
HAL Id: hal-00768204
https://hal.science/hal-00768204v1

Submitted on 21 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Error Mining on Dependency Trees
Claire Gardent, Shashi Narayan

To cite this version:
Claire Gardent, Shashi Narayan. Error Mining on Dependency Trees. 50th Annual Meeting of the
Association for Computational Linguistics, Jul 2012, Jeju Island, South Korea. pp.592-600. �hal-
00768204�

https://hal.science/hal-00768204v1
https://hal.archives-ouvertes.fr

Error Mining on Dependency Trees

Claire Gardent

CNRS, LORIA, UMR 7503
Vandoeuvre-lès-Nancy, F-54500, France
claire.gardent@loria.fr

Shashi Narayan

Université de Lorraine, LORIA, UMR 7503
Villers-lès-Nancy, F-54600, France
shashi.narayan@loria.fr

Abstract

In recent years, error mining approaches were

developed to help identify the most likely

sources of parsing failures in parsing sys-

tems using handcrafted grammars and lexi-

cons. However the techniques they use to enu-

merate and count n-grams builds on the se-

quential nature of a text corpus and do not eas-

ily extend to structured data. In this paper, we

propose an algorithm for mining trees and ap-

ply it to detect the most likely sources of gen-

eration failure. We show that this tree mining

algorithm permits identifying not only errors

in the generation system (grammar, lexicon)

but also mismatches between the structures

contained in the input and the input structures

expected by our generator as well as a few id-

iosyncracies/error in the input data.

1 Introduction

In recent years, error mining techniques have been

developed to help identify the most likely sources

of parsing failure (van Noord, 2004; Sagot and de la

Clergerie, 2006; de Kok et al., 2009). First, the input

data (text) is separated into two subcorpora, a corpus

of sentences that could be parsed (PASS) and a cor-

pus of sentences that failed to be parsed (FAIL). For

each n-gram of words (and/or part of speech tag) oc-

curring in the corpus to be parsed, a suspicion rate is

then computed which, in essence, captures the like-

lihood that this n-gram causes parsing to fail.

These error mining techniques have been applied

with good results on parsing output and shown to

help improve the large scale symbolic grammars and

lexicons used by the parser. However the techniques

they use (e.g., suffix arrays) to enumerate and count

n-grams builds on the sequential nature of a text cor-

pus and cannot easily extend to structured data.

There are some NLP applications though where

the processed data is structured data such as trees

or graphs and which would benefit from error min-

ing. For instance, when generating sentences from

dependency trees, as was proposed recently in the

Generation Challenge Surface Realisation Task (SR

Task, (Belz et al., 2011)), it would be useful to be

able to apply error mining on the input trees to find

the most likely causes of generation failure.

In this paper, we address this issue and propose

an approach that supports error mining on trees. We

adapt an existing algorithm for tree mining which we

then use to mine the Generation Challenge depen-

dency trees and identify the most likely causes of

generation failure. We show in particular, that this

tree mining algorithm permits identifying not only

errors in the grammar and the lexicon used by gener-

ation but also a few idiosyncracies/error in the input

data as well as mismatches between the structures

contained in the SR input and the input structures

expected by our generator. The latter is an impor-

tant point since, for symbolic approaches, a major

hurdle to participation in the SR challenge is known

to be precisely these mismatches i.e., the fact that

the input provided by the SR task fails to match the

input expected by the symbolic generation systems

(Belz et al., 2011).

The paper is structured as follows. Section 2

presents the HybridTreeMiner algorithm, a complete

and computationally efficient algorithm developed

A

B

CD

B

C

A

B

DC

B

C

A

B

C

B

CD

A

B

C

B

DC

Figure 1: Four unordered labelled trees. The right-

most is in Breadth-First Canonical Form

by (Chi et al., 2004) for discovering frequently oc-

curring subtrees in a database of labelled unordered

trees. Section 3 shows how to adapt this algorithm

to mine the SR dependency trees for subtrees with

high suspicion rate. Section 4 presents an experi-

ment we made using the resulting tree mining algo-

rithm on SR dependency trees and summarises the

results. Section 5 discusses related work. Section 6

concludes.

