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Abstract

In recent years, error mining approaches have been proposddntify the most likely sources
of errors in symbolic parsers and generators. However thientques used generate a flat list
of suspicious forms ranked by decreasing order of suspiddmintroduce a novel algorithm that
structures the output of error mining into a tree (calledpstion tree) highlighting the relationships
between suspicious forms. We illustrate the impact of oyragch by applying it to detect and
analyse the most likely sources of failure in surface ratii®; and we show how the suspicion
tree built by our algorithm helps presenting the errorsfiifiexa by error mining in a linguistically
meaningful way thus providing better support for error gs@l. The right frontier of the tree
highlights the relative importance of the main error cask#genthe subtrees of a node indicate how
a given error case divides into smaller more specific cases.
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1 Introduction

In recent years, error mining approaches have been propogdehtify the most likely sources of
errors (calledSuspicious Form)sn symbolic parsers and generators. (van Noord, 2004atad
error mining on parsing results with a very simple approachputing the parsability rate of each n-
grams in a very large corpus. The parsability rate of an magra. .. w,, is the ratioP(w;...w,) =
% whereC(w; ...w,) is the number of sentences in which the n-grgm. . w,, occurs and
C(wil...nwn | OK), the number of sentences containimg ..w, which could be parsed. In other
words, the parsability rate of an n-gram is the proportiosasftences in which this n-gram occurs
and for which parsing succeeds. An n-gram then, is a sugdimrm if it has a low parsability
rate.

(van Noord, 2004)'s approach was extended and refined inof@agl de la Clergerie, 2006),
(de Kok et al.,. 2009) and_(Gardent and Narayan, 2012) aswsllo (Sagot and de la Clergerie,
2006) defines a suspicion rate for n-grams which takes irdowat the number of occurrences of a
given word form and iteratively defines the suspicion rateawth word form in a sentence based ol
the suspicion rate of this word form in the corpus. Furthae, Kok et al., 2009) extends this itera-
tive error mining to n-grams of words and POS tags of arhjtiemgth. And|(Gardent and Narayan,
2012) extends (van Noord, 2004)’s approach to mine for sims subtrees rather than n-grams.

An important limitation shared by all these error mining eggches is that their output is a flat
list of suspicious forms ranked by decreasing order of ispi There is no clear overview of
how the various suspicious forms interact and as a reseltjriguist must “hop” from one error
case to another instead of focusing on improving sets ofaglarror cases. In short, the output
of these error mining approaches lacks structure theretiynmat difficult to handle errors in a
linguistically meaningful way.

To overcome this shortcoming, we propose an algorithm witiclctures the output of error mining
into a suspicion treamaking explicit both the ranking of the main distinct errases and their
subcases. The suspicion tree is a binary tree structureeninternal nodes are labelled with
suspicious forms and whose leaf nodes represent the dudterror mined data grouped according
to the suspicious forms characterizing their elementse liika decision tree, each cluster in the
suspicion tree is characterized by the set of attributespfsious forms) labelling its ancestors; anc
the tree itself represents a disjunction of mutually exgkisrror cases.

We illustrate the impact of our error mining algorithm onagranalysis by applying it to detect
and analyse the most likely sources of failure in a surfaeser developed to participate in the
Surface Realisation Shared Task (Belz et al., 2011); anchew &ow this error mining algorithm

permits improving the surface realiser.

The paper is structured as follows. We start (Sedtlon 2) bpdtucing our error mining algorithm.
In essence, this algorithm adapts (Quihlan, 1986)’s ID8rilgm to build a suspicion tree such that
the clusters obtained group together sets of input datestteat similar sources of failure (called
suspicious forms and the attributes labelling these clusters are the siog@ forms indicating
which are these most likely causes of failure. In Sedflone8siow how this error mining algorithm
helps improving a surface realiser executed on the inputmiggncy trees provided by the Surface
Realisation (SR) Task challenge. Secfion 4 concludes vaittiters for further research.

2 Building Suspicion Trees

In this section, we introduce theispicion tree algorithrand discuss its complexity.



2.1 The Suspicion Tree Algorithm

As mentioned above, our error mining algorithm resembleasir{@n,| 1986)'s ID3 decision tree
learning algorithm, in that it recursively partitions thata by first, selecting the attribute (here, ¢
suspicious form) that best divides the data into more homeges subsetaftribute selectiopand
second, using this attribute to split the data into two stdhsesubset containing that attribute anc
a subset excluding that attributdataset divisioh

In what follows, we define the metric used to recursively &desuspicious form and partition the
data, namely th&uspicion Scorenetric. We specify the termination conditions. We illugtray
means of examples how suspicion trees help structure tipeioat error mining. And we contrast
the suspicion tree algorithm with (Quinlan, 1986)’s ID3 iden tree learning algorithm.

