
HAL Id: hal-00768293
https://hal.science/hal-00768293v1

Submitted on 21 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Regularity versus Load-Balancing on GPU for treefix
computations

David Defour, Manuel Marin

To cite this version:
David Defour, Manuel Marin. Regularity versus Load-Balancing on GPU for treefix computations.
ICCS: International Conference on Computational Science, Jun 2013, Barcelone, Spain. pp.309-318.
�hal-00768293�

https://hal.science/hal-00768293v1
https://hal.archives-ouvertes.fr

Regularity versus Load-Balancing on GPU for

treefix computations

David Defour and Manuel Marin

Univ. Perpignan Via Domitia, DALI F-66860, Perpignan, France

Univ. Montpellier II, LIRMM, UMR 5506, F-34095, Montpellier, France

CNRS, LIRMM, UMR 5506, F-34095, Montpellier, France

Abstract—The use of GPUs has enabled us to achieve substan-
tial acceleration in highly regular data parallel applications. The
trend is now to look at irregular applications, as it requires
advanced load balancing technics. However, it is well known
that the use of regular computation is preferable and more
suitable when working with these architectures. An alternative
to the use of load balancing is to rely on scan and other GPU
friendly parallel primitives to build the desired result; however
implying in return, the involvement of extra memory storage and
computation.

This article discusses of both solutions for treefix operations,
which consist of applying a certain operation while performing
a tree traversal. They can be performed by traversing the tree
from top to bottom or from bottom to top, applying the proper
operation at each vertex. It can be accelerated using either load
balancing which maintains a pool of tasks while performing only
the necessary amount of computation or using a vector friendly
representation that will involve twice the amount of computation
than the first solution. We will explore these two approaches
and compare them in terms of performance and accuracy. We
will show that the vectorial approach is always faster for any
category of trees, but it raises accuracy issues when working
with floating-point data.

I. INTRODUCTION

In recent years, processors such as IBM cell SPUs, FPGAs,

GPUs, and ASICs were successfully considered to provide

speedup on numerous classes of applications. Of these, GPUs

stand out as they are produced as commodity processors and

exhibiting a number of processing cores doubling every year,

revealing the current architectural trend. GPUs were used to

improve the performance of regular computations such as

those described in [21]. On such highly regular computations,

GPUs can outperform a single core CPU by a large factor on

average, that could be higher than 400 in some cases [7]. These

large speedups are only possible for highly regular and com-

putationally intensive classes of application. More recently,

irregular computations on graphs such as list ranking [24] and

connected components [13] were also considered. However,

in these cases, the observed speedup compared to single core

performance is of the order of 5 or less.

Treefix operations were first introduced by Leiserson and

Maggs [15] as intermediate steps in a number of higher-level

graph analysis algorithms. They defined two basic operations,

Rootfix and Leaffix. Rootfix returns to each vertex of the

tree the result of applying a certain operation over all its

ancestors; Leaffix returns to each vertex the result of applying

an operation over all its descendants. Rootfix and Leaffix

have application for example in the Backward-forward sweep

algorithm for electrical network analysis [22] or to evaluate

the parsimony score of phylogenetic trees [9], [20]. In this

article, we explore the available alternatives to accelerate these

computations using GPUs.

The usual implementation of Rootfix and Leaffix is based

on traversing the tree, from top to bottom or from bottom to

top. The vertices are updated as visited, allowing to effectively

propagate the accumulated result of the operation through the

whole tree as the traversal progresses. The order of visit is

relevant. Starting from the root, depth-first or breadth-first

traversals are both valid alternatives. Ultimately, Rootfix and

Leaffix can be viewed as performing a complete Breadth-first

or Depth-first search over a tree, updating the vertices’ weights

as they are visited.

