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SUMMARY

This paper addresses the problem of computing preconditioners for solving linear systems of equations
with a sequence of slowly varying matrices. This problem arises in many important applications. For
example, a common situation in computational fluid dynamics, is when the equations change only
slightly, possibly in some parts of the physical domain. In such situations it is wasteful to recompute
entirely any LU or ILU factorizations computed for the previous coefficient matrix. A number of
techniques for computing incremental ILU factorizations are examined. For example we consider
methods based on approximate inverses as well as alternating techniques for updating the factors
L and U of the factorization. Copyright c© 2009 John Wiley & Sons, Ltd.
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1. Introduction

When solving large sparse linear systems of equations, it is generally accepted that
preconditioned Krylov subspace methods are effective alternatives to direct solution methods
which offer a good compromise between efficiency and robustness. These methods combine an
accelerator such as GMRES or Bi-CGSTAB and a preconditioner such the ILU factorization
with threshold or with level-of-fill, see, e.g., [28, 1] for details. Here, a few techniques are
presented for constructing ILU-type preconditioners in an incremental manner, i.e., starting
from an already computed approximate factorization. There are many reasons why such
techniques may be desirable.

For example, a common problem which arises in many complex applications is to solve a
sequence of linear systems of the form:

Akxk = bk, (1)
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for k = 1, 2, ... In these applications Ak does not generally change too much from one step
k to the next, as it is often the result of a continuous process (e.g. Ak can represent the
discretization of some problem at time tk). The problem then is to solve each consecutive
system effectively, by taking advantage of earlier systems if possible. This problem arises for
example in computational fluid dynamics, when the equations change only slightly possibly in
some parts of the domain. A similar situation was recently considered in [5].

There are many possible other applications of incremental ILU factorizations. One that is
often neglected concerns the construction of preconditioners progressively within the whole
iterative cycle. Thus, when solving a linear system we do not know in advance how accurate
the preconditioner must be for the iteration to converge fast enough. One could then start with
a rough factorization which is gradually improved within a Krylov subspace acceleration. As
soon as there are signs of stagnation – or slow convergence – one can attempt to improve the
current factors by running one step of improvement with the help of one of several procedures
that will be introduced in this paper.

It is also possible to devise strategies to build ILU factorizations in this way. Starting
with the SSOR(1) factorization, one can compute successive improvements until a satisfactory
factorization is obtained. As will be seen, a by-product of one of the techniques introduced is
that one can compute an exact LU factorization by a sort if alternating procedure. We will
establish the surprising result that this iterative procedure in fact converges in N steps, where
N is the matrix size.

A somewhat related problem which was examined in the past is that of updating the
(exact) LU factorization of a given matrix when a very small number of its entries change.
This particular case received much attention in the power systems literature, see, e.g., [9]. In
contrast, the problem of updating an existing ILU factorization has received little attention
so far. Birken et al. [5], consider this problem specifically for CFD equations and proposed
an inexpensive approach to update one of the factors whey they undergo small changes. The
basic idea of their method is quite simple and is discussed in Section 4.3.

Updating preconditioners is quite easy when approximate inverse preconditioners are used
because these methods typically involve explicit updates. We will start by exploring techniques
for improving incomplete LU factorizations by exploiting approximate inverse strategies. We
will then discuss a set of techniques based on alternating procedures for correcting an ILU
factorization.

In the remainder of this section we state the specific problem addressed in this paper, and
outline in broad terms the two classes of methods considered for solving it. Some notation
which will be used throughout the paper will also be introduced.

1.1. The problem

Suppose we have an approximate factorization which we write in the form

A = LU + R, (2)

where R is the error in the factorization, which corresponds to the matrix of the terms that are
dropped during the factorization procedure. Our primary goal is to improve this factorization,
i.e., to find sparse matrices XL, XU such that L + XL, U + XU is a better pair of factors than
L, U . Consider the new error A − LU for the new factors.

A − (L + XL)(U + XU ) = (A − LU) − XLU − LXU − XLXU . (3)

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 0:1–1
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Ideally, we would like to make the right-hand side equal to zero. Denoting by R the matrix
A − LU , this means we would like to solve:

XLU + LXU + XLXU − R = 0 , (4)

for XL and XU . The above equation, which can be viewed as a form of Riccati equation, is
nonlinear in the pair of unknowns XL, XU . In the symmetric case, where LU is replaced by
the Cholesky factorization, and where we set XU = XT

L ≡ X by symmetry, then (4) becomes

XLT + LXT + XXT − R = 0 , (5)

the standard Algebraic Riccati Equation.
In our case, we only consider (4) which we would like to solve approximately. For this we

begin by neglecting the quadratic term XLXU , leading to:

XLU + LXU − R = 0 . (6)

We will consider two broad paths to tackle the above problem. First, we will consider a few
approaches in the spirit of approximate inverse-type techniques which will try to find sparse
triangular factors XL, XU that approximately minimize the Frobenius norm of the left-hand
side of (6). Second, we exploit an alternating procedure at the matrix level which fixes U (i.e.,
we set XU = 0) and solves for XL, and then fixes the resulting L and solve for XU , and repeat
the process. It is also possible to use a similar alternating procedure but at the vector level –
where columns of L and rows of U are updated alternatively. This approach, which is similar
to a well-known one used for solving Lyapunov equations, is not considered here. Similarly,
methods based on differential equations similar to those discussed in [11, 10] can also be of
interest in this context but will not be considered in this paper.

1.2. Notation

We will often need to extract lower and upper triangular parts of matrices. Given an N × N
matrix X, we denote by X⌊\ the strict lower triangular part of X, and by X\⌉ the upper
triangular part of X (which includes the diagonal of X). The unit lower triangular matrix
obtained by taking the lower triangular part of X and replacing its diagonal entries by ones,
is denoted by X⌊. In other words X⌊ = I +X⌊\, the identity matrix plus the strict lower part
of X. Note the following easy to verify properties of these operators

(X + Y )⌊\ = X⌊\ + Y⌊\; (X + Y )\⌉ = (X + Y )\⌉; (7)

(X⌊Y⌊\)\⌉ = 0; (X⌊\Y⌊)\⌉ = 0; (8)

(X\⌉Y\⌉)⌊\ = 0 . (9)

The fact that a matrix is upper triangular can be conveniently expressed by the equality
X\⌉ = X. Similarly, a matrix is strict lower triangular when X⌊\ = X and is unit lower
triangular when X⌊ = X. This notation is specifically designed for the LU factorization which
involves unit lower triangular and upper triangular matrices.

The inner product of two N × N matrices, is defined as:

〈X, Y 〉 = Tr(Y T X). (10)

The Frobenius norm ‖.‖F is the 2-norm associated with this inner product, i.e., ‖X‖F =
[Tr(XT X)]1/2.

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 0:1–1
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2. Techniques based on approximate inverses

Standard approximate inverse techniques attempt to find an approximate inverse to A which
is sparse, see, e.g., [3, 2, 4, 26, 24, 25, 20, 21]. One such approach used in APINV (see, e.g.,
[13]) is to approximately minimize the Frobenius norm,

‖I − AM‖F (11)

over sparse matrices M which have a pre-specified pattern. We are interested in a by-product
of this general class of methods which we term “Sparse Matrix Corrections”.

2.1. Sparse Matrix Corrections

If B is a given preconditioner to A, we can seek a matrix M such that AM approximates
B instead of the identity matrix as is done in (11). The approximation can be sought in the
Frobenius norm sense. More precisely, let B = LU be a given ILU preconditioner of A. We can
seek a matrix M such that AM approximates B = LU by trying to approximately minimize
‖B − AM‖F . Note that B = LU is generally a sparse matrix. The corrected preconditioning
operation would then become MB−1 = MU−1L−1. This approach was first advocated in [13]
(see also [28, sec. 10.5.8]), and was also exploited in [12]. It was later discussed in [23] where
the term “target matrices” was introduced for the matrix B. In the above equation M can be
obtained by approximately solving the linear systems Amj = bj , where bj , the j-th column of
B is sparse, in order to find the j-th (sparse) column mj of M .