The Suspicion ScoreMetrics. LetD be the dataset to be error mined &hlge the set of attributes
used to partition the data. Hei®,is a set of dependency trees provided for the Surface Raalisa
Task by the Generation Challenge; d@nds the set of subtrees @ whose frequency is above a
given threshold. Following (Gardent and Narayan, 2012)usea complete and efficient Hybrid
Tree Miner algorithm/(Chi et al., 2004), to compute the setudftrees that are presenfin

Let D be divided into two disjoint sets: PAS®)(is the set of instances’ € D for which the
processing system (e.g., a parser or a generator) sucasdiSAIL (F) is the set of instances
tf € D for which the system fails. Given these two sets,dingicion score S,.,,.(f) of a form f

€ IF is then defined as follows:

Sicore(f) = %(Fail(f) xIncount(f)+ Pas§é—f) *xIncount(—f))

Intuitively, this metric captures the degree to which a fasnassociated with failure: it is high
whenever a fornf is often present in data associated with failure (Higil)-Suspicion Fail(f))
and/or when it is often absent in data associated with se¢b@ghP(ass)-SuspicigriPasé—f)).

TheF-Suspicion rateof f is defined as the proportion of cases whe@curs in an instancefor
which the processing system fails:

count(f|FAIL)
count(f)

count(f) is the number of instances containifigandcount(f |FAIL) is the number of instances
containingf for which processing failed.

Fail(f) =

Conversely, thé-Suspicion rate of aform f is defined as the proportion of cases not containin
f and for which processing succeedsynt(—f ) is the number of instances whefés absent and
count(—f |PASS is the number of instances not containjfifpr which processing succeeds):

count(—f |PASS
count(—f)

Pas§—f) =

Attribute Selection, Dataset Division and Termination. The suspicion tree algorithm selects at
each step of the tree building process, the fgrmith highest suspicion score i.e. the form suct
that, in the current dataset, most instances that coftéil to be processed; and most instance
that excludeg lead to successful processing.



Based on this selectefd the current dataset is divided into two subsets: the setstéinces which
containf and the set of instances which exclyde

The form selection and dataset division process are cadledrsively on the new subsets until (i)
the obtained set of instances is fully homogeneous (akirests in that set lead to either successft
or unsuccessful processing); (ii) all forms have been meed; or (iii) the depth upper bound is
reached (see below).

fi
Sy :(np,,np) f2
f3 fa
Szt (npy,np,) fs S5+ (npg, ) Se : (Mpgsnge)

53 : (“py“fg) 54 : (Tlp4, nf4)

Figure 1: An exampl&uspicion Treelnternal nodes are labeled with suspicious forms and kav
indicate the number of instances in the current datd;getr which processing succeeds,(); and
for which processing failst. ). When the sources of errors are clearly identifiabjewill be low,

n; will be high and the rightmost leaf() will have a lown, .

Example. Figure[1 shows an abstract suspicion tree which illustrateg suspicion trees help

structuring the output of error mining. The right frontigghlights the relative importance of the
main distinct error cases while subtrees indicate how angéreor case divides into smaller more
specific cases. The branches of the tree also indicate thbications of forms that frequently

cooccur in failure cases.

More specifically, the roof; of this suspicion treeis the most suspicious form present in the
corpusD. Starting from the root, following the edges with label “netfieright-frontier of the tree
i.e., fi, f», andf,) yields the ranked list of suspicious forms presenDiby decreasing order of
suspicion. Following branches yields datasets labeleld sgts (conjunctions) of suspicious forms
For example, the se, with n,, of pass instances ang, of failed instances hag andf; as their
top ranked suspicious forms. Thaspicion trealso displays the relative ranking of the suspiciou
forms. For example, the se§,(U S; US,) hasf, as its most suspicious form, arfg, f5 as its
next two most suspicious forms. Moreover, most of the ingtarinS,, S, andsS; fail because of a
single form namelyf;, f, andf, respectively.

Suspicion treealgorithm vs. ID3 algorithm. There are two main differences between (Quinlar
1986)’s ID3 decision tree learning algorithm and the susepitree construction algorithm.

First, the suspicion tree construction algorithm allowssfivonger pruning and termination condi-
tions — in this way, only the most relevant suspicious fornesdasplayed thereby facilitating error
analysis.

Second, attribute selection is determined not by the inédion gain (IG) but by the suspicion score



(SS) metrics. Recall that the information gEbinetrics aims to identify the attributes which lead tc
more homogeneous classes. In the present case, the clessithar PASS (the inputs for which
generation succeeds) or FAIL (the inputs for which generafails). Thus the IG metrics will
indifferently seek to identify attributes which predomtig associate either with a FAIL or with
a PASS. There is no preference for either the FAIL or the PA&Ssc For error mining however,
what is needed is to identify attributes which predominaagisociate with the FAIL class. Thatis,
we need a metric which permits identifying attributes wHasduds to classes that are homogeneot
in terms of FAIL instances rather than homogeneous in terfstioer FAIL or PASS instances.
The example shown in Figuré 2 illustrates the difference.

