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I. CALCULATION OF s11(ka)

The function s11(ka) has been calculated for
0 < ka <∼ 10 in [1]. Here we calculate it for ka of any
sign and magnitude including infinity. The three-body
Schrödinger equation reads

[
−∇2

R + Va(R)− k2
]

Ψ(R) = 0, (S1)

where Va is the sum of binary interaction terms
parametrized by a and the six-dimensional vector R is
{(2r3 − r1 − r2)/

√
3, r1 − r2}, where r1, r2 and r3 are

atomic coordinates, and we set h̄ = m = 1. By defini-
tion the first row of matrix sij gives us the solution of
Eq. (S1) with the following asymptotes. For small R we
have

Ψ(R) ≈ Φ1(R̂)
[
(kR)is0 + s11(kR)−is0

]
/
√

2s0R
2. (S2)

Note that our definition of s11 differs from the one of [1]
by the factor −(ka)2is0e−2iδ0 , where δ0 ≈ 1.588 [2]. In
the asymptotic region of large R we have

Ψ(R) ≈ s12Ψ2(R) +

∞∑

i=3

s1iΦi(R̂)eikR/
√

2kRR2. (S3)

In Eqs. (S2-S3) all Φi(R̂) are symmetrized and normal-
ized and Ψ2(R) is the symmetrized wavefunction of the
atom-dimer relative outgoing motion normalized to a
unit flux. Physically Ψ(R) describes the stationary flow
of atoms which are injected at the origin and can either
return back with amplitude s11 (second term in the right
hand side of Eq. (S2)) or travel to infinity by using chan-
nels with i ≥ 3.

Before explaining the numerical method of calculating
s11(ka) let us discuss some properties of this function
which can be derived analytically. In order to do this it is
convenient to use the complex scaling of the Hamiltonian
[3] and multiply (rotate in the complex plane) all spatial
coordinates by the complex number ke−iπ/2, i.e., we in-
troduce R̃ = Rke−iπ/2. Then the problem reduces to
calculating properties of the bound trimer state with en-
ergy E = −1, interaction between the atoms being char-
acterized by the imaginary scattering length ã = ka/i.
Applying the complex scaling to the asymptotes (S2-S3)
we see that now the solution is constrained to decay at
large distances and to have the short-distance asymptote
∝ R̃is0 + s11(ka)eπs0R̃−is0 . That ã is imaginary simpli-
fies the task: if Ψ is a solution for a given real value of
a, then Ψ∗ is the solution for a = −a. This leads to

the relation s11(−ka) = e−2πs0/s∗11(ka), and it is thus
sufficient to deal, for example, only with ka < 0. Since
our problem is the inverse to finding the Efimov spec-
trum versus the three-body parameter and a, the point
ka =∞ and its vicinity can be treated analytically: the
wavefunction of an Efimov trimer at unitarity is propor-

tional to Φ1(R̂)
[
Jis0(iR̃)− e−πs0J−is0(iR̃)

]
which gives

s11(∞) = −22is0e−πs0Γ(1+is0)/Γ(1−is0), the result pre-
sented in the main text. Moreover, by using the known
analytic formula for the shift of the trimer energy at small
1/a with a fixed three-body parameter [4] one obtains
s11(ka� 1) ≈ s11(∞)(1− Cs0/ka), where [4]

C = π sinh
(s0π

2

)
tanh(s0π)/

[
cosh

(s0π
2

)

+
s0 π

2
sinh

(s0π
2

)
− 4π

3
√

3
cosh

(s0π
6

)]

= 2.1126716 . . . (S4)

Finally, the three-body wavefunction in the limit of van-
ishing total energy has been studied in [2] from which we
obtain s11 ≈ (k|a|)2is0e−2iδ0 in the limit ka→ 0−.

In order to calculate s12 for arbitrary ka let us intro-
duce the reduced wavefunction f(r) defined by

f
[
(2r3 − r1 − r2)/

√
3
]

= 4π lim
r1→r2

|r1 − r2|Ψ(R), (S5)

and write down the Skorniakov-Ter-Martirosian (STM)
equation for the Fourier transform of f(r) (for more de-
tails see [5])

(
√
p2 − k2 − 1/a)f(p)− L̂k2f(p) = 0, (S6)

where the integral operator L̂ is defined by

L̂k2f(p) =

∫ ∞

0

ln

(
p′2 + p2 + pp′ − 3k2/4

p′2 + p2 − pp′ − 3k2/4

)
4f(p′)p′dp′√

3πp
.

