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ABSTRACT 

In detailled buiding simulation models, airflow modelling 

and solving are still open and crucial problems, specially 

in the case of open buildings as encountered in tropical 

climates. As a consequence, wind speed conditioning 

indoor thermal comfort or energy needs in case of air 
conditionning are uneasy to predict. A first part of the 

problem is the lack of reliable and usable large opening 

elementary modelling and another one concerns the 

numerical solving of airflow network. This non linear 

pressure system is solved by numerous methods mainly 

based on Newton Raphson (NR) method. This paper is 

adressing this part of the difficulty, in our software 

CODYRUN. After model checks, we propose to use 

Picard method (known also as fixed point) to initialise 

zone pressures. A linear system (extracted from the non 

linear set of equations) is solved around 10 times at each 

time step and NR uses this result for initial values. Known 
to be uniformly but slowly convergent, this method 

appears to be really powerful for the building pressure 

system. The comparison of the methods in terms of  

number of iterations is illustrated using a real test case 

experiment.  
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1. Introduction on multizone airflow network 

modelling  

In a building, wind, thermal buoyancy and ventilation 

systems combine to create an airflow distribution. The 
reference pressure of rooms being unknown, the solving 

of the air weight balance leads to the airflow rates   

determination. For multizone buildings, only numerical 

solutions are reachable, in case of successful numerical 

solving. An analogic network representing the problem 

can be drawn. Each of the reference pressures of the zones 

as well as the outside pressure correspond to a node in the  

 

network. Conductances linked to the wind or to thermal 

buoyancy are placed between the pressions. For the 

simple building (taken to comprise only small openings) 

in the following figure, the corresponding analogic 

network is associated : 

 

Figure 1 : A pressure network 

These aspects are fully developped in many textbooks or 

publications [1-3], and are not developped here. An 

important notice is that most of the published material 

deals with small openings, in which flow in unidirectional 
and respond to well known Crack Flow equation, as 

nPKm )( , K being link to the permeability of the 

aperture and n the fractional exponent (typically 2/3). 

Mass balance of each zone (with mechanical ventilation) 

leads to a non linear system, the unknown being the 

reference pressures of each zone.  
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that we will note )()( pBpf n   

In this general form, j)(i,m is the airflow rate (kg/s) of 

air from zone i to j, )k(mvmc the airflow extracted by 

mechanical ventilation and N the total number of zones. 

At each time step, the convergence of the obtained system 

is known to be uneasy to reach. This is linked to 

mathematical properties of the system to solve and to the 

large variability of sollicitations (wind and thermal 

buoyancy) during the hourly time step often used by 

simulation codes. In many realistic cases, with rigourous 
convergence criteria, convergence of the solver is not 

obvious and a quite large amount of iterations is 

necessary.  

2. Review on encountered methods  

A review on airflow codes shows that the widely used 

method is Newtown Raphson (NR), often completed with 
improvements. This method, detailled in [4], leads to the 

following matricial equation :  
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pn previous time step vector of pressures  

pn+1 unknown pressures 

J(pn) Jacobian matrix  

 

The previous equation can also be written 

J( ) ( )n n np f pD    

 

Dn n+1 n( ) p p  is the corrective terms vector. A 

consequence of the truncation of term with order more 

than one in the developement f(pn) to obtain the starting 

equation is that the pressures found when solving the 

linear system are not the final solutions to our problem. 

These values are only an approximation and therefore an 

iterative method is needed to reach the desired solution. 
The use of this method requires further explanation for its 

application to our pressure system.  

In order to promote convergence, numerous, different and 

sometimes combined strategies (or recipes) are usually 

encountered in litterature. These are for example linked to 
speed up convergence by relaxation coefficient choice 

(fixed, variable, optimised, ...). Other authors put their 

effort on realistic initial values to increase convergence. 

In one major software, ESP, in it version described in [5], 

problem geometric description is iteratively modified (in 

term of diminution of large opening size) to find an 

intermediate solution used to initialise the solving of 

another system closest to the one to solve.  

Thus the method leads only to quadratical convergence 

when the estimate is close to the solution. In our case, the 

physical analysis of the problem leads to consider the 

evolution of the pressures as a succession of steady states. 

In the majority of publications relative to airflow systems 

solving methods the previous time lapse pressure vector is 

used for initialising the iterative procedure. In the case of 

important pressure variations between two different time 

periods (due to the wind or imposed airflows from 

mechanical ventilation), it can arise that the previous time 

lapse pressure vector is outside the convergence field of 

the numerical method. Walton therefore puts forward a 

method of pressure vector initialisation by linearising all 

the airflow equations (the airflow exponent is taken as 

equal to 1), so the initial pressure vector considered is the 
solution to a linear system which characterises the laminar 

state in the building. 