S:(P:7,F:1714) S:(P:7,F:1714)

fi f2

Sg 1 (P:4,F :76) S-f, +(P:3,F:1638) Sf, 1 (P :5,F :1422) Sof, 1 (P :2,F:292)

Figure 2: Attribute Selection using Information Gain (Defhd Suspicion Score (Right). While IG
selectsf;, an attribute which associate 76 times with generationf@jlSS selectg,, an attribute
which associates 1422 times with generation failure.

In this example, we apply the IG and the SS metrics to the saupet idata, a set containing
7 inputs associated with generation success and 1714 iagatxiated with generation failure.
While SS selectg,, an attribute which associates 1422 times with generatiduaré, IG selects
f1, an attribute which associate only 76 times with generdtdure. In this case, the information
gain metrics incorrectly selegi because its absence from the input, yields a numerically ve
homogeneous class in terms of generation failure. Indeednformation gain of; is close to but
higher than the information gain ¢f because the resultant subsgtsands_ ;. are treated equally
while computing the information gain.

2.2 Complexity Analysisand Extensions

Letn andm be the size of the datasetand of the form sef respectively. Then, in the worst case
the suspicion tree will be of depth(log n) with O(n) nodes. Each node chooses a suspiciol
form out of O(m) forms. Thus the worst computational complexity for builglthe suspicion tree
isO(m nlog n). But on average, the algorithm described in Sedfioh 2. lope$ much faster than
this. The worst case happens when the forms used to clabsifyorpus into PASS and FAIL are
not very discriminanti.e., when all suspicious forms areadly probable.

The algorithm for building the suspicion tree is directlpportional to the size of the sBt Since
|F| can be very large, this can be problematic. Indeed, in ther emining on sentences for pars-
ing systems proposed in_(Sagot and de la Clergerie,| 200&)adthors indicate that, in order to
remain computationally tractable, the approach must kteict=l to n-grams of smaller size (un-
igrams and bigrams). The problem is accrued of course whesigering tree shaped suspicious
forms (Gardent and Narayan, 2012). To abate this issue weopeotwo extensions to prune the
suspicion tree.

Linformation gain (IG) is defined dss = H(S)— (IS5, 1/1SD*H(S£ ) +(IS-4,1/ISD*H(S- 5, )) whereH(X) is the entropy
of setX. (Quinlan, 1986)



First, we reduce the form spa@e Following a suggestion from (de Kok et al., 2009), inste&d c
considering all possible forms, we only consider those fomhose frequency is above a given
threshold. We also account feuspicion sharindi.e., the sharing of suspicion by several ovel
lapping forms) by only considering a larger suspicious fdfrits suspicion rate is larger than the
suspicion rate of all smaller forms it contains. These twizesions reduce the form space signifi
cantly and allow for an efficient building of the suspicioedr To enumerate with these extension:
we use a complete and efficient algorithm described in (Garaled Narayan, 2012).

Second, we constrain the depth of the suspicion tree. Becawsr mining is a cyclic process,
building the complete suspicion tree is usually unnecgs3de quantity of information processed
in each cycle depends on the user but in general, the lingilisbcus on the top suspicious forms,
use these to improve the generator and rerun error mining@mtproved results. The faster the
error mining step is, the better this is for this developnwmie. Considering this, we added an
extra constraint over the depth of the suspicion tree. Téyptdlimit permits pruning the suspicion
tree and a faster improvement cycle. In our experiments,sed a depth limit of 10.

With these extensions, the enumeration process of sugsgiédmms takes 10-15 minutes for a
dataset consisting of 123,523 trees. Building a suspicemfor the same dataset takes about or
minute.

3 Applyingthe Suspicion Tree Algorithm to Generation Data

We now report on an experiment we did using the suspicioratigarithm described in the preced-
ing section to detect and classify the most likely causesitfre when running a surface realiser
on the Surface Realisation (SR) Task data. We first desdnbexperimental setup (Sectionl3.1)
We then illustrate by means of examples, how suspicion toetter support error analysis than
ranked lists proposed by previous error mining approacBest{ori 3.R). Finally (Sectidn 3.3), we
discuss the improvements in surface realisation obtaigdiking the errors identified using error
mining.

3.1 Experimental Setup

Dataset The dataset to be error mined is the set of shallow dependeresy (Figurél3) provided
by the SR Task organisers and used as input for surfaceatatis These trees are unordered syr
tactic dependency trees whose edges are labelled with depepnrelations and whose nodes ar
labelled with lemmas and part of speech (POS) categorighidmpaper, we represent these tree
by an n-tuple with the root node of the tree as its first elenfi@idwed by (n — 1) elements rep-
resenting its dependent subtrees. Dependency relatiedeveered to the corresponding daughte
node.

word (play, (john), (football))
POS (VB, (NNP), (NN
play/VB (VB (NNP), (NN)
shj obj dep (sroot (sby, (obj))
wordPOS (play/VB, (john/NNP), (football/NN))
dep-POS (srootVB, (sbiNNP), (bj-NN))

sroot

john/NNP football/NN

Figure 3: An example shallow dependency tree from the SR @askthe corresponding repre-
sentations used in this paper. Our error mining algorithmswters as suspicious forms, subtree
labelled with arbitrary conjunctions of lemmas (word), paf-speech tags (POS), dependency re
lations @ep.



