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This paper constructs tests for heteroskedasticity in one-way error components models, in line with Baltagi, Bresson and Pirotte (Journal of Econometrics, 134, 2006). Our tests have two additional robustness properties. First, standard tests for heteroskedasticity in the individual component are shown to be negatively affected by heteroskedasticity in the remainder component. We derive modified tests that are insensitive to heteroskedasticity in the component not being checked, and hence help identify the source of heteroskedasticity. Second, Gaussian based LM tests are shown to reject too often in the presence of heavytailed (e.g. t-Student) distributions. By using a conditional moments framework, we derive distribution-free tests that are robust to nonnormalities. Our tests are computationally convenient since they are based on simple artificial regressions after pooled OLS estimation.

Introduction

Typical panels in econometrics are largely asymmetric, in the sense that their cross-sectional dimension is much larger than its temporal one. Consequently, most of the concerns that affect cross-sectional models harm panel data models similarly. This is surely the case of heteroskedasticity, a subject that has played a substantial role in the history of econometric research and practice, and still occupies a relevant place in its pedagogical side: all basic texts include a chapter on the subject. As it is well known, heteroskedasticity invalidates standard inferential procedures, and usually calls for alternative strategies that either accommodate heterogeneous conditional variances, or are insensitive to them. The one-way error components model is the most basic extension of simple linear models to handle panel data, and it is widely used in the applied literature. In this model, heteroskedasticity may now be present in either the 'individual' error component, in the observation-specific 'remainder' error component, or in both simultaneously.

Consider the case of testing for heteroskedasticity. In the cross-sectional domain, the landmark paper by [START_REF] Breusch | A simple test for heteroskedasticity and random coefficient variation[END_REF] derives a widely used, asymptotically valid test in the Lagrange multiplier (LM) maximumlikelihood (ML) framework under normality. Further work by [START_REF] Koenker | A note on studentizing a test for heteroskedasticity[END_REF] proposed a simple 'studentization' that avoids the restrictive Gaussian assumption. This is an important result since non-normalities severely
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affect the performance of the standard LM based test, as clearly documented by [START_REF] Evans | Robustness of size of tests of autocorrelation and heteroskedasticity to nonnormality[END_REF] in a comprehensive Monte Carlo study. [START_REF] Wooldridge | A unified approach to robust, regression-based specification tests[END_REF][START_REF] Wooldridge | On the application of robust, regression-based diagnostics to models of conditional means and conditional variances[END_REF] and [START_REF] Dastoor | Testing for conditional heteroskedasticity with misspecified alternative hypothesis[END_REF] consider a more general framework allowing for heterokurtosis.

The literature on panel data has only recently produced results analogy to those available for the cross-sectional case. 1 For the one-way error component, [START_REF] Holly | A score test for individual heteroskedasticity in a one-way error components model[END_REF] study the case where heteroskedasticity is only present in the individual-specific component, and derive a test statistic that is a direct analogy of the classic Breusch-Pagan test in an LM framework under normality. 2 Baltagi, Bresson and Pirotte (2006) allow for heteroskedasticity in both components and derive a test for the joint null of homoskedasticity, again, in the Gaussian LM framework. They also derive 'marginal' tests for homoskedasticity in either component, that is, tests that assume that heteroskedasticity is absent in the component not being checked, of which, naturally, the test by [START_REF] Holly | A score test for individual heteroskedasticity in a one-way error components model[END_REF] is a particular case. Both articles propose LM-type tests and, consequently, are based on estimating a null homoskedastic model, which makes them computationally attractive. 3 Closer to our work is [START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF], who proposes a pseudo maximum likelihood framework for estimation and inference of a 1 An early contribution on this topic is the seminal paper by [START_REF] Mazodier | Heteroscedasticity and stratification in error component models[END_REF].

2 Recently, [START_REF] Baltagi | Testing for heteroskedasticity and serial correlation in a random effects panel data model[END_REF] extend this test to incorporate serial correlation as well.

3 Other related contributions include [START_REF] Roy | Is adaptative estimation useful for panel data models with heteroskedasticity in the individual specific error component? Some Monte Carlo evidence[END_REF] and [START_REF] Phillips | Estimation of stratified error components model[END_REF].

full heteroskedastic model.

This paper derives new tests for homoskedasticity in the error components model that possess two robustness properties. Though the term robust has a long tradition in statistics [START_REF] Huber | Robust Statistics[END_REF], in this paper it is used to mean being resistant to 1) misspecification of the conditional variance of the remainder term, and 2) departures away from the strict Gaussian framework used in the ML-LM context.

The first robustness property is related to resistance to misspecification of the a priori admissible hypotheses, that is, to 'type-III errors' in the terminology of [START_REF] Kimball | Errors of the third kind in statistical consulting[END_REF] (see Welsh, 1996, pp. 119-120, for a discussion of these concepts). The negative effects of this type of misspecification on the performance of LM tests have been studied by [START_REF] Davidson | Implicit alternatives and the local power of test statistics[END_REF], Saikonnen (1989) and [START_REF] Bera | Specification testing with locally misspecified alternatives[END_REF], and are found to occur when the score of the parameter of interest is correlated with that of the nuisance parameter. This type of misspecification affects the [START_REF] Holly | A score test for individual heteroskedasticity in a one-way error components model[END_REF] test in the case where the temporal dimension of the panel is fixed, which assumes that heteroskedasticity is absent in the remainder term, and therefore, rejects its null spuriously not due to heteroskedasticity being present in the individual component being tested, but in the other one. This problem can be observed directly in the corresponding non-zero element of the Fisher information matrix presented in [START_REF] Baltagi | Joint LM test for homoskedasticity in a one-way error component model[END_REF].

As discussed in Section 4, [START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF] tests are similarly affected. In
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such cases, it is difficult to identify the presence of heteroskedasticity in the individual component since it is 'masked' by the other source. We propose a modified test for heteroskedasticity in the individual component that is immune to the presence of heteroskedasticity in the remainder term, and hence can identify the source of heteroskedasticity.

The second robustness property is related to the idea of robustness of validity of [START_REF] Box | Non-normalities and tests on variances[END_REF], that is, tests that achieve an intended asymptotic level for a rather large family of distributions (see Welsh, 1996, ch. 5, for a discussion). In this paper, through an extensive Monte Carlo experiment, non-normalities are shown to severely affect the performance of the tests by [START_REF] Holly | A score test for individual heteroskedasticity in a one-way error components model[END_REF] and [START_REF] Baltagi | Joint LM test for homoskedasticity in a one-way error component model[END_REF], consistent with the results of [START_REF] Evans | Robustness of size of tests of autocorrelation and heteroskedasticity to nonnormality[END_REF] for the cross-sectional case. We derive new tests using a conditional moments framework, and thus, they are distribution-free by construction, subject to mild regularity assumptions. In this context, the LM-type tests proposed by [START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF] are also resistant to nonnormalities. We also consider the case of possible heterokurtosis as a simple extension of our framework, along the line of the work by [START_REF] Wooldridge | A unified approach to robust, regression-based specification tests[END_REF][START_REF] Wooldridge | On the application of robust, regression-based diagnostics to models of conditional means and conditional variances[END_REF] and [START_REF] Dastoor | Testing for conditional heteroskedasticity with misspecified alternative hypothesis[END_REF].

