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work it to study the damping and forced vibrations of three-layered, symmet-
ams. In the analytical formulation, both normal and shear deformations are
using the higher-order zig-zag theories. The harmonic balance method is
alerkin procedure for a simply supported beam. The geometrically nonlinear
r frequency amplitude equation governed by several complex coefficients. In

linear and nonlinear damping parameters of laminated composite beams are
t, nonlinear forced vibration analysis is carried out for small and large vibra-
ncy response curves are presented and discussed for various geometric and
1. Introduction

Fibre reinforced composites are widely used in the aerospace,
automotive, nuclear, marine, biomedical and civil engineering.
Composite materials can be tailored to offer a unique combination
of material capabilities, which may include low density, high
strength, high stiffness, high damping, chemical resistance, thermal
shock resistance and others properties of interests. In order to
control the resonant amplitudes of vibration and thus in extending
service life of laminated composite beams under periodic load or
impact, the damping in the core layer play an important role. At
the constituent level, the energy dissipation in fibre-reinforced
composites is induced by different processes such as the viscoelastic
behaviour of the matrix, the damping at the fibre–matrix interface,
the damping due to damage, etc. At the laminate level, damping is
depending on the constituent layer properties as well as the layer
orientations, interlaminar effects, stacking sequence, etc.

Most of the studies of laminated composite beams are devoted
to linear vibration and damping analysis. Earlier works on this sub-
ject are done by Gibson and Plunkett [1] and Gibson and Wilson [2].
A good overview on the available literature dealing with the vibra-
tion behaviour in presence of viscoelastic material can be found in
the survey articles by Nakra [3,4]. In the earlier works, some of the
important contributions are the works of Heng et al. [5], He and Rao
[6], Rikards [7] and Bhimaraddi [8]. In all these works, a complex
modulus, which consists of a real part representing elastic stiffness
), noel.challamel@univ-ubs.fr
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and an imaginary part representing dissipation, has been widely
used to model the behaviour of linear viscoelastic materials under
harmonic vibrations. With respect to the introduction of geometri-
cal nonlinearity for beams with viscoelastic cores, Kovac et al. [9]
and Hyer et al. [10,11] studied the nonlinear vibration of a damped
sandwich beam. This study is based on a multi-mode Galerkin pro-
cedure coupled with the harmonic balance method.

Sandwich and laminated composite beams have been analysed
using the classical models developed for one-layer beams (solid
beams). These models are based on a theory that neglects trans-
verse shear and normal strains and leads to the classical laminate
theory (CLT) [12,13]. Due to the drawbacks of the CLT, a first order
shear deformation theory (FSDT) has been proposed to take into
account the transverse shear deformation [14–16]. The effects of
the transverse shear deformation are pronounced for composite
beams because of the high ratio of the extensional modulus to
the transverse shearing modulus. The FSDT is widely used, and
assumes a constant transverse shear strain in the thickness direc-
tion [17]. Therefore, a shear correction factor is generally used to
adjust the transverse shear stiffness in dynamic analyses of
laminates [18–21]. To avoid the use of a shear correction factor,
higher order shear deformation theories (HSDTs) have been devel-
oped [22–24]. These theories are more realistic, since they give
zero transverse shear stress condition at the top and bottom
surface boundaries of the structure. The HSDTs have been success-
fully and extensively applied to design of multi-layered structural
components. The discontinuity of some mechanical properties in
the thickness direction represents a flaw in these theories. Also,
it should be emphasised that recent research [25,26] has shown
that HSDTs considerably overestimate natural frequencies of
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Fig. 1. Laminate beam with fibre Reinforced composite material core.
soft-core sandwich plates. The HSDTs are therefore of limited val-
ues for analysing problems in which an accurate description of the
transverse normal stress distribution and related consequences are
of interest. To overcome such limitations, Kapuria et al. [27] have
used zig-zag theories, satisfying the inter-laminar continuity of
the transverse shear stresses, to predict the dynamic and buckling
responses of laminated beams with arbitrary layouts.

