
Computing Partitions within SQL Queries: A

Dead End?

Frédéric Dumonceaux – Guillaume Raschia – Marc Gelgon

December 20, 2012

Abstract

The primary goal of relational databases is to provide efficient query processing
on sets of tuples and thereafter, query evaluation and optimization strategies
are a key issue in database implementation. Producing universally fast execu-
tion plans remains a challenging task since the underlying relational model has
a significant impact on algebraic definition of the operators, thereby on their
implementation in terms of space and time complexity. At least, it should pre-
vent a quadratic behavior in order to consider scaling-up towards the processing
of large datasets.

The main purpose of this paper is to show that there is no trivial relational
modeling for managing collections of partitions (i.e. sets of sets). In the withheld
case, we show that one could not express all the operators of the partition
lattice and set-theoretic operations of the algebra of sets (viewing blocks as
elements) within FO, and consequently as queries of the relational algebra (RA).
We also show multiple evidence of inefficiency of RA-expressible operators and
an alternative which warrant another computational model. Further, we present
some experimental results that enforce this evidence and conclude that R-DBMS
are inadequate for partition querying. Hence, we claim that there is a strong
requirement for the design of an ad hoc system to manage partitions or at least to
supplement an existing system on which both data persistence and transaction
management could be delegated.

1 Introduction

Partitions are one of the most popular data structures.
Much more than list, queue, tree and record, partition is basically the out-

put structure that has been widely adopted by practitioners in many fields and
application domains, as much as graphs for network modelling. Indeed, parti-
tions are results of cluster analysis, image segmentation, spatial decomposition,
segmentation in distributed systems and parallel computing, etc. Partitions are
also the preferred underlying structure of many basic views over the data such
as pies, charts, histograms, statistical data on maps1 and it may be relevant
to store those many views for reuse and mashup in the future, rather than
redrawing at query time the underlying partition structure.

Furthermore, partitioning a data set into groups is one of the central tasks
of data mining. One main reason is that partitions reveal some aspects of
the structure of the underlying process (physical, social, . . .), by separating
subpopulations. As an example, graph clustering techniques for community
extraction is a very popular application. Using partitioning algorithms may
follow a simple workflow: a) an algorithm is executed on a given data set, b)
it supplies one partition and c) it lets a human expert or end-user exploit the
result.

Further, data mining tasks may themselves consider multiple data partitions
as their input, besides data sets. In particular, the scheme coined as ensemble
clustering, recently discussed in [14], aims at building a partition that better
reveals the structure in the data than individual partitions, by combining these
individual partitions. Implementing such techniques often requires operations,
elementary or not-so-elementary, on partitions. Such a task is often cast as the
median partition optimization problem for which the optimal solution is then the
consensus agreed by all partitions and yield by computing several meet operator
between each operand, namely the greatest lower set of relations between pair
of entities clustered.

Finally, there is currently a strong shift towards moving data mining, visu-
alization and interpretation from the hand-cared small-size lab experiment to
on-line and collaborative data repositories and services. Repositories may store
a large number of data sets, each of which may be associated to several parti-
tions describing it. In particular, large-scale scientific analysis over shared data
sets [12] gains from effective shared infrastructures to cooperate or compete,
and capitalize as much as possible on each others’ results. This setting is likely
to produce many partitions over a shared data set, produced by several users.
It may occur that several data sets on a repository share individuals and/or
variables, or otherwise relate to each other. For instance, in physics, medicine,
or social sciences, as a new variable is made observable, there is interest in
assessing how this affects the way individuals are clustered.

1See for instance Hans Rosling talk at TED’2006.

1

Problem

Through these cases, we tried to demonstrate that there are strong needs for
data management systems to support manipulations on data partitions with
a dedicated well-founded modeling framework. In particular, the aim of our
paper is not to find a way to address the issue to represent one particular
partition or a subset; we aim to deal deliberately with all partitions of a set
and that involves a study of the most likely abstract computation model to fit
both algebraic w.r.t. the whole and computation properties. To prevent from
reinventing the wheel, a first attempt would be to match set partitions with the
well-established Codd’s relational model [5], that provides mature systems with
sophisticated query capabilities, query optimization strategies and well-founded
theoretic background.

Related Work

Many complex data structures require some special forms of representation. For
instance, temporal data, spatial data, multimedia data, objects, semi-structured
and unstructured data, documents, etc. None of these data types fit well within
tables. Among the many native data models for storage systems that have been
studied in the last decade, it comes out that complex objects and trees and
graphs (and documents) are too powerful to efficiently compute set partition
queries and key/value is basically too restrictive.

Some ongoing research were carried out for the further development of effi-
cient modeling of complex data structures by means of the relational encoding.
Although the relational model was early pointed out for its difficulty to encode
some several complex structures, relational query processors supported by the
well-founded relational algebra are undoubtedly the most studied query engines
and have gained a great popularity from scientists and practitioners working
around the topic of database systems.

A straightforward extension yields to N1NF-relations [1] and their nested
relational algebra counter-part. Also they provide a basic mean to encode par-
titions as sets of sets, physical models and query engines mainly rely on flat
relation-based optimizations such that they do not offer much more efficiency
than regular relational encoding.

For instance, some efforts have been done to support an algebra of sets in
SQL through set-comparison queries involving several nested queries since each
set-theoretic operator requires its semantical translation in predicate calculus
restricted to existential quantifiers [10].

Further, lots of works, such as [13, 3, 2], have been conducted to provide with
XML-relational mapping and object-relational mapping in many directions.

Although the objective is similar in the sense that they try to map complex
structures into relations, none of the above approaches deal with set partitions.

Orthogonally, there are several works [15, 11, 7], most of which deal with
theoretical aspects, that handle set partitions and their operations. Halverson
et al. [11] give a very formal overview of set partitions and their algebraic prop-

2

erties. In [15], authors define a Minimum Description Length problem for set
partition-like data structures and they apply to query optimization purpose for
ROLAP queries. Another effective approach to set partitions is the so-called
relation partition algebra (RPA) proposed in [7]. In the application domain of
software engineering, RPA brings mathematical foundations for modular devel-
opment b.t.w. of the lifting operator defined as a binary relation (“use” and
“part-of” module dependencies) over equivalence classes of a partition i.e., all
functions packaged within the same module. This work focuses on the relational
level built on top of the partition algebra, rather than studying partition algebra
itself.

As far as we know there has been no assessment of how does computation
on set partitions perform when the data model is following a relational-based
encoding whatever would be its flavor.

Contribution

We then propose to study the partition-relational mapping and draw some con-
clusions about the “impedance mismatch” problem with partitions. The overall
contribution of the paper is as follows:

• Discussion and design of a relational encoding scheme for partitions through
membership-based approach;

• Relational queries for the main partition operators against a dedicated
encoding scheme;

• Optimized operators and their implementation in SQL queries.

• Performance evaluation of SQL is carried out by experiments using real-
istic generator for partitions and according to a C++ implementation.

Overview

The following of the paper is organized as follows. Section 2 presents the basic
mathematical background required to operate on set partitions in different fla-
vors. Section 3 introduces the encoding schemes for partitions, based on their
mathematical definition. In Section 4, we give relational queries against en-
coding schemes that relate to a collection of set partition operations. Finally,
Section 5 is dedicated to experiments and provide with performance values that
enforce our static analysis.