An alternative to solving individual successive linear systems Amj = ej , is to seek a global
iteration, i.e., an iteration which updates the whole matrix at once as in

Mnew = M + αG (12)

where G, the ‘search direction’, is a certain matrix. It is possible to apply a form of the steepest
descent algorithm to try to minimize

F (M) = ‖B − AM‖2
F , (13)

which is a quadratic function on the space of N ×N matrices, viewed as objects in R
N2

. This
requires the gradient of the objective function of F (M) in (13). The natural inner product on
the space of matrices, with which the function (13) is associated, is the inner product (10).

In descent-type algorithms the scalar α in (12) is selected to minimize the objective function
associated with Mnew. The simplest choice for the descent direction G is to take it to be the
residual matrix R = B−AM , where M is the new iterate. The corresponding descent algorithm
is called the “Minimal Residual (MR)” algorithm. It is easy to see that R is indeed a descent
direction for F . See [13] for details on the resulting global Minimal Residual algorithm.

Another popular choice is to take G to be the direction of steepest descent, i.e., the direction
opposite to the gradient of F . A result of [13] can be expanded to show that the array
representation of the gradient of F with respect to M is the matrix G = −2AT R. As noted
in [13] this option can lead to a very slow convergence in some cases because it is essentially
a steepest descent-type algorithm applied to the normal equations. In either global steepest
descent or minimal residual, we need to form and store the G matrix explicitly.

The tools just discussed can be adapted to develop algorithms for improving a given ILU
factorization, by alternatively correcting the L and U factors in turn.

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 0:1–1
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2.2. Alternating L-U descent methods

Consider first equation (4) with the particular choice XL = 0, which corresponds to updating
U while L is kept frozen. Then, a sparse XU is sought which minimizes,

F (XU ) = ‖A − L(U + XU )‖2
F = ‖R − LXU‖

2
F (14)

where we set R ≡ A − LU , the current factorization error.
Similar to the situation of approximate inverses, the optimum XU is trivially known, in

this case it equals L−1R, and this will be exploited in the next section. Here, we seek an
approximation only to this exact solution. Note that (14) is of the same form as (13). We have

‖R − LXU‖
2
F = Tr ([R − LXU ]T [R − LXU ]) = ‖R‖2

F − 2Tr(RT LXU ) + ‖LXU‖
2
F .

Therefore, the gradient of F (XU ) at XU = 0 written in matrix form is simply G = −2 LT R.
What this means is that when XU is a small multiple of LT R then F (XU ) will decrease. With
this, a steepest descent method can now be devised. The only issue is that G = LT R is not
necessarily upper triangular, so XU which is a multiple of G in this situation will not be upper
triangular as desired. We can define G to be the upper triangular part of LT R, i.e., using the
notation defined in Section 1.2,

G = [LT R]\⌉, (15)

which represents the upper triangular part of LT R (including the diagonal). We may need
to sparsify G matrix even further to limit fill-in. Remarkably, the resulting matrix remains a
descent direction under these changes. Here descent direction is to be interpreted as to mean
‘non-ascent’.

Lemma 1. The matrix G = [LT R]\⌉ and any sparsified version G̃ of it is a descent direction
for F at XU = 0.

Proof. Let us denote by X the matrix LT R. Since the gradient is −2X, a matrix G is a
descent direction if < −2X, G >≤ 0, or < X,G >= Tr(GT X) ≥ 0. Let ηij be the entries of X
and consider any diagonal entry of GT X, where G is the upper triangular part of X. We have:

[GT X]jj =

j∑

i=1

η2
ij ≥ 0 .

Therefore the trace is ≥ 0. If G is further sparsified to G̃, then the above sum is replaced by
a sum over the sparsity pattern of the j-th row of GT , i.e., the sparsified pattern of the j-th
column of G, and it remains non-negative.

To determine the best α in (12) we must minimize the quadratic form:

‖R − αLG‖2
F = Tr ([R − αLG]T [R − αLG]) = ‖R‖2

F − 2αTr(RT LG) + α2‖LG‖2
F ,

yielding

αU =
〈R,LG〉

〈LG, LG〉
=

Tr(RT LG)

Tr ((LG)T LG)
. (16)

Formulas for the L part can be readily obtained by repeating the above argument, replacing
the objective function (14) by

‖A − (L + XL)U‖2
F = ‖R − XLU‖2

F .

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 0:1–1
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The array representation of the gradient becomes −2RUT . We seek a correction XL to L that
is strict lower triangular, so we define GL = [RUT ]⌊\ and

αL =
〈R,GLU〉

〈GLU, GLU〉
=

Tr(RT GLU)

Tr ((GLU)T GLU)
. (17)

Note that the denominators in (16) and (17) may be computed as ‖LG‖2
F and ‖GLU‖2

F

respectively. An alternating algorithm which updates U and L in turn, can now be sketched.

Algorithm 1 (MERLU, Minimal Energy Residual descent for LU )

1. Select an initial pair L, U (with L = L⌊, U = U\⌉)
2. Until convergence Do
3. Compute R := A − LU
4. Compute G = [LT R]\⌉
5. Apply numerical dropping to G
6. Compute α = 〈R,C〉/‖C‖2

F , where C = LG.
7. Compute U := U + αG
8. Compute R := A − LU
9. Compute G := [RUT ]⌊\
10. Apply numerical dropping to G
11. Compute α = 〈R,C〉/‖C‖2

F where C = GU .
12. Compute L := L + αG
13. EndDo

With the above approach it is guaranteed that the residual norm ‖R‖F will not increase. A
convenient feature of the method is that it can tolerate dropping as indicated by Lemma 1.
One possible practical concern is the cost of this procedure. If we perform one iteration to
improve a given preconditioner, the computation will be dominated by the formation of the
gradient matrices G in Lines 4 and 9 and the calculation of the scalars α in lines 6 and 11.
These involve the products of two sparse matrices. Note that the matrix C need not be stored.
It can be calculated one column at a time, for example. Then the norm of the column and the
inner product of this column with the corresponding column of R can be evaluated to compute
parts of 〈R,C〉 and 〈C, C〉 and then the column can be discarded.

3. Alternating Sparse-Sparse iterations

Consider equation (4) in which we set XU = 0. If U is nonsingular we obtain:

XLU = R → XL = RU−1. (18)

Thus, the correction to L can be obtained by solving a sparse triangular linear system with
a sparse right-hand side matrix, i.e., the system UT XT

L = RT . However, as was noted before,
the updated matrix L + XL obtained in this way is not necessarily unit lower triangular and
it is therefore required to apply the [ . ]⌊ operation for L + XL or the [ . ]⌊\ operation for XL.

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 0:1–1
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This procedure can be repeated by freezing U and updating L and vice-versa alternatingly,
leading to an iteration which can be summarized by the following two equations:

Uk+1 = Uk + [L−1

k (A − LkUk)]\⌉, (19)

Lk+1 = Lk + [(A − LkUk+1)U
−1

k+1
]⌊\. (20)

A feature of equations (19–20) is that they simplify. For (19) for example, we have

Uk+1 = Uk + [L−1

k (A − LkUk)]\⌉ = [Uk + L−1

k (A − LkUk)]\⌉ = [L−1

k A]\⌉ .

A similar expression for Lk+1 is easily derived and this leads to an iteration of the form:

Uk+1 = [L−1

k A]\⌉, (21)

Lk+1 = [AU−1

k+1
]⌊. (22)

Note that the above two formulas are not intended for practical use. It is generally more
appealing to use (19–20) because one can sparsify A − LkUk (say) keeping only the largest
entries and making the solve much less inexpensive.

One issue in the above equations is the fact that the algorithm will break down when Uk+1

is singular, and this may indeed happen, as the following example shows.

Example

A =




1 1 1
1 2 2
1 2 4



→ L0 =




1 0 0
2 1 0
−3 −1 1



→ L−1
0 A =




1 1 1
−1 0 0
3 5 7



→ U1 =




1 1 1
0 0 0
0 0 7



 .