To facilitate error mining, we proceed in an incremental \aag examine dependency trees in th
SR data that correspond to NP and Sentences of increasmghéé&ze we report on error mining
performed on NP-type dependency trees of sizes 4 (NP-4)Peg)\and all (NP-ALL), and S-type
dependency trees of sizes 6 (S-6), 8 (S-8) and all (S-ALL)etwhhe size refer to the number of
nodes/lemmas in the tree). The data used for generatioemgressed whereby named entitie:
and hyphenated words are grouped into a single word and ysaian is removed so as to first
focus on lexical and grammatical issues.

Attributes The attributes used to partition the SR data are suspidieast.e., subtrees of the SR
dependency trees whose frequency is above a given thresholldwing (Gardent and Narayan,
2012), we allow for various views on errors by mining for farfabelled with lemmas only (word);

with parts of speech (POS); with dependency relatiateg)( with lemmas and parts of speech
(word/POS); and with dependency relations and parts ofcép@lepPOS) (cf. Figurél3).

Generation System The system to be tested is the symbolic Surface Realiseridedcin
(Narayan and Gardent, 2012). We ran this surface realiseh®ISR input data and separately
stored the input dependency trees for which generationesdiesrl (PASS) and the input depen
dency trees for which generation failed (FAIL). We then reetfrom the failed data, those cases
where generation failed either because a word was missitiggitexicon or because a grammai
rule was missing but required by the lexicon and the input.dBlhese cases can easily be detecte
using the generation system and thus do not need to be hamdérdor mining.

Error Mining We iterate several times between error mining and perfocemanprovement and
applied the suspicion tree algorithm to both the NP and that&.d

3.2 Error Analysisusing Suspicion Trees

We now show by means of examples how the suspicion tree Higolielps support error analysis.
We start by showing how the overall structure of the suspidiee (right frontier and subtrees)
improves upon ranked lists when analysing the data. We tbeango show how subtrees in the
suspicion tree permit differentiating between forms thratsuspicious in all contexts and require
a single correction; forms that are suspicious in all cotstéxit require several corrections; anc
forms that are suspicious in some but not all contexts.

3.2.1 Suspicion Treesvs. Ranked Lists

Figure[4 shows a top fragment of the suspicion tree obtaigeztitor mining on NP-4. The node
labels in this tree describe suspicious forms with parsyséech information only.

In that tree, the right frontier indicates that the mainidisttsuspicious forms are, in that order:

1. Possessive NPs (POSS is the part of speech tag assigned;dxsﬁoés@)

The suspicious form (POSS) points to a mismatch betweerefiresentation of genitive NPs (e.g.
Oakland’s thie¥in the SR Task data and in the grammar. While our generafigcs the represen-
tation of ‘Oakland’s thiefto be (thief/NN, ('s/POSS, (oakland/NNP))), the struetyrovided by
the SR Task is (thief/NN, (oakland/NNP, ('s/POSS))). Hewbtenever a possessive appears in th
input data, generation fails. This is in line with_(Rajkuneaal., 2011)’s finding that the logical

2Jteration stops either when the results are perfect (pecfaerage and perfect BLEU score) or when the trees fail to b
discriminative enough (low number of FAIL instances asatel with the suspicion tree leaves). So far, the latteatin
did not occur and we are still using the suspicion tree totiflethe main sources of errors for the remaining error cases
3In fact, the part of speech tag assigned to possessirethe SR data is POS not POSS. We renamed it to avoi
confusion with POS as an abbreviation for part-of-speech.



(POSS)

yes no
(NN) (CC)
yes no yes no
(0, 2818 (NNP, (POSS)) (NN) (DT, (IN))
(0,537 (1,9 (NN, (CQ)) (DT) (0, 140 (TO, (VB))
W VW VW
(NN, (NN)) 39 (1,104 (NNP, (NNP)) (1,64 (NN, (RB))
YEWO VESNO yemo yewo
(1,401 (1,679 (1,199 (2, 143 (0,70 (1,118 (204, 79 (cont

Figure 4: Suspicion Tree for Generation from the NP-4 datadd$ are labelled with dependency
subtrees with POS information. The leagsf ) represent the cluster with PAS§)(and FAIL
(f) instances.

forms expected by their system for possessives differett tfee shared task inputs. To correct
these cases, we implemented a rewrite rule that converSRhepresentation of possessive NP
to conform with the format expected by our realiser.

2. NPs with coordination (CC with daughter node NN)

The second top right frontier node unveils a bug (conflictegture values) in the grammar trees
associated with NP conjunction (e.gurope and the U.$which made all sentences containing
an NP conjunction fail.

3. Determiners (DT) dominating a preposition (IN)

As we shall see below, this points to a discrepancy betwee&k part of speech tag assigned t
words like ‘soméin ‘ some of the audientand the part of speech tag expected by our generat
While in the SR data, such occurrences are labelled as detns(DT), our generator expects
these to be tagged as pronouns (PRP).