2 Data Model(s)

It comes as no surprise that there is a very close relationship between the concept
of basis in abstract algebra and the choice of an explicit representation for a large
variety of types of data. Any such basis should offer to express any atomic object
independantly of a specific representation space, i.e. geometric realization, in

3

order to consider formal interactions between objects in a combinatorial fashion.
The choice of a canonical basis is an unavoidable task to ensure both a unique
representation of each object mathematical and a clear representation that is
by an appropriate combination of self-contained objects, in order to span every
other objects.

It is therefore obvious that a partition of a set disclose two level of nesting
and thus is endowed with three logical layer of abstraction. The support set is
basically a set of entities under which a part or all of these is in relationship with
a particular subset to highlight ongoing relations. In the purpose where it is
not relevant to quantify the established relathionship between two entities, this
clearly embodies a relaxation over constraints to ensure consistency of relations
between entities in the scope of the cluster. The last layer is merely topped by
the partition itself and taken as a whole, i.e. where any partition is viewed as a
first-class object within the data management system.

Firstly, We shall review some useful facts about partitions of a set and its
underlying algebraic structure.

2.1 Partition Algebra

Let Ω be a finite and countable set of objects; let a1, a2, ..., an be subsets of Ω.
Then P = {a1, a2, . . . , an} is a partition of Ω, if and only if it is a set cover of
Ω, and each block is not overlapping with each other. For ease of reading, we
shall not use the set-standard writing of partitions and denote P = a1|a2| . . . |an
where | seperate blocks. Thereafter, we use natural numbers N as the underlying
domain for Ω without loss of generality.

The set of all partitions ΠΩ defined on the same ground set Ω is usually
endowed with the refinement relation ! so that the partially ordered set (ΠΩ,!)
is the well-known partition lattice where Q refines P , denoted P ! Q, if and
only if every block of Q is a (strict or not) subset of a block in P . We also
define the down set of a partition P by # {P} := {R | P ! R}, generating a
sub-lattice under inclusion.

According to the algebraic definition of the partition lattice (ΠΩ,e,d), there
are semantically equivalent definitions for e and d operators by means of their
least upper bound and greatest lower bound :

P dQ := min sup{R | R ! P ^R ! Q}

P eQ := max inf{R | P ! R ^Q ! R}

and leads to (P ! Q) () (P d Q = P) ^ (P e Q = Q) and >Ω ! P and
P ! ?Ω for all P,Q 2 ΠΩ. Moreover, since the partition lattice is atomic, there
is a minimal decomposition (non-unique) of a partition as a join (d) of partitions
called atoms (themselves self-contained) and denoted as J(ΠΩ), which directly
covers the singletons partition so that P ≺ ?Ω, 8P 2 J(ΠΩ). The rank of any
partition P in the partitition lattice is defined by rk(P) = |Ω| − |P |.

Besides, partitions can be viewed are “sets of sets”, we also would like to
consider some set-theoretic operators that apply on blocks. Indeed, set parti-
tions might be viewed as subsets of the powerset algebra 2N where N |Ω| and

4

8P 2 ΠΩ, P 2 22
Ω

, thereby we can apply some boolean operations on pairs of
blocks.

P \Q := {a | a 2 P ^ a 2 Q}

P [Q := {a | a 2 P _ a 2 Q}

P −Q := {a | a 2 P ^ a 62 Q}

As usual, intersection operator is equivalent to computing either P − (P − Q)
or Q− (Q−P). Both − and \ are well-defined over partitions, given that they
build partitions on support sets S ✓ Ω. Indeed, only a subset of blocks from P
composes the result set of P \Q and P −Q as well. It is worth to notice that
union operator is unsafe since raw union of partitions can output overlapping
blocks, then union operation P [Q is consistent if and only if P = Q and hence,
it is not considered as a valid operation in ΠΩ.

Furthermore, applying some of these operators is similar to project one par-
tition onto another one in the lattice structure such as repeated this one leads
to the same, then such operators are called idempotent since P Op P = P
and Op 2 {d,e,\} hold, then >,? are trivial idempotent partitions whereas
P,Q are mutually orthogonal if and only if P d Q = >Ω, P e Q = ?Ω. In a
RI approach, this revealed that pair of orthogonal partitions provides a general
summary on how pointless their underlying relations are involved in a consis-
tent whole, i.e. over others instances of a collection, since any combination reach
either >Ω or ?Ω and hence is not consistent to some extent to the end-user.

2.2 Extensional representation

Design of a relational representation of a set partition must be achieved w.r.t. some
prerequisites. In the algebraic sense, such a representation could be seen as a
collection of distinct objects, when combined to form various partitions should
express explicitly the useful knowledge about each object assignement to their
respective block. A well-designed representation should permit to, at some ex-
tent, easily query what is the block of any object in the partition scope, that
is, apply set operators {\,−} which involves to run boolean tests on the whole
blocks.

In a similar way, lattice operator {d,e} requires the knowledge about both
clusters and objects, and implies that a property should be preserved to enclose
objects into the former block without doing explicit nest and unnest to switch
between each scope. According to the semantic of the lattice operator, doing a
query on any entry, means that we need to foresee solutions in a combinatorial
approach during the calculation since every object viewed as distinct stored-
resource, can be exploited more than once during the computation. If we care
about (d) computing on a couple of partitions, a somewhat naive method is to
greedily merge blocks by pairs (each taken in distinct operand) whether they
overlap. We would be able to take care that computing all explicit pairings does
not ensure that each block shall be joining once in the relevant outcoming block.

5

Partition decomposition

Let the classical set-theoretic representation of partition be denote as the in-
tension and conversely, an extension refers to an equivalent representation and
ensures that same properties are disclosed and there exists an one-to-one map-
ping " which conveys the same structure between each representation.

A trivial extension of a set partition relies on the setoid alternative repre-
sentation, that is (Ω,⇠Ω) where ⇠Ω is an equivalence relation on the ground set
Ω (reflexive, symmetric and transitive). Indeed, the partition lattice (ΠΩ,!) is
isomorphic to the lattice of the equivalence relation over Ω ordered by inclusion
(⇠Ω,✓). This extension simply emphasizes that, given two entities x, y 2 Ω, x
and y are in the same block in a partition P is denoted x ⇠P y.

Let us define the morphism φ : P 7!⇠P as:

φ(P) :=
[

(a,a)2P⇥P

a⇥ a

and retrieve genuine partition is computed by its inverse such that φ−1(⇠P) :=
P/ ⇠Ω and hence recover explicit object assignement to their respective block.

Atoms are then an algebraic basis for any partition from the partition lat-
tice since φ(P) is exactly the intersection between J(ΠΩ) and # {P} (modulo
both reflexive and symmetric relations). This representation is thus the most
expensive description according to its space complexity which is in O(|Ω|2). We
come up with the following equalities:

φ(P eQ) = ⇠P \ ⇠Q

φ(P dQ) = h⇠P [⇠Qi

Indeed, we need an algebraic closure operator hRi =
T

{⇠✓ Ω ⇥ Ω | R ✓⇠}
in order to preserve ⇠P [⇠Q as be a closed set under union operatition.
We have to check that ΠΩ is a semimodular lattice so that rk(P) + rk(Q) ≥
rk(P d Q) + rk(P e Q). For instance, let us say |Ω| = 3 no matter what it
contains, >Ω being the only partition expressible in terms of atoms, of which
there are

(

3
2

)

= 3 in J(ΠΩ). It comes that the top partition (> is used here for
convenience only) is expressible as the (d) of two atoms in three different ways
and j1dj2dj3 = > () ⇠j1 [⇠j2 [⇠j3=⇠> holds and then j1dj2 = > ()
⇠j1 [⇠j2⇢⇠> also, according to atoms definition.

