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Abstract—Price of Anarchy is an oft-used worst-case

measure of the inefficiency of non-cooperative decentral-

ized architectures. In practice, though, the worst-case

scenario may occur rarely, if at all. For non-cooperative

decentralized load-balancing in server farms, we show that

the Price of Anarchy is an overly pessimistic measure that

does not reflect the performance obtained in most instances

of the problem. In the case of two classes of servers, we

show that non-cooperative load-balancing provides a close-

to-optimal solution in most cases, and that the worst-case

performance given by the Price of Anarchy occurs only

in a very specific setting, namely, when the slower servers

are infinitely more numerous and infinitely slower than

the faster ones. We explicitly characterize the worst-case

traffic conditions for the efficiency of non-cooperative load-

balancing schemes, and show that, contrary to a common

belief, the worst inefficiency is in general not achieved in

heavy-traffic or close to saturation conditions.

I. INTRODUCTION

Server farms are commonly used in a variety of

applications, including cluster computing, web hosting,

scientific simulation or even the rendering of 3D com-

puter generated imagery. A central problem arising in

the management of the distributed computing resources

of a data center is that of balancing the load over the

servers so that the overall performance is optimized. In a

centralized architecture, a single dispatcher, or a routing

agent, routes incoming jobs to a set of servers so as to op-

timize a certain performance objective, such as the mean

processing time of jobs for instance. However, modern

data centers commonly have thousands of processors

and up, and it becomes difficult or even impossible to

centrally implement a globally optimal load-balancing

solution. For instance, Akamai Technologies revealed,

in march 2012, that it operates 105,000 servers [1].

Similarly, it is estimated that Google has more than

900,000 servers, and the company recently revealed that

container data center holds more than 45,000 servers in

a single facility built in 2005 [2]. The ever growing size

and complexity of modern server farms thus calls for

decentralized control schemes.

In a decentralized routing architecture, several dis-

patchers are used with each one routing a certain portion

of the traffic. There are several possible approaches

for the implementation of decentralized routing mech-

anisms. Approaches based on distributed optimization

techniques [3], [4], can be cumbersome to implement

and can have significant synchronisation and commu-

nication overheads, thus reducing the scalability of the

decentralized routing scheme.

An alternative approach is based on autonomous, self-

interested agents [5]. Such routing schemes are also

known as ”selfish routing” since each dispatcher inde-

pendently seeks to optimize the performance perceived

by the jobs it routes. This setting can be analysed within

the framework of a non-cooperative routing game. The

strategy that rational agents will choose under these

circumstances is called a Nash Equilibrium and it is such

that a unilateral deviation will not help any routing agent

in improving the performance perceived by the traffic it

routes.

Apart from the obvious gain in scalability with respect

to a centralized setting, there are wide-ranging advan-

tages to non-cooperative routing schemes: ease of de-

ployment, no need for coordination between the routing

agents that just react to the observed performances of

the servers, and robustness to failures and environmen-

tal disturbances. However, it is well-known that non-

cooperative routing mechanisms are potentially ineffi-

cient. Indeed, in general, the Nash equilibrium resulting
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from the interactions of many self-interested routing

agents with conflicting objectives does not correspond to

an optimal routing solution; hence, the lack of regulation

carries the cost of decreased overall performance.

A standard measure of the inefficiency of selfish rout-

ing is the Price of Anarchy (PoA) which was introduced

by Koutsoupias and Papadimitriou [6]. It is defined as

the ratio between the performance obtained by the worst

Nash equilibrium and the global optimal solution. Thus

the PoA measures the cost of having no central authority,

irrespective of a specific data center architecture. A value

of the PoA close to 1 indicates that, in the worst case,

the gap between a Nash Equilibrium and the optimal

routing solution is not significant, and thus that good

performances can be achieved even without a centralized

control. On the contrary, a high PoA value indicates

that, under certain circumstances, the selfish behaviour

of the dispatchers leads to a significant performance

degradation.

Several recent works have shown that non-cooperative

load-balancing1 can be very inefficient in the presence

of non-linear delay functions, see, for example, [7], [8],

[9], and [10]. We just mention two of them here. First,

Haviv and Roughgarden have considered in [7] the so-

called non-atomic scenario where every arriving job can

select the server in which it will be served. They have

shown that in this scenario the PoA corresponds to the

number of servers, implying that, in a server farm with S
servers, the mean response time of jobs can be as high as

S times the optimal one! Another important result on the

PoA was proved by Ayesta et al. in [9]. They investigate

the price of anarchy of a load balancing game with a

finite number, say K, of dispatchers, and with a price per

unit time to be paid for processing a job, which depends

on the server. They prove that for a system with two or

more servers, the price of anarchy is of the order of
√
K,

independently of the number of servers, implying that

when the number of dispatchers grows large, the PoA

grows unboundedly. The fact that the Nash equilibrium

can be very inefficient has paved the way to a lot of

research on mechanism design that aims at coming up

with Nash equilibria that are efficient with respect to the

centralized setting [11], [12], [5].

In this paper, we adopt the view that the worst-

case analysis (PoA) of the inefficiency of selfish routing

is overly pessimistic and that high PoAs are obtained

1We shall use the terms load-balancing and routing interchange-

ably.

in pathological instances that hardly occur in practice.

For example, in [7], the worst-case architecture has

one server whose capacity is much larger (tending to

infinity) compared to that of the other servers. It is

doubtful that such asymmetries will occur in data-centers

where processors are more than likely to have similar

characteristics.

While the architecture of a data-center is more or less

fixed, the incoming traffic volume can vary as a function

of time. Thus, for applications such as data-centers, it

seems more appropriate to compare the performance of

selfish routing and the centralized setting for different

traffic profiles and a fixed data-center architecture (num-

ber of servers and their capacities). For this reason, we

define the inefficiency as the performance ratio between

the worst-case Nash equilibrium and the global optimal.

The worst-case case is taken over all possible traffic

profiles that the routing agents can be asked to route. As

is true of the PoA, inefficiency can take values between 1
and ∞. A higher value of inefficiency indicates a worse

performance of selfish routing compared to centralized

routing. As opposed to the PoA, the inefficiency depends

on the parameters (the server speeds and the number of

servers in our case) of the architecture. By calculating

the worst possible inefficiency, one retrieves the PoA.

The main contributions in this work are the following:

• For an arbitrary architecture in the system, we char-

acterize the traffic conditions (or load) associated

with the inefficiency. Contrary to classical queueing

theory, we show that the inefficiency is in general

not achieved in heavy-traffic or close to saturation

conditions. In fact, we show that the inefficiency

is close to 1 in heavy-traffic. We also provide

examples for which the inefficiency is obtained for

fairly low values of the utilization rate.