(S7)
Note that in Eq. (S6) we use f(p) ≡ f(p) since, in the
case of three identical bosons, higher spherical harmonics
of this function correspond to the non-Efimovian kine-
matics, do not contribute to the asymptote (S2), and do
not lead to (strong) recombination losses.

As usual, the branches of the logarithm and of the
square root are chosen as if the momentum k (or energy
k2) is slightly shifted into the upper complex half-plane,
or, alternatively, p and p′ are slightly shifted to the lower
half-plane. In fact, the complex scaling discussed above
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means that we rotate p and p′ in the clockwise direction
all the way to the negative imaginary axis and rescale
them by k. Then changing variables in such a way that
the integration goes along the positive real axis, we ob-
tain the same Eq. (S6) in which k → i and 1/a → i/ka.
The resulting equation does not have singularities on
the real axis and is extremely easy to solve numerically.
The large-p asymptote of the solution can be written as
C1p

−2−is0 +C2p
−2+is0 , and it is straightforward to show

that s11(ka) = (C2/C1) [Γ(1 + is0)/Γ(1− is0)] e−πs0 .
In Fig. S1 we plot |s11| and Args11 versus ka < 0 (solid

line). The dashed and dotted lines correspond, respec-
tively, to the limits k|a| � 1 and k|a| � 1 discussed
above.
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FIG. S1: Modulus and phase of s11 versus ka < 0. Dashed
and dotted lines are analytic limits, see text.

II. LARGE ka ASYMPTOTE OF |s12(ka)|

The quantity s12 is the amplitude of the atom-dimer
outgoing wave, see Eq. (S3). By construction it is zero for
a < 0 since there are no shallow dimers and, as we argue
in the main text and in Sec. III, for a > 0 it becomes
important for determination of L3. The question that
we address now is whether |s12|2 vanishes for a → +∞
or not. Unfortunately, numerical results for s12(ka) are
available only for ka <∼ 10 [1] and do not allow us to make
any statement on the large ka behavior of this quantity.

In the region |r1 − r2| ∼ a and R � a the atom-
dimer wavefunction Ψ2(R) introduced in Eq. (S3) can
be written as

Ψ2(R) =
exp(−|r2 − r1|/a)√

2πa|r2 − r1|
exp(ip0R)√

24πp0R
, (S8)

where p0 =
√
k2 + 1/a2 > k is the atom-dimer relative

momentum. The outgoing wave (S8) corresponds to the
pole of f(p) at p = p0:

f(p) ≈ 2πs12(ka)√
3ap30

1

p− p0 − i0
, |p− p0| � p0 − k. (S9)

Therefore, in order to calculate s12 one has to solve
Eq. (S6) (with the correct boundary condition at large
p) and find the residue of this pole. Here we solve this
problem perturbatively using 1/ka as a small parameter.

The solution of the three-body problem at unitarity is
given in terms of the Bessel functions. The corresponding
correctly normalized function f0(p) up to a phase factor
can be written as

f0(p) =
2π
√
Cs0 cosh(πs0) exp(−πs0)√

3 sinh(πs0/2)p
√
p2 − k2

(S10)

×
[
k2is0eπs0(p+

√
p2 − k2)−is0 − (p+

√
p2 − k2)is0

]
.

In deriving Eq. (S10) we used the small R̂ asymptote of

the normalized hyperangular Efimov wavefunction Φ1(R̂)
which we took from [4]. The constant C is defineed in
Eq. (S4).

Let us now write the solution of Eq. (S6) at small 1/ka
as f(p) = f0(p) + δf(p), where δf(p) tends to zero when
a→∞. Equation (S6) now reduces to

(
√
p2 − k2 − 1/a)δf(p) = f0(p)/a+ L̂k2δf(p). (S11)

Looking at the right hand side of this equation at p = p0
we observe that the first term tends to a finite value as
a → ∞ since f0(p) is singular at p → k. In contrast,
the integral operator smooths singularities and makes the
second term vanish uniformly for large a. Therefore, the
dominant contribution to s12 can be obtained by neglect-
ing the second term, and we finally obtain

|s12(ka)|2 ≈ 2Cs0 [1 + exp(−2πs0)] /ka, ka� 1, (S12)

i.e., we have managed to show that s12 → 0, as one
approaches the resonance.