While each atom is distinguished from the others, they still shared objects
from Ω and that leads to compute the transitive closure whose result includes
one or several atoms. Override this closure is trivially ensured if and only
if joining two partitions involves union of their respective atoms set does not
include any pair of atoms which overlap and hence atoms set of the resulting
partition forms itself a partition of Ω. To sum up, this condition endorses that
the closure is no longer necessary and that every partition can have a single
decomposition.

Moreover, for any partition P thus defined, its atoms set is itself a partition
over a proper subset of Ω and yields to consider them as a set of independant

6

objects, let say a basis, whose composition (by union operation) is a boolean
algebra 2Ω

0

. It comes naturally that it does not match every partition defines

over Ω whereas |Ω0|
j

|Ω|
2

k

. In addition, let us define a second basis in order

to reach a wider subset of ΠΩ such that |Ω
00

| =
j

|Ω|
2

k

− |Ω0|, Ω to be entirely

covered by any atoms included in Ω0, then, each atom in Ω
00

shall overlap with
at least one in Ω0 and we can’t prevent us to compute a transitive closure.

Finally, trying to express a complete basis as a family of finite generating sets
of disjoint strict subsets of Ω for a partition lattice bring back to an equivalence
relation and it yields to compute a transitive closure.

The key issue is thus to avoid such an effective calculus in such a way to
prevent quadratic storage space complexity and retrieval of explicit object mem-
bership when applying set operators {\,−} which requires to compute:

φ(P Op Q) = φ(φ−1(⇠P) Op φ−1(⇠Q)), Op 2 {−,\}.

Tree-based representation

Thankfully, since we are dealing with crisp relations enclosing objects within a
block, such that they are indistinguishable one with each other, the transitivity
property can be relaxed under this assumption as a reachability property. From
a graph-theorical perspective, we shall consider as consistent the fact that x, y, z
are equivalent w.r.t. a partition if there is a directed path ensuring that is a
strong connected component, rather than a complete (sub)graph.

Such a structure is optimal according to its space complexity if it is a min-
imum spanning tree, i.e. O(n)-space, which entails every object with at least
two edges (except for the leaves) and highlight that all objects within a block
is reachable by all other ones. Two singular tree-based structures clearly stand
out:

• a broken circuit, i.e. a chain graph, where all objects come upon it bumper-
to-bumper, one among isolated objects is choosen as a root;

• a 1-level tree, i.e. a star graph, where one arbitrarily object is choosen
among the block to be the root.

The chain case is not relevant and should be disregarded since a lookup is in
linear time in the worst case while the star case warrants an access in O(1)-time.
Furthermore, it can be easily traversed through a relational encoding since it is
utmostly flattened.

Otherwise, we can rely on a generic tree-based representation and pre/post
traversal based encoding [9], used to store XML-trees in SQL Table through a
set of index each encoding a boolean algebra for any partition instance, likely
interpreted as a singular basis, and discloses each alternative of coarsening,
i.e. inverse relationship of refinement. In the other hand, it should be noted that
there is a large number of possible paths since number of generated partitions
grows exponentially with cardinality of the basis and leads, in default thereof,

7

to duplicate any partition as many times as there are paths to reach it and
that is definitively an issue w.r.t. search space. Moreover, in order to rely
partitions taken in different index, we should use an explicit representation for
any element of the basis describing each instance since, for example, roots only
provide a summary for the underlying block and those ones do not identify the
same in two different indexes and even then, no exact matching can be done
since in lack of a transitive closure, no partitions shall be caught in two different
indexes. Design consistent index(es) for the partition lattice suggests in itself,
further research beyond the scope of the present paper.

The withheld extension afterwards is the tree-based representation with 1-
level where the root is choosen deterministically and the related morphism shall
be noted " : ΠΩ ! M(Ω,Ω) where M explicitly defined the representation.
Particularly, this structure is algebraically speaking a join-semilattice (S,_)
with S ✓ Ω where joining two elements, in that case, always return the same
object, i.e. the representative object drawn from the block, then surely embodies
the essence of the transitivity property.

3 Relational Encoding

Since the main purpose of the paper is to point out the (mis)matching of the
relation model for partitions in the purpose of an SQL implementation, we need
to elaborate encoding scenarios from partitions to relations.

We discuss only the encoding scheme introduced in the latter section and
elaborated upon a tree-based representation model, i.e. membership encoding.
In this section, we then review the relational encoding schemes for the set-
theoretic model based on membership relations.

Despite this, we shall need for going further to map a membership encoded
partition to the equivalence relations representation which enable us to empha-
size operational problems that are shared with operations of Section 4.

3.1 Membership-encoding of a Partition

This encoding scheme represents the object-block membership relation within
the relational model. It then requires a relation schema with 2 columns, one for
the object, the other one for the block identifier. Block identifiers may be system
generated, however we provide the block column with the same domain than
the object column. It do not restrict the encoding capabilities since at worst,
the singleton partition has size equal to the number of raw objects (|P | = |Ω|),
and it allows for effective query expressions (see Section 4).

Definition 1. Given a partition P and its related equivalence relation ⇠P ;
assume a relation schema M(elt : Ω, block : Ω) where columns elt and block are
both objects of Ω.The relational encoding scheme " of set partitions is defined
as:

" : ΠΩ 7! M(Ω,Ω)
P ! I(M) := {(x, y) | x 2 [y]}

8

In the above definition, we require equivalent classes [y] of ⇠P have all an
anchor y, i.e. a highlighted object that identifies the all block. In conjunction
with algebraic definition stated in Section 2.2, we arbitrarily decide to set the
minimum object’s value y as the anchor, assuming that the underlying set of
[y] has a deterministic and unique upper bound (integers are obviously totally
ordered and match this condition). It is especially required for having a unique
mapping "(P) for any input P . It follows that objects apart the root are all
siblings and hence are not specifically ordered. Obviously, (N,min(.)) is a semi-
lattice and min : N ⇥ N ! N follow the same identities as usual (associativity,
commutativity and idempotency).

It should be noted that φ always returns an unique outcome for any entry,
while gathering the anchors set does not of course provide a summary from an
unique partition but for several ones.

3.2 From Membership to Equivalence and vice-versa

In the following, we discuss the transformation operation from one relational
encoding scheme for partition P to the other, both ways. It may help showing
the operational equivalence of both the encoding schemes.

Two issues have to be considered since a treatement is needed when we deal
with lattice operators in membership encoding. Indeed, we have to consider
whether or not, one M -block overlaps one N -block. In particular, applying the
meet (e) operator leads to compute explicitly the set-theoretic intersection be-
tween the two involves blocks and provide new blocks’ id as much as is necessary
whereas the join (d) operator shall just overwrite objects blocks’ id of only one
of the two. Then, in order to compute a meet operation, we must ensure that
all pairings between objects of both M -block and N -block are supplied and the
corresponding equivalence relation should be available on the fly.

We Assume that P is encoded by M(elt, block);
A basic self-join on block is required to provide with the equivalence relation

'(P) = E(x, y) and is very similar with φ(.) morphism earlier defined:

E := σ2=4(M ⇥M)

We use here and in the following the unnamed flavor of RA defined by the
set of operators {σ, ⇡,⇥,[,−}. Columns are denoted by their position into the
relation. Size of RA expressions are then kept lower than with the named flavor.