The aim of this work is to develop a simple consistent theory for
the nonlinear vibration analysis of laminated composite beams
with large amplitudes. This theory couples the harmonic balance
technique to Galerkin procedure. The nonlinear geometrical effect
due to axial forces caused by axial restraints is modelled using
higher order zig-zag theories, which incorporate various shear
function models for the shear deformation in the core. The nonlin-
ear amplitude–frequency and phase–frequency relationships are
established. The nonlinear frequency value and, in turn, the system
loss factor ratio are obtained for various amplitudes, for consider-
ing different geometric and material parameters.

2. Viscoelastic model for composite materials

The general form of linear theory of a viscoelastic body is given
by [28]

rðtÞ ¼
Z t

�1
Q �ijklðt � sÞdeklðsÞ ð1Þ

The moduli for a viscoelastic material are complex numbers.
They have real and imaginary components and can be defined by

Q �ijkl ¼ Q 0ijkl þ iQ 00ijkl ð2Þ

where Q �ijkl are the complex moduli, Q 0ijkl are the storage moduli and
Q 00ijkl are the loss moduli. The assumption of a time independent
Poisson’s ratio has been used, by many authors [29,30], to simplify
the characterisation of glass and carbon fibre-reinforced composite,
under structural loading conditions. The Poisson’s ratio is consid-
ered as real and constant.

For this case, the complex moduli can be written in matrix form
as

½Q�� ¼ ½Q 0� þ i½Q 00�½g� ð3Þ

where g are the loss factors.
If symmetry conditions of transversely isotropic materials are

considered, only five storage modulus parameters and three damp-
ing coefficients are independent. The two matrices defined in Eq.
(3) can be expressed in matrix form as [31]

½Q 0� ¼

Q =
11 Q =

12 Q =
12 0 0 0

Q =
12 Q =

22 Q =
23 0 0 0

Q =
12 Q =

23 Q =
22 0 0 0

0 0 0 Q =
44 0 0

0 0 0 0 Q =
66 0

0 0 0 0 0 Q =
66

2
666666666666664

3
777777777777775

ð4Þ

and

½g� ¼

g1 0 0 0 0 0

0 g2 0 0 0 0

0 0 g2 0 0 0

0 0 0 g2 0 0

0 0 0 0 g6 0

0 0 0 0 0 g6

2
66666666664

3
77777777775

ð5Þ
2

Therefore, according to this mathematical model, the viscoelas-
tic constitutive relationships of transversely isotropic materials can
be described in term of eight parameters; five independent
dynamic stiffness parameters, E01; E

0
2;G

0
12; m12 and m23, plus three

independent damping loss factors (tand), g1, g2 and g6 written as
follows:

Q =
11 ¼

E01
1� t12t12

ð6aÞ

Q=
22 ¼

E02
1� t12t12

ð6bÞ

Q=
12 ¼

E02
1� t12t12

ð6cÞ

Q=
55 ¼ Q =

66 ¼ G013 ¼ G012 ð6dÞ

Q=
44 ¼

E02
2þ 2t12

ð6eÞ

m21 ¼
m12E02

E01
ð6fÞ

The normal and tangential stress r2 and s, can be expressed as
functions of strains by means of the stiffness matrix

r2

s2

� �
¼

Q �11 0

0 Q �55

" #
e2

e13

� �
ð7Þ

in which

�Q �11 ¼ Q =
11ð1þ ig1Þm4 þ ðQ =

12ð1þ ig1Þ þ Q 012ð1þ g2Þ

þ 2Q =
66ð1þ g6ÞÞm2n2 þ Q =

22ð1þ g2Þn4 ð8aÞ

�Q�55 ¼ Q =
44ð1þ g2Þn2 þ Q =

55ð1þ g6Þm2 ð8bÞ

where

m ¼ cos h and n ¼ sin h

In which h is the angle between the global axis and the local axis
of the fibre in the composite material layer.

3. Formulation

3.1. Kinematics

The beam defined with dimensions and coordinate systems, is
defined in Fig. 1. The laminated composite beam is considered with
the coordinates x along the length, y along the width and z along



Table 1
Kinematics models considered in the study.