2 Mining Trees

Mining for frequent subtrees is an important prob-

lem that has many applications such as XML data

mining, web usage analysis and RNA classification.

The HybridTreeMiner (HTM) algorithm presented

in (Chi et al., 2004) provides a complete and com-

putationally efficient method for discovering fre-

quently occurring subtrees in a database of labelled

unordered trees and counting them. We now sketch

the intuition underlying this algorithm1. In the next

section, we will show how to modify this algorithm

to mine for errors in dependency trees.

Given a set of trees T , the HybridTreeMiner al-

gorithm proceeds in two steps. First, the unordered

labelled trees contained in T are converted to a

canonical form called BFCF (Breadth-First Canoni-

cal Form). In that way, distinct instantiations of the

same unordered trees have a unique representation.

Second, the subtrees of the BFCF trees are enumer-

ated in increasing size order using two tree opera-

tions called join and extension and their support (the

number of trees in the database that contains each

subtree) is recorded. In effect, the algorithm builds

an enumeration tree whose nodes are the possible

subtrees of T and such that, at depth d of this enu-

meration tree, all possible frequent subtrees consist-

ing of d nodes are listed.

1For a more complete definition see (Chi et al., 2004).

The BFCF canonical form of an unordered tree

is an ordered tree t such that t has the smallest

breath-first canonical string (BFCS) encoding ac-

cording to lexicographic order. The BFCS encod-

ing of a tree is obtained by breadth-first traver-

sal of the tree, recording the string labelling each

node, “$” to separate siblings with distinct parents

and “#” to represent the end of the tree2. For in-

stance, the BFCS encodings of the four trees shown

in Figure 1 are ’ABBC$DC#’, ’A$BBCCD#’,

’ABBDC$C#’ and ’A$BBCDC#’ respectively.

Hence, the rightmost tree is the BFCF of all four

trees.

The join and extension operations used to itera-

tively enumerate subtrees are depicted in Figure 2

and can be defined as follows.

• A leg is a leaf of maximal depth.

• Extension: Given a tree t of height ht and a

node n, extending t with n yields a tree t′ (a

child of t in the enumeration tree) with height

ht′ such that n is a child of one of t’s legs and

ht′ is ht + 1.

• Join: Given two trees t1 and t2 of same height

h differing only in their rightmost leg and such

that t1 sorts lower than t2, joining t1 and t2
yields a tree t′ (a child of t1 in the enumeration

tree) of same height h by adding the rightmost

leg of t2 to t1 at level h− 1.

A

CB

D + E →Extension

A

CB

D

E

A

CB

D +

A

C

E

B

→Join

A

C

E

B

D

Figure 2: Join and Extension Operations

To support counting, the algorithm additionally

records for each subtree a list (called occurrence list)

2Assuming “#” sorts greater than “$” and both sort greater

than any other alphabets in node labels.

of all trees in which this subtree occurs and of its po-

sition in the tree (represented by the list of tree nodes

mapped onto by the subtree). Thus for a given sub-

tree t, the support of t is the number of elements

in that list. Occurrence lists are also used to check

that trees that are combined occur in the data. For

the join operation, the subtrees being combined must

occur in the same tree at the same position (the inter-

section of their occurrence lists must be non empty

and the tree nodes must match except the last node).

For the extension operation, the extension of a tree

t is licensed for any given occurrence in the occur-

rence list only if the planned extension maps onto

the tree identified by the occurrence.

3 Mining Dependency Trees

We develop an algorithm (called ErrorTreeMiner,

ETM) which adapts the HybridTreeMiner algorithm

to mine sources of generation errors in the Gener-

ation Challenge SR shallow input data. The main

modification is that instead of simply counting trees,

we want to compute their suspicion rate. Following

(de Kok et al., 2009), we take the suspicion rate of a

given subtree t to be the proportion of cases where t

occurs in an input tree for which generation fails:

Sus(t) =
count(t|FAIL)

count(t)

where count(t) is the number of occurrences of

t in all input trees and count(t|FAIL) is the number

of occurrences of t in input trees for which no output

was produced.