An additional advantage of all our proposed statistics is that of simplicity, since they are based on simple transformations of pooled OLS residuals of a fully homoskedastic model, unlike the case of the tests by [START_REF] Holly | A score test for individual heteroskedasticity in a one-way error components model[END_REF] and [START_REF] Baltagi | Joint LM test for homoskedasticity in a one-way error component model[END_REF] that require ML estimation. Fur-
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thermore, all tests proposed in this paper can be computed based on the R 2 coefficients from simple artificial regressions.

The paper is organized as follows. Section 2 presents the heteroskedastic error components model and the set of moment conditions used to derive test statistics in Section 3. Section 4 presents the results of a detailed Monte Carlo experiment that compares all our statistics and those obtained by [START_REF] Holly | A score test for individual heteroskedasticity in a one-way error components model[END_REF], [START_REF] Baltagi | Joint LM test for homoskedasticity in a one-way error component model[END_REF] and [START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF]. Section 5 considers an extension of the proposed statistics to handle heterokurtosis.

Section 6 concludes and presents suggestions for practitioners and future research.

2 Moment conditions for the one-way heteroskedastic error components model [START_REF] Baltagi | Joint LM test for homoskedasticity in a one-way error component model[END_REF] use a parametric error components model under normality and a ML estimator. In order to highlight differences and similarities, our search for distribution-free tests for heteroskedasticity will be based on a set of appropriate moment conditions. Consider the following regression model with general heteroskedasticity in a one-way error components model:

y it = x it β + u it , u it = µ i + ν it , i = 1, ...N, t = 1, ..., T, (1) 
where y it , u it , µ i and ν it are scalars, x it is a k β -vector of regressors, and β is a k β -vector of parameters. As usual, the subscript i refers to individual, and t to temporal observations. We follow the conditional moments frame-work introduced by [START_REF] Newey | Maximum likelihood specification testing and conditional moment tests[END_REF], [START_REF] Tauchen | Diagnostic testing and evaluation of maximum likelihood models[END_REF] and [START_REF] White | Specification testing in dynamic models[END_REF], and consider a set of conditioning variables w it , containing the not necessarily disjoint elements x it , z µi and z νit . Here z µi and z νit are vectors of regressors of dimensions k θµ and k θν respectively. For notational convenience we also define w i = {w i1 , ..., w it , ..., w iT } and x i = {x i1 , ..., x it , ..., x iT }. Throughout the paper we assume that the conditional mean of model ( 1) is well specified,

that is, E[u it |w i ] = E[u it |x i ] = 0.
In the context of the general framework specified by Wooldridge (1990, p. 18) this implies that the validity of the derived tests actually imposes more than just the hypothesis of interest, by ruling out misspecification in the conditional mean.4 

Further, we assume that the conditional processes µ i |w i and ν it |w i are conditionally uncorrelated, independent across i, with ν it |w i also uncorrelated across t, and with zero conditional mean, conditional variances given by

σ 2 µi ≡ V [µ i |w i ] = σ 2 µ h µ (z µi θ µ ) > 0 , i = 1, ..., N , (2) 
σ 2 νit ≡ V [ν it |w i ] = V [ν it |w it ] = σ 2 ν h ν (z νit θ ν ) > 0 , i = 1, ..., N, t = 1, ..., T , (3) 
and finite fourth moments. h µ (.) and h ν (.) are twice continuously differ-

entiable functions satisfying h µ (.) > 0, h ν (.) > 0, h µ (0) = 1, h ν (0) = 1, h (1) 
µ (0) = 0 and h

(1) ν (0) = 0, where h (j) denotes their j-th derivatives.
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In this set-up, θ µ and θ ν will be the parameters of interest : θ ν = θ µ = 0. Because, in general, the nature of the heteroskedasticity is unknown, z µ and z ν may be similar, when not identical, hence we cannot rely on them to distinguish among different types of heteroskedasticity.

Let u i ≡ T -1 T t=1 u it be the between residuals and ũit ≡ u it -ūi the within residuals. Different moment conditions on these errors provide alternative ways of testing for both sources of heteroskedasticity.

The squared between residual provides moment conditions for testing 

H σ 2 µ 0 : E[ū 2 i |w i ] = σ 2 µ h µ (z µi θ µ ) + T -2 σ 2 ν T t=1 h ν (z νit θ ν ). ( 4 
) If H σ 2 ν 0 is true, that is, if there is no heteroskedasticity in the remainder component, it simplifies to E[u 2 i |w i ] = σ 2 µ h µ (z µi θ µ ) + T -1 σ 2 ν . (5) Moreover, if H σ 2 ν 0 does not hold, but N → ∞
ũ2 i = ū2 i -T -2 T t=1 ũ2 it -T -3 T t=1 ũ2 it -T -4 T t=1 ũ2 it ..... = ū2 i - T -2 1 -T -1 T t=1 ũ2
it , and note that

E ũ2 i |w i = E ū2 i - T -2 1 -T -1 T t=1 ũ2 it w i = σ 2 µ h µ (z µi θ ν ). (6) 
Unlike (4), this moment condition does not involve parameters related to heteroskedasticity in the remainder component, and, hence, it will be used in Section 3.2 to construct tests for heteroskedasticity in the individual component in short panels that are robust to the presence of heteroskedasticity in the remainder component.

Consider now the moment condition based on the squared within residual:

E[ũ 2 it |w i ] = σ 2 ν   (1 -2T -1 + T -2 )h ν (z νit θ ν ) + T -2 T j =t h ν (z νij θ ν )   . (7)
This condition can be used to construct tests for H σ 2 ν 0 . Note that σ 2 µ and θ µ do not appear anywhere in (7), which means that a test based on this moment condition will be robust to the presence of heteroskedasticity in the individual error component, i.e. when θ µ = 0. A test for heteroskedasticity in the remainder component will be based on N T × R 2 , where R 2 is the centered coefficient of determination of an auxiliary regression of ũ2 on z ν and a constant (see Section 3.3). Note, there may be differences between short and long panels because

E[ũ 2 it |w i ] = σ 2 ν h ν (z νit θ ν ) + O(T -1
) . This is explored in Section 3.4.

Robust tests for heteroskedasticity

Our tests will be based on the moment conditions considered in the previous section, following [START_REF] Koenker | A note on studentizing a test for heteroskedasticity[END_REF] studentization procedure. We use the asymptotic framework of [START_REF] Dastoor | Testing for conditional heteroskedasticity with misspecified alternative hypothesis[END_REF] adapted to the one-way error components model structure described above.

