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1. Introduction

Buckling and post-buckling of elastic columns is an old topic
since the pioneering work of Euler [1], who first investigated the
geometrically exact post-buckling behavior of axially loaded
columns using elliptic integrals. Most of the published results
on this stability topic concern the behavior of a single structural
element that may include complex kinematics over the cross
section (with higher-order shear models for instance), or various
constitutive laws. However, the consideration of the non-linear
behavior of multiple interacting columns has been probably less
studied due to the difficulty associated with the geometrical
constraints induced by the columns’ interaction [2]. This problem
is of interest for a wide class of engineering applications in
civil and aeronautic engineering, and also in a micromechanics
perspective. For instance, understanding the complex interaction
chanics Division, Department
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between beams or columns can be very useful in the area of
fibrous networks where the fibers are modeled as flexible beams.
A possible mode of interaction in fibrous networks results from
the presence of crosslinks that can be modeled as rigid connec-
tions between two beams at their point of intersection. This
interaction can be seen as multiple concentrated kinematic
constraints, forcing displacements to be the same at the cross-
link locations. A specific distributed kinematic constraint which is
of interest in this paper has also relevant applications in civil
engineering, and also in many fields of natural sciences. The
buckling of structural systems composed of parallel interacting
columns belongs to this class of distributed kinematic constraint.
A structural model, incorporating such constraints can be useful
to understand the geological folding due to tectonic compression
in multilayered sedimentary rocks (see for instance [3]). In the
field of civil engineering, layered structural elements are often
used and can be modeled by the same kind of parallel, kinema-
tically constrained beams. Layered structural elements with
interlayer slip are typically encountered in timber structures,
where wooden beams are made up of layers assembled by means
of nailing, bolting or gluing adhesives (with a soft shear modulus).
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Fig. 1. Geometric parameters of a sandwich beam.

Fig. 2. Geometric parameters of a partially composite beam.
Partially composite structures built up by sub-elements of
different materials and connected by shear connectors to form an
interacting unit, such as timber–concrete or steel–concrete ele-
ments, are widely used in building engineering. In the case of a
flexible connection, the analysis procedure requires consideration
of the interlayer slip between the sub-elements, leading to the
partial interaction concept. For a detailed literature background
on the partial composite theory, the readers are referred to
Girhammar and Gopu [4] and Girhammar and Pan [5]. Möhler
[6] obtained the buckling formulae of axially loaded partially-
composite columns, using the Euler–Bernoulli model for each
column. The lateral buckling problem of partially composite
beam-columns subjected to both transverse and axial loading
was investigated by Girhammar and Gopu [4] and Girhammar
and Pan [5] and others for general boundary conditions. Xu and
Wu [7] generalized the results of Girhammar and Gopu [4] by
using Timoshenko’s beam theory based on Engesser’s theory for
each beam-column and a uniform shear model distribution over
the cross section. The work of Krawczyk et al. [8] should be
mentioned for geometric non-linear layered beam theory includ-
ing shear effects for each column, and based on a co-rotational
Finite Element formulation. Cas et al. [9] investigated the buckling
of layered wood columns neglecting the shear effect. Schnabl and
Planinc [10] specifically studied the extensibility effect in the
Euler–Bernoulli based solution of partial composite columns and
demonstrated the importance of the choice of boundary condi-
tions on the buckling loads. Ranzi et al. [11] investigated the non-
linear geometrical behavior of the partially composite column and
included some eccentric loading leading to pre-bending effects.
More recently, Schnabl and Planinc [12] numerically character-
ized the buckling of a partially composite column with some non-
uniform shear effect introduced from Reissner theory (which can
be reformulated in terms of a generalized Haringx’s model).
Challamel and Girhammar [13] obtained the buckling load of
the Engesser based and the Haringx based non-uniform shear
model, and derived simple engineering shear formula for struc-
tural applications. Most of these studies are focusing on the
linearized buckling analysis, even though the non-linear frame-
work is formally presented in for instance the studies of Cas et al.
[9], Krawczyk et al. [8] or Ranzi et al. [11].

Budd et al. [3] studied a similar problem adding an additional
Winkler foundation, with application to parallel folding in layers
of papers. The paper of Vinogradov and Derrick [14] can be also
mentioned as they studied the post-buckling of extensible com-
posite layered columns without the additional in-plane slip
behavior for the connection between the sub-elements. Vinogra-
dov and Derrick [14] also investigated the effect of additional
eccentricities on the bending coupling of asymmetric composite
layered columns. In the present paper, it is chosen to assume the
inextensible property of each structural element for a simplifica-
tion of the problem. The shear effect is concentrated in the layer
connection between the two inextensible columns.