Model Name f(z)

1 Timoshenko [17] f(z) = z
2 Reddy [22] f ðzÞ ¼ z� 4z3=3H2

c

3 Touratier [23] f(z) = Hc sin (pz/Hc)/p
4 Afaq [24] f ðzÞ ¼ ze�2ðz=Hc Þ2
the thickness directions as shown in Fig. 1. The faces and core layer
thickness are Hf and Hc, respectively. L is the length and Ht the total
thickness of the beam. The derivation of the general governing
equations is based on the following assumptions:

– No slipping occurs at the interfaces between the three layers of
the beam.

– The kinematics of the beam is defined by the transverse
displacement w(x, t) and the independent rotation b(x, t).

For the comparison of the various shear functions f(z), the pres-
ent work is limited to laminated composite and sandwich beams.
In the higher order zig-zag theories, the displacement field is
divided into three parts in order to satisfy displacement and trans-
verse shear stresses continuity conditions at interfaces by intro-
duction a shear function f(z). The major drawback of these
theories lies in the fact that the total number of the unknowns is
dependent on the number of layers. The kinematics can be defined
by

u1ðx; z; tÞ ¼ u0
1ðx; tÞ � z� Hc þ Hf

2

� �
@wðx; tÞ
@x

Hc

2
< z 6

Ht

2
ð9Þ

u2ðx; z; tÞ ¼ u0
2ðx; tÞ � z

@wðx; tÞ
@x

þ f ðzÞbðx; tÞ; �Hc

2
6 z 6

Hc

2
ð10Þ

u3ðx; z; tÞ ¼ u0
3ðx; tÞ � zþ Hc þ Hf

2

� �
@wðx; tÞ
@x

� Ht

2
6 z 6 �Hc

2
ð11Þ

where ui(x,z, t) (i = 1, . . . ,3) is the longitudinal displacement along
the thickness of the layer i, u0

1ðx; tÞði ¼ 1; . . . ;3Þ is the axial displace-
ment of the layer mid-plane. w(x, t) is the common transverse dis-
placement and b(x, t) is the additional rotation of the normal to
the mid-plane. By choosing the appropriate mathematical form
for the shear function in the core, new kinematics refinements for
the core modelling can be represented in Table 1. Considering the
continuity of the displacements at the interfaces, Eqs. (9)–(11) the
displacement fields u0

1ðx; tÞ and u0
3ðx; tÞ can be expressed as function

of u0
2ðx; tÞ:
u0
1ðx; tÞ ¼ u0

2ðx; tÞ �
Hc þ Hf

2

� �
@wðx; tÞ
@x

þ f
Hc

2

� �
bðx; tÞ; ð12Þ

u0
3ðx; tÞ ¼ u0

2ðx; tÞ þ
Hc þ Hf

2

� �
@wðx; tÞ
@x

� f
Hc

2

� �
bðx; tÞ ð13Þ
Substituting Eqs. (12) and (13) into Eqs. (9) and (11), respec-
tively, leads to the axial displacement fields written as:
u1 ¼ ðx; z; tÞ ¼ u0
2ðx; tÞ � z

@wðx; tÞ
@x

þ f
Hc

2

� �
bðx; tÞ; ð14Þ

u2ðx; z; tÞ ¼ u0
2ðx; tÞ � z

@wðx; tÞ
@x

þ f ðzÞbðx; tÞ ð15Þ
3

u3ðx; z; tÞ ¼ u0
2ðx; tÞ � z

@wðx; tÞ
@x

� f
Hc

2

� �
bðx; tÞ ð16Þ

According to the assumption of small strains and moderate
rotations, the nonlinear strain–displacement relations for each
layer can be expressed in the following form [32,33]:

e1ðx; z; tÞ ¼
@u1ðx; z; tÞ

@x
þ 1

2
@wðx; tÞ
@x

� �2

ð17aÞ

e2ðx; z; tÞ ¼
@u2ðx; tÞ

@x
þ 1

2
@wðx; tÞ
@x

� �2

ð17bÞ

e3ðx; z; tÞ ¼
@u3ðx; tÞ

@x
þ 1

2
@wðx; tÞ
@x

� �2

ð17cÞ

c ¼ @u2ðx; z; tÞ
@z

þ @wðx; tÞ
@x

ð17dÞ
3.2. Formulation of forced vibration problem

The bending and membrane strains of the faces and the shear,
bending and membrane strains of the composite interlayer are
considered in the following formulation. In free vibration domain,
the principal of virtual works is given by:

dPint ¼ dPext � dPacc ð18Þ

dPext is the virtual works done by external uniform distributed load
q(t) and dPacc represents the resulting of virtual works put into the
system as acceleration. The internal virtual work dPint is decom-
posed as

dPint ¼ dPð1Þint þ dPð2Þint þ dPð3Þint ð19Þ

in which dPð1Þint þ dPð2Þint þ dPð3Þint are the virtual works of the upper me-
tal, composite layer and lower metal respectively given by:

dPð1ÞIint ¼
Z L

0
N1

@uðx; tÞ
@x

þ @wðx; tÞ
@x

@dwðx; tÞ
@x

� �
� Hc þ Hf

2

� ��

N1
@2dwðx; tÞ

@x2 þM1
@2dwðx; tÞ

@x2 þ f
Hc

2

� �
N1

� �
@dbðx; tÞ

@x

� �#
dx

ð20Þ

dPð2ÞIint ¼
Z L

0
N2

@uðx; tÞ
@x

þ @wðx; tÞ
@x

@dwðx; tÞ
@x

� �
þ ðM2Þ

@2dwðx; tÞ
@x2

!(

� Q �11b
Z Hc=2

�Hc=2
ðf ðzÞz @

2wðx; tÞ
@x2 � f ðzÞ2 @bðx; tÞ

@x

� �" #
dz

@dbðx; tÞ
@x

dxþ Tdbðx; tÞ
�

dx ð21Þ

dPð3ÞIint ¼
Z L

0
N3

@uðx; tÞ
@x

þ @wðx; tÞ
@x

@dwðx; tÞ
@x

� �
þ Hc þ Hf

2

� ��

N3
@2dwðx; tÞ

@x2 þM3
@2dwðx; tÞ

@x2 � f
Hc

2

� �
N3

� �
@dbðx; tÞ

@x

� �#
dx

ð22Þ

Here, Ni and Mi (i = 1, . . ., ,3) are the axial forces and the bending mo-
ments in the laminated composite beam. T is the shear force in the
core layer. They are defined by

N1 ¼ Ef Sf
@u1

@x
þ 1

2
@w
@x

� �2
!

ð23aÞ



M1 ¼ Ef If
@2w
@x2 ð23bÞ

N3 ¼ Ef Sf
@u3

@x
þ 1

2
@w
@x

� �2
!

ð23cÞ

M3 ¼ Ef If
@2w
@x2 ð23dÞ

N2 ¼ Sc
�Q �11

@u2ðx; tÞ
@x

þ 1
2

@wðx; t
@x

� �2
 !

ð23eÞ

M2 ¼ IcQ �11
@2wðx; tÞ
@x2

!
�
Z �Hc=2

�Hc=2
Q �11zf ðzÞ @bðx; tÞ

@x
ð23fÞ

T ¼ b
Z Hc=2

�Hc=2

�Q �55
@f ðzÞ
@z

� �2

dzðbðx; tÞÞÞ ð23gÞ

The geometrical quantities used in Eqs. (23a–g) are the cross
sectional area Sf and Sc and the quadratic moments If and Ic of
the faces and core layers. The virtual work expressions dPext and
dPacc are given respectively by:

dPext ¼
Z L

0
qðtÞdwðx; tÞdx ð24Þ

dPacc ¼ ð2qf Sf þ qScÞ
Z L

0

@2wðx; tÞ
@t2 dwðx; tÞdx ð25Þ

Using Eqs. (20)-(22), the variational relation Eq. (18) can be
rewritten as:

Z L

0
NT

@uðx; tÞ
@x

þ @wðx; tÞ
@x

@dwðx; tÞ
@x

� �
þMb

@dbðx; tÞ
@x

�

þMW
@2dwðx; tÞ

@x2 þ Tðdbðx; tÞ
#

dx ¼ dPext � dPacc ð26Þ

in which

NTðx; tÞ ¼ ð2Ef Sf þ Sc
�Q �11Þe0

2 ð27Þ

Mw ¼ C1
@2wðx; tÞ
@x2 � C2

@bðx; tÞ
@x

ð28Þ

Mb ¼ �C2
@2wðx; tÞ
@x2 þ C3

@bðx; tÞ
@x

ð29Þ

T ¼ C4bðx; tÞ ð30Þ

and

C1 ¼ 2Ef Sf
Hc þ Hf

2

� �2

þ 2Ef If þ �Q �11Ic ð31aÞ

C2 ¼ 2Ef Sf
Hc þ Hf

2

� �
f

Hc

2

� �
þ �Q �11b

Z Hc=2

�Hc=2
zf ðzÞdz ð31bÞ

C3 ¼ 2Ef Sf f
Hc

2

� �2

þ �Q �11b
Z Hc=2

�Hc=2
f ðzÞ2 dz ð31cÞ

C4 ¼ �Q �55b
Z Hc=2

�Hc=2

@f ðzÞ
@z

� �2

dz ð31dÞ
4

3.3. Nonlinear vibration mode and frequency–amplitude relationship

For the study of nonlinear harmonic vibrations, the response is
assumed to be harmonic and proportional to the linear vibration
mode. Based on the one mode Galerkin approximation, the nonlin-
ear response is sought by the following form of deflection and rota-
tion functions:

wðx; tÞ ¼ ðAeixt þ Ae�ixtÞ
2

wðxÞ

bðx; tÞ ¼ ðAeixt þ Ae�ixtÞ
2

BðxÞ
ð32Þ

where A is a complex unknown amplitude. The linear vibration
mode of the undamped laminate beam, satisfies the following
eigenvalue problem:Z L

0
Mb

@dBðxÞ
@x

þMw
@2wðxÞ
@x2 þ TdBðxÞ

" #
dx

¼ ð2qf Sf þ qcShÞx2
Z L

0
wdwðxÞdx ð33Þ

From this equation and by integrating by part, one finds the follow-
ing differential equations:

@Mb

@x
� T ¼ 0

@2Mw

@x2 ¼ ð2qf Sf þ qcScÞx2wðxÞ
ð34a-bÞ

In the case of a simply supported beam, the boundary condi-
tions are satisfied by the following expressions:

wðxÞ ¼ sinðkxÞ
BðxÞ ¼ B cosðkxÞ

where k ¼ np
L

ð35Þ

where the integer n is the mode number. Inserting Eqs. (29), (30),
and (35) into (34a), one gets the expression for B as follows:

B ¼ C2k3

C3k2 þ C4

ð36Þ

Applying the variational principle to the displacements u, b and
w, the following governing differential equations are obtained

@NTðx; tÞ
@x

¼ 0

@Mb

@x
� T ¼ 0

� NTðx; tÞ
@2wðx; tÞ
@x2 þ @

2Mw

@x2 þ ð2qf Sf þ qcScÞ
@2wðx; tÞ
@t2 ¼ qðtÞ

ð37a-cÞ

Eq. (37a) leads to a constant axial force NT(x, t) = N(t). Assuming that
the ends are immovable, from Eq. (37a), one gets the following
expression of the axial force:

NðtÞ ¼ 1
L

Z L

0
NTðx; tÞdx ¼ 1

2L
ð2Ef Sf þ �Q �11ScÞ

Z L

0

@wðx; tÞ
@x

� �2

dx

ð38Þ

The substitution of Eqs. (28)–(30) into equations Eqs. (37b and 37c)
and after some manipulation, one obtains a complex scalar differen-
tial equation similar to the ones established in [34–36] for linear
calculation as given by