This issue is not too different from that encountered in incomplete LU factorizations with
threshold. In fact any form of LU factorization implicitly involves solves with lower and upper
triangular matrices and when dropping is applied, these matrices can become singular. The
occurrence of this breakdown is rare in practice. Note that at the limit, Uk will approach the U
factor of the LU factorization of A (as will be shown in Proposition 1), a nonsingular matrix.
The resulting alternating algorithm is given below.

Algorithm 2 (ITALU, Iterative Threshold Alternating Lower-Upper correction)

1. Given: A, U0, L0 (with U0 = [U0]\⌉;L0 = [L0]⌊)
2. For k = 0, · · · , Do:
3. Compute Rk = A − LkUk

4. Compute XU = [L−1

k Rk]\⌉
5. Apply numerical dropping to XU

6. Uk+1 = Uk + XU

7. If det(Uk+1) == 0 Abort “Singular U reached”
8. Compute Rk+1/2 = A − LkUk+1

9. Compute XL = [Rk+1/2U
−1

k+1
]⌊\

10. Apply numerical dropping to XL

11. Lk+1 = Lk + XL

12. EndDo

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 0:1–1
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It may be thought that the triangular systems in Lines 4 and 9 of the algorithm are expensive
to solve. However, one must remember that the right-hand side is sparse and there exist
effective techniques for this task. This is discussed in detail in Section 4. A variation to the
dropping steps in Lines 5 and 10, would be to drop terms from the residual matrices Rk and
Rk+1/2 instead of the matrices XU and XL.

Expressions (21–22) can be further simplified by replacing A by one of its triangular parts.
This is a result of the following simple lemma which will also be helpful in the next section.

Lemma 2. Let X be any square matrix and let P be a unit lower triangular matrix and Q an
upper triangular matrix. Then the following equalities hold:

[PX]\⌉ = [PX\⌉]\⌉ ; [XQ]⌊\ = [X⌊\Q]⌊\ . (23)

Proof. The first relation results from the equalities (7) and (8). Indeed,

[PX]\⌉ = [P (X⌊\ + X\⌉)]\⌉ = [PX⌊\]\⌉ + [PX\⌉)]\⌉ = 0 + [PX\⌉)]\⌉.

The second equality can be shown similarly from (7) and (9):

[XQ]⌊\ = [(X⌊\ + X\⌉)Q]⌊\ = [X⌊\Q]⌊\ + [X\⌉Q]⌊\ = [X⌊\Q]⌊\ + 0.

Note that other similar equalities can also be shown. For example we will later exploit the
relation: [XQ]⌊\ = [X⌊Q]⌊\.

Using the lemma with P = L−1

k , Q = U−1

k+1
, and X = A, equations (21–22) become:

Uk+1 = [L−1

k A\⌉]\⌉, (24)

Lk+1 = [A⌊\U
−1

k+1
]⌊. (25)

3.1. Convergence results in the dense filter case

Filtering consists of keeping only specific wanted entries in a matrix, and dropping the others,
i.e., replacing them with zeros. For example, applying an upper triangular filter to a matrix
M amounts to only keeping its upper triangular part. An equivalent term often used in the
literature is that of a ‘mask’. The filter matrix can be dense or sparse. Next, we establish a
few properties of the sequences Uk and Lk in the particular case where we use dense triangular
filters. This only means that the iterates Lk, Uk are evaluated by the expressions (21–22)
exactly (no other dropping is performed). We start with the following lemma.

Lemma 3. Let two square matrices P and Q be unit lower triangular and upper triangular
respectively, with Q nonsingular. Then for any square matrix M we have:

[M ]⌊ = [[MQ−1]⌊Q]⌊ and [M ]\⌉ = [P [P−1M ]\⌉]\⌉. (26)

Proof. The second part of the equation in (23) applied to X = MQ−1 together with the
definition [.]⌊ = I + [.]⌊\, yields immediately

[[MQ−1]⌊Q]⌊ = [(MQ−1)Q]⌊ = [M ]⌊.

The second relation in (26) follows similarly by taking X = P−1M in the first equality of
equation (23)

We can now prove the following proposition

Copyright c© 2009 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 0:1–1
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INCREMENTAL INCOMPLETE LU FACTORIZATIONS WITH APPLICATIONS TO PDES 9

Proposition 1. Let A be a matrix that admits the LU decomposition A = LU , where L is unit
lower triangular and U is upper triangular. Then, the sequences Uk and Lk defined by (21)
and (22) starting with an arbitrary (unit lower triangular) L0, satisfy the following properties

(i) [A − LkUk+1]\⌉ = 0, [A − Lk+1Uk+1]⌊\ = 0, k ≥ 0.

(ii) If the sequences Lk and Uk converge, then lim
k→+∞

Lk = L and lim
k→+∞

Uk = U .

(iii) The algorithm converges in one step if L0 = L.

Proof. We first prove assertion (i). From (21) it follows that LkUk+1 = Lk[L−1

k A]\⌉ . Applying
an upper triangular filter to both sides, we obtain, thanks to the second part of Equation (26)

[LkUk+1]\⌉ = [A]\⌉.

This proves the first half of (i). To prove the second half first observe that from (23) we have
[Lk+1Uk+1]⌊\ = [(Lk+1)⌊\Uk+1]⌊\. Then, using the relation Lk+1 = [AU−1

k+1
]⌊, and invoking

Equation (26) once more yields:

[Lk+1Uk+1]⌊\ = [[AU−1

k+1
]⌊Uk+1]⌊\ = [A]⌊\.

To prove assertion (ii), we introduce L̄ = lim
k→+∞

Lk and Ū = lim
k→+∞

Uk. Taking limits in (i)

yields the relations
[L̄Ū ]\⌉ = [A]\⌉ and [L̄Ū ]⌊\ = [A]⌊\ .

Hence L̄Ū = A and the uniqueness of the LU factorization implies that L̄ = L and Ū = U .
Finally, when we take L0 = L, then U1 = [L−1LU ]\⌉ = [U ]\⌉ = U , proving (iii).

In fact, if one of the sequences Lk or Uk converges, then both of them will converge to their
limits L and U respectively. This follows from the following relations

Uk+1 − U = [L−1

k A − U ]\⌉ = [L−1

k A − L−1A]\⌉ = [(L−1

k − L−1)A]\⌉

Lk+1 − L = [AU−1

k+1
− L]⌊\ = [AU−1

k+1
− AU−1]⌊\ = [A(U−1

k+1
− U−1)]⌊\.

These two relations show that as long as there is no break-down (i.e., Uk+1 is nonsingular
each time it is computed from (24)) the sequences Lk, Uk are well defined, and they converge
hand-in hand, in the sense that when Lk converges, then Uk also converges and vice versa.

We can now prove the following convergence result which establishes the surprising fact that
under the condition that the filters are triangular and dense, the sequence of Lk’s and Uk’s
terminates in a finite number of steps.

Theorem 1. Let an initial L0 be given such that the sequences Lk, Uk are defined for
k = 1, 2, · · · , N . Then the sequences Uk and Lk converge to U and L respectively, in no
more than N steps.

Proof. We proceed by induction on the dimension N of the matrices. The result is trivial to
establish for the case N = 1. Indeed, if A = [a], the trivial LU factorization is L = [1], U = [a]
and the sequence Lk, Uk reaches this factorization in one step.