• In the case of two server classes, we show that the

inefficiency is obtained when selfish routing uses

only one class of servers and is marginally using

the second class of servers. This scenario was used

in [7], [9] to obtain a lower bound on the PoA for

their models. We give a formal proof on why this is

indeed the worst-case scenario for selfish routing.

Further, we obtain a closed-form formula for the

inefficiency which in particular depends only on the

ratio of the number of servers in each class and

on the ratio of the capacities of each class (but

not on the total nor on their capacities). When the

number of servers is large, we also show that the
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PoA is equal to K

2
√
K−1

, where K is the number of

dispatchers.

• We then show that the inefficiency is very close to

1 in most cases, and that it approaches the known

upper bound (given by the PoA) only in a very

specific setting, namely, when the slower servers

are infinitely more numerous and infinitely slower

than the faster ones.

The rest of the paper is organized as follows. In section

II we describe the model. In section III we show that the

inefficiency of selfish routing does not occur in heavy-

traffic. In section IV, we give more precise results for

server farms with two classes of servers. We give the

expression for the load which leads to inefficiency, and

the corresponding value of the inefficiency. Finally, the

main conclusions of this work are presented in section

V.

II. PROBLEM FORMULATION

We consider a non-cooperative routing game with

K dispatchers and S Processor-Sharing servers. Denote

C = {1, . . . ,K} to be the set of dispatchers and

S = {1, . . . , S} to be the set of servers. Jobs received

by dispatcher i are said to be jobs of stream i.

Server j ∈ S has capacity rj . It is assumed that servers

are numbered in the order of decreasing capacity, i.e., if

m ≤ n, then rm ≥ rn . Let r = (rj)j∈S denote the

vector of server capacities and let r =
∑

n∈S rn denote

the total capacity of the system.

Jobs of stream i ∈ C arrive to the system according

to a Poisson process and have generally distributed

service-times. We do not specify the arrival rate and the

characteristics of the service-time distribution due to the

fact that in an M/G/1 − PS queue the mean number

of jobs depends on the arrival process and service-time

distribution only through the traffic intensity, i.e., the

product of the arrival rate and the mean service-time.

Let λi be the traffic intensity of stream i. It is assumed

that λi ≤ λj for i ≤ j. Moreover, it will also be

assumed that the vector λ of traffic intensities belongs to

the following set: Λ(λ̄) =
{

λ ∈ IRK :
∑

i∈C λi = λ
}

,
where λ̄ denotes the total incoming traffic intensity. It

will be assumed throughout the paper that λ̄ < r, which

is the necessary and sufficient condition to guarantee the

stability of the system.

Let xi = (xi,j)j∈S denote the routing strategy of

dispatcher i, with xi,j being the amount of traffic it sends

towards server j. Dispatcher i seeks to find a routing

strategy that minimizes the mean sojourn times of its

jobs, which, by Little’s law, is equivalent to minimizing

the mean number of jobs in the system as seen by this

stream. This optimization problem can be formulated as

follows:

minimize Ti(x) =
∑

j∈S

xi,j
rj − yj

(ROUTE-i)

subject to
∑

j∈S
xi,j = λi, i = 1, . . . ,K, (1)

0 ≤ xi,j ≤ rj , ∀j ∈ S, (2)

where yj =
∑

k∈C xk,j is the traffic offered to server j.

Note that the optimization problem solved by dispatcher

i depends on the routing decisions of the other dispatch-

ers since yj = xi,j +
∑

k 6=i xk,j . We let Xi denote the

set of feasible routing strategies for dispatcher i, i.e., the

set of routing strategies satisfying constraints (1)-(2). A

vector x = (xi)i∈C belonging to the product strategy

space X =
⊗

i∈C Xi is called a strategy profile.

A Nash equilibrium of the routing game is a strategy

profile from which no dispatcher finds it beneficial to

deviate unilaterally. Hence, x ∈ X is a Nash Equilibrium

Point (NEP) if xi is an optimal solution of problem

(ROUTE-i) for all dispatcher i ∈ C.

Let x be a NEP for the system with K dispatchers.

The global performance of the system can be assessed

using the global cost

DK(λ, r) =
∑

i∈C
Ti(x) =

∑

j∈S

yj
rj − yj

, (3)

where the offered traffic yj are those at the NEP. The

above cost represents the mean number of jobs in the

system. Note that when there is a single dispatcher, we

have a single dispatcher with λ1 = λ̄. The global cost

can therefore be written as D1(λ̄, r) in this case.

We shall use the ratio between the performance ob-

tained by the Nash equilibrium and the global optimal

solution as a metric in order to assess the inefficiency of a

decentralized scheme with K dispatchers and S servers.

We define the inefficiency as the performance ratio under

the worst possible traffic conditions, namely:

inefficiency ISK(r) = sup
λ∈Λ(λ̄),λ̄<r

DK(λ, r)

D1(λ̄, r)
. (4)
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The rationale for this definition is that in practice the

system administrator controls neither the total incom-

ing traffic nor how it is split between the dispatchers,

whereas the number of servers and their capacities are

fixed. Therefore it makes sense to consider the worst

traffic conditions for the inefficiency of selfish routing,

provided the system is stable.

The PoA for this system as defined in [9] can be

retrieved by looking at the worst inefficiency, i.e.,

PoA(K,S) = sup
r

ISK(r). (5)

III. INEFFICIENCY IS NOT IN HEAVY-TRAFFIC

The main difficulty in determining the behaviour of

the inefficiency stems from the fact that for most cases

there are no easy-to-compute explicit expressions for the

NEP. A first simplification results from the following

theorem which was proved in one of our previous works

[9]. It states that, among all traffic vectors with total

traffic intensity λ̄, the global cost DK(λ, r) achieves its

maximum when all dispatchers control the same fraction

of the total traffic. Formally,

Theorem 1 ([9]):

DK(λ, r) ≤ DK(
λ̄

K
e, r). ∀λ ∈ Λ(λ̄),

where e is the all-ones vector.

Thus, we have identified the traffic vector in the set Λ(λ̄)
which has the worst-ratio of global cost at the NEP to

the global optimal cost. It follows from the above result

that

Corollary 1:

ISK(r) = sup
λ̄<r

DK( λ̄
K
e, r)

D1(λ̄, r)
. (6)

Routing games in which players have exactly the

same strategy set are known are symmetric games. These

games belong to the class of potential games [13], that is,

they have the property that there exists a function, called

the potential such that the NEP can be obtained as the

solution of an optimization problem with the potential as

the objective. This property considerably simplifies the

computation of the NEP. Another important consequence

of the above results is that the inefficiency depends only

the total traffic intensity and not on individual traffic

flows to each of the dispatcher.
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Fig. 1. Evolution of the ratio of social costs for K = 2 and K = 5
as the utilization rate ranges from 0% to 100%.