Assumption 1 For each i = 1, ..., N and t = 1, ..., T , E[w j,it w j,it ] is a finite positive definite matrix, where w j,• is a column vector containing the distinct elements of w and 1. Moreover,

E[|w j,it | 2+ ], E[|w j,it µ 2 i | 2+ ] and E[|w j,it ν 2 it | 2+
] are uniformly bounded for some > 0.

Dastoor's framework includes [START_REF] Wooldridge | A unified approach to robust, regression-based specification tests[END_REF][START_REF] Wooldridge | On the application of robust, regression-based diagnostics to models of conditional means and conditional variances[END_REF] set-up for heterokurtosis, that is, the case where the error term is allowed to have different conditional fourth moments. In our case, this would involve allowing that both

E[(µ 2 i -σ 2 µ h µ (z µi θ µ )) 2 |w i ] and E[(ν 2 it -σ 2 ν h ν (z νit θ ν )) 2 |w i ] are not A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT constants.
In this section we derive tests assuming homokurtosis, since it provides an intuitive framework to motivate the statistics. The heterokurtic case and a related Monte Carlo exploration are treated as an extension in Section 5.

Assumption 2 For each i = 1, ..., N , and

t = 1, ..., T , E[(µ 2 i -σ 2 µ h µ (z µi θ µ )) 2 |w i ] = G µ < ∞ and E[(ν 2 it -σ 2 ν h ν (z νit θ ν )) 2 |w i ] = G ν < ∞.
The test statistics will be based on transformations of the OLS residuals ûit ≡ y itx it β, where β is the OLS estimator of regression model (1). 

Test for H

Theorem 1 Let φ µ = V ar ū2 i |w i , D µ = lim N →∞ E 1 N Z µ M N Z µ and λ µ = σ 4 µ h (1) µ (0) 2 φµ δ µ D µ δ µ . Then, under Assumptions 1 and 2, as N, T → ∞ or A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT N → ∞, T fixed and H σ 2 ν 0 , and under H σ 2 µ A : θ µ = δ µ / √ N , m µ ≡ N × ( η M N η) -1 η M N Z µ (Z µ M N Z µ ) -1 Z µ M N η d → χ 2 k θµ (λ µ ). ( 8 
)
Proof: Note that the sequence of random variables {ū 2 i } is independent.

Moreover, by taking a Taylor series expansion of the function h µ (.) and As-

sumption 1, 1 √ N Z µ M N η = σ 2 µ h (1) µ (0)δ µ D µ +o p (1) and lim N →∞ V ar 1 √ N Z µ M N η = φ µ D µ , where η = {ū 2 1 , ..., ū2 N }. Also note that φ µ = 1 N η M N η + o p (1). Now
we apply Theorem 1 in [START_REF] Dastoor | Testing for conditional heteroskedasticity with misspecified alternative hypothesis[END_REF] for our sequence of squared OLS between residuals on i = 1, ..., N , which under Assumption 2 (homokurtosis)

gives the desired result. Q.E.D.

Note that if µ is Gaussian, φ µ = 2×(σ 2 µ +T -1 σ 2 ν ) 2 , and then the Koenkertype test reduces to the [START_REF] Holly | A score test for individual heteroskedasticity in a one-way error components model[END_REF] marginal test, which is similar to the [START_REF] Breusch | A simple test for heteroskedasticity and random coefficient variation[END_REF] test where the between OLS residuals are used instead of the untransformed OLS residuals.

Consider now the auxiliary regression model (see [START_REF] Davidson | Specification tests based on artificial regression[END_REF], on the use of artificial regressions)

ū2 i = α + z µi γ + residual. ( 9 
)
Note that m µ is N ×R 2 µ where R 2 µ is the centered coefficient of determination of this regression model, i.e. an auxiliary regression of η on z µ and a constant (see Koenker, 1981, p. 111). 
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i = ū2 i -T -2 1-T -1 T t=1
ũ2 it and ũit ≡ ûitūi . Define η, a N -vector containing the transformed sample residuals.

Theorem 2 Let φ * µ = lim N →∞ V ar ũ2 i |w i and λ * µ = σ 4 µ h (1) µ (0) 2 φ * µ δ µ D µ δ µ .
Then, under Assumptions 1 and 2, as N → ∞ and under H

σ 2 µ A : θ µ = δ µ / √ N , m * µ ≡ N × ( η M N η) -1 η M N Z µ (Z µ M N Z µ ) -1 Z µ M N η d → χ 2 k θµ (λ * µ ). ( 10 
)
Proof: similar to that in Theorem 1.

Consider the auxiliary regression model

ũ2 i = α + z µi γ + residual. ( 11 
)
Using a similar argument as before, m * µ = N × R 2 * µ where R 2 * µ is the centered coefficient of determination of the regression model. Note that the auxiliary regression model ( 11) covers that in model ( 9), and therefore, the case analyzed here is a generalization of the former. 

Test for H

Theorem 3 Let φ ν = lim N,T →∞ V ar[ũ 2 it |w i ] = G ν , D ν = lim N,T →∞ E 1 N T Z ν M N T Z ν and λ ν = σ 4 ν h (1) ν (0) 2 φν δ ν D ν δ ν .
Then, under Assumptions 1 and 2, as N, T → ∞ and under H

σ 2 ν A : θ ν = δ ν / √ N T , m ν ≡ N T × ( η M N T η) -1 η M N T Z ν (Z ν M N T Z ν ) -1 Z ν M N T η d → χ 2 k θν (λ ν ). (12) 
Proof: Note that the sequence of random variables {ũ 2 it } is asymptotically in- a Taylor expansion of eq. ( 7) where θ ν is expanded about 0,

dependent as T → ∞, because Cov[ũ 2 it , ũ2 kh |w i , w k ] = 0, i = k and Cov[ũ 2 it , ũ2 ih |w i ] = O(T -2 ), t = h.
E[ũ 2 it |w i ] = σ 2 ν + σ 2 ν   (1 -2T -1 )h (1) ν (0) z νit θ ν + T -2 T j=1 h (1) ν (0) z νij θ ν   + o(||θ * ν ||) = σ 2 ν + σ 2 ν (1 -2T -1 )h (1) ν (0) z νit θ ν + T -1 h (1) ν (0)z νi θ ν + o(||θ * ν ||)
where zνi = T -1 T t=1 z νit , i = 1, ..., N and θ * ν is between θ ν and 0.

Moreover, note that Cov[ũ 2 it , ũ2

ih |w i ] = c = O(T -2
), then, for T finite, additional covariance terms need to be taken into consideration. Define lim

N →∞ V ar 1 √ N T Z ν M N T η = Ω ν ,
where Zν is a N T × k θν matrix with the sample matrix of covariates with typical element

{(1 -2T -1 )z νit + T -1 zνi },
η is vector of within residuals {ũ it }, and let Φν be a consistent estimate of that variance-covariance matrix of η.

Theorem 4 Let λ ν = σ 4 ν h

(1)

ν (0) 2 δ ν Dν Ω -1 ν Dν δ ν where Dν = lim N →∞ E 1 N T Zν M N T Zν .
Then, under Assumptions 1 and 2, as N → ∞, T fixed and under H σ 2 ν A :

5 As noted by an anonymous referee a significant limitation of this test is that νit|wi is not serially correlated and it should not be very difficult to construct a modified test that do not rely on this assumption (see for instance next subsection, where additional covariance terms are considered).