The way back, from E to M requires much more thought in order to be
implemented. Actually, it is given by the following Domain Relational Calculus
(DRC) query:

M := {(x, y) : E(x, y) ^ 8z.(E(x, z)! z ≥ y))}

The DRC query is safe as far as we consider the usual active domain semantics
where range values of a universally quantified variable are those from the actual
values of both the database and the query. In both the M and E encoding

9

schemes, the active domain, denoted by adom, is the set of (id’s) objects:
adom := adom(M) = adom(E) = ⇡1(M).

It is worth to notice that the principle of the query relies on the assignment
of the anchor value y to each set of objects that form a single block.

An SQL statement is required to practically perform the translation from E
to M in R-DBMS. Fortunately, the basic DRC query above may be straightfor-
wardly converted to an equivalent SQL statement by means of NOT EXISTS
clause and subqueries. However, the formula expands to much more complex
algebraic expression when translated to RA. Thus, query evaluation is costly
and optimizations are not that easy since the query involves many joins.

We first rewrite the formula of the DRC query to provide an equivalent
formula with only 9, ^, _ and ¬ logical symbols:

M := {(x, y) : E(x, y) ^ ¬9z.(E(x, z) ^ z < y)}

The above formula is the relative complement in E of the following query:

M̄ := {(x, y) : E(x, y) ^ 9z.(E(x, z) ^ z < y)}
⌘ {(x, y) : 9z.(E(x, y) ^ E(x, z) ^ z < y)}

Then, the M̄ relation could be expressed as:

M̄ := ⇡1,2(σ1=3,2=6,4=5(E ⇥ E ⇥ σ1<2(⇡1(E)⇥ ⇡1(E))))

Finally, we are able to provide the RA expression of the translation “E to M”
as follows:

M :=E − ⇡1,2(σ1=3,2=6,4=5(E ⇥ E⇥

σ1<2(⇡1(E)⇥ ⇡1(E))))

Hence, the naive query evaluation requires 1 theta-join (with condition 1 <
2), 3 equi-joins and a set difference operation over very large sets of tuples
(O(n2), n being the number of objects) to be achieved.

4 Performing Operations

We focus in this section on the way to translate partition operators among
{−,\,e,d} within RA expressions over the membership-based encoding scheme
" which meet our requirements in terms of storage and computations.

We assume two partitions P and Q encoded resp. by relations M and N .
For convenience, we do not distinguish relation schemes M and N from their
respective instances. We also consider that P and Q are defined over the same
ground set of objects Ω.

Example 1. For instance, Table 1 represents a relational encoding of two par-
titions and shall be used to illustrate, step by step, the calculation of the opera-
tions.

10

M

elt block

1 1

2 1

3 1

4 4

5 4

6 6

N

elt block

1 1

2 1

3 1

4 4

5 5

6 5

Table 1: Relational view of P and Q

(P,Q) P OpQ

(M,N) Rel-exprOp(M,N)

Op 2 {−,\,e,d}

"

Rel-exprOp

"−1

Figure 1: Relational Encoding Diagram

Figure 1 gives an overview of the challenge we are addressing in this Section.
Main idea is to provide, for each partition operator Op, with a query expression
Rel-exprOp in any relational language, such that P OpQ is given by:

P OpQ = "−1(Rel-exprOp("(P), "(Q)))

4.1 RA expressible queries

Difference

The Difference operator in DRC is as follows:

"(P −Q) := {(x, y) : M(x, y) ^ 8z.9t.¬ (M(t, y)$ N(t, z))}

where we build elt-block pairs (x, y) such that there is one such pair in M , and
we can not find any block z in N that is equal to block y in M .

σ2=4(M ⇥ N)

1 1 1

2 1 1

3 1 1

4 4 4

5 4 5

6 6 5

)
...

4 4 4

5 4 5

6 6 5

)
ε(P − Q)

4 4

5 4

6 6

Table 2: "(P −Q): First M -block matches first N -block

Example 2. Given partitions P and Q from Table 1, principle of the difference
operation is demonstrated on Table 2.

11

As in Section 3.2, for RA translation purpose, the DRC formula should be
first rewritten with 9, ^, _ and ¬ logical symbols only:

"(P −Q) := {(x, y) : M(x, y)^

¬9z.¬9t.((¬M(t, y) ^N(t, z))_

(M(t, y) ^ ¬N(t, z)))}

We also observe that the above formula is the relative complement in M of the
following query:

{(x, y) : 9z.(M(x, y) ^ ¬9t.((¬M(t, y) ^N(t, z))_

(M(t, y) ^ ¬N(t, z))))}

Then, we translate to RA each subexpression of the formula.

¬M(t, y) ^N(t, z) :=σ1=3 (((adom⇥ adom)−M)⇥N)

M(t, y) ^ ¬N(t, z) :=σ1=3 (M ⇥ ((adom⇥ adom)−N))

R(x, y) _ S(x, z) :=R [S

¬9x.R(x, y, x, z) :=(adom(R)⇥ adom(R))− ⇡2,4(R)

where R and S are two generic relation names that match parts of the "(P −Q)
DRC query. Remind that adom = adom(M) = adom(N) = ⇡1(M) = ⇡1(N)
since support sets of both partitions P and Q are equal.

Thus, we are able to compose the entire algebraic expression from all those
subparts:

"(P −Q) :=M − ⇡1,2(σ2=3(M ⇥ ((adom⇥ adom)−

⇡2,4(σ1=3(((adom⇥ adom)−N)⇥M)[

σ1=3(((adom⇥ adom)−M)⇥N)))))

Here, we notice that the evaluation of the basic "(P −Q) query would require
3 true cross products, 3 equi-joins, 3 set differences and 1 union operation over
relations of size in O(n2).

To follow on, since the equivalence A \ B ⌘ A − (A − B) holds, then the
set difference operator gives a proper definition for the intersection operator
as well. We are also able to provide with a standalone definition for \ as the
following DRC query:

"(P \Q) := {(x, y) : M(x, y) ^ 9z.8t. (M(t, y)$ N(t, z))}

Observe that the above DRC query is semantically equivalent to the one where
M and N have been permuted. The only difference is that block id’s of the
intersection would come from either M or N . It then makes possible further
optimization within the query plan.

12

Meet

The meet operation P eQ is translated in DRC as:

"(P eQ) := {(x, y) : 9z.(M(x, z) ^M(y, z)^

9t.(N(x, t) ^N(y, t)^

8u.((M(u, z) ^N(u, t))! u ≥ y)))}

Notice that the above formula conforms to the query pattern of the transfor-
mation from E to M as stated in Section 3.2. Indeed, assigning a single y value
as an anchor to each distinct (M -block= z, N -block= t) pair is operationally
similar to assigning the anchor values to blocks of equivalent objects. Actually,
pairs (z, t) uniquely identify each block of the meet operator. It then requires
to recompute the all equivalence relation from the membership-based encoding
scheme.

Example 3. From the partitions of Table 1, we can see on Table 3 the (M -
block, N -block) pairs that identify each result block of the operation "(P e Q).
The next step to perform the meet operator is to assign anchors to blocks. It is
shown on Table 4, from the self-join of JTab = σ2=4(M ⇥N).