Since we work with subtrees of arbitrary length,

we also need to check whether constructing a longer

subtree is useful that is, whether its suspicion rate

is equal or higher than the suspicion rate of any of

the subtrees it contains. In that way, we avoid com-

puting all subtrees (thus saving time and space). As

noted in (de Kok et al., 2009), this also permits by-

passing suspicion sharing that is the fact that, if n2

is the cause of a generation failure, and if n2 is con-

tained in larger trees n3 and n4, then all three trees

will have high suspicion rate making it difficult to

identify the actual source of failure namely n2. Be-

cause we use a milder condition however (we accept

bigger trees whose suspicion rate is equal to the sus-

picion rate of any of their subtrees), some amount of

Algorithm 1 ErrorTreeMiner(D,minsup)

Note: D consists of Dfail and Dpass

F1 ← {Frequent 1-trees}
F2 ← ∅
for i← 1, ..., |F1| do

for j ← 1, ..., |F1| do

q ← fi plus legfj
if Noord-Validation(q,minsup) then

F2 ← F2 ∪ q

end if

end for

end for

F ← F1 ∪ F2

PUSH: sort(F2)→ LQueue

Enum-Grow(LQueue, F,minsup)
return F

Algorithm 2 Enum-Grow(LQueue, F,minsup)

while LQueue 6= empty do

POP: pop(LQueue)→ C

for i← 1, ..., |C| do

⋄The join operation

J ← ∅
for j ← i, ..., |C| do

p← join(ci, cj)
if Noord-Validation(p,minsup) then

J ← J ∪ p

end if

end for

F ← F ∪ J

PUSH: sort(J)→ LQueue

⋄The extension operation

E ← ∅
for possible leg lm of ci do

for possible new leg ln(∈ F1) do

q ← extend ci with ln at position lm
if Noord-Validation(q,minsup) then

E ← E ∪ q

end if

end for

end for

F ← F ∪ E

PUSH: sort(E)→ LQueue

end for

end while

Algorithm 3 Noord-Validation(tn,minsup)

Note: tn, tree with n nodes

if Sup(tn) ≥ minsup then

if Sus(tn) ≥ Sus(tn−1), ∀tn−1 in tn then

return true

end if

end if

return false

suspicion sharing remains. As we shall see in Sec-

tion 4.3.2, relaxing this check though allows us to

extract frequent larger tree patterns and thereby get

a more precise picture of the context in which highly

suspicious items occur.

Finally, we only keep subtrees whose support is

above a given threshold where the support Sup(t)
of a tree t is defined as the ratio between the number

of times it occurs in an input for which generation

fails and the total number of generation failures:

Sup(t) =
count(t|FAIL)

count(FAIL)

The modified algorithm we use for error mining is

given in Algorithm 1, 2 and 3. It can be summarised

as follows.

First, dependency trees are converted to Breadth-

First Canonical Form whereby lexicographic order

can apply to the word forms labelling tree nodes, to

their part of speech, to their dependency relation or

to any combination thereof3.

Next, the algorithm iteratively enumerates the

subtrees occurring in the input data in increasing

size order and associating each subtree t with two

occurrence lists namely, the list of input trees in

which t occurs and for which generation was suc-

cessful (PASS(t)); and the list of input trees in which

t occurs and for which generation failed (FAIL(t)).

This process is initiated by building trees of size

one (i.e., one-node tree) and extending them to trees

of size two. It is then continued by extending the

trees using the join and extension operations. As

explained in Section 2 above, join and extension

only apply provided the resulting trees occur in the

data (this is checked by looking up occurrence lists).

3For convenience, the dependency relation labelling the

edges of dependency trees is brought down to the daughter node

of the edge.