III. ATOM-DIMER CHEMICAL EQUILIBRIUM
NEAR RESONANCE

On the positive side of the resonance the loss rate in
the system is no longer solely due to the recombination to
deep molecular states. Three atoms can recombine to a
shallow dimer and depending on how its binding energy,
ED = h̄2/ma2, compares to the trap depth, U , the prod-
ucts of such a three-body event may or may not leave
the trap. Moreover, even if they have enough energy to
leave, they can collide with the remaining atoms and re-
distribute their excess energy into heat. This dynamical
problem, in general, goes far beyond calculating the loss
rate in three-atom collisions. Obviously, this complica-
tion is absent very far from the resonance where, starting
from a purely atomic sample, one counts any recombina-
tion event as the loss of three atoms. By contrast, if
ED < U , the shallow dimers stay in the system and mix
with atoms.

We now focus on the regime ED � kBT , where the
situation greatly simplifies. Let us assume chemical equi-
librium between atoms and shallow dimers, and validate
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this assumption a posteriori. The dimer density nD is
then related to the atomic density n by

nD = n2λ3th 2
√

2 eED/(kBT ) ' n2λ3th 2
√

2. (S13)

The two reverse processes of three-atom recombination
to a shallow dimer and of atom-dimer breakup (i.e. dis-
sociation of a shallow dimer after collision with an atom)
then balance each other and give a vanishing total con-
tribution to dn/dt. Hence dn/dt = −L3 n

3 − LAD2 nnD,
where L3 is the rate constant for recombination to deep

dimers and LAD2 is the rate constant for atom-dimer re-
laxation (i.e. formation of a deeply bound dimer after
collision of a shallow dimer with an atom). The expres-
sion of L3(T ) for a > 0 was obtained in [1] and differs
from Eq. (4) of the main text only by the replacement of
the term 1− |s11|2 by 1− |s11|2 − |s12|2. For the incom-
ing atom-dimer channel i= 2, the expression of the loss
probability P2 was given above Eq. (4) in the main text,
and leads after thermal averaging to

LAD2 (T ) =
3
√

3πh̄2[1− exp(−4η∗)]

(mkBT )3/2
e−ED/kBT

∫ ∞

−ED

|s12|2
|1 + (|k|R0)−2is0e−2η∗s11|2

e−E/kBT dE. (S14)

Here the integration variable E = h̄2k2/m is the total
energy of the three-atom system in the center of mass ref-
erence frame. Thus, the integration over negative E de-
cribes the atom-dimer relaxation events below the break-
up threshold. We should also note that the matrix ele-
ments s11 and s12 are functions of

√
Ea, which becomes

imaginary for E < 0. To show that LAD2 vanishes in the
large a limit, we treat separately the contributions from
positive and negative E: For E > 0, we have seen above
that s12 vanishes as 1/a, see Eq. (S12), which leads to
a contribution ∝ 1/a to LAD2 ; for E < 0, the integra-
tion is limited to the narrow window [−ED, 0], and the
integrand can be bounded from above thanks to P2 ≤ 1,
leading to a contribution ∝ 1/a2 to LAD2 . This allows
us to neglect LAD2 in the rate equation for dn/dt, which
then reduces to Eq. (1) of the main text [14].

Finally, let us validate our chemical equilibrium
assumption. For a given dimer, the event rates
for relaxation and breakup (after collision with an
atom) are respectively γrel = nLAD2 (T ) and γbreak =

nαshallow(T )λ−3th

√
2 e−ED/(kBT ), where αshallow(T ) is the

event rate constant for three-atom recombination to a
shallow dimer, and we used Eq. (S13). In the regime
a � λth considered here, we can estimate from [1] that
3αshallow(T ) saturates to a value >∼ 10Lmax

3 (T ) [15].
Evaluating the leading-order behavior of LAD2 as ex-
plained above then gives γrel/γbreak <∼ 0.1λth/a� 1 [16].
Hence the relaxation events do not destroy chemical equi-
librium, as they happen much less frequently than the
breakup events (and thus also than the reverse dimer-
formation events). The relaxation rates in dimer-dimer
and dimer-atom-atom collisions are also smaller than
γbreak by factors ∝ nλ3th � 1 (with unknown prefac-
tors which depend on the four-body problem). The last
condition to check is γbreak � γ3, i.e., a given dimer
should be likely to break up (and to be replaced by a
newly formed dimer) within a time much smaller than
the timescale 1/γ3 over which the cloud decays. Esti-

mating γbreak as above and using our result for γ3 gives
γ3/γbreak <∼ 0.1nλ3th � 1.