Another potential application of studies dealing with two
interacting parallel columns is the modeling of the post-buckling
behavior of sandwich columns. In fact, sandwich columns com-
posed of three layers, two thin faces and a thick weak shear core
are also concerned by this study [15–17]. There is a constitutive
analogy between the uniform shear behavior of the soft core of
the sandwich column, and the shear layer of the partially
composite beam. The static in-plane behavior of sandwich beams
is well established by Hoff [18]. The in-plane buckling problem of a
three-layer sandwich column was studied by Hoff and Mautner [19]
(see e.g. also [18,20,21] or [22]). The linear stability analysis of
sandwich or partially composite columns has been well documented
but the large displacement analysis of this problem still merits some
complementary studies. More recently, Frostig [23] considered the
2

elastica problem of a sandwich column with axial extensibility.
Symmetrically unstable post-bifurcation branches have been
numerically observed for this problem. A related problem is the
post-buckling behavior of solid elastic columns including shear
effects. Such shear effects have been taken into account for buckling
of solid beams in the studies of Huddleston [24], Sheinman and
Adam [25], Goto et al. [26], Huang and Kardomateas [27] and Lee
et al. [28] where stable post-bifurcation branches have been mainly
noticed. However, imperfection sensitivity (symmetrically unstable
bifurcation) can be eventually observed in presence of shear, as
shown by Atanackovic and Spasic [29] or Beghini et al. [30]. For the
rigorous elastica study of extensible homogeneous solid columns,
reference is made to the works of Goto et al. [26] and Magnuson
et al. [31].

It appears that the post-buckling of kinematically constrained
parallel columns still merits some further investigation. The paper
is focused on the geometrically exact elastic stability of two kinema-
tically constrained flexible columns, with some possible applications
to partially composite or sandwich columns. The partially composite
column is composed of two inextensible, elastically connected sub-
columns. Each sub-column is modeled by the Euler–Bernoulli beam
theory and connected to each other via a linear constitutive law
for the interlayer slip. The paper discusses the validity of parallel
and translational beam assumptions with respect to the kinematic
constraint.
2. Kinematics of the partially composite column

The state of the composite or sandwich column is specified by
the in-plane cross-sectional rotation y(s) where s is the curvi-
linear abscissa. Each sub-domain is assumed to be composed of a
column of width bi with a depth hi , as defined in Figs. 1 and 2. For



sandwich columns, it is often assumed that the width of each
column is identical, i.e. bi is equal to b (Fig. 1). The geometric
parameters defining a typical composite beam with two sub-
elements of different geometry and materials are shown in Fig. 2.
The subscripts ‘1’ and ‘2’ refer to the top and bottom elements of
the cross-section, respectively. Therefore, the kinematics of the
composite beam is completely specified by the two rotation fields
y1(s) and y2(s) in each beam, sA[0;L] where L is the length of each
beam. The bending stiffnesses of each column are denoted by
EI1 and EI2.

The stability of two shear connected Euler–Bernoulli inexten-
sible columns is investigated. The engineering problem can be
defined in Fig. 3. Clamped-free boundary conditions are specifi-
cally studied in this paper, as an archetypical structural problem.
The composite column is loaded by two independent load para-
meters (P1,P2) acting at the centroid of each column section at
the free end. The length of each column is denoted by L. The
sub-elements are connected together by means of some kind of
discrete shear connectors or a weak shear layer, which are
assumed to produce uniformly distributed slip forces or interlayer
shear stresses. The shear connector, giving a shear layer force per
unit length versus the slip, or shear displacement behavior, is
linear elastic with a constant slip modulus k. Frictional effects and
uplift at the shear interface are neglected. Full composite action
(infinite slip modulus, k-N) and non-composite action (zero slip
modulus, k-0) represent upper and lower bounds for the partial
composite action, respectively. The post-buckling configuration of
this composite column is schematically illustrated in Fig. 3.

The centroidal axis of each column in the deformed config-
uration can be expressed with respect to its position angle (see
Fig. 3) as follows:

x1ðsÞ ¼
R s

0 cosy1ðtÞdt

y1ðsÞ ¼
R s

0 siny1ðtÞdt
and

x2ðsÞ ¼
R s

0 cosy2ðtÞdt

y2ðsÞ ¼
R s

0 siny2ðtÞdt

((
ð1Þ

where the variable t is the curvilinear abscissa (parametric curve).
xi(s) is the vertical coordinate along the x-axis whereas yi(s)
denotes the horizontal coordinate, iA{1;2}. It can be shown that
the slip-displacement u(s) along the connected column interface
Fig. 3. Post-buckling behavior of a partially composite column.
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can be expressed as a function of the two unknown rotations y1(s)
and y2(s) as

uðsÞ ¼

Z s

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½xn0

2 ðtÞ�
2þ½yn0

2 ðtÞ�
2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½xn0

1 ðtÞ�
2þ½yn0

1 ðtÞ�
2

q� �
dt ð2Þ

where the star notation ðxn

i ðsÞ,y
n

i ðsÞÞ is relative to the projection of
the point considered at the centroid of each column over the
delimitation curve at the contact interface. These projections are
calculated from simple geometrical considerations as

xn

1ðsÞ ¼ x1ðsÞ�
h1
2 siny1ðsÞ

yn

1ðsÞ ¼ y1ðsÞþ
h1
2 cosy1ðsÞ

and
xn

2ðsÞ ¼ x2ðsÞþ
h2
2 siny2ðsÞ

yn

2ðsÞ ¼ y2ðsÞ�
h2
2 cosy2ðsÞ

8<
:

8<
: ð3Þ

where hi is the depth of each layer. Inserting the expression of
Eq. (3) into the slip displacement of Eq. (2) leads to the simple
formula:

uðsÞ ¼
h1

2
y1ðsÞþ

h2

2
y2ðsÞ ð4Þ

The shear interlayer force per unit length q(s) versus the slip or
shear displacement u(s) is linear elastic with a constant slip
modulus, k, expressed as

qðsÞ ¼ kuðsÞ ¼
k

2
ðh1y1ðsÞþh2y2ðsÞÞ ð5Þ

The connection between each sub-column leads to some
kinematic constraints as the rotations of layers are constrained
to each other via:

(ðs1,s2Þ=y1ðs1Þ ¼ y2ðs2Þ ð6Þ

The same methodology is presented in Kryžanowski et al. [32],
with some different assumptions for the identification of the
corresponding abscissa. In the geometrically exact framework,
the columns are exactly parallel, but are not translational. The
concept of parallel curves is well referenced in the book of Yates
[33]. Since parallel curves have common normals, they have a
common evolute. Leibniz [34] was the first to consider parallel
curves at the end of the XVIIth century, prompted no doubt by the
involutes of Huygens. The involute of a circle was discussed
and utilized by Huygens in connection with his study of clocks
without pendulums for service on ocean ships [35]. In the
structural problem studied in this paper, each column is parallel
to the each other with distance h0 between the centroidal axis of
each sub-column. The relationship between the two curves is
written as

x2 ¼ x1�
h0ffiffiffiffiffiffiffiffiffiffiffiffi

x02
1
þy02

1

p y01

y2 ¼ y1þ
h0ffiffiffiffiffiffiffiffiffiffiffiffi

x02
1
þy02

1

p x01
with

x01 ¼ cosy1

y01 ¼ siny1

(8>><
>>: ð7Þ

leading to the geometrical constraint

x2 ¼ x1�h0 siny1

y2 ¼ y1þh0 cosy1

(
ð8Þ

The rotations in each layer are equal at the following abscissas:

s2 ¼

Z s1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x022 ðtÞþy022 ðtÞ

q
dt with s1 ¼

Z s1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x021 ðtÞþy021 ðtÞ

q
dt ð9Þ

Developing Eq. (9), the rotation constrained can be expressed
using the abscissa relationship:

s2 ¼ s1�h0y1ðs1Þ ð10Þ

The constraint of the geometrically exact problem, based on
the theory of parallel curves, finally gives

y2ðs�h0y1ðsÞÞ ¼ y1ðsÞ ð11Þ

The constraint Eq. (11) shows that y2 is a functional of y1,
leading to a theoretical one-single variable problem (expressed



for instance with y1 or y2). Such a kinematic constraint is
mathematically complex and not often studied in the literature
as it generates some distributed spatial delay between the two
rotation functions.

The zero order theory approximates the parallel curves with a
translation as (translational assumption)

y2ðsÞ ¼ y1ðsÞ ð12Þ

This zero order can be understood as the zero order asymptotic
expansion of the non-linear constraint for sufficiently small
rotation values. This assumption is generally adopted for genera-
tion of most numerical results presented in the literature on the
buckling behavior of partially composite columns without shear
effect (see for instance [4,5] or [9]). This assumption can be
relaxed when taking into account the specific shear effect of the
partially composite column (see for instance [12] or [13]). Con-
tinuing with the classification of the different approximated
theories, a first-order theory would be expressed by

y1ðsÞ51) y1ðsÞ ¼
y2ðsÞ

1þh0y
0

2ðsÞ
or y1ðsÞ ¼ y2ðsÞð1�h0y

0

2ðsÞÞoy2ðsÞ

ð13Þ

The total potential energy of this structural problem can be
written as

U½y1,y2� ¼

Z L

0

1

2
EI1y

02
1 þ

1

2
EI2y

02
2 þ

1

2
k

h1

2
y1þ

h2

2
y2

� �2

ds

�P1 L�

Z L

0
cosy1ðsÞds

� �
�P2 L�

Z L

0
cosy2ðsÞds

� �
ð14Þ

with the geometrically exact constraints given by Eq. (11).
3. Theoretical model—fundamental equations

3.1. Approximation of translational columns

The translational column theory (y1(s)¼y2(s)¼y(s)) can be
considered as the zero order approximation of the geometrically
exact parallel column theory. In the case of translational column
theory (y1(s)¼y2(s)¼y(s)), the total potential energy of the
structural problem can be written as

U½y� ¼
Z L

0

1

2
EI0y

02
þ

1

2
kðh0yÞ2ds�P L�

Z L

0
cosyðsÞds

� �
with

EI0 ¼ EI1þEI2, P¼ P1þP2 and h0 ¼
h1þh2

2
ð15Þ

The sum of the two axial forces P1 and P2 is equal to the total
axial load denoted by P. EI0 is the total bending stiffness, and h0 is
the distance between the two theoretically parallel columns. With
this simplified formulation, the slip u(s) is simply equal to h0y(s),
a result already anticipated by Budd et al. [3] for two identical
layers. The main assumptions of this structural model are the
axial and the shear inextensibility of each column. It is also
assumed that the constraint between each column is a transla-
tional constraint. As pointed out in the above part, this strong
assumption is a simplification of the exact problem. Note that
the assumption of translational columns is generally assumed in
the literature, even for large displacement analysis (see for
instance [9] for the general geometrically non-linear framework,
even if Cas et al. [9] only presented results for linearized buckling
values). The governing equations of the problem are obtained
from variational arguments (see the book of Buttazzo et al. [36]
for general calculus of variation applied to one-dimensional media).
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The stationary of the total potential energy is written as

dU½y� ¼
Z L

0
EI0y

0dy0 þkh2
0ydy�P sinydyds¼ 0 ð16Þ

The non-linear differential equation is then obtained after an
integration by part as