Each time an n-node tree tn, is built, it is checked

that (i) its support is above the set threshold and (ii)

its suspicion rate is higher than or equal to the sus-

picion rate of all (n− 1)-node subtrees of tn.

In sum, the ETM algorithm differs from the HTM

algorithm in two main ways. First, while HTM ex-

plores the enumeration tree depth-first, ETM pro-

ceeds breadth-first to ensure that the suspicion rate

of (n-1)-node trees is always available when check-

ing whether an n-node tree should be introduced.

Second, while the HTM algorithm uses support to

prune the search space (only trees with a minimum

support bigger than the set threshold are stored), the

ETM algorithm drastically prunes the search space

by additionally checking that the suspicion rate of

all subtrees contained in a new tree t is smaller or

equal to the suspicion rate of t . As a result, while

ETM looses the space advantage of HTM by a small

margin4, it benefits from a much stronger pruning of

the search space than HTM through suspicion rate

checking. In practice, the ETM algorithm allows us

to process e.g., all NP chunks of size 4 and 6 present

in the SR data (roughly 60 000 trees) in roughly 20

minutes on a PC.

4 Experiment and Results

Using the input data provided by the Generation

Challenge SR Task, we applied the error mining al-

gorithm described in the preceding Section to debug

and extend a symbolic surface realiser developed for

this task.

4.1 Input Data and Surface Realisation System

The shallow input data provided by the SR Task

was obtained from the Penn Treebank using the

LTH Constituent-to-Dependency Conversion Tool

for Penn-style Treebanks (Pennconverter, (Johans-

son and Nugues, 2007)). It consists of a set

of unordered labelled syntactic dependency trees

whose nodes are labelled with word forms, part of

speech categories, partial morphosyntactic informa-

tion such as tense and number and, in some cases, a

sense tag identifier. The edges are labelled with the

syntactic labels provided by the Pennconverter. All

words (including punctuation) of the original sen-

4ETM needs to store all (n-1)-node trees in queues before

producing n-node trees.

tence are represented by a node in the tree and the

alignment between nodes and word forms was pro-

vided by the organisers.

The surface realiser used is a system based on

a Feature-Based Lexicalised Tree Adjoining Gram-

mar (FB-LTAG) for English extended with a unifica-

tion based compositional semantics. Both the gram-

mars and the lexicon were developed in view of the

Generation Challenge and the data provided by this

challenge was used as a means to debug and extend

the system. Unknown words are assigned a default

TAG family/tree based on the part of speech they

are associated with in the SR data. The surface real-

isation algorithm extends the algorithm proposed in

(Gardent and Perez-Beltrachini, 2010) and adapts it

to work on the SR dependency input rather than on

flat semantic representations.

4.2 Experimental Setup

To facilitate interpretation, we first chunked the in-

put data in NPs, PPs and Clauses and performed er-

ror mining on the resulting sets of data. The chunk-

ing was performed by retrieving from the Penn Tree-

bank (PTB), for each phrase type, the yields of the

constituents of that type and by using the alignment

between words and dependency tree nodes provided

by the organisers of the SR Task. For instance, given

the sentence “The most troublesome report may be

the August merchandise trade deficit due out tomor-

row”, the NPs “The most troublesome report” and

“the August merchandise trade deficit due out to-

morrow” will be extracted from the PTB and the

corresponding dependency structures from the SR

Task data.

Using this chunked data, we then ran the genera-

tor on the corresponding SR Task dependency trees

and stored separately, the input dependency trees for

which generation succeeded and the input depen-

dency trees for which generation failed. Using infor-

mation provided by the generator, we then removed

from the failed data, those cases where generation

failed either because a word was missing in the lex-

icon or because a TAG tree/family was missing in

the grammar but required by the lexicon and the in-

put data. These cases can easily be detected using

the generation system and thus do not need to be

handled by error mining.

Finally, we performed error mining on the data

using different minimal support thresholds, differ-

ent display modes (sorted first by size and second by

suspicion rate vs sorted by suspicion rate) and differ-

ent labels (part of speech, words and part of speech,

dependency, dependency and part of speech).