Successful implementations of parallel Breadth-first search

over a general graph on GPU can be found in [8], [10],

[14], [16], [17]. All of them rely on level-synchronization,

i.e. processing every level of the graph in parallel, in order

of depth. This is often implemented as an iterative process

that performs one iteration per level. Some versions [8], [10],

[14] examine every vertex of the graph at every iteration: if

the predecessor was visited during the last iteration, then the

vertex is visited. These methods perform a quadratic amount

of work, as the graph can have, in the worst case, as many

levels as vertices. A work efficient versions [16], [17] focus on

producing, at each iteration, a vertex or edge frontier, including

only those elements to be visited or traversed during that

iteration. The main advantage of these methods is to exhibit

a work efficient scheme, but have to deal with the irregularity

of the graph data structure, which involves load imbalance

and potential underutilization of SIMD lanes. Different load

balancing strategies are applied to improve the performance

achieved by these methods.

An alternative for performing Rootfix and Leaffix on a GPU,

is to use a parallel-friendly representation of the tree consisting

of three arrays based on the Euler-tour ordering. A series of

highly regular parallel operations performed over these arrays,

such as scan, allow to compute the result of Rootfix and

Leaffix for a tree with n vertices in O(lg n) parallel steps,

independently of the tree topology. However this methods

relies on array of size 2.n with two times more computations

than load balancing implementations.

The purpose of this article is to determine the best solution

between a work efficient scheme thanks to irregular compu-

tation or a solution with regular computation with double the

amount of operation to solve the treefix problem on GPUs.

It makes the following contributions in the area of parallel

computing:

• Regular vs irregular algorithm comparison. We

present two different approaches that make use of data-

parallelism to perform a distinctive operation over trees.

One of them leads to an application that is highly regular,

the other to one that is highly irregular and compares

them in terms of performance.

• Numerical quality analysis. We compare the numerical

accuracy of both methods when dealing with floating-

point data as the amount and the order of operation is

different.

• Rootfix and Leaffix OpenCL implementation. We pro-

vide a vectorial implementation of +Rootfix and +Leaffix

in OpenCL. Even if there has been some work on imple-

menting Rootfix and Leaffix in different languages [2],

[3], [6], this is, to our knowledge, the first parallel

implementation that could run on a GPU.

II. PRESENTATION OF ROOTFIX AND LEAFFIX

Leiserson and Maggs [15] formally defined Rootfix and

Leaffix as follows: given a weighted tree and a binary opera-

tor ⊕, Rootfix assigns to each vertex the result of applying ⊕
to all of the vertex’s ancestors; Leaffix assigns to each vertex

the result of applying ⊕ to all of the vertex’s descendants.

From there, we can define the +Rootfix and +Leaffix opera-

tions, where ⊕ is the addition, as assigning to each vertex

the sum of its ancestors and the sum of its descendants,

respectively. Figure 1 shows an example. In particular, if all

the vertices of the tree have weight 1, +Rootfix returns the

depth of each vertex, and +Leaffix returns the size of the sub-

tree rooted on every vertex.

1

2 3

4 5 6

0

1 1

3 3 3

(a) +Rootfix

1

2 3

4 5 6

20

15 0

0 0 0

(b) +Leaffix

Fig. 1: Example of +Rootfix and +Leaffix.

A. Parallel algorithm

Regarding the type of trees considered, there are two easy

cases of parallelization: balanced binary tree and linked list.

For the balanced binary tree, Leiserson and Maggs [15]

proposed a randomized algorithm that performs Rootfix and

Leaffix on a tree of size n in O(lg n) parallel steps, applying

the contraction technique provided by Miller and Reif [18].

For the linked list, or caterpillar, there exists a O(lg n) depth

algorithm based on symmetry breaking. For other cases, when

there is no bound on the number of children, nor on the tree

topology, a different algorithm has to be used.

In this article, we consider traversing the tree using parallel

Breadth-first search. The tree is expressed as a directed graph

of the form G = (V,E), with a set V of n vertices and a

set E of n − 1 directed edges 1. The adjacency matrix A is

defined as follows.

Aij =

{

1 if (vi, vj) ∈ E

0 otherwise

We rely on compressed sparse row (CSR) format to store

this matrix into two arrays. The array C contains the column

indices of the non-zero elements of A arranged in row-major

order. The array R contains n+ 1 integers, and entry R[i] is

the index in C of the i-th row of A.