Another consequence of theorem 1 is that the in-

efficiency of decentralized routing increases with the

number of dispatchers, that is,

Lemma 1:

ISK(r) ≤ ISK+1(r), ∀K ≥ 1. (7)

Proof: We have for all λ̄ < r, DK( λ̄
K
e, r) =

DK+1(
(

λ̄
K
e, 0
)

, r) ≤ DK+1(
λ̄

K+1 e, r), where the last

inequality follows from theorem 1. It yields

sup
λ̄<r

DK( λ̄
K
e, r)

D1(λ̄, r)
≤ sup

λ̄<r

DK+1(
λ̄

K+1 e, r)

D1(λ̄, r)
,

i.e., IK(r) ≤ IK+1(r).

Before going further, let us take a look at the ratio
DK( λ̄

K
e,r)

D1(λ̄,r)
as a function of the load ρ = λ̄/r, as is shown

in figure 1 for two and five dispatchers. The data-center

characteristics are the following: 200 servers of speed 6,

100 servers of speed 3, 300 servers of speed 2, and 200
servers of speed 1.

It can be observed that as the load increases the

ratio goes through peaks and valleys, and finally it

moves towards 1 as the load moves towards saturation.

In the numerical experiments, we noted that the peaks

corresponded to the total traffic intensity when selfish

routing started to use one more server. Moreover, just

after these peaks the number of servers used by selfish
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routing and the centralized one was the same. A similar

behaviour was observed on different sets of experiments.

In general, it is not easy to make formal the above

observation, that is to say, there are no simple expres-

sions for the value of loads which corresponds to the

peaks and the valleys. However, in heavy-traffic, it helps

to observe that both selfish and centralized routing will

be using the same number of servers. Then, in order to

show that heavy-traffic conditions are not inefficient, it

is sufficient to show that the ratio decreases with load

when both the setting use the same number of servers.

Proposition 1: If the total traffic intensity λ̄ is such

that centralized and the decentralized settings use the

same number of servers (more than one), then the ratio

of social costs DK( λ̄
K
e)/D1(λ̄, r) is decreasing with λ̄.

Proof: See appendix B-A.

In the above result we exclude the case of one server

so as to obtain a stronger result. If both the settings use

just one server, then the ratio remains 1, which is non-

increasing.

For a sufficiently high load all the servers will be used

by both settings in order to guarantee the stability of

the system. It then follows that in a server farm with

an arbitrary number of servers and with arbitrary server

capacities, heavy-traffic regime is not inefficient.

In fact, we can prove a stronger result which states

that the inefficiency of the heavy-traffic regime is close

to 1, that is, in heavy-traffic both the settings have similar

performance. Formally,

Theorem 2: For a fixed K < ∞,

lim
λ̄→r

DK( λ̄
K
e)

D1(λ̄, r)
= 1.

Proof: See appendix B-B.

It is important that the number of dispatcher be finite for

the above result to hold. If the number of dispatchers is

infinite, as in the case of non-atomic games, the above

limit may be a value larger than 1.

This result is important because it is widely believed

that the maximum inefficiency of the decentralized rout-

ing scheme is obtained in heavy-traffic regime. Theorem

2 shows that this belief is false. As can be observed

in figure 1, the worst case traffic conditions can occur

at low or moderate utilization rates (in fact, the worst

total traffic intensity can be arbitrary close to 0 if the

server capacities are sufficiently close from each other).

In heavy-traffic, even though the cost in both the settings

will grow, the rate of growth is the same which results

in a ratio close to 1. This result is in sheer contrast

with classical queueing theory as well. For example, in

a M/M/1 queue the mean sojourn time is characterized

by a factor (1− ρ)−1, thus, as the load approaches one

the mean sojourn time explodes.

The characterization of the exact traffic vector which

results in ISK proves to be a difficult task. As a first

attempt, in the following section we restrict ourselves to

two server classes, which turns out to be more tractable

than more number of classes.

IV. INEFFICIENCY FOR TWO-SERVER CLASSES

Consider the case of two classes of servers: there are

S1 ”fast” servers of capacity r1, and S2 = S−S1 ”slow”

servers, each one of capacity r2 < r1
2. The behaviour

of the ratio of social costs is illustrated in figure 2 in

the case of a server farm with S1 = 100 fast servers

of capacity r1 = 100, and S2 = 300 slow servers of

capacity r2 = 10. We plot the evolution of the ratio

DK/D1 as the load on the system ranges from 0% to

100% for K = 2, K = 5. It was observed that for low
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Fig. 2. Evolution of the ratio of social costs for K = 2 and K = 5
as the utilization rate ranges from 0% to 100%.

loads both the settings used the fast servers. The ratio in

this regime was 1. After a certain point, the centralized

2In the case r2 = r1, it is easy to see that the NEP is always an

optimal routing solution, whatever the total traffic intensity.
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setting started to use the slow servers as well, and the

ratio increased with the load until the point when the

decentralized setting also started to use the slow servers.

From this point on, the ratio decreased with increase in

load.

We shall now characterize the point where the ratio

starts to increase and where the peak occurs. Define

λ̄OPT = S1
√
r1(

√
r1 −

√
r2), (8)

and

λ̄NE = S1r1



1− 2
√

(K − 1)2 + 4K r1
r2

− (K − 1)



 .

(9)

The following lemma gives the conditions on λ̄ under

which the centralized setting and the decentralized one

use only the fast class of servers, or both classes.

Lemma 2: λ̄OPT < λ̄NE , and

1) if λ̄ ≤ λ̄OPT , both settings use only the ”fast”

servers,

2) if λ̄OPT ≤ λ̄ ≤ λ̄NE , the decentralized setting

uses only the ”fast” servers, while the centralized

one uses all servers,

3) if λ̄ > λ̄NE , both settings use all servers.

Proof: See appendix C-A.

Since λ̄OPT < λ̄NE , a consequence of lemma 2 is

that the decentralized setting always uses a subset of

the servers used by the centralized one. We immediately

obtain expressions of the social cost in the centralized

and decentralized settings, as given in corollary 2.

Corollary 2: For the centralized setting, if λ̄ ≤ λ̄OPT

D1(λ̄, r) = λ̄/(r1 −
λ̄

S1
),

otherwise

D1(λ̄, r) =

[

λ̄

√

r1
r2

+ S1y1

(

1−
√

r1
r2

)]

1

r1 − y1
,

(10)

where y1 =
√
r1

λ̄−S2

√
r2(

√
r2−

√
r1)

S1

√
r1+S2

√
r2

, and y2 = (λ̄ −
S1y1)/S2 are the loads on each fast server and on

each slow server in the case λ̄ ≥ λ̄OPT , respectively.

