot noise 

limited we need to use a laser with a fast response time (
R

T 
int

). For LOFI imaging, the best 

laser is therefore a class-B laser with the shortest possible value of 
R

  allowing the use of 

relatively short integration time.   

In practical LOFI experiments, to be shot noise limited, the laser quantum noise needs to be just 

above the detector noise. So finally, this is the detector noise level which determines the lowest 

possible value of the LOFI gain [18,19] and therefore the shortest possible value of the laser 

response time. For this particular time, the laser used in the LOFI experiment is optimized and 

allows to obtain image as fast as possible with a shot noise limited detection. In a previous paper 

[18], we have shown that for a detection noise level characterized by a noise equivalent power: 

NEP ( HzW ). The optimum value for le LOFI gain is given by: 

 
 

outbsopt

c

Ropt

p

hcNEP

Rr
FG







2

1
)(

1















   (34) 

 which allows to determine the optimum value of the laser response time :  
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 

outcbsopt

optR

p

hcNEP

Rr 






2

22

1

,















  (35) 

For example, for a laser with an output power mWP
out

60  ( sphotonsp
out

/102.3
17

  at 

nm1064 ), a cavity damping rate 19
105


 s

c
  and for a setup with a beam splitter 

reflectivity 5.0R
bs
  and a noise equivalent power HzWNEP

9
106


  , one obtains: 

57)( 
Ropt

FG  and finally ns
optR

23
,

 .  

Therefore we can take: µsT
optR

23.010
,int

  , as the minimum acquisition time compatible 

with the shot-noise condition (
R

T 
int

). To be compatible with our initial hypothesis 

( 1
int

TF
R

), we also take a factor 10 and the laser relaxation frequency needs to as high as: 

MHz
T

F

optR

R
40

110

,int




.  

Finally, for high speed imaging combined to shot-noise limited detection, a laser diode with:, 

ns
R

2  and    2
105 

R
FG  ( 111

105


 s
c

 , 18

1
105


 s , r=2 ) seems to be an interesting 

candidate compared to microchip laser with  µs
R

200  and   5
105 

R
FG   ( 19

105


 s
c

 , 

13

1
105


 s , r=2). However the use of a laser diode with a relaxation frequency 

GHzF
R

5.2  (compare to HzkF
R

800 for a solid state microchip laser) requires the use an 

electro-optics modulator to generate the frequency shift (instead of an acousto optics modulator) 

and above all requires a rapid electronic detection (with a gigahertz bandwidth) which is 

technically much more complicated to carry out than an electronic setup with a megahertz 

bandwidth. 
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Even if a laser diode seems to be an interesting candidate for LOFI experiments, the theoretical 

and experimental study needs to be done to verify this possibility. Indeed the laser rate equations 

used in this paper are not completely correct to describe the dynamical behavior of a laser diode. 

Indeed, our modeling doesn’t take into account of the phase amplitude coupling of the laser 

electric field  (i.e. the Henry factor) occurring inside the laser cavity of a  laser diode and also 

doesn’t take into account of the optical feedback time delay which cannot be neglected for a laser 

diode with a laser relaxation frequency in the gigahertz range. Indeed,  for GHzF
R

1  and for an 

optical feedback time delay ns10  (which correspondst to laser-target distance of 1.5m), one 

obtained .11022  
R

F Therefore even if the laser diode seems to be a good candidate, 

the comparison between a laser diode and a solid-state laser for autodyne interferometry cannot 

be made so directly and therefore needs to be made carefully. 

 

5. CONCLUSION 

In a LOFI setup, the beating between the reference beam and the signal beam takes place inside 

the laser cavity and therefore the laser fulfills simultaneously the roles of emitter and detector of 

photons. In these conditions, the laser relaxation oscillations play a leading role both in the laser 

quantum noise which determines the SNR and in the laser transient dynamics which determines 

the response time of the LOFI setup. In the present study, we have theoretically compared the 

stationary LOFI SNR and the LOFI response time of two lasers having the same output power, 

the same relaxation frequency, but having two different values of the LOFI gain induced by two 

different values of the laser response time.  
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Firstly, we have determined that the stationary LOFI SNR is frequency independent and above 

all shot noise limited when the response time of the laser is shorter than the lock-in integration 

time (
int

T
R
 ). Inversely, for a slow response time laser  (

int
T

R
 ), the stationary LOFI SNR 

is frequency dependent and is higher than the LOFI shot-noise limit at the laser relaxation 

frequency and smaller than the LOFI shot-noise limit far away from the laser relaxation 

frequency. Secondly, we have shown that the transient LOFI signal can be neglected compared 

to the stationary LOFI signal either by using a laser with a fast response time (
int

T
R
 ) or by 

working with a slow response time laser (
int

T
R
 ), if the frequency shift is far away from the 

relaxation frequency. Therefore to obtain a shot noise limited detection without any perturbation 

from the laser transient dynamics we need to work under the condition: 
int

T
R
 . 

Through this whole study, we have numerically confirmed that for a fixed integration time (
int

T ), 

the best LOFI images (images with the best SNR) are always obtained when using the laser with 

the lowest LOFI gain, (i.e. the shortest laser time response 
R

 ) and that the detection is shot 

noise limited if the following condition: 
R

T 
int

 is satisfied. 

 

Finally for fast imaging, we need a time value of 
int

T  as short as possible whereas to be shot 

noise limited we need to use a laser with a fast response time (
int

T
R
 ). For LOFI imaging the 

best laser is therefore a class-B laser with the shortest possible value of 
R

 , allowing the use of 

relatively short integration time 
int

T . Therefore, for high speed imaging combined with a shot-

noise limited detection,  a laser diode with a very short response time (in the nanosecond range) 

and a very high value of the relaxation frequency (in the gigahertz range) seems to be an 
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interesting candidate compared to microchip laser with a response time of several tens of 

microsecond and a relaxation frequency in the megahertz range.   
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