IV. MATRIX sij: NEGATIVE a

In the case a < 0 the atom-dimer channel is closed
and the structure of matrix sij is as follows. We have a
single discrete small-R Efimov channel and a continuum
of large-R channels, {Φi(R̂), i ≥ 3} being a complete
orthonormal set of hyperangular functions, for example,
eigenfunctions of the hyperangular kinetic energy opera-
tor in the absence of interactions. Given sij we change

this basis in favor of another orthonormal set {Φ̃i(R̂)} in
which we choose

s̃13Φ̃3 =
∑

i≥3

s1iΦi, (S15)

The normalization condition which we impose on Φ̃3

uniquely defines this function and s̃13 (up to an ir-
relevant phase factor). The corresponding asymptotic
triatomic channel is defined by the incoming, ψ3 =
Φ̃3(R̂)e−ikR/

√
2kRR2 and outgoing, ψ∗3 , waves. Note

that we do not touch the Efimov channel and, therefore,
s̃11 = s11. From Eq. (S15) and the unitarity of sij we
can deduce that |s̃11|2 + |s̃13|2 = 1. Since the new ma-
trix s̃ij should also be unitary, we conclude that s̃11 and
s̃13 are the only non-zero entries of its first row. Let us
now write explicitly the corresponding wavefunction [cf.
Eqs. (S2-S3)]

Ψ =

{
ψ1 + s̃11ψ

∗
1 , R→ 0,

s̃13ψ
∗
3 , R→∞, (S16)

where we denote the incoming Efimov wave as ψ1 =
Φ1(R̂)(kR)is0/

√
2s0R

2.
Choosing an appropriate linear combination of Ψ and
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FIG. S2: A three-body wave arriving from large hyperradius
R with amplitude Ain

3 in the triatomic channel i = 3 can follow
various pathways before it either returns to large R, or gets
lost at R ∼ Re by turning into an atom and a deep dimer.
One can imagine a Fabry-Perot interferometer, the mirrors
of which are formed by the short-distance and long-distance
regions. Multiple reflections by these regions can lead to the
resonant denominator in the three-body loss rate formula.

Ψ∗ we obtain the relation

Ψ∗ − s̃∗11Ψ

s̃∗13
=

{
s̃13ψ

∗
1 , R→ 0,

ψ3 − (s̃13s̃
∗
11/s̃

∗
13)ψ∗3 , R→∞,

(S17)

the right hand side of which defines the second (i = 3)
row of the matrix s̃ij . Namely, s̃31 = s̃13, s̃33 =
−(s̃13s̃

∗
11/s̃

∗
13), and s̃3j = 0 for j > 3.

Because s̃ is unitary one sees that s̃i1 = s̃i3 = 0 for i >
3. Therefore, the upper left 2× 2 block completely sepa-
rates from the rest of the matrix. The problem of calcu-
lating the three-body loss rate then reduces to the prob-

lem of finding the four amplitudes A
in/out
1 and A

in/out
3 ,

which are the coefficients in front of the corresponding in-
coming and outgoing waves in the three-body wavefunc-
tion, see Fig. S2. The coefficient Ain

3 is found by project-
ing the initial correctly normalized six-dimensional plane

wave into the state ψ3. The amplitudes A
in/out
1 are re-

lated by the three-body contact condition Ain
1 = AAout

1

where A = −(kR0)−2is0e−2η∗ . Finally, the relation be-
tween the incoming and outgoing amplitudes given by
the matrix s̃ij provides the last two linear equations nec-
essary to solve the problem: Aout

1 = s̃11A
in
1 + s̃13A

in
3 and

Aout
3 = s̃31A

in
1 + s̃33A

in
3 . The loss rate is then obtained

by calculating the difference between incoming and out-
going fluxes either for R→∞ or R→ 0. Averaging over
the thermal distribution one recovers the formula for L3

presented in Eq. (4) of the main text, where we now see
that the non-trivial k-dependence of the integrand comes
from the interference between the various pathways rep-
resented in Fig. S2. The simplified approximate formula
given in Eq. (5) of the main text corresponds to neglect-
ing any reflection from the long-distance region, hence
no more interferences and no log-periodic modulation of
L3T

2 with λth/Rt.