Similarly, if λ̄ ≤ λ̄NE

DK(λ̄, r) = λ̄/(r1 −
λ̄

S1
),

and

DK(λ̄K , r) =
1

2

2
∑

j=1

Sj

[

√

(K − 1)2+4Krjγ(K)

− (K + 1)

]

otherwise.

Proof: See appendix C-B.

In lemma 2, we identified three intervals, namely,

[0, λ̄OPT ), [λ̄OPT , λ̄NE), [λ̄NE , r), each one correspond-

ing to a different set of servers used by the two settings.

In proposition 2, we describe how the ratio of the social

costs evolves in each of these three intervals.

Proposition 2: The ratio DK(λ̄, r)/D1(λ̄, r) is

(a) equal to 1 for 0 ≤ λ̄ ≤ λ̄OPT ,

(b) strictly increasing over the interval
(

λ̄OPT , λ̄NE
)

,

(c) and strictly decreasing over the interval
(

λ̄NE , r
)

.

Proof: See appendix C-C.

Moreover, the ratio of social costs has the following

property.

Lemma 3: The ratio DK(λ̄, r)/D1(λ̄, r) is a continu-

ous function of λ̄ over the interval [0, r).

Proof: See appendix C-D.

We can now state the main result of this section.

Theorem 3: The inefficiency is worst when the total

arriving traffic intensity equals λ̄NE , namely,

ISK(r) =
DK(λ̄NE , r)

D1(λ̄NE , r)
, (11)

Proof: It was shown in lemma 3 that

DK(λ̄, r)/D1(λ̄, r) is a continuous function of λ̄
over the interval [0, r). Proposition 2.(a) states that

the ratio is minimum for 0 ≤ λ̄ ≤ λ̄OPT . For λ̄ in
(

λ̄OPT , λ̄NE
)

, we know from proposition 2.(b) that

this ratio is strictly increasing, which implies that

ISK(r) ≥ DK(λ̄NE , r)/D1(λ̄
NE , r) by continuity. Since,

according to proposition 2.(c), the ratio is decreasing

over the interval (λ̄NE , r), we can conclude that its

maximum value is obtained for λ̄ = λ̄NE .

Theorem 3 fully characterizes the worst case traffic

conditions for a server farm with two classes of servers.

It states that the worst inefficiency of the decentralized
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Fig. 3. The evolution of the ratio of social costs for K = 2 and

K = 5 with respect to ρ in a server farm with 3 server classes.

setting is achieved when (a) each dispatcher controls the

same amount of traffic and (b) the total traffic intensity

is such that the decentralized setting only starts using the

slow servers.

The behaviour described by proposition 2 can easily

be observed in figure 2.

For more than two classes of servers, we were unfortu-

nately not able to prove the above results concerning the

worst traffic conditions. Nevertheless, we conjecture that

a similar behaviour happens also in this case. As another

illustration of this behaviour, in figure 3 we plot the ratio

of social costs as a function of the load on the system,

for a server farm with 3 server classes (and for K = 2,

K = 5) with S1 = 100 fast servers of capacity r1 = 30,

S2 = 200 intermediate servers of capacity r2 = 20 and

S3 = 100 slow servers of capacity r3 = 10.

A. Inefficiency for a given architecture

We now give the expression for the inefficiency of self-

ish routing for data-centers with two classes of servers.

Using theorem 3 we assume the worst traffic conditions

for the inefficiency of selfish routing, i.e., the symmetric

game obtained for λ̄ = λ̄NE .

Proposition 3:

ISK(r) =
1

2

√

(K − 1)2 + 4Kβ − (K + 1)
( 1

α
+
√
β)2

1

α
+ 2β√

(K−1)2+4Kβ−(K−1)

− ( 1
α
+ 1)

(12)

where β = r1
r2

≥ 1 and α = S1

S2
> 0.

Fig. 4. Evolution of the inefficiency as a function of α and β for

K = 5 dispatchers.

Proof: According to theorem 3, we have ISK(r) =
DK(λ̄NE , r)/D1(λ̄

NE , r). The proof is then obtained

after some algebra by using the expressions for

DK(λ̄NE , r) and D1(λ̄
NE , r) given in corollary 2, and

with the expression for λ̄NE given in lemma 2.

The inefficiency ISK(r) does not depend on the total

number of servers S, but only on the ratio of server ca-

pacities and on the ratio of the numbers of servers of each

type. In figure 4, we plot the inefficiency IK(r) of the

non-cooperative routing scheme with K = 5 dispatchers

as the parameters α and β change. It can be observed

that even for unbalanced scenarios (α small and β large),

the inefficiency is always fairly close to 1, indicating

that, even in the worst case traffic conditions, the gap

between the NEP and the optimal routing solution is not

significant.

With slight abuse of notation, let us denote the RHS

of (12) by IK(α, β).

Lemma 4: The function IK(α, β) is decreasing with

α.

Proof: See appendix C-E.

A consequence of the above result is that given the

ratio of server speeds in a data-center, the inefficiency

is largest when there is one fast server and all the other

servers are slow. Selfish routing has the tendency to use

the fast servers more than the slow ones. When there is

just one fast server, its performance tends to be the worst

as compared to that of the centralized routing which

reduces its cost by sending traffic to the slower ones

as well. Thus, in decentralized routing architectures, it

is best to avoid server configurations with this particular
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kind of asymmetry.

B. Price of Anarchy

The PoA is defined as the worst possible inefficiency

when the server capacities are varied. Then, from (4),

(5) and proposition 3,

PoA(K,S) = sup
α,β

IK(α, β).

From lemma 4 and the fact that, for a fixed S, α can

take values in { 1
S−1 ,

2
S−2 , . . . , S − 1}, we can deduce

that

PoA(K,S) = sup
β

IK

(

1

S − 1
, β

)

. (13)

While there is no simple expression for the PoA in

terms of K and S, we can nonetheless derive a certain

number of properties from the preceding set of results.

Proposition 4: The Price of Anarchy has the follow-

ing properties.

1) For fixed K, PoA(K,S) is increasing in S; and

2) for a fixed S, PoA(K,S) is increasing in K.

Proof: For fixed K and for every β, from lemma 4

and (13),

IK

(

1

S − 1
, β

)

≤ IK

(

1

S
, β

)

≤ sup
β

IK

(

1

S
, β

)

= PoA(K,S + 1),

where the last equality follows from (13). Taking the

supremum over β in the above inequality, we obtain, for

a fixed K,

PoA(K,S) ≤ PoA(K,S + 1),

which proves the first property.