θ ν = δ ν / √ N T , m * ν ≡ N T × η M N T Zν ( Z ν M N T Zν )( Z ν M N T Φν M N T Zν ) -1 ( Z ν M N T Zν ) Z ν M N T η d → χ 2 k θν (λ ν ).
Proof: The proof follows from Theorem 3 and Dastoor's (1997) Theorem 1.

A convenient way to implement this test is based on the auxiliary regression model

ũ2 it = α + z νit γ + residual, (14) 
and noting that ) ) for any > 0, where R * 2 ν is the centered coefficient of determination of this regression model. 

N T × R 2 * ν = m * ν + o(T -( 2+ 
m µ,ν = m µ + m ν . (15) 
With N and T tending to infinity, the joint test is trivially derived by exploiting the two orthogonal moment conditions ( 5) and ( 7) and hence a valid test is based on the sum of the marginal tests for each source of heteroskedasticity, which involve the sum of independent chi-squared random 6 The Monte Carlo experiments of the next section are carried out with T ≥ 5, and we find no significant discrepancies between the results obtained from model ( 14) and those carried out based the statistic in Theorem 4, where the within individuals covariance terms c in Φν are estimated as

1 N T (T -1) N i=1 T t=1 T h =t ũ2 it ũ2 ih .
variables, and therefore, we have that m µ,ν stackreld → χ 2 k θµ +k θν . Note that the joint test by [START_REF] Baltagi | Joint LM test for homoskedasticity in a one-way error component model[END_REF] also reduces to the sum of two marginal tests when T → ∞. A preliminary analysis of the Monte Carlo experiments showed that with T small, m µ,ν behave similarly to the large T case, and therefore, we find that it is not necessary to make a small panel correction.

Monte Carlo experiments

In order to explore the robustness properties of the proposed tests in small samples, the design of our Monte Carlo experiment will initially follow very closely that of [START_REF] Baltagi | Joint LM test for homoskedasticity in a one-way error component model[END_REF], to which we refer for further details on the experimental design, and will be modified accordingly to highlight some specific features of our tests. The baseline model is:

y it = β 0 + β 1 x it + µ i + ν it , i = 1, ..., N, t = 1, ..., T, (16) 
where x it = w i,t + 0.5w i,t-1 and w i,t ∼ iid U (0, 2). The parameters β 0 and β 1 are assigned values 5 and 0.5, respectively. For each x i , we generate T + 10 observations and drop the first 10 observations in order to reduce the dependency on initial values.

The experiment considers three cases, corresponding to different sources of heteroskedasticity. In all of them, the total variance is set to σ2 µ + σ2 ν = 8, where σ2 µ = E(σ 2 µ i ) and σ2 ν = E(σ 2 ν it ). For all DGPs, ν it has zero mean and variance σ 2 ν it , while µ i has zero mean and variance σ 2 µ i . For each case we of ũ2 it on x it and a constant (see Section 3.2, eq. ( 10)).

• HG µ . H 

• m ν . H σ 2 ν 0 : θ ν = 0. The statistic is N T -times the R 2 from the pooled
OLS regression of ũ2 it on x it and a constant (see Section 3.3, eq. ( 12)).

• m * ν . H 14)).

• BBP ν . H σ 2 ν 0
: θ ν = 0. This is the marginal tests for the null of no heteroskedasticity in the remainder component in [START_REF] Baltagi | Joint LM test for homoskedasticity in a one-way error component model[END_REF], for the case where heteroskedasticity varies with i and t, see their Section 3.2, eq. ( 10).

• BBP ν . H σ 2 ν 0 : θ ν = 0.
In this case, it is assumed that the variance of ν it varies only with i = 1, ..., N . See [START_REF] Baltagi | Joint LM test for homoskedasticity in a one-way error component model[END_REF], Section 3.2, eq. ( 11). [START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF] 'marginal' test for no heteroskedasticity in the remainder component.

• L ν . H 0 : θ µ = θ ν = 0.
• m µ,ν . H 0 : θ µ = θ ν = 0. This is the proposed statistic for the joint null of homoskedasticity in both components, and is the sum of m µ and m ν .

• BBP µ,ν . H 0 : θ µ = θ ν = 0. This is Baltagi et al.'s (2006) test for the joint null, see their Section 3.2, eq. ( 13).

• L µ,ν . H 0 : θ µ = θ ν = 0. This is [START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF] test for the joint null.

We have performed 5000 replications for each case, and the proportion of rejections was obtained based on a 5% nominal level. The main goals of the experiment are to quantify 1) the effects of misspecified heteroskedasticity on new and existing tests, 2) the effects of departures away from gaussianity,

3) the 'cost of robustification', that is, the potential power losses due to using robust tests when the 'ideal' conditions (normality and correct specification) used to derive the ML-LM based tests hold, and hence a robustification is not necessary. In order to isolate each problem, in the first subsection we will focus on robustness to misspecification, and in the second one on robustness of validity, measuring robustification costs for each case.

Robustness to misspecified heteroskedasticity

Tables 1, 2 and 3 present simulation results for the Gaussian DGP, for (N, T ) = (50, 5) and (N, T ) = (25, 10) panel sizes, with

µ i ∼ N (0, σ 2 µ i ), ν it ∼ N (0, σ 2 ν it ).
Each table is split into four horizontal panels, corresponding to different variance values and panel sizes.

It is important to note that all tests are constructed using parameters estimated under the joint null hypothesis of full homoskedasticity. Therefore, [START_REF] Holly | A score test for individual heteroskedasticity in a one-way error components model[END_REF], [START_REF] Baltagi | Joint LM test for homoskedasticity in a one-way error component model[END_REF] and [START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF] statistics may be affected by the presence of heteroskedasticity in the other component not being tested and which is ignored. For instance, as discussed in Section 3, misspecified heteroskedasticity is expected to affect the performance of the [START_REF] Holly | A score test for individual heteroskedasticity in a one-way error components model[END_REF] statistic, that is, a test for heteroskedasticity in the individual component assuming no heteroskedasticity in the remainder component. Similarly, it should affect the performance of m µ , our test robustified to non-normalities only. We expect our fully robust test m * µ to be more resistant to this type of misspecification.

INSERT TABLE 1 HERE INSERT TABLE 2 HERE

Consider first Tables 1 and2, that is, when there is heteroskedasticity in the remainder component only, cases a and b, respectively. As predicted by the results in Section 3, in terms of size distortion, m µ and HG µ become negatively affected by the presence of heteroskedasticity in the remainder component, that is, they tend to reject their nulls not due to the presence of heteroskedasticity in the individual component but in the other one. For example, in Table 1, with small T , the rejection rates reach 0.3 for a nominal

All tests achieve correct size for large T , but m * µ achieves the correct size in shorter panels.