4.3 Results

One feature of our approach is that it permits min-

ing the data for tree patterns of arbitrary size us-

ing different types of labelling information (POS

tags, dependencies, word forms and any combina-

tion thereof). In what follows, we focus on the NP

chunk data and illustrate by means of examples how

these features can be exploited to extract comple-

mentary debugging information from the data.

4.3.1 Mining on single labels (word form, POS

tag or dependency)

Mining on a single label permits (i) assessing the

relative impact of each category in a given label cat-

egory and (ii) identifying different sources of errors

depending on the type of label considered (POS tag,

dependency or word form).

Mining on POS tags Table 1 illustrates how min-

ing on a single label (in this case, POS tags) gives

a good overview of how the different categories in

that label type impact generation: two POS tags

(POS and CC) have a suspicion rate of 0.99 indicat-

ing that these categories always lead generation to

fail. Other POS tag with much lower suspicion rate

indicate that there are unresolved issues with, in de-

creasing order of suspicion rate, cardinal numbers

(CD), proper names (NNP), nouns (NN), prepositions

(IN) and determiners (DT).

The highest ranking category (POS5) points to

a mismatch between the representation of geni-

tive NPs (e.g., John’s father) in the SR Task data

and in the grammar. While our generator ex-

pects the representation of ‘John’s father’ to be FA-

THER(“S”(JOHN)), the structure provided by the SR

Task is FATHER(JOHN(“S”)). Hence whenever a

possessive appears in the input data, generation fails.

This is in line with (Rajkumar et al., 2011)’s finding

that the logical forms expected by their system for

possessives differed from the shared task inputs.

5In the Penn Treebank, the POS tag is the category assigned

to possessive ’s.

POS Sus Sup Fail Pass

POS 0.99 0.38 3237 1

CC 0.99 0.21 1774 9

CD 0.39 0.16 1419 2148

NNP 0.35 0.32 2749 5014

NN 0.30 0.81 6798 15663

IN 0.30 0.16 1355 3128

DT 0.09 0.12 1079 10254

Table 1: Error Mining on POS tags with frequency

cutoff 0.1 and displaying only trees of size 1 sorted

by decreasing suspicion rate (Sus)

The second highest ranked category is CC for co-

ordinations. In this case, error mining unveils a

bug in the grammar trees associated with conjunc-

tion which made all sentences containing a conjunc-

tion fail. Because the grammar is compiled out of

a strongly factorised description, errors in this de-

scription can propagate to a large number of trees

in the grammar. It turned out that an error occurred

in a class inherited by all conjunction trees thereby

blocking the generation of any sentence requiring

the use of a conjunction.

Next but with a much lower suspicion rate come

cardinal numbers (CD), proper names (NNP), nouns

(NN), prepositions (IN) and determiners (DT). We

will see below how the richer information provided

by mining for larger tree patterns with mixed la-

belling information permits identifying the contexts

in which these POS tags lead to generation failure.

Mining on Word Forms Because we remove

from the failure set all cases of errors due to a miss-

ing word form in the lexicon, a high suspicion rate

for a word form usually indicates a missing or incor-

rect lexical entry: the word is present in the lexicon

but associated with either the wrong POS tag and/or

the wrong TAG tree/family. To capture such cases,

we therefore mine not on word forms alone but on

pairs of word forms and POS tag. In this way, we

found for instance, that cardinal numbers induced

many generation failures whenever they were cate-

gorised as determiners but not as nouns in our lexi-

con. As we will see below, larger tree patterns help

identify the specific contexts inducing such failures.

One interesting case stood out which pointed to

idiosyncracies in the input data: The word form $

(Sus=1) was assigned the POS tag $ in the input

data, a POS tag which is unknown to our system and

not documented in the SR Task guidelines. The SR

guidelines specify that the Penn Treebank tagset is

used modulo the modifications which are explicitly

listed. However for the $ symbol, the Penn treebank

used SYM as a POS tag and the SR Task $, but the

modification is not listed. Similarly, while in the

Penn treebank, punctuations are assigned the SYM

POS tag, in the SR data “,” is used for the comma,

“(“ for an opening bracket and so on.