For a fixed S and β, from lemma 1,

IK

(

1

S − 1
, β

)

≤ IK+1

(

1

S − 1
, β

)

≤ sup
β

IK+1

(

1

S − 1
, β

)

= PoA(K + 1, S),

Again, taking the supremum over β in the above inequal-

ity, we obtain, for a fixed S,

PoA(K,S) ≤ PoA(K + 1, S),

101 102 103 104
1

1.5

2

2.5

3

3.5

4
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P
oA

 

 

K=2

K=10

K=30

K=50

Fig. 5. The Price of Anarchy as a function of the number of servers

for different values of the number of dispatcher

which proves the second property.

In figure 5, the PoA is plotted as a function of S
for different values of K. It is observed that this value

remains modest even when the number of servers is

10, 000.

We now give an upper bound the PoA. For this, we

first need the following result.

Lemma 5: For a server farm with two server classes

and K dispatchers,

lim
S→∞

PoA(K,S) =
K

2
√
K − 1

. (14)

Proof: See appendix C-F.

Proposition 5: For a server farm with two server

classes and K dispatchers, and for all K and S,

PoA(K,S) ≤ min

(

K

2
√
K − 1

, S

)

. (15)

Proof: From proposition 4, PoA(K,S) is increas-

ing with S. Combining this fact with lemma 5, we can

conclude that

PoA(K,S) ≤ K

2
√
K − 1

.

Moreover, it was shown in [7] that, for the Wardrop case

which is the limit of K → ∞, PoA(∞, S) ≤ S. Thus,

PoA(K,S) ≤ S.

We can deduce the desired result from the above two

inequalities.
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In server farms with large number of servers, it follows

from lemma 5 that the PoA will be K

2
√
K−1

. In [9], it was

shown that this value was a lower bound on the PoA.

The model in that paper had server dependent holding

cost per unit time. The lower bound was obtained in

an extreme case with negligible (tending to 0) holding

cost on the fast servers and the decentralized setting

marginally using the slow servers. Our present results

show that the lower bound is indeed tight. Moreover,

even in a less asymmetrical setting of equal holding costs

per unit time, one can construct examples in which the

PoA is attained.

The PoA obtained in the non-atomic case in [7] comes

into play when there are few servers and a relatively

large number of dispatcher. However, for data-centers the

configuration is reversed : there are a few dispatchers

and a large number of servers. In this case it is more

appropriate to use the upper bound given in (15).

V. CONCLUSIONS

Price of Anarchy is an oft-used worst-case measure of

the inefficiency of non-cooperative decentralized archi-

tectures. In spite of its popularity, we have shown that

the Price of Anarchy is an overly pessimistic measure

that does not reflect the performance obtained in most

instances of the problem. For an arbitrary architecture in

the system, we have seen that, contrary to a common

belief, the inefficiency is in general not achieved in

heavy-traffic or close to saturation conditions. Surpris-

ingly, we have shown that inefficiency might be achieved

at arbitrarily low load. In the case of two classes of

servers, we have explicitly characterized the traffic con-

ditions (or load) associated with the inefficiency. This

has allowed us to obtain a refined upper bound on the

Price of Anarchy and to show that non-cooperative load-

balancing has close-to-optimal performances in most

cases. The worst-case performances given by the Price of

Anarchy occur only in a very specific setting, namely,

when the slower servers are infinitely more numerous

and infinitely slower than the faster ones. In future

research we plan to generalize some of the results to

an arbitrary number of classes of servers. It will also

be worthwhile to investigate what happens when the

number of dispatches grows to infinity, that is, when

the equilibrium traffic pattern is characterized by the so-

called Wardrop equilibrium.
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APPENDIX A

SOME KNOWN RESULTS

The results in this section are taken from [9]. Since

they are cited several times in the present work, we

choose to present them here for its easy perusal. Define

the function Wj(K, z) = 1{z∈[ 1

rj
, 1

rj+1
)}·

(

j
∑

s=1

2rs
√

(K − 1)2+4Krsz−(K − 1)
−

j
∑

s=1

rs+λ̄

)

,

and let W (K, z) =
∑

j∈S Wj(K, z).

The following proposition gives the solution of the

symmetric game.

Proposition 6: The subset of servers that are used at

the NEP is S∗(K) = {1, 2, . . . , j∗(K)}, where j∗(K)
is the greatest value of j such that W (K, 1/rj+1) ≤
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0 < W (K, 1/rj). The equilibrium flows are xi,j(K) =
yj(K)/K, i ∈ C, j ∈ S∗(K), where the offered traffic

of server j is given by

yj(K) = rj

√

(K − 1)2 + 4Kγ(K)rj − (K + 1)
√

(K − 1)2 + 4Kγ(K)rj − (K − 1)
,

(16)

with γ(K) the unique root of W (K, z) = 0 in [ 1
r1
,∞).

APPENDIX B

PROOFS OF THE RESULTS IN SECTION III

A. Proof of proposition 1

Before proving proposition 1, we first establish closed-

form expressions for the value of the social costs in

the centralized and decentralised settings. Recall that we

assume a server farm with S servers with decreasing

values of the capacities, i.e, ri ≤ rj , if i > j. The result

is stated in the following lemma.

Lemma 6: Let n be the number of servers that the

centralized setting uses, for n = 1 . . . , S, then

D1(λ̄, r) =

(

∑n
j=1

√
rj

)2

∑n
j=1 rj − λ̄

− n. (17)

Similarly, if the decentralized setting uses n servers, we

have

DK(λ̄, r) =
1

2

n
∑

j=1

[

√

(K − 1)2+4Krjγ(K)− (K + 1)

]

.

(18)

Proof: We first prove the results for the centralized

setting. When the centralized setting uses n servers

proposition 6 states that in this case, we have

yj(1) = rj

(

1− 1
√

γ(1)
√
rj

)

, j = 1, . . . , n, (19)

and it yields

yj(1)

rj − yj(1)
=
√

γ(1)
√
rj − 1, j = 1, . . . , n. (20)

We thus obtain

D1(λ̄, r) =

n
∑

j=1

yj(1)

rj − yj(1)
=
√

γ(1)

n
∑

j=1

√
rj − n.

(21)

According to proposition 6, γ(1) is the solution of
1√
γ(1)

∑n
j=1

√
rj =

∑n
j=1 rj − λ̄ and we thus obtain

√

γ(1) =
∑n

j=1
√
rj/(

∑n
j=1 rj − λ̄). It yields

D1(λ̄, r) =
(
∑n

j=1
√
rj)

2

∑n
j=1 rj − λ̄

− n, (22)

as claimed.