INSERT FIGURE 1 HERE

Second, we have also computed rejection rates depending on the size of the cross-sectional dimension of the panel, N , keeping fixed the temporal dimension, see Figures 2 and3. In particular, we fix T = 2, 5 and consider 1000 simulations for each N ∈ {10, 20, ..., 200}. Results show that m µ , HG µ and L µ increasingly (and wrongly) reject as N increases. Nevertheless, m * µ remains insensitive to changes in N , although rejection rates are above 0.05.

INSERT FIGURES 3 2 HERE

Finally, we explored the effects of the relative importance of between vs.

within heteroskedasticity in the remainder component. Consider now the following form of functional heteroskedasticity:

σ 2 ν it = σ 2 ν * exp (λ ν * (α * (x it -xi ) + (1 -α) * x it )) , with α ∈ [0, 1]. If α = 0, this corresponds to case a in Table 1. If α = 1,
by construction, there is only within heteroskedasticity, and therefore no differences in the variance across individuals. For different values of α, we have generated 1000 replications for (N, T ) = (50, 5), and calculate the empirical size at a theoretical level of 5% of HG µ , L µ , m µ and m * µ . Results

rejection rates for all values of θ µ , suggesting that robustification cost are small in this case too. Interestingly, ,the test by [START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF] has incresing power, and for the (50, 5) case it outperforms the test by [START_REF] Holly | A score test for individual heteroskedasticity in a one-way error components model[END_REF].

As heteroskedasticity in the individual component increases, (m ν , BBP ν , BBP ν ) present rejection rates similar to their nominal levels, consistent with the fact that tests that check heteroskedasticity in the remainder component are immune to the presence of heteroskedasticity in the individual one. Interestingly L ν and m * ν present unwanted power, that is, they reject their nulls due to heteroskedasticity in the other component, and hence are not robust to this misspecification.

Finally, joint tests present increasing power, though, as expected, they are outperformed by the marginal tests specifically designed to detect departures in a single component. The distribution free joint statistic m µ,ν has less power than BBP µ,ν (which assumes gaussianity) but the power loss is very small, suggesting again that robustification costs are negligible. Results are similar when the relative importance of each component is altered (that is, by comparing the two horizontal panels). Again, for the N = 50, T = 5 case and when the individual variance is relatively larger than the individual one (second panel of Table 3), the joint test by [START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF] presents the highest power.

Although not reported (results are available from the authors upon re- Our new tests are robust in these two senses, that is, they have correct asymptotic size for a wide familiy of distributions and they have power only in the direction intended for. An extensive Monte Carlo experiment confirms the severity of these problems and the adequacy of the our new tests in small samples. Our new tests are computationally convenient, since they are based on simple algebraic transformations of pooled OLS residuals, unlike the tests by [START_REF] Baltagi | Joint LM test for homoskedasticity in a one-way error component model[END_REF] or [START_REF] Holly | A score test for individual heteroskedasticity in a one-way error components model[END_REF] that require ML or pseudo ML estimation. Also, the extension to the case of unbalanced panels is immediate in the case of our tests, due to the use of simple moment conditions, in contrast with many other error components procedures whose derivation for the unbalanced case requires complicated algebraic manipulations (see [START_REF] Sosa-Escudero | Tests for unbalanced error component models under local misspecification[END_REF], for a recent case). Note that [START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF] tests allow for unbalanced panels too.

A C C E P T E D M A N U S C
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σ 2 ν it = σ 2 ν hν (θν x it ), σ 2 µ i = σ 2 µ , θν ∈ {0, 1, 2, 3}
, and θµ = 0. 

2 ν it = σ 2 ν hν (θν xi ), σ 2 µ i = σ 2 µ , θν ∈ {0, 1, 2, 3}
, and θµ = 0. 
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 2 and T → ∞, the presence of heteroskedasticity in the remainder component has no effect on a test for homoskedasticity in the individual component based on (5). In this case is true, the moment condition in (5) holds. A test for these cases can be based on N times the centered R 2 of an auxiliary regression of ū2 on z µ and a constant, as shown in the next section.However, if N → ∞, T is fixed and H σ does not hold, tests based on (4) may led to spurious rejections because of the presence of heteroskedasticity in the remainder component. For this case, define

  N, T → ∞ and N → ∞, T finite and θ ν = 0 For these two cases, a test for H σ 2 µ 0 will be based on ηi = ū2 i , where ûi ≡ T -1 T t=1 ûit . Define η, a N -vector containing the sample squared between residuals, Z µ , a N × k θµ matrix with the sample matrix of covariates for testing this hypothesis, and M N ≡ I N -JN , where JN = ι N ι N /N and ι N is a (N × 1) vector of ones. Consider a sequence of alternatives à la Pitman such that θ µ = δ µ / √ N and 0 ≤ δ µ < ∞, where ||.|| is the Euclidean norm. The following Theorem derives a valid test statistic for H

  for homoskedasticity in the remainder component in long panels with N, T → ∞. Define ηit = ũ2 it , where ũit ≡ ûitūi , η, a N T -A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT vector containing the sample within residuals squared, Z ν , a N T ×k θν matrix with the sample matrix of covariates for testing this hypothesis, and M N T = I N T -( JN ⊗ JT ), where JT ) = ι T ι T /T , ⊗ is the Kronecker product, and ι T is a (T ×1) vector of ones. Consider a sequence of local alternatives (Pitman drift) such that θ ν = δ ν / √ N T and 0 ≤ δ ν < ∞. The following Theorem derives an asymptotically valid test for this hypothesis.

  Then follow the proof of Theorem 1 for our sequence on i = 1, ..., N and t = 1, .., T , which under Assumption 2 (homokurtosis) gives the desired result. Q.E.D.Note that if ν it is Gaussian, φ ν = 2 × σ 4 ν , sothis Koenker type test is the same as the Breusch-Pagan style test where the within OLS residual is used instead of the untransformed OLS residual. Consider now the auxiliary regression model ũ2 it = α + z νit γ + residual. (13) Again, m ν = N T ×R 2 ν , where R 2 ν is the centered coefficient of determination of the regression model. 5 3.4 Test for H σ 2 ν 0 . N → ∞ and T finite Consider now the case where N → ∞ and T finite. For this case, consider

  6 

Following

  [START_REF] Baltagi | Joint LM test for homoskedasticity in a one-way error component model[END_REF] we construct a joint test based on the sum of the individual tests,

  µ = 0.[START_REF] Holly | A score test for individual heteroskedasticity in a one-way error components model[END_REF] 'marginal' test for no heteroskedasticity in the individual component.• L µ . H 0 : θ µ = θ ν = 0.[START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF] 'marginal' test for no heteroskedasticity in the individual component.

  ν = 0. This is a finite T corrected version of the previous statistic, and is N T -times the R 2 from the pooled OLS regression of ũ2 it on xit and a constant, with x * it = (1 -2T -1 )x it + T -1 xi . (see Section 3.4, eq. (

Figure 2 :

 2 Figure 2: Heteroskedasticity in the Remainder Component with N varying, T=2

  θµ xi ), xi = T -1 T t=1 x it , σ 2 ν it = σ 2ν , θµ ∈ {0, 1, 2, 3}, and θν = 0.