D1
@6wðx; tÞ
@x6 � D2

@4wðx; tÞ
@x4 þ D3

@2wðx; tÞ
@x2 þ D4

@4wðx; tÞ
@x2@t2

� D5
@2wðx; tÞ
@t2 ¼ �D6qðtÞ



where

D1 ¼
C1C3

C2
� C2 ð40aÞ

D2 ¼
C3

C2
NðtÞ þ C1C4

C2
ð40bÞ

D3 ¼
C4

C2
NðtÞ ð40cÞ

D4 ¼
C3

C2
ð2qf Sf þ qcScÞ ð40dÞ

D5 ¼
C4

C2
ð2qf Sf þ qcScÞ ð40eÞ

D6 ¼
C4

C2
ð40fÞ

In order to derive a simplified nonlinear amplitude–frequency
equation, the expressions Eqs. (32) and (38) are inserted into Eq.
(39). Using the harmonic balance method, a complex scalar nonlin-
ear amplitude equation is then obtained as

�x2MAþ KAþ KnlAA2 ¼ Q ð41Þ

in which

M ¼ D5

D6

Z L

0
ðwðxÞÞ2 dx� D4

D6

Z L

0

@2wðxÞ
@x2 wðxÞdx ð42Þ

K ¼ C1C4

D6C2

Z L

0

@4wðxÞ
@x4 wðxÞdx� D1

D6

Z L

0

@6wðxÞ
@x6 WðxÞdx ð43Þ

Knl ¼
C3

D6C2
NðtÞ

Z L

0

@4wðxÞ
@x4 wðxÞdx� D3

D6

Z L

0

@2wðxÞ
@x2 wðxÞdx ð44Þ

and

Q ¼
Z l

0
qðtÞwðxÞdx ð45Þ
Table 2
Materiel and geometrical parameters.

Face layers Composite core Whole beam

Ef = 2.1.1011 Pa E1 = 154.5 GPa H = 0.01 m
3

3.4. Linear and nonlinear free vibration analysis

The linear version of the amplitude Eq. (41) (with Q = 0) leads to
an approximate value of the complex eigenfrequency given by

x2 ¼ K
M
¼ X2

linð1þ iglÞ ð46Þ

where gl is the loss factor and Xlin is the linear frequency. Free
vibration analysis of Eq. (41) (with Q = 0) can be achieved by deter-
mining the relationship between the frequency x2 and the ampli-
tude a = |A|.

The nonlinear frequency and loss factor are defined as follows:

x2 ¼ X2
nlð1þ ignlÞ ð47Þ
qf = 7800 kg/m E2 = 9.9 GPa b = 4H
E3 = 9.9 GPa
G12 = 7.1 GPa
t23 = 0.49
t12 = 0.35
g1 = 5.7 � 10�3

g2 = 8.5 � 10�3

g6 = 13.2 � 10�3

qc = 1566 kg/m3
3.5. Solving the frequency–amplitude equation

The nonlinear Eq. (41) can be rewritten in a simple form, and
solved when Q is not equal to zero. This Q is assumed to be real
number. The complex numbers A, M, K and Knl can be rewritten
as:
5

�x2ajMjein þ jKjaeiu þ a3jKnljeiw ¼ Qe�iv

A ¼ aeiv

: M ¼ jMjein

K ¼ jKjeiu

Knl ¼ jKnljeiw

ð48Þ

The corresponding real and imaginary terms of the above equa-
tions are given by:

�x2ajMj cosðnÞ þ ajKj cosðuÞ þ a3jKnlj cosðwÞ ¼ Q cosðvÞ
�x2ajMj sinðnÞ þ ajKj sinðuÞ þ a3jKnlj sinðwÞ ¼ �Q sinðvÞ

ð49Þ

After some of manipulations, one obtains the following
frequency–amplitude relation:

x4jMj2 � 2ax2 þ k ¼ 0 ð50Þ

where

a ¼ jMKj cosðn�uÞ þ a2jMKnlj cosðn� wÞ

k ¼ jKj2 þ a4jKnlj2 þ 2a2jKKnlj cosðu� wÞ � Q2

a2

ð51a-bÞ

The solutions of Eq. (50) are as follows:

xðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � jMj2k

qr
jMj ð52Þ

where x(a) is an amplitude dependent frequency for nonlinear
forced vibration problem.