Algorithm 1 illustrates the usual way of performing

+Rootifx using parallel Breadth-first search based on level-

synchronization. The algorithm manipulates two queues: one

input queue and one output queue. The input queue contains

all the vertices to be examined during certain iteration. All

these vertices are dequeued in parallel and their children are

updated. As updated, the children are placed in the output

queue. When all the children have been visited at a given

level, the output queue is transferred in the input queue to be

consumed by the next iteration. The algorithm proceeds until

there are no vertices left to examine.

Algorithm 1 +Rootfix parallel algorithm

Input: Row-offsets array R, column-indices

array C, weights array W , queues. Function

LockedEnqueue(vertex) safely inserts vertex at the

end of the queue instance.

Output: Array rootfix[0 . . . n− 1] holding the result.

1: rootfix[0]←W [0]
2: inQ← {}
3: inQ.LockedEnqueue(0)
4: while inQ != {} do

5: outQ← {}
6: for i in inQ do in parallel

7: for offset in R[i] . . . R[i+ 1]− 1 do

8: j ← C[offset]
9: rootfix[j] = rootfix[i] +W [j]

10: outQ.LockedEnqueue(j)

11: inQ← outQ

The amount of parallel work that this algorithm can perform

depends on the tree topology. The wider the level, the greater

the number of parallel tasks than can be assigned for that level.

1always directed from parent to child

This is related to the average branching factor, i.e. the average

number of children per vertex. The worst-case scenario is

when every vertex has only one child (caterpillar) and then

all the vertices have to be examined sequentially.

B. Vectorial algorithm

The implementation of Rootfix and Leaffix for the PRAM

machine model was studied by Blelloch [5], who provided

a vectorial algorithm. The algorithm uses Euler-tour order,

a technique first introduced by Tarjan and Vishkin [23], to

compute a vector representation of the tree. The Euler-tour

order is generated by replacing every edge in the tree by

two directed edges, one in each sense; these edges define an

Eulerian path around the tree. As they appear on this path, the

edges are placed into an Euler-tour vector E. A downward

edge reaching vertex v is labeled (v and an upward edge

leaving vertex v is labeled v). Figure 2 shows an example

tree and the corresponding Euler-tour vector. Note that, as we

doubled the number of edges, the Euler-tour vector has twice

the size of the tree.

The vector tree representation consists of three arrays, (V ,

V) and W . The array (V holds, for each vertex v, the index

of (v in the Euler-tour vector E; the array V), the index of v).

The array W holds the vertices’ weights.

1

a

2

b

3

f

4c 5

d

6 e

0

1

2

3
4 5

6

7

8 9

10

11

E = [(a,(b,(c, c),(d, d),(e, e), b),(f, f), a)]

(V = [0, 1, 2, 4, 6, 9]

V) = [11, 8, 3, 5, 7, 10]

W = [1, 2, 4, 5, 6, 3]

Fig. 2: Example tree, Euler-tour ordering and vector tree

representation.

These three arrays are used altogether with some regular

parallel primitives to compute the result of Rootfix and Leaffix

in a parallel fashion. The key primitive is the scan operation,

that given a binary operator ⊕ with identity i, takes the array

(x0, x1, . . . , xn−1)

and returns the array

(i, x0, x0 ⊕ x1 . . . , x0 ⊕ x1 ⊕ . . .⊕ xn−2)

For ⊕ being the addition, the +scan operation takes the same

input array and returns

(0, x0, x0 + x1 . . . , x0 + x1 + . . .+ xn−2)

There exist many GPUs implementation of this operation as

it is a basic building block of many data parallel algorithms.

The one in [12] operates in O(lg n) steps and O(n) opera-

tions. This has been further optimized for the NVIDIA Fermi

architecture in [11].

Algorithm 2 takes as input an array E of size 2n, which

is used for intermediate computation, and the three arrays (V ,

V) and W of size n that hold the tree. It produces the result

of +Rootfix. A similar algorithm is available for +Leaffix.