Specific problems arise when taking into account large 

openings. For vertical internal large openings, separating 

zones, two methods are encountered. One is based on 
Bernouilli’s equation and leads to the speed field 

integration, after calculation of the neutral height. The one 

we have choose is Walton model [6], leading to splitting 

up of large openings in two small openings. For these two 

equivalent small openings, the model considers specific 

heights (5/18 and 13/18 of large opening vertical size), 

exponents (0.5) and discharge coefficient (0.78). It is 

therefore possible to couple large openings to the previous 

obtained non linear system. To complete the review, we 

must bear in mind that there are not many papers that 

have been published on horizontal openings and that only 

a few methods are available for external openings. With 
the consideration of large openings, many convergence 

problems appear and lead us to propose an improvment of 

initialising pressures.  

Furthermore, the integration of large openings into a 

pressure system can cause problems of convergence 
speed. Located between a zone and the outside, a large 

opening links strongly the inside and the wind pressures. 

As in between two time lapses, the wind speed and 

direction can change considerably, the remarks of the 

previous paragraph apply. Another source of problems is 

the value of 0.5 found for the airflow exponent of the 

equivalent small openings in  Walton’s model. If the mass 

balance is symmetrical in relation to the pressures and that 

the exponents are equal to 0.5, the Newton method 

diverges irremediably. Feustel insists that the convergence 

of the method lowers as the number of exponents equals 

0.5 grows [2]. 

These divergence problems being ignored for the 

moment, the large openings may also compromise the 

speed of the convergence. It is furthermore established 

that a small pressure difference generates important mass 

flows, through a large opening. For the zones considered, 

the mass balances partial derivatives have important 
numerical values (compared to a case concerning only 

small openings). Consequently, the amplitude of the 

successive corrective terms is low. In these conditions, an 

important number of iterations is necessary to reach the 

solution. For a building which comprises various zones, 

separated by large openings, various directions exist in 

which the convergence is slow. Between two time lapses, 



the distance between the pressure vectors is a function of 

the disturbance gradient due to the solicitations. The 

number of iterations can therefore be very important and 

also change considerably from one time period to another. 

Various techniques have been programmed in 
CODYRUN, including NR with a systematic under 

relaxation coefficient value of 0.1, Walton’s optimised 

relaxation coefficient [7] also described in [8], Clarke’s 

method [5] (embedded in earlier version of ESP). In the 

figures on page 5, we will refer the first method as NR 

and the second one as WM (as Walton Modified). It is to 

be noticed that this last method is integrated in major 

airflow models as AIRNET, COMIS and last version of 

ESP. 

 

3. Elements of checkings of the initial model 

 

The objectives of this part is to ensure that, before the 
improved method  to be implemented, the code give 

accurate outputs with some intermodel comparison 

(concerning small openings) and analytical case for 

consideration of internal vertical large opening.  

 

AIVC TN 51 test case  

 

In [9], a test case composed of a building with three 
storeys is described. All boundary conditions are imposed 

(wind, external temperature) and indoor conditions are 

constant (steady state).  

 

 

Figure 2 : TN 51 Test case 

 

Next figure gives shows solution of  3 references codes, 

i.e. COMIS, CONTAM93 and BREEZE. CODYRUN’s 

results were added on the figure extracted from the note.  

 

Figure 3  : Intermodel comparison 

 

As it can be seen, in terms of numerical results, 
CODYRUN give nearly the same values as the other 

codes, little differences being linked to numerical aspects 

as algorithms or convergence criterias used.  

 

IEA Task 34 

 

Another case [10] concerns large openings taking into 
account and respond to the following sketch. 

 

Figure 4 : IEA Task 34  case 

 

For this case, analytical expressions can be found using 

the mass transfer approach :  

  2/12/3
04.0 THWm   

Using the possibility to impose temperatures, 

good agrement is found between the results. For 

example, with 100 K zone temperature difference, 

0.34 kg.s-1 are found versus 0.4 kg.s-1 for the 

approximated analytical solution (with W = H = 
1m) 

It is important to notice that the convergence of this case 

was found to be very sensitive to the convergence 

criterion used and to the relaxation coefficient choice (if 

NR with fixed relasation value is used). Other airflow 

tests cases were performed with success, but won’t be 
reported here.  

 



4. The PICARD method  

The basic idea is to couple a first order method (low 
convergence speed but large convergence disk) to guide 

the numerical scheme close to the solution and the second 

order NR to reach quickly convergence.  