4. The complementizep (TO) dominating a verb (VB)

As discussed below, this points to cases where the infihited is a noun modifier and the input
structure provided by the SR Task differs from that expebtedur realiser.

5. Nouns (NN) dominating an adverb (RB)

This points to a discrepancy between the SR part of speechstgned to words like "alone’ in
‘real estate aloneand the part of speech tag expected by our generator. Whilesi SR data, such
occurrences are labelled as adverbs (RB), our generatecexfhese to be tagged as adjective
(J9).

In addition, for each node on the right frontier, the subtree dominated by the yesraf n
gives further information about the more specific forms #rat subcases of the suspicious formn
labellingn.

The suspicion tree gives a structured view of how the varsuspicious forms relate. In compar-
ison, the ranked lists produced by previous work are flacsires which may fail to adequately
display these information. For instance, applying (Gatdew Narayan, 2012)’s error mining al-
gorithm to the data used to produce the tree shown in Flgurieldsythe list shown in Figuriel 5.
Contrary to the suspicion tree shown in Figlle 4, this ligsfo highlight the main culprits and



1. (POSS) 11. (CC, (3J) 21. (NN, (NNP))

2. (NNP, (POSS)) 12. (3J,(CC)) 22. (NNP, (NNP))

3. (CC) 13. (NNP, (NNP, (POSS))) 23. (NN, (NN))

4. (NN, (POSS)) 14. (NN, (NN), (POSS)) 24. (NNP)

5. (NN, (NNP, (POSS))) 15. (DT, (IN)) 25. (NN)

6. (NN, (NN, (POSS))) 16. (3J, (CC, (39))) 26. (NN, (NNP), (NNP))
7. (NN, (CC)) 17. (NN, (CC), (NN)) 27. (VB)

8. (NNP, (NNP), (POSS)) 18. (NN, (NNP), (POSS)) 28. (NN, (RB))

9. (NN,(NNP,(NNP),(POSS))) 19. (TO, (VB)) 29. (PRP)

10. (NN, (NNP, (NNP))) 20. (NN,(NNP,(POSS)),(NNP)) 30. (DT)

Figure 5: Ranked list of suspicious forms for Generatiomfitbe NP-4 data.

the relations between the various suspicious forms. Thau5 tihain distinct suspects identified by
the right frontier of the suspicion tree appears as 1st, Bsth, 19th and 28th in the ranked list.
Furthermore, while subcases of the main suspects are gidnplee yes-branch of these suspect
in the suspicion tree, in the ranked list, they appear fragbrspersed throughout. For example
suspicious forms involving the two main suspects in the isimp tree approach (POSS and CC
part-of-speech tags) are scattered throughout the liseralhan grouped under the first two right
frontier nodes respectively.

Also the stronger pruning conditions used for building thsscion tree restrict the branch explo-
ration as soon as homogeneous clusters are achieved. Pogradiitaset, it only explores those
suspicious forms which are good enough to identify the gnisl causing the failure in that dataset
For example the data containing the suspicious form (POS&)plored with 3 suspicious forms
(POSS), (NN) and (NNP, (POSS)) in the suspicion tree showigiarel4 whereas in the ranked list
shown in Figuréb, there are 11 suspicious forms associatbd ROSS). In general, the number
of forms displayed by the suspicion tree algorithm is muds fhan that of the ranked list ones
thereby giving a clearer picture of the main culprits andhefit subcases at each stage in the errc
mining/grammar debugging cycle.

3.2.2 Readingerror typesoff thetreestructure

For each node labelled with suspicious form, in a suspicion tree, the subtree dominatechby
gives detailed information about the possible contextsea forf,. In what follows, we show how
the suspicion tree algorithm permits distinguishing betmvthree main types of suspicious forms
namely, forms that are suspicious in all contexts and reqaisingle correction; forms that are
suspicious in all contexts but require several correctiand forms that are suspicious in some bu
not all contexts.

Formsthat are suspicious independently of context and requirea single correction. When a
suspicious form always leads to failure, the node labellihl that suspicious form has no subtree
thereby indicating that all configurations including thasgicious form lead to generation failure
independent of context.

Such cases are illustrated in Figlile 6 which show two viewe (eith part of speech tag only,
the other with words and parts of speech tags) of the susptoé® obtained after addressing the
two main causes of errors identified in the previous sectibmat is, a rewrite rule was applied
to convert the SR representation of possessive NPs to ¢anfdth the format expected by our



(days/NN) (DT, (IN))
yes no yes no

(0, 155 (allPDT) (0, 140 (33, (OT)
yes no yes no

(month/NN,
(the/DT) (six/CD), (IN) (RB, (IN))

YeS/\no ye gth e/DTho yes no ywo
/%
(standard & poor/NNP,

(0,23 (those/DT) (0, 27) (sIPOSS)) (0,15 (POSS) (0,39 (IN, (DT))
es

"N\ A NANERVAN

0,3 (2,6 (0,22 (cont) 0, (2,27 (0, 30)(cont)

Figure 6: Suspicion Tree for (word/POS) (left) and (POJHt) for Generation from the NP-4
data (after fixing genitive and coordination cases).

realiser (POSS) suspicious form); and the grammar wagcted to generate for NP coordination
((CC) suspicious form).