We now assume that the algorithm converges in no more than N − 1 steps for matrices of
dimension N − 1. We use the notation

A =

(
Ã b
c d

)
, Lk =

(
L̃k 0
αk 1

)
, Uk =

(
Ũk γk

0 δk

)
.
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10 C. CALGARO, J.-P. CHEHAB, Y. SAAD

We also consider the block LU factorization of A,

A =

(
L̃ 0

c Ũ−1 1

)

︸ ︷︷ ︸
L

(
Ũ L̃−1b
0 δ

)

︸ ︷︷ ︸
U

with δ = d − cŨ−1L̃−1b. (27)

The recurrence relations (21–22) of the algorithm give,

Uk+1 =

(
Ũk+1 γk+1

0 δk+1

)
=

(
[L̃−1

k Ã]\⌉ L̃−1

k b

0 −αkL̃−1

k b + d

)
. (28)

and

Lk+1 =

(
L̃k+1 0
αk+1 1

)
=

(
[ÃŨ−1

k+1
]⌊ 0

cŨ−1

k+1
1

)
. (29)

This results in the relations

Ũk+1 = [L̃−1

k Ã]\⌉, L̃k+1 = [ÃŨ−1

k+1
]⌊, (30)

and

αk+1 = cŨ−1

k+1
, γk+1 = L̃−1

k b, δk+1 = d − αkL̃−1

k b. (31)

Now by assumption, the relations (30) show that the sequence of the pairs L̃k, Ũk converges
in no more than N −1 steps to the L, U factors of Ã, i.e., L̃N−1 = L̃ and ŨN−1 = Ũ . It follows
that L̃N = L̃, ŨN = Ũ , αN = cŨ−1, γN = L̃−1b, δN = d − cŨ−1L̃−1b. Taking k = N − 1 in
(28) and comparing the result with the U part of the factorization (27) we obtain immediately
UN = U . Proceeding the same way by taking k = N −1 in (29) and comparing the result with
the L factor in (27) shows that LN = L and completes the proof.

It is interesting to observe that the above theorem provides an alternative way of computing
the (exact) LU factorization of a matrix. Like Gaussian elimination, it is a direct method,
though a costlier one in the dense case. Specifically, the full N steps of the algorithm require
O(N4) operations to complete in the dense case. However, in general the algorithm is likely to
converge in fewer than N steps.

3.2. Convergence in the sparse filter case

Consider now the situation where a general sparse filter is applied. This means that a sparsity
pattern Fk is selected at each step k and the matrices Lk, Uk of the factorization are restricted
to having the pattern of the lower and upper parts of Fk, respectively, by dropping any entries
outside of this pattern. Recall the notation with filters. The filter F can be considered as an
N ×N matrix of zeros and ones. A zero entry corresponds to an unwanted term in the pattern,
so a nonzero entry in this location is dropped. We denote by X⊙F the Hadamard product (i.e.,
component-wise product), of the matrices X and F . The algorithm with a general constant
sparse filter would replace equations (21–22) by

Uk+1 = [(L−1

k A) ⊙F ]\⌉ = [(L−1

k A)]\⌉ ⊙F (32)

Lk+1 = [(AU−1

k+1
) ⊙F ]⌊ = [(AU−1

k+1
)]⌊ ⊙F . (33)
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INCREMENTAL INCOMPLETE LU FACTORIZATIONS WITH APPLICATIONS TO PDES 11

The algorithm breaks down immediately if the filter has a zero diagonal entry. These singular
filters and excluded from consideration, i.e., all filters considered are such that Fii = 1, ∀i.

A desirable extension of the convergence result of the previous section would be to show
that the sequences Lk, Uk converge to the sparse LU factors L and U of A respectively. For
this to be possible, the patterns of the filter matrices Fk must contain those of the L and U
parts respectively at each step. In fact under the assumption that Fk contains the symbolic
pattern of Gaussian elimination, the same result as that of the previous theorem holds. Here,
by symbolic pattern, we mean the pattern of Gaussian elimination obtained from the graph,
i.e., in the situation where exact cancellations do not take place in Gaussian elimination [14].
The proof of this result is an immediate extension of that of the previous theorem. The result
is stated without proof as a corollary.

Corollary 1. Assume that each of the filter matrices Fk, k ≥ 0 contains the (symbolic)
sparsity patterns of L and U respectively and let an initial L0 be given such that L0 ⊙F0 = L0

and the sequences Lk and Uk exist for k = 1, · · · , N . Then the sequences Uk and Lk converge
to U and L, respectively, in no more than N steps.

It is interesting to consider how the results of Proposition 1 change when a general sparse
filter is applied. Consider the iteration (32), (33), in which the filter F is now constant. We
can rewrite the iteration with the help of the upper and lower parts of the filter as follows:

Uk+1 = [(L−1

k A)]\⌉ ⊙F\⌉, (34)

Lk+1 = [(AU−1

k+1
)]⌊ ⊙F⌊. (35)

The filtering operation in (34) is equivalent to subtracting an upper triangular sparse matrix
Sk from the matrix (L−1

k A)\⌉, so it follows that Uk+1 = [(L−1

k A)]\⌉ − Sk. Proceeding as in

Proposition 1 we multiply this relation to the left by Lk, so LkUk+1 = Lk[L−1

k A]\⌉ − LkSk,
and then apply the upper triangular filter to obtain, exploiting again Lemma 3,

[LkUk+1]\⌉ = [Lk(L−1

k A)\⌉]\⌉ − [LkSk]\⌉ = [A]\⌉ − [LkSk]\⌉. (36)

Similarly, equation (35) yields Lk+1 = [(AU−1

k+1
)]⌊⊙F⌊ = [(AU−1

k+1
)]⌊−Tk, where Tk represents

the (sparse) lower triangular matrix of dropped entries. Then, proceeding in the same way as
above, we get Lk+1Uk+1 = [(AU−1

k+1
)]⌊Uk+1 − TkUk+1 and

[Lk+1Uk+1]⌊\ = [[(AU−1

k+1
)]⌊Uk+1]⌊\ − [TkUk+1]⌊\ = A⌊\ − [TkUk+1]⌊\. (37)

We have just shown the following two relations

[A − LkUk+1]\⌉ , = [LkSk]\⌉ (38)

[A − Lk+1Uk+1]⌊\ . = [TkUk+1]⌊\ (39)

Though these relations do not establish convergence, they tell us something in the case when
the process converges.

Proposition 2. Assume that a constant filter F is used and let Sk and Tk be the upper
triangular and lower triangular matrices, respectively, of the dropped entries from Uk+1 and
Lk+1 due to the filtering operation. Assume that the matrices Lk and Uk converge to L̄, Ū ,
respectively, and that Ū is nonsingular, Then,
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12 C. CALGARO, J.-P. CHEHAB, Y. SAAD

(i) The sequence of matrices Sk converges to S = [L̄−1A]\⌉ − Ū .

(ii) The sequence of matrices Tk converges to T = [AŪ−1]⌊ − L̄.

(iii) The sequences of matrices (A−LkUk+1)⌊\ and (A−LkUk)\⌉ converge to [L̄S]\⌉ and [T Ū ]⌊\,
respectively.

Proof. To prove (i) note that under the assumptions, Equation (38) implies that (LkSk)\⌉
converges to [A − L̄Ū ]\⌉. We now invoke Lemma 3 again and observe that:

[L−1

k (LkSk)\⌉]\⌉ = [Sk]\⌉ = Sk

The left-hand side, and therefore also Sk, converges to the following limit

[L̄−1[A − L̄Ū ]\⌉]\⌉ = [L̄−1[A − L̄Ū ]]\⌉ = [L̄−1A]\⌉ − Ū .

The proof of (ii) is similar. The proof of (iii) is a direct consequence of relations (38–39).

The convergence of the matrices of dropped entries may seem counter intuitive. However,
note that these matrices represent the cumulative matrix of dropped entries. Our experience
indicates that the algorithm often converges rapidly to a certain limit. With a trivial filter
equal to a diagonal matrix, the process generally converges in one or two steps. We ran a few
tests with finite difference discretizations of a Laplacien on an n× n× n 3-D mesh, by taking
the filter to be the original pattern of the matrix. We observed that the process converges in
about N steps. In fact the norm ‖Lk − Lk+1‖F + ‖Uk − Uk+1‖F drops abruptly at around n
steps.