  

  

  

  R I P TAs in the cross-sectional case, heteroskedasticity is likely to affect panel models as well. A further complication in the standard error components model is to correctly identify in which of the two components, if not in both, is present. Available LM based tests are shown to have difficulties solving this problem. First, by relying strictly on distributional assumptions, they are prone to be negatively affected by departures away from the Gaussian framework in which they are derived. This paper shows that this is clearly the case, since alternative distributions (in particular, heavy tailed ones) lead
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	produce great size distortions.
	6 Concluding remarks and suggestions for practi-
	tioners
	to spurious rejections of the null of homoskedasticity. Second, joint tests of
	the null of homoskedastcity in both components, though helpful in serving
	as a starting diagnostic check, are by construction unable to identify the
	source of heteroskedasticity. More importantly, the marginal LM test for the
	individual component rejects its null in the presence of heteroskedasticity in
	either component, and hence, cannot help identifying which error is causing
	it.

Table 2 .

 2 Empirical rejection probabilities. DGP: Normal. Heteroskedasticity in the remainder component (case b)

	θµ θν mµ	m * µ	HGµ Lµ	Exponential heteroskedasticity mν m * ν BBPν BBP ν Lν σ 2 µ = 6, σ2 ν = 2	mµ,ν BBPµ,ν	Lµ,ν
						N=25,T=10
	0	0	0.050 0.050 0.047 0.0364 0.048 0.0486 0.047 0.050 0.0392 0.045 0.040	0.0228
	0	1	0.053 0.053 0.046 0.0534 0.205 0.2376 0.194 0.745 0.0536 0.165 0.146	0.0336
	0	2	0.053 0.053 0.045 0.0896 0.493 0.5670 0.554 0.995 0.0730 0.396 0.479	0.0530
	0	3	0.054 0.053 0.041 0.1432 0.680 0.7552 0.787 1.000 0.1020 0.582 0.730	0.0736
						N=50,T=5
	0	0	0.044 0.045 0.043 0.0438 0.057 0.0628 0.052 0.051 0.0470 0.056 0.047	0.0358
	0	1	0.052 0.048 0.046 0.0882 0.547 0.6936 0.531 0.924 0.0738 0.454 0.446	0.1006
	0	2	0.058 0.056 0.056 0.1966 0.917 0.9776 0.943 1.000 0.1534 0.874 0.912	0.1404
	0	3	0.070 0.064 0.065 0.2814 0.979 0.9976 0.993 1.000 0.2140 0.956 0.990 σ 2 µ = 2, σ2 ν = 6	0.1614
						N=25,T=10
	0	0	0.046 0.048 0.038 0.0404 0.048 0.0512 0.045 0.051 0.0470 0.047 0.044	0.0318
	0	1	0.052 0.053 0.043 0.3364 0.212 0.2448 0.191 0.735 0.1166 0.167 0.447	0.1992
	0	2	0.072 0.071 0.064 0.6974 0.509 0.5862 0.553 0.996 0.2614 0.436 0.917	0.4812
	0	3	0.096 0.093 0.093 0.7640 0.687 0.7570 0.777 1.000 0.3738 0.618 0.990	0.5538
						N=50,T=5
	0	0	0.046 0.048 0.043 0.0404 0.053 0.0554 0.051 0.040 0.0508 0.055 0.044	0.0412
	0	1	0.103 0.065 0.095 0.3364 0.556 0.6964 0.514 0.934 0.3372 0.492 0.447	0.0572
	0	2	0.232 0.117 0.242 0.6974 0.922 0.9790 0.934 1.000 0.6786 0.906 0.917	0.0704
	0	3	0.377 0.182 0.396 0.7640 0.979 0.9970 0.992 1.000 0.7742 0.970 0.990	0.0732
	Notes: Monte Carlo simulations based on 5000 replications. Theoretical size 5%. Heteroskedasticity in the
		remainder component, case b: σ	

Table 3 .

 3 Empirical rejection probabilities. DGP: Normal. Heteroskedasticity in the individual component Monte Carlo simulations based on 5000 replications. Theoretical size 5%. Heteroskedasticity in the individual component: σ 2

	θµ θν mµ	m * µ	HGµ Lµ	Exponential heteroskedasticity mν m * ν BBPν BBP ν Lν σ 2 µ = 6, σ2 ν = 2	mµ,ν BBPµ,ν	Lµ,ν
						N=25,T=10
	0	0	0.048 0.047 0.045 0.0352 0.054 0.0946 0.049 0.050 0.0430 0.049 0.044	0.0268
	1	0	0.326 0.327 0.344 0.0668 0.055 0.1724 0.049 0.049 0.0720 0.255 0.276	0.0416
	2	0	0.776 0.773 0.815 0.1510 0.054 0.3298 0.049 0.051 0.1314 0.662 0.737	0.0772
	3	0	0.952 0.953 0.974 0.2324 0.051 0.4944 0.046 0.055 0.2048 0.881 0.950	0.1256
						N=50,T=5
	0	0	0.053 0.053 0.039 0.0388 0.050 0.0924 0.049 0.044 0.0424 0.048 0.043	0.0328
	1	0	0.122 0.121 0.121 0.2350 0.049 0.3684 0.047 0.048 0.1932 0.095 0.098	0.1366
	2	0	0.298 0.298 0.315 0.5474 0.049 0.7432 0.049 0.044 0.4588 0.217 0.253	0.3336
	3	0	0.511 0.511 0.562 0.6424 0.050 0.9114 0.047 0.050 0.5750 0.373 0.467 σ2 µ = 2, σ 2 ν = 6	0.4302
						N=25,T=10
	0	0	0.047 0.050 0.047 0.0400 0.054 0.0526 0.049 0.047 0.0456 0.053 0.050	0.0344
	1	0	0.175 0.169 0.175 0.0498 0.052 0.0666 0.047 0.057 0.0548 0.141 0.139	0.0398
	2	0	0.476 0.462 0.504 0.0880 0.053 0.0948 0.050 0.071 0.0554 0.377 0.413	0.0518
	3	0	0.721 0.694 0.747 0.1194 0.055 0.1448 0.053 0.084 0.0760 0.598 0.654	0.0732
						N=50,T=5
	0	0	0.052 0.054 0.042 0.0490 0.056 0.0564 0.053 0.040 0.0460 0.052 0.051	0.0420
	1	0	0.093 0.096 0.088 0.0954 0.050 0.0936 0.050 0.046 0.0780 0.076 0.079	0.0674
	2	0	0.218 0.219 0.220 0.2020 0.051 0.1932 0.045 0.051 0.1192 0.159 0.173	0.1230
	3	0	0.380 0.378 0.412 0.2652 0.051 0.3130 0.050 0.051 0.1566 0.279 0.333	0.1618
	Notes:					

Table 4 .