Mining on Dependencies When mining on de-

pendencies, suspects can point to syntactic construc-

tions (rather than words or word categories) that are

not easily spotted when mining on words or parts

of speech. Thus, while problems with coordination

could easily be spotted through a high suspicion rate

for the CC POS tag, some constructions are linked

neither to a specific POS tag nor to a specific word.

This is the case, for instance, for apposition which

a suspicion rate of 0.19 (286F/1148P) identified as

problematic. Similarly, a high suspicion rate (0.54,

183F/155P) on the TMP dependency indicates that

temporal modifiers are not correctly handled either

because of missing or erroneous information in the

grammar or because of a mismatch between the in-

put data and the fomat expected by the surface re-

aliser.

Interestingly, the underspecified dependency rela-

tion DEP which is typically used in cases for which

no obvious syntactic dependency comes to mind

shows a suspicion rate of 0.61 (595F/371P).

4.3.2 Mining on trees of arbitrary size and

complex labelling patterns

While error mining with tree patterns of size one

permits ranking and qualifying the various sources

of errors, larger patterns often provide more detailed

contextual information about these errors. For in-

stance, Table 1 shows that the CD POS tag has a

suspicion rate of 0.39 (1419F/2148P). The larger

tree patterns identified below permits a more specific

characterization of the context in which this POS tag

co-occurs with generation failure:

TP1 CD(IN,RBR) more than 10

TP2 IN(CD) of 1991

TP3 NNP(CD) November 1

TP4 CD(NNP(CD)) Nov. 1, 1997

Two patterns clearly emerge: a pattern where car-

dinal numbers are parts of a date (tree patterns TP2-

TP4) and a more specific pattern (TP1) involving

the comparative construction (e.g., more than 10).

All these patterns in fact point to a missing category

for cardinals in the lexicon: they are only associated

with determiner TAG trees, not nouns, and therefore

fail to combine with prepositions (e.g., of 1991, than

10) and with proper names (e.g., November 1).

For proper names (NNP), dates also show up be-

cause months are tagged as proper names (TP3,TP4)

as well as addresses TP5:

TP5 NNP(“,”,“,”) Brooklyn, n.y.,

For prepositions (IN), we find, in addition to the

TP1-TP2, the following two main patterns:
TP6 DT(IN) those with, some of

TP7 RB(IN) just under, little more

Pattern TP6 points to a missing entry for words

such as those and some which are categorised in the

lexicon as determiners but not as nouns. TP7 points

to a mismatch between the SR data and the format

expected by the generator: while the latter expects

the structure IN(RB), the input format provided by

the SR Task is RB(IN).

4.4 Improving Generation Using the Results of

Error Mining

Table 2 shows how implementing some of the cor-

rections suggested by error mining impacts the num-

ber of NP chunks (size 4) that can be generated. In

this experiment, the total number of input (NP) de-

pendency trees is 24995. Before error mining, gen-

eration failed on 33% of these input. Correcting

the erroneous class inherited by all conjuction trees

mentioned in Section 4.3.1 brings generation failure

down to 26%. Converting the input data to the cor-

rect input format to resolve the mismatch induced

by possessive ’s (cf. Section 4.3.1) reduce gener-

ation failure to 21%6 and combining both correc-

tions results in a failure rate of 13%. In other words,

error mining permits quickly identifying two issues

which, once corrected, reduces generation failure by

20 points.

When mining on clause size chunks, other mis-

matches were identified such as in particular, mis-

matches introduced by subjects and auxiliaries:

6For NP of size 4, 3264 structures with possessive ’s were

rewritten.

NP 4 Before After

SR Data 8361 6511

Rewritten SR Data 5255 3401

Table 2: Diminishing the number of errors using in-

formation from error mining. The table compares

the number of failures on NP chunks of size 4 be-

fore (first row) and after (second row) rewritting the

SR data to the format expected by our generator and

before (second column) and after (third column) cor-

recting the grammar and lexicon errors discussed in

Section 4.3.1

while our generator expects both the subject and the

auxiliary to be children of the verb, the SR data rep-

resent the subject and the verb as children of the aux-

iliary.