EI0y
00
�kh2

0yþP siny¼ 0 ð17Þ

with the essential and natural boundary conditions given by

½EI0y
0dy�L0 ¼ 0 ð18Þ

For the clamped-free case studied in this paper, the boundary
conditions are

yð0Þ ¼ y0ðLÞ ¼ 0 ð19Þ

The mathematical problem will now be expressed in dimen-
sionless format with the following dimensionless parameters:

s¼
s

L
, b¼

PL2

EI0
and k¼ kh2

0L

EI0
ð20Þ

where s is the dimensionless abscissa, sA ½0;1�, b is the dimen-
sionless load parameter and k is the dimensionless connection
parameter. Full composite action (k-N) and non-composite
action (k-0) represent upper and lower bounds for the partial
composite action, respectively. The elastica problem of Euler [1] is
covered in the case of non-composite action. For the partially
composite column, k is a dimensionless connection parameter
that depends upon the shear connection parameter and the
column characteristics. This is the same for the sandwich analogy
where the dimensionless parameter k directly depends on the
shear stiffness of the soft core and characteristics of the faces.

The non-linear differential equation Eq. (17) is finally obtained
in dimensionless form as

d2y
ds2
¼�bsinyþky ð21Þ

with the boundary conditions

yðs¼ 0Þ ¼
dy
ds
ðs¼ 1Þ ¼ 0 ð22Þ

3.2. Buckling load—linearized problem

The initial buckling load can be calculated from the linearized
equations given by

d2y
ds2
þðb�kÞy¼ 0 with yðs¼ 0Þ ¼

dy
ds
ðs¼ 1Þ ¼ 0 ð23Þ

whose solution is expressed in the trigonometric format as

yðsÞ ¼ Acos
ffiffiffiffiffiffiffiffiffiffi
b�k

p
sþBsin

ffiffiffiffiffiffiffiffiffiffi
b�k

p
s ð24Þ

The buckling mode of the linearized system is then classically
obtained from the boundary conditions as

yðsÞ ¼ asin
p
2

s
� �

ð25Þ

where a is the rotation at the end of the column. The dimension-
less buckling load bc is then calculated as

bc ¼
p2

4
þk ð26Þ

This dimensionless buckling load exactly corresponds to the
solution of Hoff and Mautner [19] for sandwich column or Möhler
[6] for inextensible partially composite columns (infinite axial
stiffness). This is also the solution of Girhammar and Gopu [4] or
Girhammar and Pan [5] in case of infinite axial stiffness (inexten-
sibility assumption).



Table 1
Numerical values of the symmetrically stable post-buckling path.

k 0 10 100 1000

d a a a a
0.01 0.282 0.282 0.280 0.265

0.02 0.397 0.397 0.391 0.363

0.03 0.485 0.484 0.474 0.436

0.04 0.558 0.556 0.541 0.498

0.05 0.622 0.619 0.600 0.552

0.075 0.755 0.750 0.718 0.665

0.10 0.864 0.858 0.814 0.758

0.125 0.959 0.949 0.894 0.839

0.15 1.042 1.030 0.965 0.911
3.3. Post-buckling behavior

The post-buckling behavior is now investigated from the geo-
metrically exact equations obtained in the approximated frame-
work of translational columns. The following methodology is
identical to the one of the usual non-composite elastica investigated
by Euler [1]—see also [37] or [38]. The non-linear differential
equation Eq. (21) is first multiplied by the derivative of the rotation:

d2y
ds2

dy
ds
¼�bsiny

dy
ds
þky dy

ds
ð27Þ

An integration of Eq. (27) gives the first-order differential
equation

1

2

dy
ds

� �2

¼ bcosyþ
k
2
y2
þC ð28Þ

It is possible to express the integration constant with respect
to the rotation of the column end, denoted by a

yðs¼ 1Þ ¼ a) C ¼�bcosa�k
2
a2 ð29Þ

Therefore, the first order differential equation can be also
expressed as

dy
ds
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bðcosy�cosaÞþkðy2

�a2Þ

q
ð30Þ

It can be checked that the square root is well defined for the post-
buckling path characterized by a pitchfork bifurcation-type, where

bZbc ¼
p2

4
þk ð31Þ

The term appearing in the square root of Eq. (30) is then
developed in asymptotic expansion

2bðcosy�cosaÞþkðy2
�a2Þ � 2b

a2

2
�
y2

2

!
þkðy2

�a2Þ

Z
p2

4
ða2�y2

ÞZ0 ð32Þ

Therefore, the square root is well defined for the post-buckling
path considered. The differential equation can be inverted in

ds

dy
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bðcosy�cosaÞþkðy2

�a2Þ

q ð33Þ

The post-buckling behavior can be finally expressed in the
integral format:

1¼

Z a

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bðcosy�cosaÞþkðy2

�a2Þ

q dy ð34Þ

Eq. (34) is also equivalent to the following formulae:

1¼

Z a

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bðsin2

ða=2Þ�sin2
ðy=2ÞÞþkðy2

�a2Þ

q dy ð35Þ

3.4. Approximation of translational columns, closed form solutions

In case of non-composite action, the dimensionless parameter
k is vanishing and the integral equation is simplified in

2
ffiffiffi
b

p
¼

Z a

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2
ða=2Þ�sin2

ðy=2Þ
q dy ð36Þ

The following change of variable can be considered to simplify
the integration procedure:

p¼ sin
a
2

and psinj¼ sin
y
2

ð37Þ
5

In case of non-composite action (k¼0), the elastica problem is
governed by a complete integral of the first kind, from

ffiffiffi
b

p
¼

Z p
2

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�p2 sin2j

q dj¼ KðpÞ with p¼ sin
a
2

ð38Þ

3.5. Numerical results

The computation of the non-linear boundary value problem is
based on the MATLAB program bvp4c, a finite difference code that
implements the three-stage Lobatto IIIa formula. This is a colloca-
tion formula and the collocation polynomial provides a C1-
continuous solution that is fourth-order accurate, uniformly in
the constant interval domain (Kierzenka and Shampine [39]).
Mesh selection and error control are based on the residual of the
continuous solution. Lobatto IIIa methods have been considered
for boundary value problems due to their good stability proper-
ties [40]. Such a numerical method has been already used by
Challamel [41] for initially post-buckling of an elastic column on a
gradient foundation, within a geometrically exact framework. The
non-linear second order differential equation Eq. (21) with the
boundary conditions Eq. (22) (clamped-free boundary conditions)
can be presented as a first-order differential equation:

d

ds

Xð2Þ

Xð1Þ

 !
¼
�bsinXð1Þ þkXð1Þ

Xð2Þ

 !
with

Xð2Þ

Xð1Þ

 !
¼

y0

y

 !
and

Xð1Þð0Þ ¼ Xð2Þð1Þ ¼ 0; Xð1Þð1Þ ¼ a ð39Þ

The pitchfork bifurcation is characterized by a dimensionless
load parameter b greater than the dimensionless buckling load bc.
A dimensionless positive factor b can be introduced for the
parametric numerical study

b¼ bcð1þdÞ with dZ0 ð40Þ

The numerical values are given in Table 1. The pitchfork
bifurcation, composed of two stable symmetrical branches, is
clearly shown in Figs. 4 and 5. The normalized post-buckling
branches are seen to be clearly affected by the dimensionless
connection parameter k.
4. Asymptotic expansion of the post-buckling path

The post-buckling behavior of the partially composite column
is investigated using an asymptotic expansion as given by

b¼ b0þeb1þe2b2þe3b3þe4b4þe5b5þ � � �

y¼ W0þeW1þe2W2þe3W3þe4W4þe5W5þ � � �

(
ð41Þ

where e is a small parameter whose meaning will be developed
later. The methodology is the same as the one presented by
Thompson and Hunt [42] for the purely elastica problem (see
also [43]). The non-linear differential equation is composed of
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a sinusoidal term that can be developed using this asymptotic
expression

siny¼ sinW0 1�
W2

1

2
e2�W1W2e3þ

W4
1

24
�
W2

2

2
�W1W3

!
e4

"

þ
W3

1W2

6
�W1W4�W2W3

!
e5

#
þcosW0

"
W1eþW2e2

þ W3�
W3

1

6

!
e3þ W4�

W2
1W2

2

!
e4

þ W5�
W1W

2
2

2
�
W2

1W3

2
þ

W5
1

120

!
e5

#
þ � � � ð42Þ

The fundamental path is characterized by no prebuckling
deformation

W0 ¼ 0 ð43Þ

This leads to the simplification of the trigonometric term as

siny¼ W1eþW2e2þ W3�
W3

1

6

!
e3þ W4�

W2
1W2

2

!
e4

þ W5�
W1W

2
2

2
�
W2

1W3

2
þ

W5
1

120

!
e5þ � � � ð44Þ
6

The term b sin y is then calculated as

bsiny¼ b0W1eþðb0W2þb1W1Þe2þ b0W3�b0

W3
1

6
þb1W2þb2W1

!
e3

þ b0W4�b0

W2
1W2

2
þb1W3�b1

W3
1

6
þb2W2þb3W1

!
e4

þ b0W5�b0

W1W
2
2

2
�b0

W2
1W3

2
þb0

W5
1

120
þb1W4�b1

W2
1W2

2

þb2W3�b2

W3
1

6
þb3W2þb4W1

!
e5þ � � � ð45Þ

Inserting this asymptotic expansion into the non-linear differ-
ential equation Eq. (21) and considering each power of the small
parameter e leads to the following system of five differential
equations:

W001þðb0�kÞW1 ¼ 0

W002þðb0�kÞW2 ¼�b1W1

W003þðb0�kÞW3 ¼�b1W2�b2W1þb0
W3

1
6

W004þðb0�kÞW4 ¼�b1W3�b3W1�b2W2þb1
W3

1
6 þb0

W2
1W2

2

W005þðb0�kÞW5 ¼�b1W4�b3W2�b2W3�b4W1þb2
W3

1
6 þb0

W1W
2
2

2 þb0
W2

1W3

2 þb1
W2

1W2

2 �b0
W5

1
120

8>>>>>>>>><
>>>>>>>>>:

ð46Þ

associated with the boundary conditions for iA{1y5}:

Wið0Þ ¼ 0 and W0ið1Þ ¼ 0 ð47Þ

with the normalization procedure (see also [42]) defined by

W1ð1Þ ¼ 1 and Wið1Þ ¼ 0 for iZ2 ð48Þ

The first differential equation gives the linearized buckling
mode

W1ðsÞ ¼ sin
p
2

s
� �

with b0 ¼ bc ¼
p2

4
þk ð49Þ

For symmetrical reasons, it can be shown that some terms are
vanishing in the asymptotic expansion as follows:

for kZ1, W2kðsÞ ¼ 0 and b2k�1 ¼ 0 ð50Þ

The asymptotic characterization of the post-buckling path
up to the fifth order is then reduced to the resolution of two
differential equations

W003þ p2

4 W3 ¼�b2W1þb0
W3

1
6

W005þ p2

4 W5 ¼�b2W3�b4W1þb2
W3

1
6 þb0

W2
1W3

2 �b0
W5

1
120

8<
:
with W1ðsÞ ¼ sin

p
2

s
� �

ð51Þ

The third-order term y3 is obtained from the resolution of a
linear differential equation

W003þ
p2

4
W3 ¼

b0

8
�b2

� �
sin

p
2

s
� �

�
b0

24
sin

3p
2

s

� �
ð52Þ

The general solution of such a differential equation is written as

W3ðsÞ ¼ Acos
p
2

s
� �

þBsin
p
2

s
� �

þ
s

p b2�
b0

8

� �
cos

p
2

s
� �

þ
b0

48p2
sin

3p
2

s

� �
ð53Þ

Including the boundary conditions and the normalization
condition leads to the following solution:

W3ðsÞ ¼
b0

48p2
sin

p
2

s
� �

þsin
3p
2

s

� �� �
and b2 ¼

b0

8
ð54Þ

The fifth-order term in the differential equation W3 is obtained
from the resolution of a linear differential equation Eq. (51) which
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can be written as

W005þ
p2

4
W5 ¼

1

4

b2
0

96p2
þ
b0

96
�b4

!
sin

p
2

s
� �

�
b0

320
sin

3p
2

s

� �

�
1

4

b2
0

96p2
þ

1

16

b0

120

!
sin

5p
2

s

� �
ð55Þ

Inserting the boundary conditions leads to the fourth-order
loading term:

b4 ¼
b0

96
1þ

b0

4p2

� �
ð56Þ

The normalization procedure has been based on

a¼ yð1Þ ¼ e ð57Þ

Hence, the small parameter e has the meaning of the tip
rotation a. The asymptotic expansion of the loading parameter is
then written as

b
bc

¼ 1þ
a2

8
þ
a4

96

17

16
þ

k
4p2

� �
þ � � � ð58Þ

It can be seen that the second-order term related to the
normalized dimensionless load is independent of the connection
parameter k that only appears on the fourth-order term. Of
course, the buckling load bc is an increasing function of the
connection parameter k. The post-buckling path of the non-
composite column (elastica problem) is written as

k¼ 0)
b
bc

¼ 1þ
a2

8
þ

17

16

a4

96
þ . . . ð59Þ

Finally, the post-buckling path can be also expressed using the
parameter d as

d¼
b
bc

�1¼
a2

8
þ
a4

96

17

16
þ

k
4p2

� �
þ � � � ð60Þ

The validity of this asymptotic expansion with respect to the
exact numerical solution is given in Fig. 6. The asymptotic
expansion is better for small values of the connection parameter
k. It clearly appears that the pitchfork bifurcation has two stable
post-bifurcation branches, whatever the connection parameter
value. It is also remarkable that the dimensionless connection
parameter only affects the fourth-order term in Eq. (60). Hence,
for the post-buckling behavior of the inextensible partially com-
posite elastica with this loading mode, only stable post-bifurca-
tion branches are observed and associated with the imperfection
insensitivity phenomenon. Interestingly, Budd et al. [3] suggest
the possible use of negative connection stiffness, leading to some
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Fig. 6. Asymptotic expansion of the post-buckling path, comparison with the

exact numerical solution kA{0;1000}.
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possible softening phenomena in the post-bifurcation range for
the present developed model.
5. Boundary layer phenomenon