 4 Empirical rejection probabilities. Size distortions with different DGP. N=50, T=5. .055 0.166 0.045 0.056 0.048 0.359 0.364 0.046 0.056 0.386 0.051 Uniform 0.057 0.057 0.202 0.050 0.049 0.056 0.011 0.007 0.046 0.050 0.140 0.045 Notes: Monte Carlo simulations based on 5000 replications. Theoretical size 5%.

	DGP	mµ	m * µ	HGµ Lµ	Exponential heteroskedasticity mν m * ν BBPν BBP ν Lν σ 2 µ = 6, σ2 ν = 2	mµ,ν BBPµ,ν	Lµ,ν
	Gaussian	0.053 0.053 0.039 0.039 0.050 0.092 0.049 0.044 0.042 0.048 0.043	0.033
	t 3	0.049 0.049 0.207 0.042 0.055 0.083 0.320 0.324 0.049 0.055 0.384	0.042
	t 5	0.055 0.055 0.105 0.050 0.050 0.086 0.176 0.189 0.047 0.051 0.192	0.052
	Skewed-N	0.049 0.051 0.065 0.047 0.056 0.074 0.092 0.088 0.055 0.049 0.091	0.044
	Log Normal	0.051 0.050 0.314 0.046 0.054 0.065 0.485 0.500 0.051 0.061 0.590	0.041
	Exponential χ 2 1 Uniform	0.048 0.048 0.177 0.032 0.059 0.072 0.238 0.242 0.043 0.055 0.297 0.057 0.056 0.275 0.051 0.064 0.080 0.333 0.353 0.048 0.064 0.439 0.055 0.055 0.193 0.049 0.053 0.091 0.013 0.006 0.053 0.051 0.141 σ 2 µ = 2, σ 2 ν = 6	0.031 0.039 0.041
	Gaussian	0.052 0.054 0.042 0.049 0.056 0.056 0.053 0.040 0.046 0.052 0.051	0.042
	t 3	0.048 0.050 0.153 0.043 0.054 0.052 0.341 0.344 0.046 0.054 0.359	0.049
	t 5	0.050 0.051 0.077 0.047 0.050 0.052 0.182 0.187 0.046 0.049 0.170	0.045
	Skewed-N	0.056 0.057 0.057 0.054 0.054 0.049 0.092 0.087 0.065 0.051 0.088	0.055
	Log Normal	0.054 0.054 0.243 0.051 0.054 0.055 0.494 0.496 0.046 0.063 0.543	0.049
	Exponential χ 2 1	0.050 0.049 0.115 0.039 0.059 0.052 0.240 0.251 0.049 0.053 0.248 0.056 0	0.033

Table 5 .

 5 Empirical rejection probabilities. Heterokurtosis. N=50, T=5. Monte Carlo simulations based on 5000 replications. Theoretical size 5%.

	Test statistic DGP	mµ	m * µ	m h µ	m * h µ	mν σ 2 µ = 6, σ 2 m h ν ν = 2	m * ν	m * h ν	mµ,ν	m h µ,ν
	t 5 &t 10 t 5 &log -N t 5 &t 7 &t 10 &N ormal&log -N DGP	0.045 0.058 0.054	0.043 0.054 0.059	0.033 0.026 0.038	0.031 0.021 0.043	0.045 0.058 0.070 σ 2 µ = 2, σ 2 0.044 0.038 0.055 ν = 6	0.055 0.077 0.072	0.050 0.054 0.068	0.044 0.056 0.064	0.036 0.032 0.048
	t 5 &t 10 t 5 &log -N t 5 &t 7 &t 10 &N ormal&log -N	0.049 0.051 0.048	0.048 0.052 0.052	0.043 0.022 0.030	0.042 0.021 0.031	0.050 0.057 0.054	0.038 0.038 0.045	0.057 0.071 0.060	0.049 0.053 0.056	0.046 0.062 0.051	0.044 0.034 0.039
	Notes:										

Before testing for heteroskedasticity, it would be necessary first to check that the conditional mean is correctly specified.[START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF] provides robust tests for that purpose.
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consider exponential heteroskedasticity, h(z θ) = exp(z θ). 7 The following heteroskedastic models are considered:

Heteroskedasticity in the remainder component (case a):

σ 2 µ i = σ 2 µ , θ ν ∈ {0, 1, 2, 3}, and θ µ = 0.

Heteroskedasticity in the remainder component (case b):

, and θ µ = 0.

Heteroskedasticity in the individual component:

, and θ ν = 0.

For each replication we have computed the test statistics proposed in this paper, those based on [START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF] framework (based on pooled OLS residuals), and those of [START_REF] Baltagi | Joint LM test for homoskedasticity in a one-way error component model[END_REF] and [START_REF] Holly | A score test for individual heteroskedasticity in a one-way error components model[END_REF], using residuals after ML estimation. In particular, the statistics considered and their corresponding null hypotheses are:

The statistic is N -times the R 2 from the pooled OLS regression of ū2 i on xi and a constant (see Section 3.1, eq. ( 8)).

•

in short panels, and is N -times the R 2 from the pooled OLS regression 7 Simulations were also run for quadratic heteroskedasticity, h(z θ) = (1+z θ) 2 , and the results are similar for size and power to those of exponential heteroskedasticity. Following the referees' suggestions we omit these results but they are available from the authors upon request.
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size of 0.05. The Monte Carlo results show that this problem affects the corresponding test by Lejeune (L µ ) as well. Monte Carlo results on [START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF] procedures are new, so it is relevant to observe that the test designed specifically to detect heteroskedasticity in the remainder component L ν has correct size and power increasing with the strength of heteroskedasticity, as can be seen in Table 1. Interestingly, the robustified test m * µ presents much lower rejection rates (almost a third of their competitors), hence being more resistant to misspecifications in the alternative hypothesis.

It is important to observe that, as predicted by the results of Section 2, the effects of misspecification are stronger the smaller T is and the more important is the between variation in the remainder component. The first effect can be appreciated by comparing results for different panel sizes, and the second by comparing the cases σ 2 µ = 6, σ2 ν = 2 and σ 2 µ = 2, σ2 ν = 6 in Tables 1 and2.

In order to highlight these points, consider the following experiments, which are a variation of the exponential heteroskedasticity in the remainder component, case a, where σ 2 µ = 2 for all i, λ ν = 3, and σ2 ν = 6. First, to assess the sensitivity of the proposed statistics to the panel size, we fix N = 50 and consider 1000 simulations for each T ∈ {2, 3, ..., 30}. Simulation results are presented graphically in Figure 1, and show that the main problem arises because of short panels. Moreover, it shows that the main gain of using m * µ is in the small T case, the most likely situation in practice.
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are shown graphically in Figure 4. HG µ , L µ and m µ reject too often for small α, while m * µ has better size properties. Moreover, for the four statistics, the simulated empirical size approaches the theoretical level as α goes to 1.