The first order method choose is Picard method, because 
widely used in CFD. This method is cited by Koldiz [11]. 

The previous system )()( pBpf n  can be rewriten 

under the form  

 

   )(1 pBppA n 
 

and solved iteratively (k being the iteration index) 
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This problem leads to solution of the linear system, with 

usual methods. Usual values for the number of iterations 

is 10. Because of non convergence risk, specially in case 

of large openings, we prefer to promote convergence 

using an acceleration factor a (0.5). If 
*p is the solution 

of previous linear system, then  

*

1 )1( papap kk   

No details will be given concerning the computer 

implementation the filling up of A matrix and B vector. It 

is to be noticed that in some cases, A matrix can be (or 

become during iterations) singular (or ill conditionned) 

and this will have to be detected to avoid next iteration of 

Picard and give hand to NR (or WM). Identified cases are 

those with reciprocical exchanges, in which the Picard 
method is unusable. It was observed that in all the small 

opening cases, NR and WM becomes completely useless 

because the values found by the Picard method are very 

close to the solution. 

Picard being used before a non linear solver (NR or WM), 

we will refer to PNR and PWM in order to indicate its 
use.  

5. Illustration with a real case 

 

After modifications, same results were obtained with 
TN51 and IEA Task 34 and no conclusions can be made 

on the numerical speed or efficiency improvment, these 

two cases being in steady state (i.e. pressures no longer 

vary after the first time step convergence reached).  

To obtain a dynamic case, we compare the methods (NR, 

PNR, WM and PWM) using a dwelling, modelled as 5 

zones building with external small openings, two zones 

being separated by a large opening (sliding door between 

living room and bedroom 2) and a measured 

meteorological file. This instrumentation was part of 

technical evaluation of building prescriptions for French 

overseas territories. The dwelling, represented on next 

figure  includes three bedrooms and a living room. It is 

situated under the roof. 

 

Figure 5 : La Trinité dwelling 

 

Simulations were conducted on the measured 10 first days 

of meteorological file of Saint-Denis, Ile de La Réunion, 

1998, using NR, PNR, WM and PWM numerical 

methods, with the same convergence criteria based on 

mass balance of each zone (10-3 kg.s-1). For each time 

step (30 mn), the number of iteration is saved in the result 

file (containing also temperatures, airflow rates, ...).  

The comparison of the number of required iterations is 

shown on the two next figures, the first one on the whole 

simulation period, the second restricted to the first day for 

more clarityA first comment is that methods using WM 

(Walton Modified) are much more efficient than NR01. 

Concerning PNR, for 141 times step (on a total of 480), 

the solution is reached after one NR iteration. This is 
meaning that in 29 % of cases of our simulation, Picard 

found the solution in at less than 10 iterations and NR is 

not any more needed. An interesting point is that in a few 

cases (time step 350 and 422), Picard method leads to a 

greater number of iterations, which is exatly the contrary 

of the desired result. This appears to be linked to ill-

condition of the Picard linear system. To takle this 

problem, it appears necessary to truncate the pressure 

evolution during Picard’s iterations (itentionnaly, a too 

large troncation value of  60 Pa was let). 
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Figure 6 : Number of required iterations 

 

With PWM, only a slight improvment is observed, WM 

leading to low number of iterations. The average number 

n of required iterations is given in the following table, 

concerning the whole 10 days simulation period.  

 

 NR PNR WM PWM 

n 33 4 2 1 

 

Picard’s method appears to improve convergence. A 

reduction of more than eight times is observed for NR and 

about two for WM and back up the Picard method to 

initialise pressures in this non linear system solution.  

In reality, some CPU time was consumed in Picard’s 

iterations. In case Picard did not find the solution, it is 
necessary to add 10 to n (because of the 10 iterations of 

Picard). Meanwhile, other simulations (with different 

buildings, convergence criteria, ...) confirm this 

improvment and, the more important, no case of non 

convergence appears till this method was included in the 

computer  software. 

6) Conclusion 

This paper aims at presenting a way of improvement for 
solution of non linear pressure systems obtained with 

nodal networks linked to airflow calculations. Although 

several other methods are encountered, this Picard method 

appears to be an interesting complement, in particular 

when considering large openings. The couple Picard and 

Walton Modified method appears also to secure 

convergence of the numerical solver. More in details, 

other cases studies have to be examined (with different 

size of openings, large external openings, values of 

parameters as the acceleration factor, troncation value, 

number of Picard iterations, ...) in order to reach more 

complete informations about the improvements obtained. 
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