4. Practical Implementations

Two key tools must be exploited in any implementation of the methods discussed so far. One
concerns basic sparse-sparse computations, i.e., computations involving products of sparse
matrices with sparse vectors or matrices. The other key tool concerns effective ways of solving
sparse triangular systems with sparse right-hand sides. Basic sparse-sparse computations have
been covered in detail in the literature, see e.g., [13]. Techniques for solving sparse triangular
systems with sparse right-hand sides are key ingredients of sparse direct solvers and so effective
methods for this task have already been exploited. These are based on ‘topological sorting’,
see, for example, [17, 31, 9]. Thus, an LU factorization can be implemented as a sequence of
sparse triangular solves where the right-hand sides are sparse. Because the right-hand side is
sparse, the solution is also sparse, and it is easy to find a sequence in which the unknowns
must be determined by examining a tree structure issued from the sparsity pattern of both the
right-hand side and the matrix. This well-known idea is summarized in the next subsection,
and details can be found in, e.g., [17, 31, 14]. What is less undertood is how to adapt this idea
to the context of approximate triangular solves. This is taken up in Section 4.2

4.1. Background: Solving sparse-sparse triangular systems

A sparse-sparse triangular linear system of equations is a linear system whose coefficient matrix
as well as the right-hand side are sparse. It is common to model the tasks involved in a sparse
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INCREMENTAL INCOMPLETE LU FACTORIZATIONS WITH APPLICATIONS TO PDES 13

Figure 1. A small 10 × 10 sparse lower triangular matrix and its corresponding DAG

triangular system with the help of a a Directed Acyclic Graph (DAG) which represents the
binary relation: unknown i must be determined before unknown j. An illustration is given in
Figure 1.

It is useful to briefly recall a well-known technique used in sparse matrix methods for solving
sparse-sparse triangular systems. A standard column version of a lower triangular system, such
as the one shown in Figure 1 would first compute the first entry, x1 of the solution. Then a
multiple of the first column is subtracted from the right-hand side. The second unknown is
determined and the process continues until all components have been calculated.

Assume now that the right-hand side is sparse. In this case, the solution vector will remain
sparse during these column subtractions so at each step we just need to consider the next
nonzero entry in the running right-hand-side b. The question is how to determine the next
entry each time. Consider the example of the figure in the situation when b = e1, the first
column of the identity matrix. After x1 is determined, the first column multiplied by x1 is
subtrated from b = e1. This introduces ‘fill-ins’ in positions 2 and 4 of b. The next nonzero
entry is now b2 and we determine x2. This introduces fill-ins in locations 5 and 6. At this point
the next nonzero entry is b4, so we determine x4, etc.

Using matlab notation, the general algorithm is as follows (note that the first step copies
the right-hand side onto the solution vector):

0. x := b, j = 0.
1. While (j < N) Do
2. Determine j := index of next nonzero entry of x
3. Compute xj := xj/Ljj

4. Compute x(j + 1 : N) := x(j + 1 : N) − xj ∗ L(j + 1 : N, j)
5. End

The problem addressed by what is referred to a topological sorting is step 2 of the algorithm,
namely finding the order in which to determine the unknowns. A topological sorting of the
entries is obtained from the DAG. If b = e1 then we perform a Depth-First Search traversal
of the graph (visit subtrees, then visit current node) starting from the root at node 1. The
topological sort of the nodes is then just a reverse post-order traversal of the tree, see [14].

For the above example, the post order traversal starting from node 1, is 5, 6, 2, 9, 7, 4, 1 so
the topological order is 1, 4, 7, 9, 2, 6, 5. Note that not all the graph is traversed and that we
get a valid order that is different from the natural one discussed above. For a general situation,
where the right-hand side has more than one nonzero entry we will proceed in the same way
but we now need to visit the tree from several roots in turn. For example, if the right-hand
side for the above example is the vector e1 + e3, then we will do a traversal from node 1 and
node 3. It is important to realize that the order is not important, i.e., starting the traversal
from node 3 first and then node 1 or the other way around would both yield a valid order.

4.2. Approximate solutions of sparse-sparse triangular systems

So far we discussed only the exact solution case but we need to consider the situation of
approximate solves since we are interested in approximate LU factorizations, not exact ones
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14 C. CALGARO, J.-P. CHEHAB, Y. SAAD

as in sparse Gaussian Elimination. This particular situation does not seem to have been given
much attention in the literature.

Suppose at first that b = e1 again. In this situation we can just truncate the DFS to a certain
depth level. This means that each node will get a level number inherited from its parent in
the traversal, and when the level is higher than a certain maximum, denoted by ’MaxLev’
thereafter, the traversal is curtailed at that point. In the above example, a traversal with a
MaxLev of 2 would yield 5, 6, 2, 7, 4, 1. This is easy to justify with the common model of
level-of fill ILU factorizations. For model problems, the higher the level the smaller the entry
being considered, and so for example the element x9 is likely to be smaller than its parent x7

which in turn is smaller than its parent x4, etc.
A complication arises when we consider sparse right-hand sides with more than one nonzero

entry. Consider again the situation when b = e1 + e3 in the above example. Then with respect
to the traversal from node 1, x7 has a level of 2, and x9 a level of 3. With respect to the
traversal from node 3, x7 has a level of 1, and x9 a level of 2. Which ones should we use? If we
start the traversal from node 1 first, and if MaxLev=2, then 7 will be kept (lev=2) and 9 will
be dropped (lev=3). Then when we will start the visit from node 3, the DFS traversal will see
that node 7 was already visited and will ignore it.

We could resolve the issue by solving several systems with different right-hand sides, namely
one for each nonzero entry, but this increases cost. A simpler solution, to prevent this is to
order the traversal from higher to lower numbered nodes (in the example: first 3, then 1). This
works simply because if j > i then i cannot be a descendent of j.

4.3. A simplified iteration

Consider the situation when A is perturbed as Ã = A + E where E is a very sparse matrix
of small norm. Thus, we already have an approximate factorization LU = A + R, where R is
the residual matrix in the approximation. After the perturbation we have Ã = LU + E + R.
A natural idea suggested in [5] is to try to find a correction to L, U so that the residual norm
remains the same as that of the original one. In other words we seek perturbations XL, XU to
L, U respectively so that

(L + XL)(U + XU ) = (A + E) + R

which leads to

XLU + LXU + XLXU − E = 0. (40)

Note that this is the same equation as (4) with R simply replaced by E. We could approximately
solve these equations by performing one iteration of the corresponding variant of (19–20):

Uk+1 = Uk + [L−1

k E]\⌉ (41)

Lk+1 = Lk + [EU−1

k+1
]⌊\. (42)

Observe that when E is lower triangular, for example E = eie
T
j with i > j, then the first

correction, (41), is vacuous, i.e., Uk+1 = Uk, while the second correction gives

Lk+1 = Lk + [EU−1

k ]⌊\.

Approximating [EU−1

k ]⌊\ by [E(U)−1]⌊\ yields the approximation used in [5]. The tests reported
in [5] with this approach were for a specific application in CFD. Our experiments show that for
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INCREMENTAL INCOMPLETE LU FACTORIZATIONS WITH APPLICATIONS TO PDES 15

a general matrix and a general perturbation E then this very simple scheme does not improve
the factorization to a satisfactory level.

An approach which we found to be more generally successful is one that is based on a
simplification iterations (19–20). This simplification amounts to taking the maximum depth
level MaxLev in the triangular solves to be zero, resulting essentially in replacing the triangular
matrices by their diagonals. A few other minor changes are made to reduce cost. The algorithms
is as follows where we assume that A = L0U0 + R0 is the initial factorization.

Algorithm 3 (Simplified ITALU)

1. For k := 0, 1, . . . , Do:
2. Compute Rk = A − LkUk

3. Apply dropping to Rk.
4. Compute Uk+1 := Uk + (Rk)\⌉
5. Compute Lk+1 := Lk + (Rk)\⌉ ∗ ((Uk))−1

6. End

Note that Line 4 substitutes for Uk+1 = Uk +(L−1

k Rk)\⌉, i.e., it is the result of approximating
Lk by the identity matrix. Similarly, Line 5 results from approximating the current Uk by its
main diagonal. Note also that unlike Algorithm 2, the residual matrix Rk is only computed
once per iteration. This contrasts with our original algorithm where Rk is recomputed after
each update (Lk or Uk). Also dropping is applied to Rk and not to the corrections XU and
XL.

If one iteration is performed, the cost of the above algorithm is quite modest. The
computation of Rk and the ‘pruning’ step (steps 1 and 2) are basically negligible because they
only require keeping track of entries that are dropped during the original LU factorization.
The only cost is that of the logic to test whether an entry is to be dropped and the additional
overhead in building the matrix Rk (memory allocation, pointer set-ups, etc). Steps 3 and
4 are equally inexpensive. They correspond to adding a hopefully very sparse matrix to the
current factors Lk and Uk.