5 Related Work

We now relate our proposal (i) to previous proposals

on error mining and (ii) to the use of error mining in

natural language generation.

Previous work on error mining. (van Noord,

2004) initiated error mining on parsing results with

a very simple approach computing the parsability

rate of each n-gram in a very large corpus. The

parsability rate of an n-gram wi . . . wn is the ratio

R(wi . . . wn) = C(wi...wn|OK)
C(wi...wn)

with C(wi . . . wn)
the number of sentences in which the n-gram

wi . . . wn occurs and C(wi . . . wn | OK) the num-

ber of sentences containing wi . . . wn which could

be parsed. The corpus is stored in a suffix array

and the sorted suffixes are used to compute the fre-

quency of each n-grams in the total corpus and in the

corpus of parsed sentences. The approach was later

extended and refined in (Sagot and de la Clergerie,

2006) and (de Kok et al., 2009) whereby (Sagot and

de la Clergerie, 2006) defines a suspicion rate for n-

grams which takes into account the number of occur-

rences of a given word form and iteratively defines

the suspicion rate of each word form in a sentence

based on the suspicion rate of this word form in the

corpus; (de Kok et al., 2009) combined the iterative

error mining proposed by (Sagot and de la Clergerie,

2006) with expansion of forms to n-grams of words

and POS tags of arbitrary length.

Our approach differs from these previous ap-

proaches in several ways. First, error mining is per-

formed on trees. Second, it can be parameterised to

use any combination of POS tag, dependency and/or

word form information. Third, it is applied to gener-

ation input rather than parsing output. Typically, the

input to surface realisation is a structured represen-

tation (i.e., a flat semantic representation, a first or-

der logic formula or a dependency tree) rather than a

string. Mining these structured representations thus

permits identifying causes of undergeneration in sur-

face realisation systems.

Error Mining for Generation Not much work

has been done on mining the results of surface re-

alisers. Nonetheless, (Gardent and Kow, 2007) de-

scribes an error mining approach which works on

the output of surface realisation (the generated sen-

tences), manually separates correct from incorrect

output and looks for derivation items which system-

atically occur in incorrect output but not in correct

ones. In contrast, our approach works on the input

to surface realisation, automatically separates cor-

rect from incorrect items using surface realisation

and targets the most likely sources of errors rather

than the absolute ones.

More generally, our approach is the first to our

knowledge, which mines a surface realiser for un-

dergeneration. Indeed, apart from (Gardent and

Kow, 2007), most previous work on surface reali-

sation evaluation has focused on evaluating the per-

formance and the coverage of surface realisers. Ap-

proaches based on reversible grammars (Carroll et

al., 1999) have used the semantic formulae output

by parsing to evaluate the coverage and performance

of their realiser; similarly, (Gardent et al., 2010) de-

veloped a tool called GenSem which traverses the

grammar to produce flat semantic representations

and thereby provide a benchmark for performance

and coverage evaluation. In both cases however, be-

cause it is produced using the grammar exploited by

the surface realiser, the input produced can only be

used to test for overgeneration (and performance) .

(Callaway, 2003) avoids this shortcoming by con-

verting the Penn Treebank to the format expected by

his realiser. However, this involves manually iden-

tifying the mismatches between two formats much

like symbolic systems did in the Generation Chal-

lenge SR Task. The error mining approach we pro-

pose helps identifying such mismatches automati-

cally.

6 Conclusion

Previous work on error mining has focused on appli-

cations (parsing) where the input data is sequential

working mainly on words and part of speech tags.

In this paper, we proposed a novel approach to error

mining which permits mining trees. We applied it

to the input data provided by the Generation Chal-

lenge SR Task. And we showed that this supports

the identification of gaps and errors in the grammar

and in the lexicon; and of mismatches between the

input data format and the format expected by our re-

aliser.