4. Numerical results

To objectively assess the various higher order zig-zag theories
associated with the shear function f(z) models listed in Table 1, lin-
ear and nonlinear free vibration analysis (Q = 0) are carried out.
Laminated composite beams with simply supported edges are
considered. The material and geometrical properties of the struc-
ture are given in Table 2. Results are obtained with MATLAB [37]
developed for numerical application. The variation of the system
loss factor ratio gnl/gl of the laminated composite beams is studied.
Fig. 2 presents on how the various shear function models influence
the ratio gnl/gl. It can be found from these figures that the models
of Reddy [22], Touratier [23] and Affaq [24] are accurate enough to
predict satisfactory loss factor ratio gnl/gl. However, in the case of
thin core with Hf/Hc = 7, the Timoshenko model (f(z) = z) underesti-
mates the loss factor ratio (gnl/gl), since this model cannot present
exactly the transverse shear deformations. The influences of the
fibre orientation on the loss factor ratio gnl/gl are addressed in
Fig. 3. The obtained results show no great dependence between
gnl/gl and the amplitude (a/H) for stiff core with h = 0�.Unlike, in
the case of soft core (h = 90�), the dependence between gnl/gl and
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Fig. 2. Loss factor ratio gnl/gl as a function of the amplitude (a/H) for difference
models with h = 90� and L/H = 100. (a) Hf/Hc = 1/7; (b) Hf/Hc = 1 and (c) Hf/Hc = 7.
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Fig. 3. Loss factor ratio gnl/gl as a function of the vibration amplitude (a/Ht) for
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Fig. 5. Loss factor gnl/gl as a function of the vibration amplitude (a/Ht) for various
modes of vibrations (n = 1–3) with Touratier model; b = 1; Hf/Hc = 7; L/Ht = 100 and
h = 90 and; L/Ht = 100.
(a/H) is more strong at small amplitudes (a/H) 2 [0;2] and remain
unchanged at large amplitudes.

The influences of the geometrical parameter L/H on gnl/gl , are
addressed in Fig. 4. From this figure, one can note that an impor-
tant reduction of gnl/gl is observed with respect to the amplitudes
(a/H) for short beams (L/H = 10 and 50). In the case of slender
beams with (L/H = 200), a great increasing of gnl/gl is observed at
small amplitudes (a/H) 2 [0;2]. For the values of a/H = 2 and great-
er, the ratio gnl/gl remains approximately constant. Fig. 5 shows the
affect on the loss factor ratio of the first three vibration modes. As
can be observed, the ratio gnl/gl due to the second and third (n = 2
and 3) modes of vibrations, initially decreases with a/H and
increases for the first mode of vibration (n = 1).

Nonlinear forced vibration analysis is carried out in this study to
analyse the hardening changes of laminated composite beams. As
seen from Figs. 6 and 7, the geometric parameters Hf/Hc and L/H
have strong effects on the nonlinear behaviour. In theses figures,
some more pronounced hardening effects are obtained with thin
cores (Hf/Hc = 7) and for slender beams (L/H = 200). Fig. 8 shows
6
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that a softer effect can be achieved by using a soft core, in which,
the fibre orientation angle h is of 90�.
5. Conclusion

Nonlinear forced vibration analysis of laminated composite
beams was investigated. Higher order zig-zag theories were used
for the displacement field. Based on the harmonic balance method
and Galerkin procedure, a scalar complex nonlinear amplitude–fre-
quency relationship was established and a closed form analytical
solution for this problem was determined.

Parametric studies indicated that the geometrical parameters
Hf/Hc and L/H have strong effects on the loss factor ratio gnl/gl

and the hardening changes for forced vibration analysis. The mate-
rial properties of the reinforced fibre composite core have also a
great influence on the loss ratio gnl/gl and the hardening changes.
Therefore, the soft core with a fibre angle orientation of 90� is more
suitable for passive vibration control of laminated composite
beams, especially in the case of large amplitude excitations. This
research provides a good foundation fore future investigations
and contributes to the understanding of nonlinear damping prop-
erties of other type of structures under dynamic loads.
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