The remarkable aspect of the above Algorithm is that it works quite well in spite of its
low cost, in the situation when the perturbation matrix is relatively small. A small number of
iterations, e.g, 1 to 3, is usually sufficient to yield good improvements. An illustration is shown
in the numerical experiments section, see Section 5.3.

5. Applications to linear and stationary problems

To illustrate the behavior of the incremental ILU, we consider in this section a few problems
involving 3D-convection-diffusion like finite difference matrix. All experiments were performed
in Matlab.

5.1. Alternating Lower-Upper corrections as a means to obtain an ILU

We will illustrate a method for extracting an ILU factorization by starting from the inaccurate
SSOR defined below (or an ILU(0)) and then improving the factorization progressively by
using one step of the procedure ITALU described in Section 3.
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16 C. CALGARO, J.-P. CHEHAB, Y. SAAD

This experiment works on a stationary problem, specifically a matrix is generated from
a convection-diffusion problem on a 15 × 15 × 10 regular grid. This yields a problem of
size n = 2250. We use finite difference discretization and generate a problem with constant
convection terms in each direction. So, in each direction, the discretized operator yields a
tridiagonal matrix

tridiag[−1 + α, 2, −1 − α].

In the first test α is taken equal to 0.1 and the matrix was shifted by 0.3 to make it indefinite.
This shift introduces two negative eigenvalues and also two eigenvalues very close to zero as
can seen from a run with MATLAB’s eigs function:

λ1 = −0.112843039478229, λ2 = −0.000397969025052, λ3 = 0.000397969025052,
λ4 = 0.113638977528334, λ5 = 0.122450476821596 · · ·

In addition the condition number estimated by Matlab was 1.68e+05. The right-hand side of
the system to solve is generated artificially as b = A ∗ ones(n, 1) in Matlab notation.

Figure 2 shows the performance of GMRES with 4 different preconditioners. The first
preconditioner is SSOR with ω = 1. In fact this is simply the factorization A ≈ L0U0 with
L0 = I + A⌊\(A)−1 and U0 = A\⌉. The second preconditioner takes these two factors and
generates an improved factorization A ≈ L1U1 by performing one iteration of the ITALU
algorithm. Dropping is performed in this procedure as follows. First a relative tolerance is set
to droptol = 0.2, the effect of which is to ignore entries in any generated column that is less
than droptol times the norm of the original row. In addition, as a precaution against excessive
fill-in, only the largest lfil=10 entries are kept (however in this example, this second criterion
does not seem to have been triggered). The results, in the form of residual norm versus iteration
count, are shown on the left panel of Figure 2.

In the last run, corresponding to ITALU(3), the resulting preconditioner yielded a
convergence behavior that is identical with that obtained from the previous one (i.e., from
ITALU(2)). Therefore, we changed the parameters to show one more run, namely one
corresponding to droptol = 0.1 and lfil = 20 (starting again from the preconditioner
obtained in the previous run, i.e., the one labelled ITALU(2) in the figure). The numbers shown
at the end of each curve (3.64, 1.97, 1.78, 1) are the “fill-factors” for each preconditioner, i.e.,
the ratios of the number of nonzero entries in L+U over that of A. These measure the amount
of memory required to store the preconditioner and give a rough measure of the computational
effort to construct it.

In a second test, we repeated exactly the same experiment with a problem of the same size
but with different coefficients: we took α = 0.2 and then shifted the matrix by the diagonal
-0.5 I to make the problem more indefinite. In this case SSOR has trouble converging. The
results are shown on the right panel of Figure 2. The smallest eigenvalues as computed by the
function eigs are now

λ1 = −0.2240921324 λ2 = λ3 = −.1125800958 λ4 = −0.0010680592
λ5 = .0076089054 λ6 = λ7 = 0.0685056254 λ8 = .1191209420 ...

and Matlab’s condition number estimator yields condest(A) ≈ 4.03E + 05.
Recall that the test corresponding to ITALU(3) used droptol=0.1 and lfil=20 instead of

droptol=0.2 and lfil=10. The fill-factor is now substantially larger for this last test, but
this results in a much faster convergence.
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INCREMENTAL INCOMPLETE LU FACTORIZATIONS WITH APPLICATIONS TO PDES 17

Figure 2. Performance of GMRES(30) for a convection-diffusion problem with the SSOR and 3 levels
of improvements by the ITALU algorithm. Left and right plot are for two different problems.

5.2. Descent-type methods for computing an ILU

The Frobenius-based method MERLU described in Section 2.2 will now be illustrated on the
second example seen in the previous section, i.e., the Convection-Diffusion problem, with the
parameter α = 0.2 for the convection term and the shift −0.5.

The following test is similar to the one described above. First GMRES(30) is attempted
with the SSOR preconditioner. This yields the first convergence curve of the left side of
Figure 3. Then two improved preconditioners are generated by Algorithm 1. The same dropping
parameters are applied in Lines 5 and 10 as in the previous example. We took droptol

= 0.2 and lfil=10. As before the number shown at the end of each curve corresponds to
the fill-factor for each case. The last curve shows the performance of an algorithm which
is a modification of Algorithm 1 in which the dropping is done differently. In this variation
(labeled MERLU1), the dropping in Lines 5 and 10 is removed. Instead, we drop directly from
the factors U and L after each update. From a practical point of view this is more interesting
because fill-in is better controlled. From a theoretical point of view, we loose the guarantee that
the factors generated will have a diminishing residual norm ‖A−LU‖F . The last curve in the
figure shows this result with the preconditioner obtained from 4 steps of this procedure starting
with the SSOR factors as the initial guess. The dropping parameters are again droptol = 0.2,
lfil = 10.

We repeated the experiment with less restrictive fill-in parameter by changing the value of
lfil to 5 instead of 10. This means that fewer entries will be kept each time. The results are
shown on the right side of Figure 3. The alternative procedure MERLU1 converges slowly but
requires very little fill-in (a fill ratio of 1.31). In fact the last few iterations of the iterative
LU procedure to compute the LU factors are not very effective here because we keep too few
entries at each iteration. As a result an almost identical convergence curve is obtained if the
number of iterations is reduced from 4 to 2. To remedy this, we tested yet another variant
which allowed more fill in after each outer iteration. Specifically, we simply increase lfil by
2 after each iterative LU computation. The resulting method is labeled MERLU2 in the plot.
As can be seen this variant achieves good convergence relative to the fill-in allowed.

Another set of experiments performed to show an interesting application of the incremental
approach is one in which the ILU factorization starts from a basic one such as an SSOR
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Figure 3. Performance of GMRES(30) for a convection-diffusion problem with the SSOR and a few
levels of improvements using the Frobenius-based approach. The test matrix is the same as the second

one of the previous section. The right plot shows tests with different dropping strategies.

preconditioner, and then is gradually improved at the occasion of each GMRES restart. We
do not report these experiments here.

5.3. Use of Topological Sort and Simplified ITALU

His experiment focuses on the issue of efficient implementations, see Section 4.1. Though our
current implementations are in matlab, it is possible to get an idea of the cost of the techniques
by means of a rough operation count.

The experimental setting is as follows. We generate a problem similar to the ones of the
previous section taking this time nx = ny = 70, nz = 1, α = 0.05 and the resulting matrix is
shifted by σ = −0.01. The matrix size is now n = 4, 900. We use the same artificial right-hand
side as before, namely, b = A ∗ ones(n, 1).

Six experiments are run on this example. First we solve the system with GMRES(30)-ILUT
using matlab’s luinc with a droptol of 0.1. The convergence is slow and the wanted reduction
of the residual norm by a factor of 1.e-08 was not reached in 200 steps.