σ2=4(M ⇥ N)

1 1 1

2 1 1

3 1 1

4 4 4

5 4 5

6 6 5

Table 3: "(P eQ): (M -block, N -block) pairs

σ(2,3)=(5,6)(JTab ⇥ JTab)

1 1 1 1 1 1

2 1 1 1 1 1

2 1 1 2 1 1

3 1 1 1 1 1

3 1 1 2 1 1

3 1 1 3 1 1

4 4 4 4 4 4

5 4 5 5 4 5

6 6 5 6 6 5

)

ε(P e Q)

1 1

2 1

3 1

4 4

5 5

6 6

Table 4: "(P eQ): objects & anchors

4.2 Datalog expressible query

The Join operation PdQ is not expressible in RA since a transitive closure needs
to be performed [6]. Indeed, the union propagates to blocks each time there are

13

pairwise overlapping blocks from P and Q, until we reach a fixpoint. Since it is
not possible to a priori plan the number of iterations in the propagation, then
there is not any RA expression that could compute "(P dQ).

However, Datalog is known to be a superset of RA that includes the required
recursive part in the language. Thus, we may draw the Datalog program for the
"(P dQ) operation.

Basically, we decompose the query into 2 steps:

1. first, we build the connexions between block id’s within one partition, and

2. second, we filter the result such that we stay with one single anchor for
each set of equivalent block id’s.

From this perspective, the join operation could be seen as the elaboration of an
equivalence relation over the set of blocks themselves, followed by the anchor
mechanism. The first step is not expressible within RA since it involves reacha-
bility issue within a graph, whereas the second step admits a RA expression.

Consider the graph G(V,E) where V = {x : 9y.M(y, x)} is the finite set of
M -blocks and E = {(x, y) : 9z.9t.9u.M(z, x)^M(t, y)^N(z, u)^N(t, u)} makes
a connexion (x, y) between M -block x and M -block y as far as there exist two
objects z and t resp. in M -blocks x and y, that share the same N -block u. In
other words, there is overlapping between M -block x and N -block u as well as
between M -block y and N -block u.

It is worth to notice that we arbitrarily decided to build the graph over
M -blocks, but M and N can permute.

As expected, G represents a binary relation, abusively denoted by G, over
M -blocks that is:

• reflexive: each M -block shares objects with itself;

• symmetric: if (x, y) 2 E, then (y, x) 2 E since path from x to y by N -block
u can be both ways;

The main goal of the first step is then to compute the transitive closure of
relation G. A pleasant side effect is that symmetry would be preserved and we
obtain an equivalence relation ✓ over M -blocks at the end of the first step.

The Datalog program P that computes the transitive closure is as follows:

r1 : ✓(y, y) := M(x, y)
r2 : ✓(x, y) := ✓(x, z),M(t, z), N(t, u), N(v, u),M(v, y)

Each Datalog rule is safe and domain-independent, and program P is trivially
stratified since there is no negation. Recursivity is given by rule r2 with ✓ both
in the head and in the body of the rule. Ultimately, ✓ is an equivalence relation
over M -blocks.

The second step of the process allows (a) to filter the tuples from ✓ and, (b)
to provide with anchors to each equivalence class in ✓ and (c) to assign anchors

14

to objects. It can be defined by a DRC query as follows:

"(P dQ) := {(x, y) : 9z.(M(x, z) ^ ✓(z, y)^

8t.(✓(z, t)! t ≥ y))}

We may have used Datalog to express that query as well, but the program
would have been much more tricky than the concise DRC query.

To sum up, we provide with the sketch of the algorithm that performs the
Join operation "(PdQ), where we mix for convenience procedural loop and DRC

queries in Algorithm 1. In the process, ✓! usually denotes the fixpoint which is
reached in a finite number of steps since (✓(i))i series is inflationist (✓

(i) ✓ ✓(i+1))
and there is an upper bound on the size of ✓! that is |adom⇥ adom|.

Algorithm 1 Join operation "(P dQ)

✓(0) {(y, y) : 9x.M(x, y)} . Init step
repeat

✓(i+1) ✓(i) [{(x, y) : 9z.(✓(i)(x, z) ^ 9t.(M(t, z) ^ 9u.(N(t, u) ^
9v.(N(v, u) ^M(v, y)))))}

i++
until ✓(i+1) = ✓(i)

✓! ✓(i)

return {(x, y) : 9z.M(x, z) ^ ✓!(z, y) ^ 8t.(✓!(z, t)! t ≥ y)}

The above analysis serves the purpose of an implementation of "(P d Q)
within regular R-DBMS. Knowing ANSI/ISO SQL3 introduces WITH RECUR-
SIVE clause that extends RA features of SQL to mimic Datalog recursion, we
are able to express a single SQL query as a Common Table Expression (CTE)
statement to perform the d operation over partitions.

4.3 Optimizations through SQL specific features

To enhance further the relational encoding of partitions, we discuss in this sec-
tion several options that apply to all or some of the operators. One straight-
forward idea to improve performance in query evaluation would be to use SQL
extra capabilities that extend RA and therefore compute statistics so that it
boost access methods and increase computation time for the relevant operators.
However, since set partition operations are expected to be combined within com-
plex expressions, then all the possible optimizations must be settled at query
time and no side information (outside the encoding relations themselves) should
be considered.

We then propose to explore two ways towards possible improvement in query
execution.

15

Auxiliary Knowledge

The first optimization technique deals with the set-theoretic operators − and \
applied within the membership-based encoding scheme ". It basically consists
in a pre-filtering step where blocks that cannot be part of the result set are early
discarded.

Indeed, in the basic version of the SQL statement for set-theoretic operations
P OpQ, Op 2 {−,\}, each pair of (M -block, N -block) is checked in extension
by scanning its all pairs of objects, to decide whether blocks are equal or not.
Although this deep scan remains necessary for a few candidate pairs, it is pos-
sible to remove pairs (M -block, N -block) that do not satisfy coarse-grained
conditions such like:

• minimum object values are equal;

• maximum object values are equal;

• size of blocks are equal.

Hence, it would be helpfull to define a signature of blocks, such like (min,
max, count), that would act like a hashcode of the subset of objects in the block.
The filtering step then requires to compare signatures pairwise.

Example 4. Given P = 123|457|6|89 and Q = 123|467|58|9; we would like to
perform P \ Q. There are 12 pairs of (M -blocks,N -blocks) to compare. If we
compute count values, then it remains 6 pairs only. With the minimum value,
we stay with 2 candidate pairs: (123, 123) and (457, 467). The maximum value
does not bring any further optimization here. Then, the refinement step would
discard the second candidate pair to provide with the result set: 123.

Then we provide with a revised version of the SQL statement that takes
benefits from online fast computation of aggregates (min, max, count) to filter
the pairs of (M -block, N -block). This alternative query cannot be expressed in
RA.

Window Functions

The ANSI/ISO SQL3 introduces a nice feature called Window Functions, that
is now part of almost all the R-DBMS, at least the “big four2”. Roughly, the
idea is to extend GROUP BY capabilities such that it is possible to assign each
tuple of a table an aggregate value that depends on a customizable subset of
tuples.

This feature can be useful for the meet operation PeQ within the " encoding
scheme. In that case, we would like to compute the minimum object value of
each block and assign it to each tuple of that block. Thus, we build a window
function within an SQL statement by partitioning the join M onM.1=N.1 N on
pairs (M -block, N -block). Since those pairs identify blocks of the result set,

2Oracle, Microsoft SQL Server, MySQL, PostgreSQL.

16

we could straightforwardly assign the minimum object value of the subsets of
tuples w.r.t. that partitioning to each tuple of the join.

Obviously, window functions are not RA-expressible.