In each of these two trees, the yes-branch of the root nodadasbtree indicating that all input
trees containing either the word formidys with part of speech tag NN (days/NN); or a determine
dominating a preposition ((DT,(IN))) lead to generatioitufice.

The root node (days/NN) of the suspicion tree shown on theféfigure 6 points to a problem in
the lexicon. Although days/NN is present in the lexiconsinbt associated with the correct TAG
family. We modified the entries corresponding to (days/NiNthie lexicon to solve this problem.

As mentioned above, the root node (DT, (IN)) of the suspitiea shown on the right in Figulé 6
points to a part-of-speech tagging problem in the SR Datad®ike ‘someor ‘ all’ followed by a
preposition (e.gsome of the audiencall of fiscal 199Qthose in other industrigsire assigned the
determiner part of speech tag (DT) where our generator ¢éx@epronoun (PRP) part-of-speech
tag. To correct these cases, we implemented a rewrite ratenthps DT to PRP in the above
specified context.

As these two examples illustrate, using different viewsr{felabelled with part of speech tags only
vs.forms labelled with words and parts of speech) on the sanserday help identifying problems
at different levels. Both suspicion trees in Figule 6 ardt fioii generation from same NP-4 dataset
The leftmost tree (suspicious forms labelled with both leavand part of speech information) helps
identifying problems in the lexicon whereas the rightmoest {(suspicious forms labelled with parts
of speech only) points to problems in the input data.

Forms that are suspicious independent of context but require several corrections. It may
be that a given form is almost always suspicious but thatduogin different linguistic contexts
requiring different corrections. In such cases, the si@pitcee will highlight these contexts. The
root of the tree shown in Figulé 7 is a case in point. The simpdorm {m-VB) describes subtrees
whose head is related to a verb by thedependency relation i.enfinitival verbs The subtrees
(of the yes-branch) of that root further describe sevenatastic configurations which are suspec
and contain an infinitival verb. The node labelled withp(d-TO) points to subcases where the
infinitival verb is the complement of a contrél (1a[i]) or agiag verb [1a[ii]). The node labelled
with (im-VB, (prd-JJ)) points to a subcase of that case namely that of an iadiliterb which is



the complement of a control or a raising verb and subcategdor an adjectival complement e.g.,
(@b). Finally, the node labelled witmhod TO, (im-VB)) points to cases where the infinitival verb
is a noun modifier[{|1c).

(im-VB)

(oprd-TO) (cont)
S n

im-VB, (prd-JJ nmod-TO, (im-VB
(m-yB, (prd-3)) (nmod-TO, (im-VE))

SN N

(0,11 (1,264 (0,14 (13,188
Figure 7: Suspicion TrealépPOS) for Generation from the S-6 data.

(1) a @Eprd-TO) (2) a. (IN,(CD))

i He will try to assuage the fears about fi- the end of 1991
nances. (end/NN, (the/DT), (of/IN, (1991/CD)))
(try/VB, (oprd-to/TO, (m-assuage/VB)) b. (CD, (IN))

i Many of the morning session winners turned one of the authors
out to be losers. (one/CD, (of/IN, (author/NN, (the/DT))))
(turn/VB, (oprd-to/TO, (m-be/VB, (prd- c. (CD, (CD))
loser/NN))) Nov. 1, 1997

b (m-VB, (prd-dJ)) (1/CD, (1997/CD), (Nov./NNP), (,/SYS))

Amex expects to be fully operational by tomor- d. (CD, (DT))
row. A seasonally adjusted 332.000
(expect/VB, ©Oprd-to/TO, (m-be/VB, (prd- (332.000/CD, (a/DT), (adjusted/dd, (sea-
operational/JJ))) sonally/RB)))
c. (hmodTO, (im-VB)) e. (CD, (RB))
The ability to trade without too much difficulty 1987 and early 1988
has steadily deteriorated. (1987/CD, (and/CC, (1988/CD,
(ability/NN, (hmodto/TO, (m-trade/VB)) (early/RB))))

Although all of these cases are due to a mismatch betweenRh&Sk dependency trees and
the input expected by our realiser, they point to differepuit configurations requiring different
modifications (rewritings) to ensure compatibility withetinealiser. The structured information
given by the suspicion tree provides a clear descriptioh@htain tree configurations that need tc
be rewritten to correct generation failures induced by itifial verbs. We used these information
to implement the rewrite rules required to resolve the ifiedtmismatches.