We applied our error mining approach to the in-

put of a surface realiser to identify the most likely

sources of under-generation. We plan to also ex-

plore how it can be used to detect the most likely

sources of over-generation based on the output of

this surface realiser on the SR Task data. Using the

Penn Treebank sentences associated with each SR

Task dependency tree, we will create the two tree

sets necessary to support error mining by dividing

the set of trees output by the surface realiser into a

set of trees (FAIL) associated with overgeneration

(the generated sentences do not match the original

sentences) and a set of trees (SUCCESS) associated

with success (the generated sentence matches the

original sentences). Exactly which tree should popu-

late the SUCCESS and FAIL set is an open question.

The various evaluation metrics used by the SR Task

(BLEU, NIST, METEOR and TER) could be used

to determine a threshold under which an output is

considered incorrect (and thus classificed as FAIL).

Alternatively, a strict matching might be required.

Similarly, since the surface realiser is non determin-

istic, the number of output trees to be kept will need

to be experimented with.

Acknowledgments

We would like to thank Clément Jacq for useful dis-

cussions on the hybrid tree miner algorithm. The

research presented in this paper was partially sup-

ported by the European Fund for Regional Develop-

ment within the framework of the INTERREG IV A

Allegro Project.

References

Anja Belz, Michael White, Dominic Espinosa, Eric Kow,

Deirdre Hogan, and Amanda Stent. 2011. The first

surface realisation shared task: Overview and evalua-

tion results. In Proc. of the 13th European Workshop

on Natural Language Generation.

Charles B. Callaway. 2003. Evaluating coverage for

large symbolic NLG grammars. In 18th IJCAI, pages

811–817, Aug.

John Carroll, Ann Copestake, Dan Flickinger, and Vik-

tor Paznański. 1999. An efficient chart generator

for (semi-)lexicalist grammars. In Proceedings of

EWNLG ’99.

Yun Chi, Yirong Yang, and Richard R. Muntz. 2004. Hy-

bridtreeminer: An efficient algorithm for mining fre-

quent rooted trees and free trees using canonical form.

In SSDBM’04: Proceedings of the 16th International

Conference on and Statistical Database Management,

pages 11–20, Santorini Island, Greece. IEEE Com-

puter Society.

Daniël de Kok, Jianqiang Ma, and Gertjan van Noord.

2009. A generalized method for iterative error mining

in parsing results. In ACL2009 Workshop Grammar

Engineering Across Frameworks (GEAF), Singapore.

Claire Gardent and Eric Kow. 2007. Spotting overgener-

ation suspect. In 11th European Workshop on Natural

Language Generation (ENLG).

Claire Gardent and Laura Perez-Beltrachini. 2010. Rtg

based surface realisation for tag. In COLING’10, Bei-

jing, China.

Claire Gardent, Benjamin Gottesman, and Laura Perez-

Beltrachini. 2010. Comparing the performance of two

TAG-based Surface Realisers using controlled Gram-

mar Traversal. In Proceedings of Coling 2010 (Poster

session), pages 338–346, Beijing, China, August. Col-

ing 2010 Organizing Committee.

Richert Johansson and Pierre Nugues. 2007. Extended

constituent-to-dependency conversion for english. In

Proceedings of NODALIDA, pages 105–112, Tartu,

Estonia.

Rajakrishnan Rajkumar, Dominic Espinosa, and Michael

White. 2011. The osu system for surface realiza-

tion at generation challenges 2011. Technical report,

The Ohio State University. Proc. of the 13th European

Workshop on Natural Language Generation.

Benoit Sagot and Eric de la Clergerie. 2006. Error min-

ing in parsing results. In ACL, editor, Proceedings of

the ACL 2006, pages 329–336, Morristown, NJ, USA.

Gertjan van Noord. 2004. Error mining for wide-

coverage grammar engineering. In ACL, editor, Pro-

ceedings of the ACL 2004, pages 446–454, Morris-

town, NJ, USA.