We then perturb the matrix as follows. We generate the following perturbation using matlab
commands:

z = zeros(n,1); v = z;
k = fix(n/20); k1 = fix(k/2);
z(k:k:n) = (0.15/n)*(k:k:n);
v(k1:k:n) = (0.15/n)*(k1:k:n);
E = sparse(v) * sparse(z)’;

This matrix E is added to A to produce the perturbed matrix B. This is a rank-one
perturbation to A, and so there exist more effective ways to solve the new linear system,
via the Sherman-Morisson formula[19] but we selected this form of perturbing A only for the
sake of reproducibility. Perturbations with other randomly generated matrices yielded similar
results. We now want to solve the linear systems Bx = b, with the same right-hand side b
as before. The next test is to just try using the same preconditioner to solve the new linear
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Figure 4. Performance of GMRES(30) for a convection-diffusion problem with one or two levels of
improvements of the ITALU algorithm (left side) and the simplified version described by Alg. 3.

system. This usually works reasonably well when the perturbation is small and / or of small
rank. In this case however, the convergence is quite slow, substantially slower than with the
original system.

We then tested the performance of ITALU with the topological sorting algorithm discussed in
Section 4.1. We used a Maximum Level of 3. The left side of Figure 4 shows the performance
of GMRES(30) with the 4 tests based on topological sorting. These runs correspond to: 1)
Original problem solved with GMRES(30) using the preconditioner ILUT(0.1) on the original
problem. 2) Performance of the same preconditioner-accelerator pair on the perturbed problem.
3) Performance of the corrected preconditioner using MaxLev=3 in the topological sort. One
iteration is made. 4) Performance of the corrected preconditioner using MaxLev=3 in the
topological sort. Two correction iterations made.

The first two curves seen on the right side of the same figure show the same result as those
on the right side and they are reproduced here to facilitate comparisons. Note that the small
differences are caused by the fact that the initial guesses are random vectors. The curves 3)
and 4) are replaced by their analogues using the simplified version of ITALU as represented
by Algorithm 3. The numbers at the end of each curve indicate the fill-factors for each case,
see Section 5.2.

While the matlab codes used in the first experiment is expensive relative to the C-based
luinc it is clear that the simplified version should be very inexpensive. To give an idea, the
time to construct the initial preconditioner for this example by luinc is 0.08 sec. The time to
compute the first correction is 0.0493 and that for the second correction 0.08 (all seconds). It
is to be stressed that the luinc code of matlab is optimized whereas the computations of the
corrections only used simple-minded matlab functions (e.g., triu,..).

6. An application in an evolutive computational fluid dynamics problem

This section discusses an application of the methods proposed in this paper to the numerical
simulation of the variable density incompressible Navier-Stokes system given on a domain
Ω ⊂ R

2. These equations model the motion of two immiscible fluids with varying density,
evolving in a domain Ω. This is the case of the Rayleigh–Taylor instabilities or the water
bubble falling in air – see [7]. These phenomena vary locally both in the physical domain and
in time and the corresponding operators are time dependent.

6.1. Governing equations and discrete problems

The variable density incompressible Navier-Stokes system in Ω ⊂ R
2 can be written as:

∂tρ + divx(ρu) = 0, (43)

ρ
(
∂tu + (u · ∇x)u

)
+ ∇xp − µ∆xu = f , (44)

divxu = 0. (45)

Here ρ(t,x) ≥ 0 stands for the density of a viscous fluid whose velocity field is u(t,x) ∈ R
2.
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The description of the external force is embodied into the right hand side f(t,x) of (44) and
µ > 0 is the viscosity of the fluid. The unknowns depend both on time t ≥ 0 and position
x ∈ Ω ⊂ R

2. The third unknown of the problem is the pressure p(t,x) ∈ R; it can be seen as
a Lagrange multiplier associated to the incompressibility constraint (45). The problem is well
posed when the equations are completed by initial and boundary conditions.

In [7], different numerical methods have been proposed for the transport equation (43) and
for evaluating the evolution of the velocity driven by (44–45). To be more specific, thanks to
a time-splitting (the “Strang splitting” [30]), it is possible to solve (43) for a given velocity
by using a Finite Volume approach (see e.g. [16, 27]) which is efficient when dealing with a
pure convection equation and then, compute the divergence free solution of the momentum
equation (44) by exploiting the advantages of Finite Element (FE) methods (see e.g. [18, 15]).

For this, the domain Ω is approximated by a computational domain Ωh, discretized by a
conforming and isotropic set of triangles Th, with mesh-size h. The FE spaces Vh ⊂ (H1

0 (Ωh))2

for the velocity uh and Qh ⊂ L2
0(Ωh) for the pressure ph must verify the “inf-sup” or LBB

condition. In what follows we shall use the classical P2/P1 elements in order to obtain a “saddle
point problem” corresponding to the momentum equation (44–45). We also need to define a
suitable discrete approximation of the (given) function ρ, compatible with the discretization
of the velocity and the pressure. We use P1 elements for the natural choice ρh ∈ Q̄h ⊂ L2(Ωh).

Let us denote by ∆t the time step and tn = n ∆t, n ≥ 0. For the time discretization of (44-
45), we use a classical backward difference method for the time derivative and a semi-implicit
linearization scheme to treat the nonlinear convection term in the momentum equation (44).
This scheme, already used in [22], has a second-order accuracy in time. Specifically, given the
approximations un,un−1 and ρ∗ (ρ∗ = ρn or ρn+1 depending on the time step of the Strang
splitting), at time tn+1 we compute (un+1, pn+1) by solving

ρ∗
(

3un+1 − 4un + un−1

2∆t
+ (ūn+1 · ∇x)un+1

)
− µ∆xu

n+1 + ∇xpn+1 = fn+1, (46)

divxu
n+1 = 0. (47)

Here, ūn+1 = 2un −un−1 is the linear second-order extrapolation of the velocity field at tn+1.

The algebraic version of discrete variational form of (46-47) may be written in the following
saddle point problem: (

An+1 BT

B 0

)(
U
P

)
=

(
F
0

)
, (48)

where An+1 is a nonsymmetric matrix associated with the convection-diffusion term, B
is the matrix associated with the divergence operator, and the vectors U, P, F correspond,
respectively, to the unknowns un+1

h , pn+1

h and to the given function fn+1

h plus other explicit
terms depending on the velocity. Here, An+1 changes from one time step to the next, due to
the evolution of the density and to the linearization of the convective term. Specifically, we

have An+1 = 3
2∆tM + 1

ReL + D, where M is the velocity mass matrix depending on ρ∗h, L
is the Laplacian matrix for the velocity and the matrix D corresponds to the convective term
and depends on ρ∗h and ūn+1

h . Typically, the matrices M and D change at each time step and
are not symmetric. Finally, recall that the Reynolds number Re is proportional to the size
of the domain, a reference density and a reference velocity and inversely proportional to the
dynamic viscosity µ.
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In the case of homogeneous density ρ(t,x) = ρ, ∀t > 0, the saddle point problem (48)
has been studied in many papers, see e.g. [8] and references therein. In these references
block diagonal or block triangular preconditioning strategies are advocated for the system
matrix of (48). The eigenvalue analysis in these references shows that the eigenvalues of the
preconditioned system are bounded independently of the mesh size h of the underlying grid
Th and numerical tests show that the convergence rates for GMRES iterations deteriorates
roughly like the Reynolds number Re.

The problem considered is to solve the consecutive systems (48) by taking advantage of
earlier systems. In this section, we study the influence of the alternating lower-upper correction,
Algorithm 2, as preconditioner of the nonsymmetric matrix An+1, in the case of a block
triangular preconditioner (

Â BT

0 Ŝ

)
or

(
Â 0

B Ŝ

)
,

applied to the saddle point problem, where Â is an approximation of the nonsymmetric
matrix An+1 and Ŝ is an approximation of the pressure Schur complement BA−1

n+1B
T . Since

FGMRES, the flexible variant of GMRES, allows variations in the preconditioner, it is used as
the accelerator in our implementation. In FGMRES, preconditioning is applied to the right:

(
An+1 BT

B 0

)(
Â BT

0 Ŝ

)−1(
WU

WP

)
=

(
F
0

)
, with

(
U
P

)
=

(
Â BT

0 Ŝ

)−1(
WU

WP

)
.

We focus our study only on the preconditioner Â. For the approximation of the pressure
Schur complement BA−1

n+1B
T , we choose two classical preconditioners: the pressure-mass

preconditioner [29] Ŝ−1 = M−1
p and the Cahouet-Chabard preconditioner [6] Ŝ−1 =

2∆t
3 M−1

p +ReL−1
p , where Mp is the mass matrix for the pressure and Lp is the discretization

of the Laplace operator for the pressure.