INSERT FIGURE 4 HERE

Regarding robustification costs, tests specifically designed to react to heteroskedasticity in the remainder (m ν , BBP ν , BBP ν , L ν ) increase their empirical power with the strength of this type of heteroskedasticity and, as expected under normality, the power of BBP ν is the largest. Interestingly, our robust test m ν performs relatively close to the [START_REF] Baltagi | Joint LM test for homoskedasticity in a one-way error component model[END_REF] LM statistics, implying that robustification costs for these particular experiments are low, that is, the loss in power for unnecessarily using a robust test is minor. Finally, note that the performance of m * ν , our proposed statistic designed to increase its power in small samples, is not as good as expected.

First, it shows over-rejection for the (σ 2 µ = 6, σ 2 ν = 2) case. Second, its power outperforms that of m ν only in Table 2.

INSERT TABLE 3 HERE

Consider now Table 3, where we allow for heteroskedasticity in the individual component only, under gaussianity. The [START_REF] Holly | A score test for individual heteroskedasticity in a one-way error components model[END_REF] test is locally optimal and should have correct asymptotic size, so robustification is not necessary. Our robust statistics m µ and m * µ have very similar To summarize, the robustification costs incurred by all our new statistics are small, as measured by the loss in power by unnecesarily using resistant tests in the Gaussian case.

Robustness of validity

In order to explore the effect of departures away from gaussianity, we evaluate the performance of all the test statistics under H 0 : θ µ = θ ν = 0, N = 50 and T = 5, for non-normal DGP's using 5000 replications. First, we generate t-Student DGP's with 3 and 5 degrees of freedom. Second, we consider skewed-Normal distributions constructed as in [START_REF] Azzalini | Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t -distribution[END_REF]. 9 Finally, we have also considered log-normal, exponential, χ 2 1 and uniform distributions. In all cases, the random variables are standardized to have the required variances.

INSERT TABLE 4 HERE

8 Parameters were set as follows:

, and θν ∈ {0, 1, 2, 3}.

9 We are grateful to an anonymous referee for pointing out this distribution. We have used the SN package in R and the rsn command, with a shape parameter α = 20. This random variable has a kurtosis of 1 and considerable skewness.

ACCEPTED MANUSCRIPT

The effects of departures away from gaussianity are dramatic. For the t-Student cases, the empirical sizes of the LM Gaussian-based statistics are considerably large. Moreover, the simulations show that rejection rates decrease as degrees of freedom increase, and thus the DGP becomes closer to normal. Even higher rejection rates are observed for the log-normal, exponential, χ 2 1 and uniform DGPs. For instance, the log-normal has rejection rates above 0.24 for HG µ , and close to 0.50 for BBP ν . However, rejection rates are close to the nominal level for the skewed-Normal distribution (with considerable skewness but limited kurtosis). These results are in line with

Evans' (1992) simulations for the Breusch-Pagan cross-sectional test, which was found to be highly sensitive to excess kurtosis but less so to skewness.

Interestingly our new test statistics and those of [START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF] are robust to departures away from gaussianity, presenting empirical sizes very close to their nominal values. Surprisingly, we also find good empirical size for the t-Student case with 3 degrees of freedom, which has infinite fourth moment, and therefore, it does not satisfy the assumptions used in the theorems of Section 3. Finally, all tests derived under [START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF] framework present good empirical size and are, hence, robust to distributional misspefications. Although not reported, in all cases, the proposed tests have monotonically increasing empirical power as heteroskedasticity in the tested component augments.
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To summarize, the analysis confirms that, although optimal in the Gaussian case, LM tests derived under this assumption are severely affected by non-normalities, and that, on the contrary, our new statistics and those based on [START_REF] Lejeune | A full heteroscedastic one-way error components model allowing for unbalanced panel: pseudo-maximum likelihood estimation and specification testing[END_REF] context remain unaltered by changes in the underlying distribution of the error terms.

An extension: the heterokurtic case

We consider an extension of the tests proposed above to the case of finite but non-identical fourth moments, i.e. heterokurtosis. This is, thus, a generalization of the procedures of [START_REF] Wooldridge | A unified approach to robust, regression-based specification tests[END_REF][START_REF] Wooldridge | On the application of robust, regression-based diagnostics to models of conditional means and conditional variances[END_REF] and [START_REF] Dastoor | Testing for conditional heteroskedasticity with misspecified alternative hypothesis[END_REF] in the cross-sectional case, to the error components model in panel data. In this case, Assumption 2 should be dropped and the asymptotic results should be modified to allow for different variances of the conditional squared residuals. We illustrate this procedure by modifying Theorem 1 (for the tests for heteroskedasticity in the individual component), which provides a guidance for straightforward extensions for Theorems 2 and 3.

Recall from Section 3.1 that ηi = ū2 i . Define

Consider the following assumption, that ensures existence of the fourth moments:

is a finite positive define matrix.

The following theorem provides the asymptotic distribution of a Wooldridge (1990)-type statistic for testing heteroskedasticity in the individual component with heterokurtosis. The intuition is that, as argued in Wooldridge (1990, p.23), the [START_REF] White | A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity[END_REF] covariance matrix (in our case based on Φµ ) can be used to compute heteroskedasticity tests that are not affected by heterokurtosis. A similar procedure can be used to construct tests that are robust to heterokurtosis for all the test statistics considered in this paper.

Theorem 5 Let λ h µ = σ 4 µ h

(1) 

Proof: The proof follows from Theorem 1 and [START_REF] Dastoor | Testing for conditional heteroskedasticity with misspecified alternative hypothesis[END_REF] Theorem 1.

Interestingly, following Wooldridge (1990, Example 3.2, p.32-34) this test can also be implemented in an artificial regression set-up, as N × R 2h µ of the regression of a vector of ones on η -1

µ is the uncentered coefficient of determination of the regression.

Note that this procedure can be extended for a general variance-covariance matrix of the transformed residual η. In this case, we could define a general 

INSERT TABLE 5 HERE

We conduct a small Monte Carlo experiment to evaluate the effect of heterokurtosis on our proposed statistics, and the corresponding heterokurticrobust modifications based on the artificial regression set-up explained above.

We generate 1000 replications under H 0 : θ µ = θ ν = 0, N = 50 and T = 5, for non-normal DGPs with varying kurtosis. We consider 3 different cases. 
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Jarque (1982).

Regarding further research, this paper focuses mostly on preserving consistency and correct asymptotic size, with minimal power losses with respect of existing ML based test. Power improvements can be expected from using a quantile regression framework, as in [START_REF] Koenker | Robust tests for heteroscedasticity based on regression quantiles[END_REF], who find power gains by basing a test for heteroskedasticity on the difference in slopes in a quantile regression framework, for the cross sectional case. The literature on quantile models for panels is still incipient, though promising (see [START_REF] Koenker | Quantile regression for longitudinal data[END_REF][START_REF] Canay | A note on quantile regression for panel data models[END_REF][START_REF] Galvao | Quantile regression for dynamic panel data with fixed effects[END_REF], so futher developments along the results of this research line seems promising.