Let us now consider the decentralized setting. If the

number of servers used is n, then (16) gives that

1− yj(K)

rj
=

2
√

(K − 1)2 + 4Kγ(K)rj − (K − 1)
,

(23)

for j = 1, . . . , n.

With (16) and (23), we obtain

DK(λ̄, r) =

n
∑

j=1

yj(K)

rj

(

1− yj(K)

rj

)−1

=
1

2

n
∑

j=1

[

√

(K − 1)2 + 4Kγ(K)rj − (K + 1)
]

,

which yields the desired result.

We show in the following lemma an important prop-

erty to prove proposition 1.

Lemma 7: Let ak =
√

(K − 1)2 + 4Kγ(K)rk +
(K − 1), then for all i > j,

aj

ai
is increasing. with λ̄,

where

Proof: First, we define bj =
√

(K − 1)2 + 4Kγ(K)rj and we see that
bj
bi

is

increasing if
(K−1)2+4Kγ(K)rj
(K−1)2+4Kγ(K)ri

is increasing because
bj
bi

is positive.

(

(K − 1)2 + 4Kγ(K)rj
(K − 1)2 + 4Kγ(K)ri

)′

= 4Kγ(K)′(K−1)2(rj−ri) ≥ 0

due to rj ≥ ri if i ≥ j. We have proved that
(K−1)2+4Kγ(K)rj
(K−1)2+4Kγ(K)ri

is increasing and that implies that
bj
bi

is increasing.
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We also observe that b′j ≥ b′i, if i > j:

b′j ≥ b′i ⇐⇒ 2Kγ(K)rj
bj

≥ 2Kγ(K)ri
bi

⇐⇒ 1
√

(K−1)2

r2
j

+ 4Kγ(K)
rj

≥ 1
√

(K−1)2

r2
i

+ 4Kγ(K)
ri

and this inequality holds since rj ≥ ri when i > j.

As b′j = a′j and aj = bj + (K − 1), for all the values

of j, we are able to state that if
bj
bi

is increasing, then
aj

ai

is increasing.

(

aj
ai

)′
> 0 ⇐⇒

b′jai − b′iaj
a2i

> 0

⇐⇒ b′jbi − b′ibj + (K − 1)(b′j − b′i) > 0

and we know the inequality is satisfied because
(

bj
bi

)′
>

0 and b′j > b′i.

We can now prove proposition 1.

Proof of proposition 1: We show that when both

settings use n servers (n = 1, . . . , S), then the ratio DK

D1

is decreasing with λ̄.

First, we modify this fraction with the values of DK
and D1 described for the case of arbitrary number of
servers in lemma 6.

DK

D1

=

1

2

∑n

j=1

[

√

(K − 1)2+4Krjγ(K)− (K + 1)
]

−n+
√

γ(1)
∑n

j=1

√
rj

=
−n+ 1

2

∑n

j=1

[

√

(K − 1)2+4Krjγ(K)− (K − 1)
]

−n+
√

γ(1)
∑n

j=1

√
rj

=
f1 + f2

f1 + g2

where we define f1 =
−n√
γ(1)

, g2 =
∑n

j=1
√
rj and f2 =

1

2
√

γ(1)

∑n
j=1

[

√

(K − 1)2+4Krjγ(K)− (K − 1)
]

.

(

DK

D1

)′
< 0 ⇐⇒ f ′

1 (g2 − f2) + f ′
2

DK

γ(1)
< 0

We observe that f1 is increasing with λ̄, due to being

γ(1) increasing with λ̄, and D1 ≤ DK implies that g2 ≤
f2. Therefore, we show that f2 is decreasing and we

conclude that DK

D1
is decreasing.

According to what has been shown in lemma 6 and

using the definition of γ of proposition 6, we have the

following equality when both settings use n servers:

1

γ(1)
=

∑n
j=1 rj − λ̄
∑n

j=1
√
rj

=
1

∑n
j=1

√
rj

n
∑

s=1

2rs
as

where as =
√

(K − 1)2 + 4Kγ(K)rs − (K − 1).

Taking into account this expression we rewrite f2 as

follows:

f2 =
1

∑n
j=1

√
rj

n
∑

j=1

aj

n
∑

s=1

rs
as

=
1

∑n
j=1

√
rj





n
∑

j=1

rj +

n
∑

j=1

∑

i>j

rj
ai
aj

+ ri
aj
ai





We define as =
√

(K − 1)2 + 4Kγ(K)rs + (K − 1)
and we notice that if we multiply and divide as by as it

yields

as =
4Kγ(K)rs

as

So f2 gets modified as follows with this property:

f2 =
1

∑2
j=1

√
rj





n
∑

j=1

rj +

n
∑

j=1

∑

i>j

rj
ai
aj

+ ri
aj
ai





Now, we show that rj/a
2
j > ri/a

2
i for all i > j

because rk
a2
k

is decreasing with k since we can write it in

the following way

rk
a2k

=









√

(K − 1)2

rk
+ 4Kγ(K) +

K − 1√
rk





−1



2

and rk decreases with k.

To finish, we see that f2 is decreasing with λ̄.

f ′
2 =

1
∑2

j=1
√
rj

n
∑

j=1

∑

i>j

[

(a′jai − a′iaj)

(

ri
a2i

− rj
a2j

)]

< 0

and we conclude that this is true because lemma 7 states

that
aj

ai
is increasing with λ̄ if i > j (so that a′jai−a′iaj >

0) and we have just observed that rj/a
2
j > ri/a

2
i when

i > j.
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B. Proof of theorem 2

Proof: First, we know that in heavy-traffic all the

servers are used, so we consider that S servers are used

in both settings.

Now, we observe that in heavy-traffic γ(K), as defined

in proposition 6, tends to ∞, and thus the following

approximation is satisfied for any value of K and rj :

√

(K − 1)2 + 4Kγ(K)rj − (K − 1) ≈ 2
√

Kγ(K)rj
(24)

From (24) and from the definition of γ(K), we obtain

√

Kγ(K) =

∑S
j=1

√
rj

∑S
j=1 rj − λ̄

(25)

Now, using (25) and (24), we show that DK = D1 in

heavy-traffic:

DK =
1

2

S
∑

j=1

[

√

(K − 1)2 + 4Kγ(K)rj − (K + 1)

]

= −S

+
1

2

S
∑

j=1

[

√

(K − 1)2 + 4Kγ(K)rj − (K − 1)

]

= −S +
√

Kγ(K)

S
∑

j=1

√
rj

= −S +
(
∑S

j=1
√
rj)

2

∑S
j=1 rj − λ̄

= D1,

according to lemma 6.