5 Experiments

In this section, we report and discuss experimental results. The main conclusion
confirms what was expected from the considerations exposed in previous section,
i.e. that the relational encoding essentially leads to query processing times that
are unbearably high for other than small-size datasets. Since the very first
objective is to try out relational encoding of partitions and their operations,
the proposed strategies in Section 4.3 are suitable for corroborating our claim
about partition data model mismatching within SQL framework. Each of them
improve the overall performance for set partitions operators thanks to advanced
features of SQL. Anyway, there is no way to overcome the closure computation
into the SQL framework.

We shall supply further performance outcomes from a lean C++ imple-
mentation coined for the occasion which clearly outperforms SQL ones while
complying with principles describes in Section 4. Obviously, such an implemen-
tation likely fails to closely imitate the data persistence layer and pagination
process where data tables are too large to fit well in main memory. In such
a case, we can implement a distributed ram management system which takes
cares of splitting tables, if necessary, into independant storage unit and their
retrieval through a distributed hash table.

As a consequence, we focus in this section on primary encoding of each oper-
ator proposed in Section 4, both into SQL queries and our C++ implementation,
then operation-based optimizations introduced in Section 4.3, i.e. pre-filtering
on blocks’ id signature for (−) operator and window function for (e) operator
on both implementations.

Finally, we develop the same reasoning applied to relax the transitivity con-
straint to only consider a reachability constraint between blocks to be merged.
We thus implemented a join (d) which relies on so-called Tarjan’s Union-Find
structure that keeps a block id’s connected component instead of the whole
clique as a spanning tree. Such a solution is likely to be implemented through
an pointers’ array-based layout since many both tree traversals and relinking
are involved, and hence requiring several lookup in the associated table. This
algorithm and those related, are usually implemented through this way to en-
sure their overall efficiency and as such, it seems clear that such methods cannot
be push down easily into SQL. Concerning optimized version of (e) operator,
we made an implementation similar to window functions mentioned above.

5.1 Settings

Experiments are conducted on randomly drawn partitions. Given two partitions
P and Q, we assess the performance of P eQ, P −Q and P dQ only. Indeed,

17

the intersection \ relies on the set difference and is formulated as a relative
complement to the difference. Hence, e, d and − are the legal baseline.

With the respect to the design of the SQL queries for each operator, empirical
considerations were taken into account. In that purpose, we undertook several
attempts to tune up the query optimizer according to available join methods
(Nested Loop and its two scan method, Hash Join and Merge Join) in our R-
DBMS. It turns out that if an improvement can be observed in few cases but
also it may lead to a significant worsening for the same operator. Then, it seems
that the default query plan computed by the optimizer is at last a good trade-off
to achieve balanced performances.

We conducted experiments on a Windows XP (SP3) box powered by an Intel
Q6600@2.4GHz CPU. We sent SQL queries into a PostgreSQL V9.1 R-DBMS.
SQL statements are detailed in the Appendix A and some query plans are also
provided as a mere example in the Appendix B.

5.2 Generating partitions

In the following, let sort(P) = ⌧ be the distribution of size of blocks within a
partition P and ⌧ is a decreasing sorted list where ⌧ [i] gives the size of block ai
in P . Given n objects, we first draw partition P , then generate Q by applying
random permutations on P . The sort of raw partition P follows a power law.
Indeed, a remarkable property of many natural or man-made phenomena is
that, given a population, the frequency of its subpopulations may very often
be well modeled by a power law [4]. Generation of such partitions is easily
achieved with the Chinese Restaurant (stochastic) Process (CRP) [8]. The
CRP draws a random partition over the set of integers [1...n]. As a noteworthy
property, the underlying distribution, known as the Ewens distribution, is said
to be exchangeable, i.e. the probability of a partition only depends on block
sizes. The expected number of blocks k grows as O(↵ log n), where ↵ is the
scale parameter of the CRP.

Next, some random permutations are performed on P to generate a list of
partitions (P (1), . . . , P (`)) such that:

• d(P, P (i)) < d(P, P (i+1)) is consistent w.r.t. a distance-based function d :
ΠΩ ! N that evaluates the required number of permutations on objects
from P to reach its “noisy” counterpart P (i);

• Each P (i) still follows the raw P distribution (sort(P (i)) ⌘ sort(P (0)))
thanks to permutations σ : aj 7! ak that preserve ⌧ (i)[j] = ⌧ (i+1)[k];

• At last, 8i, sort(P (i)) ⌘ sort(P (i+1)).

The whole generation process can be summarized as follows:

1. Init: random choice of a linear ordering on a subset of blocks {a0, . . . , a`} ✓
P ;

2. Loop 0 i ` − 1: permutation of min(⌧ [i], ⌧ [i + 1]) objects in the pair
of adjacent blocks (ai, ai+1) to build P (i+1).

18

10
4

10
5

10
6

!
!!!!!!

 Difference Join Meet

Operator

Q
u

e
ry

 p
ro

c
e
s
s
in

g
 t

im
e
 (

m
s
,

lo
g

 s
c
a
le

)

n

1000

2000

5000

(a) SQL

10
2

10
3

10
4

!

 Difference Join Meet

Operator

Q
u

e
ry

 p
ro

c
e
s
s
in

g
 t

im
e
 (

m
s
,

lo
g

 s
c
a
le

)

n

1000

2000

5000

(b) C++

Figure 2: Processing time for n = 1000, 2 000, 5 000 (from left to right for main
operators −,d,e).

Such modeling allows to accurately monitor partition operations according to
some sequential changes applied on operands, and at last, infer some properties
that may impact performance. We shall note also that the equalities rk(P (0)) =
rk(P (1)) = . . . = rk(P (`)) always hold

5.3 Results and analysis

Results are reported for partitions P and Q defined over n = 1000, 2, 000 and
5 000 objects. Although those numbers are quite low, we observed in experi-
ments that query processing times preclude increasing n by a further order of
magnitude. The number of blocks is set to range between 10 and 20. Overall,
the largest blocks, generated under the CRP mechanism, are typically about
half the size of the support set, while for n = 2000 and n = 5000, there are a
few blocks that are singletons.

We report query processing time related to SQL implementations in Fig. 2a,3a,4
while C++ ones are depicted in Fig. 2b,3b. The boxplots describe the observed
variability from a set of experiments, where:

• The number of blocks ranges in [10..20];

• The number of random permutations applied on P to generate Q varies
from 140 to 466 for n = 1000, from 184 to 532 for n = 2000, and from
406 to 1 728 for n = 5000.

19

10
2

10
3

!
!

!
!!!
!

!!

 Diff. Alt. Meet. Alt.

Operator

Q
u

e
ry

 p
ro

c
e
s
s
in

g
 t

im
e
 (

m
s
,

lo
g

 s
c
a
le

)

n

1000

2000

5000

(a) SQL

10
1

10
2

!!!!

!

!!!!!

!

!!!!

 Diff. Alt. Join U.!F. Meet. Alt.

Operator

Q
u

e
ry

 p
ro

c
e
s
s
in

g
 t

im
e
 (

m
s
,

lo
g

 s
c
a
le

)

n

1000

2000

5000

(b) C++

Figure 3: Processing time for n = 1000, 2 000, 5 000 (from left to right for
optimized version of operators −, d (C++ only) and e).

Concerning genuine operators, the PeQ operation is more expensive, though
slightly, than P −Q whereas P dQ computation performs worst than all others.
Besides, operations on partitions of 5 000 objects are all much more costly (one
order of magnitude) than those with 1 000 and 2 000 objects.