6.2. The ITALU algorithm for saddle point problems

The efficiency of a preconditioner for the saddle point problem (48) can be tested numerically
by verifying that the convergence rates for FGMRES iterations depend only mildly on the
Reynolds number and, most importantly, that the number of iterations does not grow as the
mesh size is reduced.

We want to evaluate the ability of the Algorithm 2 to recover analytical solution, checking
the rates of convergence and comparing the mean number of iterations required by standard
ILUT preconditioning (using Matlab luinc function with droptol = 10−5) with those required
by the ITALU algorithm. In particular, we use the same droptol and we increase the lfil

and itlu parameters when h decreases. Here, itlu is the number of iterations performed by
the ITALU algorithm. We check for each test the rates of convergence of the velocity and
pressure considering the example given in [7]:






ρex(t, x, y) = 2 + x cos(sin t) + y sin(sin t),

uex(t, x, y) =

(
−y cos t
x cos t

)
,

pex(t, x, y) = sinx sin y sin t.

(49)
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Figure 5. Mean number of iterations required by FGMRES(30) for the saddle point problem using
pressure-mass preconditioner for the Schur complement, for different values of h and Re = 1.

The fields ρex(t, x, y) and uex(t, x, y) satisfy the mass conservation equation (43) identically
and uex(t, x, y) is solenoidal. The momentum equation (44) is satisfied with the body force:

fex(t, x, y) =

(
(y sin t − x cos2 t)ρex(t, x, y) + cos x sin y sin t
−(x sin t + y cos2 t)ρex(t, x, y) + sin x cos y sin t

)
. (50)

Computations are performed for 0 ≤ t ≤ 0.5 on the square [−1, 1]2, using a structured mesh
Th. The convergence results are displayed with respect to h and for different time steps ∆t.
Table I shows the mesh size, the corresponding dimensions of vectors U and P and the number
of nonzero entries in the matrix An+1, which is block-diagonal.

Table I. Dimensions of the problem with respect to the mesh size.

h size(U) size(P ) nnz(An+1)
h1 = 0.0312 1832 289 20578
h2 = 0.0156 7938 1089 88162
h3 = 0.0078 32258 4225 364642

For the operation with the matrix Ŝ−1, we always use the L and U factors obtained from
Matlab’s ILUT (the luinc procedure), with the droptol set to droptol= 10−3 and no pivoting.

The results in Figure 5 correspond to the pressure-mass preconditioner Ŝ−1 = M−1
p for the

saddle point problem, when Re = 1 and h = h1, h2, h3. In order to compare the results of
a standard approach and the new procedure presented in section 3, two algorithms are used
for operations with the matrix Â: the first one is the standard ILU preconditioner of Matlab
luinc, by setting droptol = 10−5 and no pivoting. The second one is the ITALU procedure
with the same droptol. In this figure and the next two ones, the mean value of the fill-ratio

of the preconditioner Â is displayed for each case. Each of these plots shows iteration counts
(vertical axis) versus − log10(∆t) (horizontal axis). The left plots show performances of the
Matlab luinc(drop) preconditioning and the right plots those of the ITALU procedure.

It seems obvious that the parameters lfil and itlu should not be fixed. They should vary
according to the mesh size h. In particular, we set lfil = 20,25,30 (or 40) and itlu = 3,4,5
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Figure 6. Mean number of iterations required by FGMRES(30) for the saddle point problem using the
Cahouet-Chabard preconditioner for the Schur complement, for different values of h and Re = 1.

Figure 7. Mean number of iterations required by FGMRES(30) for the saddle point problem using the
Cahouet-Chabard preconditioner for the Schur complement, for different values of h and Re = 1000.

respectively, when the mesh size h decreases. Smaller values of lfil or itlu, result in a greater
number of FGMRES iterations on average. The results are shown on the right side of Figure 5.
Near h = h3 we indicate the lfil used. As expected, we can observe that the lfil parameter
is very important to obtain a rate of convergence independent of the mesh size.

Using the same values for h, we test the Cahouet-Chabard preconditioner Ŝ−1 = 2∆t
3 M−1

p +

ReL−1
p , for the saddle point problem, when Re = 1 and Re = 1000. This choice is necessary

because for higher Reynolds numbers the performances of the pressure-mass preconditioner
for the Schur complement are not satisfactory.

The results in Figure 6 (resp. Figure 7) correspond to Re = 1 (resp. Re = 1000). The results
in the left side of these figures correspond to the standard ILUT preconditioner and those in
the right side to the ITALU preconditioner. If Re = 1, we take the same parameters droptol,
lfil and itlu as in the previous test case. As in the preceding case, the importance of the
lfil parameter can be observed for small values of h. With higher Reynolds numbers, we
must increase the parameters lfil and itlu in the ITALU preconditioner. In particular, we
set lfil = 30,40,50 (or 70) and itlu = 3,4,5 respectively, when the mesh size h decreases.
In this case, choosing higher lfil value does not reduce the mean number of iterations of
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FGMRES; the only consequence is an increased fill-in of Â.
Overall, we stress that the fill-in of Â is reduced in a significant way (up to 40%) when

considering the ITALU procedure presented in Section 3 with respect to the classical approach,
in particular when Re is very large. This crucial point will become very important when
considering large problems for which memory costs will cause severe limitations.

However, to capture correctly the dynamics with higher Reynolds numbers, only small time
steps ∆t must be chosen and in this case the performances of FGMRES are equivalent.

We also underline that, when we proceed through the sequence of problems, the number of
iterations of FGMRES does not change very much with respect to the mean iteration number
plotted in Figures 5, 6 and 7 . Indeed, for both ITALU and luinc algorithms, the FGMRES
iterations fluctuate between approximatively +10 % of the mean iteration number, at the
beginning of the time stepping iterations, and decrease until -10% at the end of simulations.

7. Conclusion

Though much is known about finding effective preconditioners to solve general sparse linear
systems which arise in real-life applications, little has been done so far to address the issue of
updating such preconditioners. This paper proposed a few possible practical approaches. One
option is to utilize techniques based on sparse approximate inverses. These methods can yield
very inexpensive ways to correct LU factors. They rely on products of sparse matrices with
sparse vectors which have been exploited in the literature, see, e.g., [13].

This paper also considered an alternating procedure, named ITALU, which corrects the
factors L and U alternatingly. Experiments show that the method can perform quite well.
The main ingredient in the construction of ITALU preconditioners is the solution of a sparse
triangular system with a sparse right-hand side matrix. Computations of this type constitute
the innermost kernels of sparse direct solvers, see, e.g., [14, 17, 31]. This paper has shown how
to exploit the idea of levels in the graph traversal to adapt these techniques for the case when
only an approximate solution is desired. At one extreme one can obtain a very inexpensive
and surprisingly effective update of the ILU factorization by solving these systems in a very
approximate manner. The corresponding technique, called the simplified ITALU, yielded nice
improvements on the examples we tested. One can make the corrections as inexpensive as
desired, by adjusting the depth levels in the sparse triangular solve. At the other extreme,
one can obtain full-fledged methods for building accurate factorizations starting from, say, a
diagonal or an SSOR factorization.

The possibility of computing updates of ILU factorizations inexpensively opens up many
interesting avenues. Many applications in CFD lead naturally to small variations in the matrix.
A feature that is common to many physical applications is that the varying parts or the ‘rough’
parts of the domain are usually limited in size. In examples involving the interaction of two
fluids or a solid body and a fluid, the change in the coefficient matrix is localized around
the physical interfaces. In this situation, the largest entries of the residual matrix Rk will be
localized too and the costs of the updates will be quite small. It is also possible to devise
strategies whereby an ILU factorization is built with a certain uniform tolerance for the error
‖A−LU‖F and then the factors are improved locally only where the domain is likely to cause
difficulties. In this way one can improve the quality of the preconditioner only in areas where
it is more likely that a higher accuracy is required. These are but a few of the topics which
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are left for future studies.
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