A boundary layer phenomenon is observed for large values of
the dimensionless connection parameter k, i.e. for full composite
action (see Figs. 7 and 8). Boundary layer phenomenon for a stiff
connection has already been observed for the linearized bending
behavior of partially composite beams (Challamel and Girhammar
[44]). In the present paper, the phenomenon appears during the
post-buckling range of the partially composite column. Boundary
layers are regions in which a rapid change occurs in the value of a
variable, namely the rotation of the partially composite column
near the clamped section. Mathematically, the occurrence of a
boundary layer is associated with the presence of a small para-
meter multiplying the highest derivative ([45,46]). This is con-
firmed from the introduction of the small parameter g for very
stiff connection, defined by

g¼ 1ffiffiffiffi
k
p ð61Þ

The non-linear differential equation Eq. (21) can then be
expressed as

g2 d2y
ds2
þbg2 siny�y¼ 0 ð62Þ
0
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Fig. 8. Propagation of the boundary layer during the post-buckling range;

aA{0;0.25;0.5;0.75;1;1.25;1.5}; k¼1000.
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The second derivative in the non-linear differential equation
is affected by the small terms, leading to the boundary layer
phenomenon. The dimensionless parameter t can be introduced as

t¼ s

g
with g¼ 1ffiffiffiffi

k
p ð63Þ

The buckling problem is then expressed by

d2y
dt2
þ b̂siny�y¼ 0 with b̂¼ bg2 ð64Þ

The post-buckling behavior of the ‘‘stiff’’ partially composite
column is investigated using an asymptotic expansion

b̂¼ b̂0þgb̂1þ � � �

y¼ W0þgW1þ � � �

(
ð65Þ

Note that y is not necessarily small, the small parameter g
being a structural parameter (linked to the connection between
the two columns). Introducing the asymptotic expansion into the
differential equation Eq. (64) leads to the following system of
differential equations:

d2y0

dt2 þ b̂0 siny0�y0 ¼ 0

d2y1

dt2 þðb̂0 cosy0�1Þy1 ¼�b̂1 siny0

8<
: ð66Þ

The zero-order solution is the uniform solution (that does not
verify the boundary conditions at the clamped section) and is
defined by

y0ðtÞ ¼ a) b̂0 ¼
a

sina
ð67Þ

The first-order solution is then obtained from resolution of a
linear differential equation

d2y1

dt2
� 1�

a
tana

� �
y1 ¼�b̂1 sina ð68Þ

Thanks to the mathematical property

artana for aA 0;
p
2

hh
ð69Þ

the solution of Eq. (68) can be expressed in the exponential
format given by

y1ðtÞ ¼ C1 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

a
tana

r
t

� �
þC2 sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

a
tana

r
t

� �
þ b̂1

sina
1�ða=tanaÞ

ð70Þ

Prandtl’s matching condition is written for this problem as
(see for instance [44,45], or [46])

lim
t-1

y1ðtÞ ¼ 0) C2 ¼�C1 and b̂1 ¼ 0 ð71Þ

The boundary condition at the clamped section is used for the
approximated solution in the boundary layer

yð0Þ ¼ 0) y1ð0Þ ¼�
a
g

ð72Þ

The asymptotic solution in the boundary layer is finally
written as

yðtÞ
a
¼ 1�e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða=tanaÞ
p

t or equivalently

yðsÞ
a ¼ 1�e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða=tanaÞ
p ffiffiffi

k
p

s ð73Þ

Fig. 9 shows the comparison between the approximate asymp-
totic solution in the boundary layer (based on Eq. (73)) with the
exact numerical solution. The approximate solution is relevant for
sufficiently large values of the dimensionless connection para-
meter k, i.e. for sufficiently small values of the g parameter.
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6. Imperfection analysis with loading eccentricities

6.1. Pre-bending effects

Following the methodology of Challamel and Girhammar [13],
the effect of some eccentricities in the loading mode is investi-
gated in this part. In practical applications, it is not uncommon
that the axial forces are introduced in the composite column with
some eccentricities. Eccentric axial loadings are referred to load
configurations when the individual axial loads are applied on the
individual sub-elements outside their individual centroids. These
eccentricities may also be thought as an imperfection of the
loading mode.

Consider the load configuration in Fig. 10 (see also [13]).
The individual axial loads (P1 and P2) are applied outside on the
opposing sides of the centroid of each sub-element with some
eccentricities denoted by e1 and e2. This imperfect problem can
be solved by adding a correction term in the total energy of the
system given by Eq. (15) as

U y
	 

¼

Z L

0

1

2
EI0y

02
þ

1

2
kðh0yÞ2ds�P L�

Z L

0
cosyðsÞds

� �
þðP1e1�P2e2ÞsinyðLÞ with

EI0 ¼ EI1þEI2, P¼ P1þP2 and h0 ¼
h1þh2

2
ð74Þ

As shown by Challamel and Girhammar [13] for the linearized
analysis, this problem is equivalent to the perfect one if the
eccentricities are related by the following mathematical relation-
ship:

e1

e2
¼

P2

P1
ð75Þ

The stationarity of the total potential energy dU¼0 leads to
the non-linear differential equation Eq. (17) with the following
modified boundary conditions:

½EI0y
0dy�L0þðP1e1�P2e2ÞcosyðLÞdyðLÞ ¼ 0 ð76Þ

These boundary conditions can be expressed for the clamped-
free column studied in this paper as

yð0Þ ¼ 0 and EI0y
0
ðLÞ ¼ ðP2e2�P1e1ÞcosyðLÞ ð77Þ

Such a mixed boundary condition has been already considered
by Vinogradov and Derrick [14] with one single load (for instance
P1¼0). The equivalent eccentricity can be introduced from

e0 ¼
P2e2�P1e1

P1þP2
ð78Þ
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Therefore, the boundary conditions can be expressed in a
dimensionless format as

yðs¼ 0Þ ¼ 0 and
dy
ds
ðs¼ 1Þ ¼ ben

0 cosyðs¼ 1Þ with en

0 ¼
e0

L
ð79Þ

The dimensionless non-linear differential equation is still
given by Eq. (21). Above, en

0 is an imperfection parameter that
controls the pre-bending behavior of the partially composite
column. The influence of this imperfection parameter is shown
in Fig. 11, obtained by numerical calculation of the non-linear
boundary value problem for k¼10. The imperfection parameter
breaks the internal symmetry of the problem. A significant
difference can be noticed between the second-order analysis
detailed in [13] (including the axial extensibility assump-
tion) and the present geometrically exact theory (assuming
the inextensibility assumption), where the post-buckling path
of the imperfect problem in the present paper does not converge
towards the initial constant buckling load, but asymptoti-
cally follows the hardening post-buckling path of the perfect
system.
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6.2. Some remarks on the application of the equilibrium method

Following the methodology of Kryžanowski et al. [32], the
direct equilibrium equations can be also used to obtain the
differential equations of the problem. The two sub-columns can
be considered separately and are loaded by some distributed
tangential load, normal load and also a distributed torque. Hence,
each sub-column is solicited by some follower loading, the
contribution at the global scale being classified as a conservative
problem. The equilibrium equations can be written as

M01 ¼ R1
x siny1þR1

y cosy1�m1

R01x ¼�q1 cosy1�p1 siny1

R01y ¼ q1 siny1�p1 cosy1

M02 ¼ R2
x siny2þR2

y cosy2�m2

R02x ¼ q2 cosy2þp2 siny2

R02y ¼�q2 siny2þp2 cosy2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð80Þ

where the internal forces are defined at the centroid of each beam.
Here, q1 (respectively q2) is the distributed follower tangential load,
p1 (respectively p2) is the distributed follower normal load, and m1

(respectively m2) is the distributed torque.
The constitutive law of each beam and of the interlayer is

given by

M1 ¼ EI1y
0

1, M2 ¼ EI2y
0

2 and q1 ¼ k
h1

2
y1þ

h2

2
y2

� �
ð81Þ

The distributed torque acting in each beam are obtained from
equilibrium:

m1 ¼ q1
h1

2
and m2 ¼ q2

h2

2
ð82Þ

For the loading case of Fig. 3 with applied load at the centroid
of each column, the loading boundary conditions at the top of the
column are given by

R1
x ðLÞ ¼�P1 and R2

x ðLÞ ¼ �P2 ð83Þ

A kinematic constraint should be added to identify the unknown
normal reaction denoted by p1 or p2. The reaction can be associated
with a Lagrange multiplier of the system. The translated beam
theory (y1(s)¼y2(s)¼y(s)) can be considered as the zero order
approximation of the geometrically exact parallel beams theory. In
this case, we have

y1 ¼ y2 )
q2 ¼ q1

p2 ¼ p1

(
ð84Þ



The force equilibrium equations in Eq. (80) show that

R01x þR02x ¼ 0

R01y þR02y ¼ 0
)

R1
xþR2

x ¼�P1�P2 ¼�P0

R1
yþR2

y ¼ 0

8<
:

8<
: ð85Þ

The sum of the moment equation leads to

M01þM02 ¼ ðR
1
xþR2

x ÞsinyþðR1
yþR2

y Þcosy�m1�m2 ð86Þ

Then, the differential equation of Eq. (17) is found again as

EI0y
00
¼ �P0 siny�m0 with m0 ¼m1þm2 ¼ qh0 ¼ kh2

0y ð87Þ

The direct equilibrium method is strictly equivalent to the
energy-based equation introduced at the beginning of the paper.
7. Summary and conclusions

This paper is devoted to the elastic buckling and post-buckling of a
partially composite column. Each sub-column is modeled with the
Euler–Bernoulli beam theory and connected to each other via a linear
constitutive law for the interlayer slip. A variational formulation is
presented in order to derive relevant boundary conditions. The post-
buckling behavior is analytically and numerically investigated.
A boundary layer phenomenon is numerically observed for the
post-buckling behavior in the case of stiff connections between the
two sub-columns. This phenomenon is theoretically and asymptoti-
cally explained from a straightforward asymptotic expansion.

The present study is based on the inextensibility assumption
for each sub-column. A natural extension of this research would
consist in relaxing this last assumption to take into account
the axial extensibility. The additional shear effect may also be
theoretically modeled in each sub-column (see for instance
[12,13]). Some more refined gradient or non-local connection
law could theoretically be envisaged, especially in the presence of
high gradient terms as observed for very stiff connections (see
[47] for the use of gradient or non-local connection laws in
buckling problems of two-connected columns). Furthermore, it
would be interesting to investigate the effect of exact parallel
beams theory for large rotations, instead of the translational beam
theory theoretically investigated in the paper. It should be
expected however that both theory are approximately equivalent
for most engineering situations.
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