Roughly, adding noise into partitions yields to increase mean squared of
the execution time. Ultimately, P op P (`), op 2 {e d −} shows outlier runs
w.r.t. the execution time, where P (`) is the farthest partition from P in the
generation process. This observation is still emphasized with the growing size
n of the support set. The very first conclusion is that query processing time
rapidly becomes prohibitive, even for data sets with moderate size.

Moreover, optimized versions of meet and difference operator perform much
better than these others, it is nevertheless necessary to take into account that
this do not outweigh the poor performance of both genuine operators. Indeed,
the comparison with our C++ implementation in terms of execution time is a
conclusive outcome since the imperative version is ultimately faster than the
SQL version, even without use of any particular memory manager/allocator
(since ground set is sufficiently small to fit in main memory).

It shall be then analyzed if optimized operations could be seen as a suf-
ficient basis to ensure the viability of complex expression computation. Fol-
lowing this outline, (Fig. 4) depicted several independant trials where we mea-
sured execution time of an increasing sequence of optimized (e), initially using
only 2 operands until reach 10 ones, randomly choosen among the collection
(P (0), P (1), . . . , P (`)).

20

Furthermore, it is clear that there is by no means any performance worsen-
ing, but also improvement, while a new operand is appended to the calculus,
throughout every trial we ran. It makes sense therefore that the behavior of
each trial was not affected in either ways by the query optimizer as opposed to
algebraic properties of our collection of partitions.

500

1000

1500

2 4 6 8 10

Involved operands number

Q
u

e
ry

 p
ro

c
e
s
s
in

g
 t

im
e
 (

m
s
)

Trial

1

2

3

4

5

6

7

8

Figure 4: SQL query processing time for increasing sequence of combination of
(windowed) e operations with n = 5000

Indeed, because their rank are mutually equal, it implies that the result of
any meet sequence should lead to a partition strictly ranked below in the lattice.
As we constrained each instance to be increasingly far to the very first generated
partition, it comes naturally than the expected result of any trial at any time
should have been the computation between the two farthest involved partition,
i.e. if we sample in {P (0), . . . , P (`)} in order to get an ordered sequence with
earliest P (i) and lastest P (i+k), any computation shall be equivalent to make
P (i)

eP (i+k). Computing efficiently a sequence of the same lattice operator leads
hence to find the cheapest query among subsets of instances which promptly
reach the first common projector in the lattice (towards either the > or the ?),
and that clearly underlies the need of a well-designed query plan and therefore
it is at least a challenging task.

21

6 Discussion

Althought relational modelling remains the most commonly used method, some
alternative ways grow day to day due to its lack to cope with large amounts of
data. For instance, we could have used the nested relational algebra while we
do not since our membership encoding precludes the need to compute both nest
and unnest operators. Considering also that every membership encoded parti-
tion can be translated as an hypergraph representation whose each hyperedge
contains ⌧ [i] vertices for each block ai of the genuine partition. Such a represen-
tation could be handle through a graph-based management system and ad hoc
algorithms. However, the purpose of such a management system is to deal with
general hypergraph and related query optimizer should not be regarded as a
dedicated solution to compute algebraic operations on partitions and therefore
inside complex expressions combining these ones.

7 Conclusions

In this paper, we provide a contribution towards achieving some relational mod-
eling of partition through several encoding scenarii, so that they can handle set
partitions of a collection of objects. This is typically needed by large-scale repos-
itories storing both data and results of data analysis, or data mining tasks which
take partitions as inputs. For that purpose, we disclosed two relational encod-
ing methods of a set partition through an object-block membership relation and
the more usual equivalence relation. We also studied their respective comput-
ing framework. We then translated each operator of both partition lattice and
algebra of sets as relational algebra queries, wherever possible, Datalog query
otherwise. We gave a few sketches to enhance the behavior for some operators
through storage of additional informations on-the-fly. Through several exper-
imentations, we showed that computing operators over partitions is globally
intractable when their underlying ground set is growing. Even if we consider
SQL-based optimization that does not allow for the avoiding to design a com-
plete management system to handle set partitions, not only restricted to those
defined with the same ground set, which should be designed in order to fully
unleash the potential of their inherited canonical, that is algebraic, properties
by means of an ad hoc management system.

22

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[2] S. Amer-Yahia, F. Du, and J. Freire. A comprehensive solution to the xml-
to-relational mapping problem. In Proc. of the 6th ACM Int. Workshop on
Web Information and Data Management (WIDM’04), 2004.

[3] M. Carey, J. Kienan, J. Shanugasundaram, E. Shekita, and S. Subra-
manian. Xperanto: Middleware for publishing object-relational data as
xml documents. In Proc. of the 26th Int. Conf. on Very Large Databases
(VLDB’2000), 2000.

[4] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions
in empirical data. SIAM Review, 51(4):661–703, Nov. 2009.

[5] E. F. Codd. A relational model of data for large shared data banks. Com-
mun. ACM, 13:377–387, June 1970.

[6] G. Dong, L. Libkin, and L. Wong. Local properties of query languages.
Theor. Comput. Sci., 239:277–308, May 2000.

[7] L. M. G. Feijs and R. C. van Ommering. Relation partition algebra —
mathematical aspects of uses and part-of relations. Science of Computer
Programming, 33(2):163–212, 2 1999.

[8] S. Goldwater, T. L. Griffiths, and M. Johnson. Producing power-law dis-
tributions and damping word frequencies with two-stage language models.
J. Mach. Learn. Res., 999999:2335–2382, July 2011.

[9] T. Grust. Accelerating xpath location steps. In Proceedings of the 2002
ACM SIGMOD international conference on Management of data, SIGMOD
’02, pages 109–120, New York, NY, USA, 2002. ACM.

[10] T. Halpin and T. Morgan. Information Modeling and Relational Databases.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2 edition,
2008.

[11] T. Halverson and A. Ram. Partition algebras. Eur. J. Comb., 26:869–921,
August 2005.

23

[12] T. Hey, S. Tansley, and K. Tolle, editors. The Fourth Paradigm: Data-
Intensive Scientific Discovery. Microsoft Research, 2009.

[13] W. Keller. Mapping objects to tables: A pattern language. In Proceedings
of EurPLoP, 1997.

[14] H.-P. Kriegel and A. Zimek. Subspace clustering, ensemble clustering, al-
ternative clustering, multiview clustering: What can we learn from each
other? In Proc. 1st Int. Wksp MultiClust 2010 w/ 16th ACM SIGKDD
Conf. KDD 2010, Washington, DC, USA, 2010.

[15] K. K. Pu and A. O. Mendelzon. Concise descriptions of subsets of struc-
tured sets. In Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS’2003), pages 123–
133, 2003.

Appendix A

In this appendix, we provide with the SQL statements for each operator in
{−,\,e,d}. Every query assume there exist 2 membership-based encoding
tables M and N for partitions P and Q defined over the same support set.
Remind that relation schemes are M(elt, block) and N(elt, block). object id’s
(a) are unique within one table, (b) are shared among both tables M and N ,
and (c) must be totally ordered. Without loss of generality, we declared elt

columns of positive integer type to fulfill the requirements.