Formsthat are suspiciousin some but not all contexts. The suspicion tree can also highlight
forms that are suspicious in some but not all contexts. Fstairce, the right frontier of the sus-
picion tree in Figur&I8 shows that the CD (cardinals) partpefesh occurs in several suspicious
forms namely, (IN, (CD)) (a preposition dominating a caedjn(CD, (IN)) (a cardinal dominating
a preposition), (CD, (CD)) (a cardinal dominating a car)in&D, (DT)) (a cardinal dominating a
determiner) and (CD, (RB)) (a cardinal dominating an aduetlsamples for these configurations
and their subcases are given[ih (2).

Noticeably, the suspicious form (CD) does not appear in thspision tree. In other words, the
tree highlights the fact that cardinals lead to generatiilnre in the contexts shown but not in all
contexts. Indeed, in this case, all suspicious forms péingssingle cause of failure namely, a mis:



yes (IN, (CD))

o

0, 16 )
(0,169 y(cD(lN))\no
0,79 JJ, (DT
0,79 s Q2O
es (IN) es (CD, (CD))

y/\no y/\no
0, 21 POSS CD, (CD), (NNP CD, (DT
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Figure 8: Suspicion Tree (POS) for Generation from the NR«#@ ¢after fixing genitive, coordina-
tion and determiner cases).

match between grammar and lexicon. In the TAG grammar usea,anstructions illustrated inl(2)

all expect cardinals to be categorised as nouns. In thedexiowever, cardinals are categorised a
determiners. We modified the lexicon to categorise cargiasldeterminers, nouns and adjective
and rerun the generator on the input. In the newly built sispitrees, cardinals no longer induce
high generation failure rates. The fact that cardinals ateatways associated with failure can be
traced back to the fact that they are often used as detersranerthat for this context, the lexicon
contains the appropriate information.

3.3 Using Error Mining to | mprove Generation Results

We now briefly report on how the suspicion tree algorithm celp improve a generation system
by showing the impact of corrections on undergeneration.

Generating NPs. Table[l summarises a run with 6 iterations between erromgiand error cor-
rection on the NP data. The corrections involve rewriting 8R data to the format expected by
our realiser, grammar corrections and lexicon enrichmEath time a correction is applied, the
suspicion tree is recomputed thereby highlighting the nest likely sources of errors. G(Coord)
indicates a fix in the grammar for coordination (discusse®iation 3.2.11). R(Gen) involves rewrit-
ing dependency trees for genitive NPs (e@gkland s thie) (Sectiorf3.2.1) and R(Dt) rewriting
dependency trees with determiners to map its part-of speah determiner (DT) to pronoun
(PRP) (Sectiof 3.212) and to noun (NN) (nominal positiong,,&hat's good. L(days) involves
updating the lexicon with correct days/NN to TAG familiespping (Sectiof 3.212). R(Adv) in-
volves rewriting dependency trees with adverbs to map itsgfaspeech from adverb (RB) to
adjective (JJ) (e.greal estate along(Sectiori 3.2.11).

As the table shows, error mining permits decreasing undergdion by 22.6, 25.6 and 8.7 points
for NPs of size 4, 6 and ALL respectively. This suggests timpke NPs can be generated but tha
bigger NPs still cause undergeneration (8.2% and 13% ofakescrespectively for NP-6 and NP-
ALL) presumably because of more complex modifiers such adivelclauses, PPs and multiple
determiners. Since in particular, relative clauses alg®apin sentences, we proceeded to errc
mine the sentence data so as to provide more data for thersimorg algorithm and therefore get
a more global picture of the most important causes of failure



Input Data Init Fail G(Coord) R(Gen) R(Dt) L(days) R(AdvV)
NP-4 23468 5939%75.3 4246(18.) 999@.3) 833@3.6 678@.9 649 2.7)
NP-6 10520 356033.9 2166 Q0.6 9560.1) 881@8.4 876@.3 865 @8.2
NP-ALL 123523  26769231.7) 21525 16702 16263 16094  160283(

Table 1: Diminishing the number of errors using informatfoom error mining on NP data. The
first column indicates the type of NP chunks to be proceskeddcondi(iput Datg the number of
NP chunks to be processed, the thildit(Fail) the number of input on which generation initially
fails and the last 5 ones the decrease in errors (the numbfailed cases with theercentage
failure) after fixing error cases identified by the suspicion tre&X)R{dicates that the correction is
obtained by rewriting the input for phenomena X, G(X) indésacorrections in the grammar and
L(X) indicates corrections in the lexicon.