Algorithm 2 +Rootfix vectorial algorithm

Input: Array E of size 2n, arrays (V , V) and W of size n

holding the tree.

Output: Array R of size n holding the result.

1: //Step 1: Write

2: for i in 0 . . . n do in parallel

3: E[(V [i]]←W [i]
4: E[V)[i]]← −W [i]

5: //Step 2: Scan

6: Run an inplace +scan on E

7: //Step 3: Read

8: for i in 0 . . . n do in parallel

9: R[i]←− E[(V [i]]

Figures 3 illustrates this algorithm on an example tree. We

used the sum as operation applied on integer data. It can be

noticed that we could have used any set of values and with any

binary operation that forms a group. The operation has to be

associative, with an inverse and an identity value. As floating-

point addition is not associative, these algorithms should not

be applied in such cases. However, we will show that in this

particular case the error can be bounded.

a b c d e f

1 2 4 5 6 3

(a (b (c c) (d d) (e e) b) (f f) a)

1 2 4 -4 5 -5 6 -6 -2 3 -3 -1

0 1 3 7 3 8 3 9 3 1 4 1

a b c d e f

0 1 3 3 3 1

1

Write

2

Scan

3

Read

Fig. 3: +Rootfix vectorial algorithm.

III. GPU IMPLEMENTATION

A. Parallel version

In section II-A we showed that +Rootfix can be performed

using parallel Breadth-first search over a tree. As Breadth-first

search is a common building block for many graph analysis

algorithms, there exist several GPU implementations. We used

the one by Merril et al. [17], written in CUDA. This version

optimizes the neighbor gathering process, which corresponds

to the for-loop in line 7 of algorithm 1, to balance load within

the CTA. For each vertex being expanded, the row-range

bounds are read from the array R (values R[i] and R[i+ 1]).
Then, each thread uses the result of a CTA-wide parallel

prefix sum over the differences R[i + 1] − R[i], to perfectly

pack into a buffer, which is shared by the entire CTA, the

positions on the array C of the neighbors to be gathered

(values R[i] . . . R[i+ 1]− 1). Once the buffer has been filled,

each thread in the CTA reads one position on it and gathers

the corresponding neighbor from C, leaving no SIMD lane

idle during the process. This load balancing strategy allows to

achieve a traversal rate about 5 times greater than with other

parallel implementations on GPU, as stated by Merril et al..

We did not modify the code to make it more suitable to our

purposes, more details are available in et al..

B. Vectorial version

We have seen in section II-B that +Rootfix and +Leaffix

can be implemented on a PRAM machine using the vector

tree representation and the +scan operation. However, there

was no GPU implementation available. To perform the test,

we developed an OpenCL implementation of +Rootfix and

+Leaffix, as this allows us to be platform independent.

The implementation for both operations follows the algo-

rithms by Blelloch and it is built around 3 separate kernels,

operating on 3 vectors of size n that represent the input tree

((V , V), W). Once data allocation and data transfer are done,

a first kernel Write is launched with n work items packed

in workgroup sizes that maximize performance. Our test has

shown that this corresponds to the maximum allowed for the

selected device, which can be queried via clGetKernelWork-

GroupInfo(). This first kernel is in charge of reading data from

input vectors and placing them accordingly in the Euler-tour

vector E located in global memory. Then the Scan kernel is

launched to perform a prefix sum on E. And finally the third

kernel Read reads the results from E and compute the results

for each node. The execution configuration of this third kernel

is identical to the first kernel.