1 SELECT outM . e l t ,
2 outN . b l o ck
3 FROM $1 outM JOIN $2 outN USING (e l t)
4 WHERE EXISTS (
5 (SELECT ⇤
6 FROM $1 inM JOIN $2 inM USING (e l t)
7 WHERE outM . b l o ck=inM . b l o ck AND
8 outN . b lock<>inN . b l o ck)
9 UNION

10 (SELECT ⇤
11 FROM $1 inM2 JOIN $2 inN2 USING (e l t)
12 WHERE outM . b lock<>inM2 . b l o ck AND
13 outM . b l o ck=inN2 . b l o ck)) ;

Listing 1: Difference operation

1 SELECT outM2 . e l t ,
2 f oo . min AS b l o ck
3 FROM
4 (SELECT block , min (e l t) , count (e l t)
5 FROM $1 outM GROUP BY b lo ck
6) AS foo
7 JOIN
8 (SELECT block , min (e l t) , count (e l t)
9 FROM $2 outN GROUP BY b lo ck

10) AS bar
11 USING (min , count)
12 JOIN $1 outM2 ON (outM2 . b l o ck=foo . b l o ck)
13 WHERE EXISTS (
14 (SELECT ⇤

24

15 FROM $1 inM JOIN $2 inN USING (e l t)
16 WHERE foo . b l o ck=inM . b l o ck AND
17 bar . b lock<>inN . b l o ck)
18 UNION
19 (SELECT ⇤
20 FROM $1 inM2 JOIN $2 inN2 USING (e l t)
21 WHERE foo . b lock<>inM2 . b l o ck AND
22 bar . b l o ck=inN2 . b l o ck)) ;

Listing 2: Difference operation (alt.)

Intersection operation was implemented the same way than the Difference
(2 flavors), except the EXISTS clause turned into NOT EXISTS. Thus, we do
not copy-paste the listing here.

1 SELECT foo . e l t AS e l t ,
2 bar . e l t AS b l o ck
3 FROM
4 (SELECT e l t ,
5 outM . b l o ck AS block1 , outN . b l o ck AS b lock2
6 FROM $1 outM JOIN $2 outN USING (e l t)
7) AS foo
8 JOIN
9 (SELECT e l t ,

10 outM2 . b l o ck AS block1 , outN2 . b l o ck AS b lock2
11 FROM $1 outM2 JOIN $2 outN2 USING (e l t)
12) AS bar
13 ON (foo . b l o ck1=bar . b l o ck1 AND foo . b l o ck2=bar . b l o ck2)
14 WHERE NOT EXISTS (
15 SELECT ⇤
16 FROM $1 inM JOIN $2 inN USING (e l t)
17 WHERE inM . b l o ck=foo . b l o ck1 AND
18 inN . b l o ck=foo . b l o ck2 AND
19 e l t<bar . e l t) ;

Listing 3: Meet operation

1 SELECT outM . e l t ,
2 min (e l t) OVER (
3 PARTITION BY (outM . b lock ,
4 outN . b l o ck))
5 FROM $1 outM JOIN $2 outN USING (e l t) ;

Listing 4: Meet operation (alt.)

1 WITH RECURSIVE
2 BTC(bfrom , bto) AS (
3 (SELECT mb,
4 mb
5 FROM BJoin)
6 UNION
7 (SELECT t . bfrom ,
8 j 2 .mb
9 FROM BTC t

10 JOIN BJoin j 1 ON (t . bto=j 1 .mb)
11 JOIN BJoin j 2 ON (j 1 . nb=j 2 . nb))) ,
12 BJoin (mb, nb) AS (
13 SELECT inM . b lock ,
14 inN . b l o ck
15 FROM $1 inM JOIN $2 inN USING (e l t))
16 SELECT outM . e l t ,
17 t . bfrom AS b l o ck
18 FROM $1 outM JOIN BTC t ON (outM . b l o ck=t . bto)
19 WHERE NOT EXISTS (

25

20 SELECT ⇤
21 FROM $1 inM2 JOIN BTC t2 ON (inM2 . b l o ck=t2 . bto)
22 WHERE inM2 . e l t=outN . e l t AND
23 t2 . bfrom < t . bfrom) ;

Listing 5: Join operation

Appendix B

We provide also some raw execution query plans for the following operators
{−,d} that shall illustrate the complexity entailed in the various stages leading
to their computation. Both terms (i.e. partitions in their membership-based
encoding), that are parameters of the query, are defined on a ground set which
contains exactly 5000 objects whereas one partition is obtained by noising the
second one. The first assesment is the use of indexes during processing of merge
conditions on blocks id’s. It is right that even though we did not want to use
them, using integer representation for both objects and blocks id’s naturally
implies the creation of an implicit index by the DBMS. It leads to incredibly
speed up the processing of a query whereas their use cannot be extended to
support queries where some bindings are made on partial results provided by
some subqueries. The relatively low number of objects in the ground set leads
further to compute directly both sort and hash operations in memory. Despite
a favourable experimental environment to measure ease of computing operators,
there is a lack of good results to assess such representations into SQL queries.

exec.
time

rows node

11119 3552
Nested Loop Anti Join — Join Filter: (((outM.block = inM.block) AND
(outN.block <> inN.block)) OR ((outM.block <> inM2.block) AND
(outM.block = inM2.block)))

10 5000 Merge Join — Cond: (outM.id = outN.id)
3.2 5000 Index Scan using $1 elt key on $1 outM
6 5000 Index Scan using $2 elt key on $2 outN

7535 3740 Materialize
10 5000 Hash Join — Cond: (inM.elt = inN.elt)
4.7 5000 Seq Scan on $1 inM
4.8 5000 Hash Buckets: 1024 Memory Usage: 137kB
4.9 5000 Seq Scan on $2 inN

Table 5: Query plan for difference operation

26

exec.
time

rows node

1488 5000 Hash Anti Join — Cond: (p1.elt=p2.elt) — Join: (t2.n<t.n)
CTE cjoin

11.3 5000 Hash Join — Cond: (p1.elt=p2.elt)
4.5 5000 Seq Scan on $1 p1
6.2 5000 Hash Buckets: 1024 Mem.Usage: 137kB
5.5 5000 Seq Scan on $2 p2

CTE t
2857 32 Recursive Union
39 5000 CTE Scan on cjoin

6754 1290969 Merge Join — Cond: (t.p = j1.n)
0.1 8 Sort — Key: t.p — Method: quicksort Mem: 17kB

0.02 8 WorkTable Scan on t
9141 2463782 Materialize
12281 2338475 Sort — Key: j1.n — Method: extern. merge Disk: 41mB
8498 2339340 Merge Join — Cond: (j1.p = j2.p)
22 5000 Sort — Key: j1.p — Method: quicksort Mem: 324kB

11.2 5000 CTE Scan on cjoin j1
4003 2339328 Sort — Key: j2.p — Method: quicksort Mem: 324kB
4.35 5000 CTE Scan on cjoin j2
21.2 9344 Merge Join — Cond: (p1.block = t.p)
12.4 5000 Sort — Key: p1.block — Method: quicksort Mem: 324kB
4.2 5000 Seq Scan on $1 p1
6.7 9332 Materialize

0.07 32 Sort — Key: t.p — Method: quicksort Mem: 18kB
43612 32 CTE Scan on t
129 9344 Hash Buckets: 4096 Batches: 262144 Mem. Usage: 1kB
12 9344 Merge Join — Cond: (p2.block = t2.p)
4.9 5000 Sort — Key: p2.block — Method: quicksort Mem: 324kB
2.2 5000 Seq Scan on $1 p2
3.9 9332 Materialize

0.04 32 Sort — Key: t2.p — Method: quicksort Mem: 18kB
0.02 32 CTE Scan on t t2

Table 6: Query plan for join operation

27