Generating Sentences. Tableg 2 show the impact of corrections on generation falesees. For
this data, we start with all the improvements made duringreamining on the NP data. Tah[é 2
represents this step &P-Final summarizing generation results after all improvementsfiia-
ble[d. During error mining on the S datafinitival verbs(discussed in Sectidn 3.2.2) aadxiliary
verbsappear as prominent mismatches between the SR dependeesyatrd the input expected
by our generator. R(Inf) in Tablg 2 involves 3 different réimg rules corresponding to depen-
dency relationsm, oprd and prd for rewriting dependency trees with infinitival verbs. R¢{u
indicates rewriting for dependency trees with Verb/Awadji nuclei (e.g.the whole process might
be reverseji

Input Data NP-Final R(Inf) R(Aux)
S-6 3877 170744.0 753 (19.4 398 (10.3
S-8 3583 174948.9 936 26.1) 576 (16.])
S-ALL 26725 1928072.1) 17862 66.89 16445 61.5

Table 2: Diminishing the number of errors using informatfoom error mining on S data. The
first column indicates the type of sentences to be proceslsedecondifiput Datg the number
of sentences to be processed, the thitBFinal) the number of input (processed with all improve
ments from TablE]1) on which generation fails and, the foantththe fifth error rates after rewriting
dependency trees for infinitival cases and auxiliary vedesaespectively.

Finally, Table[3 summarises results from Table 1 and Tabldding an extra final improvement
step Final) consisting of minor grammar improvement (trees for preedainer PDT added, e.g.,
all these million$, lexicon enrichment (mapping to TAG families correctedyl aewriting rule
(mapping part-of-speech from conjunction CC to determidigre.g.,neither/CC the Bush admin-
istration nor arms-control experts The “Final” row in this Table shows the impact of S error
reduction on NP error reduction. As can be seen reducingdsepositively impact NP errors
throughout.

In total we defined 11 rewrite rules (Gen-1, Dt-4, Adv-1, 8)fAux-1 and Final-1), made 2 gram-
mar corrections and performed a few lexicon updates.

Coverageand accuracy. As the tables show, the corrections carried out after a fasheayf error
mining and error correction helps achieve a large improvenmecoverage for smaller dependency
trees; we notice a large drop of 23.2 points (from 25.3% t&a).h error rates for NP-4, 28.3
points for NP-6, 34.5 points for S-4 and 33.6 points for S-6 I&rger dependency trees howevel
improvementis more limited and other error cases beconséd@i Thus, the failure rate is reduced



by 10.4 points for NP-ALL (NPs from minimum size 1 to maximuires91 with the average size
4); and by 10.9 points for S-ALL (sentences from minimum siz&® maximum size 134 with
the average size 22). The suspicion tree built afterHihal step shows that coordination case:
appear as most suspicious forms. Although the correctiauerfor coordination in the grammar
G(Coord) permit generating simple coordinations (elghn and Mary likes beansdiVe played on
the roof and in the gardenl cooked beans and she até ithe grammar still fails to generate for
more complex coordination phenomenon (e.g., verb cootidimbcooked and ate beangjapping
phenomenordohn eat fish and Harry chipsl liked beans that Harry cooked and which Mary
ate) (Sarkar and Joshi, 1996). Other top suspicious forms ativmond expressions (e.cat least
so far) and foreign words (part-of-speech FW) (ethe naczelnikperestroika product de jouy.

NP-Z NP-6 NP-ALL 56 S8 S-ALL
Input Data 23468 10520 123523 3877 3583 26795
Init Fail 5939 5.3 3560 33.8 26769 @1.7) - - -
NP-Final 649 2.7) 865@.2 16028 (3.0 1707@4.0 1749¢8.9 19280 2.1
S-Final - - - 398(10.3 576(16.) 1644561.5
Final 503 @2.1) 584 6.5 13967 (1.9 37105 545(52 16374 61.9

Table 3: Overall impact of error mining on generation frorffedent types of dependency trees
The first row indicates the type of dependency data to be psacktand the seconthput Datg)
the number of data to be processed. The rows nanmédFail), (NP-Final), (S-Fina) and i-
nal) are initial error rates, errors after applying improvemsegnom Table L, errors after applying
improvements from Tablg 2 and errors after final improvemesgpectively.

To assess the precision of the surface realiser after eirongy we computed the BLEU score for
the covered sentence data and obtained a score of 0.83%{d.80 for S-8 and 0.675 for S-AfL

4 Conclusion

We introduced an error mining algorithm that takes insmrafrom (Quinlan/ 1986)’s ID3 algo-
rithm to structure the output of error mining in a way that oiis a linguistically meaningful
error analysis. We demonstrated its workings by applyirig the analysis of undergeneration in
a grammar based surface realisation algorithm. And we shawitt permits quickly identifying
the main sources of errors while providing a detailed desorn of the various subcases of these
sources if any.

The approach is generic in that permits mining trees andgstrior suspicious forms of arbitrary
size and arbitrary conjunctions of labelling. It could bed$or instance to detect and structure
the n-grams that frequently induce parsing errors; or tatilesubtrees that frequently occur in
agrammatical output produced by a generator.

We are currently working on further improving the generatsing the suspicion tree algorithm.
In future work, we plan to use our error mining algorithm tated# the most likely sources

of over-generation based on the output of a surface repkset to investigate whether the ap-
proach can be useful in automatically detecting treebank fzarse errors| (Boyd etial., 2008;
Dickinson and Smith, 2011).
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4The BLEU score before error mining and correction is not regzbhere since it has low coverage due to the mismatche
between the structures provided by the SR task and thosetexipey the realiser.
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