All tree kernels are bandwidth limited. Let idx represent the

global index of a given OpenCL work item. The Write kernel

involves 3 coalesced reads ((V [idx], V)[idx] and W [idx])
and 2 uncoalesced writes in the Euler-tour vector E (E[(V]
and E[V)]) for both +Rootfix and +Leaffix. The Read ker-

nel involves 1 coalesced read ((V [idx]), 1 uncoalesced read

(E[(V]) and 1 coalesced write (R[idx]) for both +Rootfix and

+Leaffix, plus 2 coalesced reads (V)[idx] and W [idx]) and 1

uncoalesced read (E[V)]) only for +Leaffix. Although it is

possible to design an efficient memory access pattern for the

Scan kernel, it was not possible to avoid those ’uncoalesced’

memory accesses for the Write and Read kernels as the

scheme is highly dependent on the tree topology. This has

been confirmed by the Nvidia profiler. However, we noticed

that GPU with L1 and L2 cache like Fermi were beneficing of

relaxed memory access pattern improving memory bandwidth.

TABLE I: Suite of benchmark trees

Name Nb. of vertices Depth Avg. branching factor

af shell9 504855 490 1030.32
audikw1 943695 236 3998.71
ldoor 952203 784 1214.54
af shell10 1508065 1098 1373.47
G3 circuit 1585478 705 2248.91
kkt power 2063494 36 57319.28
nlpkkt120 3542400 123 28800.00
cage15 5154859 81 63640.23
nlpkkt160 8345600 163 51200.00
nlpkkt200 16240000 203 80000.00

On a Fermi architecture, when performing +Rootfix on a tree

of 107 vertices, the global memory load efficiency of the Read

kernel is about 61.5 %, whereas on a pre-Fermi architecture

it is about 30 %. For the Write kernel, the difference is of

42.9 % versus 22.9 %.

IV. TESTS AND RESULTS

In this section we present the tests we carried out to measure

the related performance and accuracy of different +Rootfix and

+Leaffix implementations. The results are discussed in light of

the different features presented in the tested implementations.

A. Performance

When using Breadth-first search for performing Rootfix

over a tree, as the algorithm is completely data-driven, one

can expect that the tree topology will have an impact on the

performance. Moreover, if a parallel implementation is used,

some types of tree will allow more parallelism than others.

This is related to the average branching factor, i.e. the ratio

between the number of vertices and the number of levels. The

larger is this parameter, the wider the tree and thus the greater

the number of parallel tasks that can be performed. On the

other hand, if we use a vectorial algorithm, the impact of

the tree topology over performance should be negligible. To

validate this hypothesis and test the proposed implementations,

we used a group of benchmarks from the University of Florida

Sparse Matrix Collection [4]. This collection, maintained by

Tim Davis and Yifan Hu, includes several matrices from

different real-life problems on different fields. We selected

ten matrices that were considered by the 10th DIMACS

Implementation Challenge [1]. For each one of these matrices,

we computed a spanning tree of the associated directed graph

and used that tree as benchmark. Table I shows the details of

the benchmarks generated, including the tree depth and the

average branching factor.

For each algorithm running on each benchmark, we mea-

sured the total execution time and decoupled it into (a) data

transfer time, and (b) computation time. This is motivated by

the fact that these algorithms are usually included in iterative

scheme where they are called alternatively until a condition is

reached. In these cases, data transfer is operated only once. We

compared the parallel and vectorial +Rootfix implementations

to a purely sequential +Rootfix implementation running on

CPU. The machine used for running all our tests is an Intel

Xeon E645 CPU with an NVIDIA GeForce GTX670 1344

cores GPU. We used GCC 4.6.3, Cuda 4.2.1 and OpenCL

1.1.

(a) Computation time

(b) Data transfer time

Fig. 4: Related performance of sequential, parallel and vecto-

rial +Rootfix on the GTX670 GPU.

Figure 4 shows the related performance of sequential,

parallel and vectorial +Rootfix. The benchmarks are ordered

from left to right by increasing number of vertices. We

observe in figure 4a that the computation time for the vectorial

implementation always grows with the tree size, while for

the sequential and parallel implementation there are some

cases where a certain tree is processed in less time than

another one that has fewer vertices. For example, the parallel

implementation needs 21 milliseconds to compute the result

for the nlpkkt120 benchmark, which has 3.54 million vertices,

and only 12 milliseconds to compute the result for the cage15

benchmark, which has 5.15 million vertices.