APPENDIX C

PROOFS OF THE RESULTS IN SECTION IV

A. Proof of lemma 2

Proof: Let us first prove that λ̄OPT < λ̄NE . We

have,

λ̄OPT < λ̄NE

⇐⇒ √
r1r2 >

2r1
√

(K − 1)2 + 4Kr1/r2 − (K − 1)

⇐⇒
√

(K − 1)2 + 4Kr1/r2 >
√
r1 [2

√
r1 + (K − 1)

√
r2]

⇐⇒ 4Kr1 > 4r1 + 4(K − 1)
√
r1r2

⇐⇒ r1 > r2,

and we thus conclude that λ̄OPT < λ̄NE .

We now turn to the second part of the proof. Accord-

ing to proposition 6, the centralized setting uses only the

fast servers (S1 servers of capacity r1) for all values of

λ̄ such that W2(1,
1
r2
) ≤ 0. It yields

λ̄ ≤ (S1r1 + S2r2)−
√
r2(S1

√
r1 − S2

√
r2)

which is equivalent to λ̄ ≤ λ̄OPT . Similarly, we know

from proposition 6, that the decentralized setting starts

using the second group of servers if and only if

λ̄ ≥ S1r1 + S2r2

−
S1+S2
∑

s=1

2rs
√

(K − 1)2+4Krs/r2 − (K − 1)

≥ S1r1 + S2r2

−
2
∑

s=1

Ss
2rs

√

(K − 1)2+4Krs/r2 − (K − 1)

= S1r1 − S1
2r1

√

(K − 1)2+4Kr1/r2 − (K − 1)
,

which is equivalent to λ̄ ≥ λ̄NE , as claimed.

B. Proof of corollary 2

Proof: We first prove the results for the centralized

setting. For λ̄ < λ̄OPT , we know from lemma 2 that the

centralized setting uses only the first group of servers,

and we thus have

D1(λ̄, r) =

S1
∑

j=1

λ̄
S1

r1 − λ̄
S1

=
λ̄

r1 − λ̄
S1
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For λ̄ ≥ λ̄OPT , we know from lemma 2 that the

centralized setting uses the second group of servers.

According to the KKT conditions,

r1
(r1 − y1)2

=
r2

(r2 − y2)2
(26)

where λ̄ = S1y1 + S2y2. After some algebra, it yields

y1 =
√
r1
λ̄− S2

√
r2(

√
r2 −

√
r1)

S1
√
r1 + S2

√
r2

(27)

With the constraint of S1y1 + S2y2 = λ̄ and (26) we

obtain

D1 = S1
y1

r1 − y1
+ S2

y2
r2 − y2

= S1
y1

r1 − y1
+ (λ̄− S1y1)

1

r2 − y2

= S1
y1

r1 − y1
+ (λ̄− S1y1)

√

r1
r2

1

r1 − y1

=

[

λ̄

√

r1
r2

+ S1y1

(

1−
√

r1
r2

)]

1

r1 − y1

where y1 is given in (27).

Let us now consider the decentralized setting. For

λ̄ < λ̄NE , we know from lemma 2 that the decentralized

setting uses only the servers of the first class, and we thus

have

DK(λ̄, r) =
λ̄

r1 − λ̄
S1

.

For λ̄ ≥ λ̄NE , all the servers are used and (16) gives

that for all the servers of each class

1− yj(K)

rj
=

2
√

(K − 1)2 + 4Kγ(K)rj − (K − 1)
.

(28)

With (16) and (28), we obtain

DK(λ̄, r) =

S1+S2
∑

j=1

yj(K)

rj

(

1− yj(K)

rj

)−1

=
1

2

S1+S2
∑

j=1

[

√

(K − 1)2 + 4Kγ(K)rj − (K + 1)

]

=
1

2

2
∑

j=1

Sj

[

√

(K − 1)2 + 4Kγ(K)rj − (K + 1)

]

,

which yields the desired result.

C. Proof of proposition 2

We shall break-down the proof of the proposition

in three parts according to the three intervals which

define the behaviour of the ratio of the social costs. In

the following two lemmata, we show that the ratio is

increasing in one of the intervals and decreasing in the

other.

Lemma 8: The ratio
DK(λ̄,r)

D1(λ̄,r)
is strictly increasing over

the interval
(

λ̄OPT , λ̄NE
)

.

Proof: In order to prove that
DK(λ̄,r)

D1(λ̄,r)
is an increasing

function of λ̄ for λ̄ ∈ (λ̄OPT , λ̄NE) we shall prove the

following equivalent statement.

D′
K(λ̄, r)

DK(λ̄, r)
>

D′
1(λ̄, r)

D1(λ̄, r)
.

Since λ̄ < λ̄NE , we have DK(λ̄, r) = λ̄

r1− λ̄

S1

and

D′
K(λ̄, r) =

r1
(r1 − λ̄)2

=
r1

λ̄(r1 − λ̄
S1
)
DK(λ̄, r)

from which we deduce that

D′
K(λ̄, r)

DK(λ̄, r)
=

r1
λ̄(r1 − λ̄)

=
r1
λ̄2

DK(λ̄, r). (29)

For the centralized setting, λ̄ ≥ λ̄OPT means that

D1(λ̄, r) = S1
y1

r1 − y1
+ S2

y2
r2 − y2

According to (26), the derivative of D1 gets modified

as follows:

D′
1(λ̄, r) = S1

r1y
′
1

(r1 − y1)2
+ S2

r2y
′
2

(r2 − y2)2
(30)

= (S1y
′
1 + S2y

′
2)

r1
(r1 − y1)2

(31)

The constraint S1y1 + S2y2 = λ̄ implies that S1y
′
1 +

S2y
′
2 = 1 and hence

D′
1(λ̄, r) =

r1
(r1 − y1)2



14

It yields

D′

1(λ̄, r)

D1(λ̄, r)
=

r1
(r1 − y1)2

1
[

D1(λ̄, r)
]2D1(λ̄, r)

=
r1

[

λ̄
√

r1
r2

+ S1y1

(

1−
√

r1
r2

)]2 D1(λ̄, r)

As a result, for λ̄ ∈ (λ̄OPT , λ̄NE), D′

K(λ̄,r)

DK(λ̄,r)
> D′

1(λ̄,r)

D1(λ̄,r)
is

equivalent to
r1
λ̄2

DK(λ̄, r) >
r1

[

λ̄
√

r1
r2

+ S1y1

(

1−
√

r1
r2

)]2 D1(λ̄, r)

and

DK(λ̄, r)

D1(λ̄, r)
>

λ̄2

[

λ̄
√

r1
r2

+ S1y1

(

1−
√

r1
r2

)]2

Now, we assume that there exist λ̄ ∈ (λ̄OPT , λ̄NE)

such that
DK(λ̄,r)

D1(λ̄,r)
is not increasing with λ̄.