The data transfer time is almost the same for both the

parallel and vectorial implementations, as we see in figure 4b.

This is consistent with the fact that they transfer the same

amount of data. For a tree of n vertices, the parallel implemen-

tation transfers from host to device the CSR representation,

consisting of two arrays of size respectively n − 1 and

n + 1. The vectorial implementation transfers the vector tree

representation, consisting of two arrays of size n each. Both

implementations transfer from device to host the result in the

form of one array of size n.

Figure 5 shows the speedup of parallel and vectorial

+Rootfix over sequential +Rootfix. We can see that, when

considering only computation time, the speedup achieved by

both implementations is quite substantial; it reaches more than

60x on the largest benchmarks analyzed with the vectorial

Fig. 5: Speedup of parallel and vectorial +Rootfix over se-

quential +Rootfix on the GTX670 GPU.

implementation.

Fig. 6: Comparison of vertex distribution in the nlpkkt120 and

cage15 benchmarks.

To measure the impact of the tree topology, we looked at

the vertex distribution of pairs of benchmarks, like it is plotted

in figure 6. The 5.15 million vertices of the cage15 benchmark

are concentrated in fewer levels than the 3.54 million of the

nlpkkt120 benchmark. As a consequence of this, the nlpkkt120

benchmark takes longer to process, even if it is smaller than

the cage15. This explains the difference quoted in figure 4.

To quantify the effect of the average branching factor on

the two version of the +Rootfix algorithms, we considered

two extreme cases of topology: (a) the star, where the root

has n−1 children, and (b) the linked list, or caterpillar, where

every vertex has exactly one child. Figure 8 shows a diagram

of both. In the star, the average branching factor is equal to

the size of the tree; in the caterpillar, it is equal to one.

We generated a new set of benchmarks composed of stars

and caterpillars of sizes varying from 215 to 224 vertices.

Figure 7 shows the computation time of sequential, parallel

and vectorial +Rootfix on these special topologies. We observe

that the parallel implementation performs poorly on the cater-

pillar, as this algorithm finally needs to process all the vertices

sequentially on the GPU. This causes a slowdown compared

to the sequential implementation, as the load balancing tasks

remains while bringing no benefits. In the star, all the vertices

except the root are concentrated on one single level, which

correspond to the perfect case for the parallel version. We can

notice that, surprisingly, the vectorial implementation is faster

by a factor 5 compared to the parallel implementation for the

(a) Star

(b) Caterpillar

Fig. 7: Related performance of sequential, parallel and vec-

torial +Rootfix for star and caterpillar trees on the GTX670

GPU.

(a) Star

(b) Caterpillar

Fig. 8: Extreme cases of average branching factor and the

corresponding tree topology.

star with 224 nodes. As the branching factor is decreasing,

the performance of the parallel version is quickly decreasing

leading to a computation time 5000 times greater than the

vectorial implementation.

B. Accuracy

When +Rootfix and +Leaffix operate on integer both the

parallel and vectorial implementations return the same result as

long as no overflow occurs during intermediate computation.

However, with floating-point arithmetics, rounding errors may

occur for every operation. This is the case with floating-point

addition that is not associative. Therefore, we could expect

a variation in the result between the parallel and vectorial

versions of +Rootfix and +Leaffix. For every vertex v, the

+Rootfix parallel algorithm performs only as many operations

as the vertex has ancestors. The +Rootfix vectorial algorithm

performs as many operations as the number of elements in the

Euler-tour vector before the v) position. When using floating-

point arithmetics, we can expect the +Rootfix vectorial algo-

rithm to be less accurate than the +Rootfix parallel algorithm.

Figure 9 illustrates the difference in the number of operations

for both +Rootfix parallel and vectorial algorithms.

a

b f

c

d

e

(a) Parallel algorithm

(a (b (c c) (d d) (e e) b) (f f) a)

(b) Vectorial algorithm

Fig. 9: Different number of operations when performing

Rootfix with different algorithms.

To measure the numerical quality of these algorithms, we

use the relative error, which is a measure of how far is the

observed result from the real result. If x is the real result and x̂

the observed result, the relative error e is calculated as follows.

e =
|x̂− x|

|x|

Given a problem and an input data, this measure is linked with

the algorithm that produces the result and thus can be used to

compare algorithms. The measure of the difficulty of a prob-

lem independently of the algorithm used to solve it is given

by the condition number. The condition number is a measure

of how much the result of a problem is changed by small

variations in the operands. If we consider the addition of n

floating-point numbers x0, . . . , xn−1, the condition number C

is defined as follows:

C =

n−1
∑

i=0

|xi|

∣

∣

∣

∣

n−1
∑

i=0

xi

∣

∣

∣

∣

As a rule thumb, we may lose up to lg(C) bits of accuracy.

As the result of +Rootfix and +Leaffix is a set of n values,

we can use different metrics to quantify the error. We could

look at each error individually, the mean error over the n

results or the maximum error. In addition, the topology of the

tree is impacting the computation scheme and therefore the

error. For example, if we consider a linked list (caterpillar),

then both +Rootfix and +Leaffix parallel implementations will

require a recursive sum of n values with n partial sums.

Whereas if we consider a tree with the root and n−1 children

(star) then each partial sum generated by +Rootfix will be the

result of only one addition.

We choose to evaluate the numerical behavior of both the

parallel and vectorial versions of +Rootfix and +Leaffix over

a sum of n numbers, which corresponds to a chain of n

vertices in a tree. For this set of n numbers we generated 100

random trees of 10.000 nodes with condition numbers from 10

to 1010; then, we measured the relative error of the parallel

and vectorial versions of +Rootfix and +Leaffix. We used the

algorithm proposed by Ogita et al. [19] to generate series

of floating-point numbers with a given condition number.

We measured the relative error on every node using double-

precision to compute the real result and single-precision to

compute the observed result. With this measure we captured

the numerical behavior of both algorithms on one sum among

the n sums that constitute the result. By construction, this is

representative of the numerical behavior in function of the

condition number of the problem.

(a) +Rootfix maximum relative error.

(b) +Leaffix maximum relative error.

Fig. 10: Related accuracy of parallel and vectorial +Rootfix

and +Leaffix algorithms.

Figure 10 shows the maximum relative error as a function of

the condition number for the +Rootfix and +Leaffix parallel

and vectorial algorithms. We observe that both parallel and

vectorial versions of +Rootfix have similar numerical behavior.

The large dispersion of points for condition number less

than 104 may come from the difficulties we had generating

vectors with such characteristics. On the other hand, the

parallel version of +Leaffix seems better than the vectorial

one. It seems that in this case the vectorial version is loosing

an extra 2 bits of accuracy compared to the parallel version.

V. CONCLUSION

In this paper, we have presented two different methods

to solve the treefix problem on GPU and compared them.

A parallel implementation, that minimizes the number of

operations and intermediate storage thanks to load balancing

technics and a vector friendly method that involves twice the

amount of memory usage and operation than the previous

one but exhibit regular computation pattern. We have shown

that in terms of performance, regularity is always a better

choice over reducing the amount of operations and memory

usage. In addition, we have observed that depending on the

tree topology, the vectorial implementation is insensitive to

it which lead to speed-up factor ranging from 5 to 5000

compared to the load-balancing implementation.

When dealing with floating-point input data, we have seen

that the vectorial implementation is introducing rounding error

in the final result compared to the parallel implementation.

These errors are the consequence of the extra operations and

reordering of computations of the vectorial method, which

may leads to a 2-bit lost in the worst case. Nevertheless, this

accuracy impact has to be formally bounded according to the

tree topology, which is planed as future work.

REFERENCES

[1] 10th dimacs implementation challenge.
http://www.cc.gatech.edu/dimacs10/index.shtml, 2012.

[2] The manticore project. http://manticore.cs.uchicago.edu/, 2012.

[3] Scandal project home page. http://www.cs.cmu.edu/ scandal/, 2012.