Since
DK(λ̄,r)

D1(λ̄,r)
≥ 1, it results

1 ≤ DK(λ̄, r)

D1(λ̄, r)
≤ λ̄2

[

λ̄
√

r1
r2

+ S1y1

(

1−
√

r1
r2

)]2

With (27), it yields

1 ≤ λ̄

λ̄
√

r1
r2

+ S1
√
r1

λ̄−S2

√
r2(

√
r2−

√
r1)

S1

√
r1+S2

√
r2

(

1−
√

r1
r2

)

≤ λ̄(S1
√
r1 + S2

√
r2)

λ̄
√
r1(S1 + S2)− S1S2

√
r1(

√
r2 −

√
r1)2

This is equivalent to

λ̄
√
r1(S1 + S2)− S1S2

√
r1(

√
r2 −

√
r1)

2 ≤ λ̄(S1

√
r1 + S2

√
r2)

and after rearranging both sides of the expression, we

arrive at the following condition

λ̄ ≤ S1
√
r1(

√
r1 −

√
r2) = λ̄OPT

that it is a contradiction since λ̄ ∈ (λ̄OPT , λ̄NEP ).

Lemma 9: The ratio
DK(λ̄,r)

D1(λ̄,r)
is strictly decreasing

over the interval
(

λ̄NE , r
)

.

Proof: In the interval
(

λ̄NE , r
)

we know that all servers

are used. Thus, according to proposition 1, the ratio
DK(λ̄,r)

D1(λ̄,r)
is decreasing as a function of λ̄.

We can now prove proposition 2.

Proof of proposition 2: The proof directly results

from corollary 2, and lemmata 8 and 9.

D. Proof of lemma 3

Proof: First, we state that this function is continuous

in [0, λ̄OPT ), (λ̄OPT , λ̄NE) and (λ̄NE , r) which follows

from the definitions of DK and D1 in corollary 2.

Now, we show that DK

D1
is continuous in λ̄OPT and

λ̄NE because

• limλ̄→λ̄OPT−

DK

D1
(λ̄) = limλ̄→λ̄OPT+

DK

D1
(λ̄) =

DK

D1
(λ̄OPT ) = 1

• limλ̄→λ̄NE−

DK

D1
(λ̄) = limλ̄→λ̄NE+

DK

D1
(λ̄) =

DK

D1
(λ̄NE) =

λ̄NE

r1−λ̄NE
[

λ̄NE
√

r1
r2

+S1y
NE
1 (1−√

r1r2)

]

1

r1−yNE
1

where yNE
1 =

√
r1

λ̄NE−S2

√
r2(

√
r2−

√
r1)

S1

√
r1+S2

√
r2

E. Proof of lemma 4

Proof: First, we modify IK(α, β) of the definition

of inefficiency as follows:

IK(α, β) =
1

2

(x− 2)( 1
α
+ 2β

x
)

1
α
(2
√
β − 1− 2β

x
) + β(1− 2

x
)

where x =
√

(K − 1)2 + 4Kβ − (K + 1).

We now show that the derivative of IK(α, β) with

respect to α is always negative.

∂IK(α, β)

∂α
=

1

2

(

1
α

)′ [
β(1− 2

x
)− 2β

x
(2
√
β − 1− 2β

x
)
]

[

1
α
(2
√
β − 1− 2β

x
) + β(1− 2

x
)
]2

=
1

2

(

1
α

)′ (
1− 2β

x

)2

[

1
α
(2
√
β − 1− 2β

x
) + β(1− 2

x
)
]2 < 0

because the derivative of 1
α

is negative.

F. Proof of lemma 5

Proof: From (13),

lim
S→∞

PoA(K,S) = sup
β

lim
S→∞

IK

(

1

S − 1
, β

)

.

In order to compute the limit of the PoA, we shall

first compute the limit of IK and then we shall compute

the supremum.
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Let x =
√

(K − 1)2 + 4Kβ−(K−1). We can rewrite

(12) as

IK

(

1

S − 1
, β

)

=
1

2

x− 2
(S−1+

√
β)2

S−1+ 2β

x

− S

In order to evaluate the limit of the IK , it is sufficient

to compute the limit of the denominator of the above

expression. For large S,

(S − 1 +
√
β)2

S − 1 + 2β
x

≈ (S − 1)2 + 2
√
β(S − 1) + β

(S − 1)
(

1 + 2β
(S−1)x

)

≈
(

S − 1 + 2
√

β +
β

(S − 1)

)

·
(

1− 2β

(S − 1)x

)

≈ S − 1 + 2
√

β − 2β

x
,

and

(S − 1 +
√
β)2

S − 1 + 2β
y

− S ≈ 2
√

β − 1− 2β

x
.

Now that we have computed the limit of IK as S →
∞, we shall compute the supremum with respect to β. In

order to do this, we shall show that the limit computed

previously is an increasing function of β.

Denote FK(β) = limS→∞ IK(1/(S−1), β). We shall

show that it is an increasing function of β.

We first write FK(β) as follows:

FK(β) =
1

2

y − (K + 1)

2
√
β − 1− y+K−1

2K

where y =
√

(K − 1)2 + 4Kβ.

We now show that the derivative of FK(β) with

respect to β is positive.

∂FK(β)
∂β

> 0

⇐⇒ y′
[

2
√
β − 1− y+K−1

2K

]

− (y − (K + 1))
(

1√
β
− 1

2K
y′
)

> 0

⇐⇒ 2y′(
√
β − 1) − (y − (K + 1)) 1√

β
> 0

⇐⇒ 4K(
√
β−1)
y

− (y − (K + 1)) 1√
β
> 0

⇐⇒ 4K
√
β(

√
β− 1)−

[

(K − 1)2 + 4Kβ − (K + 1)y
]

> 0

⇐⇒ 4Kβ − 4K
√
β −

[

(K + 1)2 + 4K(β − 1)− (K + 1)y
]

> 0

⇐⇒ −4K(
√
β − 1) + (K + 1)(y − (K + 1)) > 0

⇐⇒ −4K(
√
β − 1) + (K + 1)4K(β−1)

y+K+1 > 0

⇐⇒ −1 + (K + 1) (
√
β+1)

y+K+1 > 0

⇐⇒
√
β(K + 1)− y > 0

⇐⇒ β(K+1)2−[(K+1)2+4K(β−1)]√
β(K+1)+y

> 0

⇐⇒ (β − 1)(K + 1)2 − 4K(β − 1) > 0
⇐⇒ (K − 1)2(β − 1) > 0

due to being β > 1 (if β = 1, then r1 = r2 and then

they belong to the same class).