[4] The university of florida sparse matrix collection.
http://www.cise.ufl.edu/research/sparse/matrices/, 2012.

[5] G. E. Blelloch. Prefix sums and their applications. Technical report,
Synthesis of Parallel Algorithms, 1990.

[6] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller, and
S. Marlow. Data parallel haskell: a status report. In Proceedings of

the 2007 workshop on Declarative aspects of multicore programming,
DAMP ’07, pages 10–18, New York, NY, USA. ACM.

[7] S. Collange, M. Daumas, and D. Defour. Graphic processors to speed-
up simulations for the design of high performance solar receptors. In
Application-specific Systems, Architectures and Processors, 2007. ASAP.

IEEE International Conf. on, pages 377–382. IEEE, 2007.

[8] Y. S. Deng, B. D. Wang, and S. Mu. Taming irregular eda applications on
gpus. In Proceedings of the 2009 International Conference on Computer-

Aided Design, ICCAD ’09, pages 539–546, 2009.

[9] W. M. Fitch. Toward defining the course of evolution: Minimum change
for a specific tree topology. Syst Biol, 20:406–416, 1971.

[10] P. Harish and P. J. Narayanan. Accelerating large graph algorithms on
the gpu using cuda. In Proceedings of the 14th international conference

on High performance computing, HiPC’07, pages 197–208, 2007.

[11] M. Harris and M. Garland. GPU Computing Gems Jade Edition, 1st

Edition, chapter Optimizing Parallel Prefix Operations for the Fermi
Architecture. Number 3. MKP, 2011.

[12] M. Harris, S. Sengupta, and J. D. Owens.

[13] K. Hawick, A. Leist, and D. Playne. Parallel graph component labelling
with gpus and cuda. Parallel Computing, (12):655 – 678.

[14] M. Hussein, A. Varshney, and L. S. Davis. On implementing graph cuts
on cuda. First Workshop on General Purpose Processing on Graphics

Processing Units, 2007/// 2007.

[15] C. Leiserson and B. M. Maggs. Communication-efficient parallel
algorithms for distributed random-access machines. Algorithmica, 3:53–
77, 1988.

[16] L. Luo, M. Wong, and W.-m. Hwu. An effective gpu implementation
of breadth-first search. In Proceedings of the 47th Design Automation

Conference, DAC ’10, pages 52–55, 2010.

[17] D. Merrill, M. Garland, and A. Grimshaw. Scalable gpu graph traversal.
SIGPLAN Not., 47(8):117–128, Feb. 2012.

[18] G. L. Miller and J. H. Reif. Parallel tree contraction and its application.
In 26th Symposium on Foundations of Computer Science, pages 478–
489, Portland, Oregon, October 1985. IEEE.

[19] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product.
SIAM J. Sci. Comput, 26:2005, 2005.

[20] D. Sankoff. Minimal mutation trees of sequences. SIAM Journal on

Applied Mathematics, 28(35–42), 1975.
[21] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan prim-

itives for gpu computing. In Proceedings of the 22nd ACM SIG-

GRAPH/EUROGRAPHICS symposium on Graphics hardware, GH ’07,
pages 97–106, Aire-la-Ville, Switzerland, Switzerland. Eurographics
Association.

[22] D. Shirmohammadi, H. Hong, A. Semlyen, and G. Luo. A
compensation-based power flow method for weakly meshed distribution
and transmission networks. Power Systems, IEEE Transactions on,
3(2):753 –762, may 1988.

[23] R. E. Tarjan and U. Vishkin. Finding biconnected componemts and
computing tree functions in logarithmic parallel time. In Proceedings

of the 25th Annual Symposium onFoundations of Computer Science,

1984, SFCS ’84, pages 12–20, Washington, DC, USA. IEEE Computer
Society.

[24] Z. Wei and J. JaJa. Optimization of linked list prefix computations
on multithreaded gpus using cuda. In Parallel Distributed Processing

(IPDPS), 2010 IEEE International Symposium on, pages 1 –8, april
2010.