V. MATRIX sij AT UNITARITY

At unitarity, the procedure of transforming the matrix
sij into block diagonal form is very simple. Having an
infinite a does not introduce a lengthscale into the prob-
lem and, as a consequence, the adiabatic hyperangular
eigenfunctions do not depend on the hyperradius, lead-
ing to the complete separability [7] between the hyperan-
gular and hyperradial problems. Namely, the three-body
wavefunction can be written as

Ψ(R) =
∑

s

φs(R̂)Fs(R)R−2, (S18)

where φs(R̂) and s2 are, respectively, the (normalized)
eigenfunctions and eigenvalues of the hyperangular ki-
netic energy operator supplemented with the unitary
two-body contact conditions. The hyperradial wavefunc-
tions satisfy

(
− d2

dR2
− 1

R

d

dR
+
s2

R2

)
Fs(R) = k2 Fs(R). (S19)

In the case of three identical bosons considered here, the
set {s} contains a single imaginary number s = i s0 '
i1.00624 (Efimovian sector) and an infinite number of
real numbers (non-Efimovian sectors). In the Efimovian
sector the attractive −s20/R2 potential gives rise to the
following asymptotic behavior of Fis0 : for R � 1/k
we have Fis0(R) ∝ R±is0 and in the opposite limit

Fis0(R) ∝ exp(±ikR)/
√
R. These two asymptotes of the

same function actually define the two channels i = 1 and
i = 3 discussed in Sec. I, the hyperangular wavefunc-
tions being Φ1 = Φ̃3 = φis0 . The rest of φs, appropri-

ately relabelled, form the rest of the set Φ̃i. The corre-
sponding matrix s̃ij has a 2 × 2 block in its upper left
corner, which describes the transmission and reflection
of the wavefunction Fis0(R) by the long-distance region
R ∼ 1/k. The rest of s̃ij is simply diagonal because (i)
these channels are decoupled from each other and (ii) the
repulsive s2/R2 potentials do not allow (in the zero-range
approximation) for a transmission of the corresponding
waves to the short-distance region R ∼ Re. Solutions of
Eq. (S19) can be written in terms of Bessel functions. In
particular, the wave that has properties of Eq. (S16) can
be written by setting

Fis0(R) =
2is0Γ(1 + is0)√

2s0
[Jis0(kR)− e−πs0J−is0(kR)]

(S20)
in Eq. (S18). Expanding Eq. (S20) at small R
we obtain the result for s11(∞), which has already
been mentioned. For completeness, from the large-R
asymptotes of J±is0 we get s̃13 = 2is0

√
2/πs0 Γ(1 +

is0) sinh(πs0) exp(−πs0/2− iπ/4).
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VI. MATRIX sij: POSITIVE a

In the case a > 0 we have to take into account another
discrete channel: the large-R atom-dimer one denoted by
i = 2. By using a similar construction as in the case of
negative a, one can show that the matrix sij can be re-
duced to a block-diagonal form with a 4× 4 block in the
upper left corner, i.e., there are actually two triatomic
channels, i = 3 and i = 4, coupled to the atom-dimer
and Efimov ones, and decoupled from the rest of the tri-
atomic continuum, i > 4. As we have shown in Sec. II,
s12(ka) → 0 as a → ∞. It is then straightforward to
show that in this limit channels 1 and 3 approximately
decouple from channels 2 and 4. This means that dimers

existing in the system are more likely to break-up or scat-
ter elastically [17] than to relax to deeply bound states.
This is consistent with our earlier conclusion on the atom-
dimer chemical quasi-equilibrium close to the resonance.

VII. EVAPORATION AND
ANTI-EVAPORATION

For a< 0, the three-body recombination to
deeply bound states gives the contribution
Ṅ3body = −

∫
L3n

3(r)d3r to the atomic decay, and
the corresponding energy loss rate equals

Ė3body = −
∫
d3r

{
L3n

3(r)

3

[
3U(r) +

3kBT

2

]
+
n3(r)

3

72
√

3π2h̄(1− e−4η∗)

mk6T

∫ ∞

0

h̄2k2

m

(1− |s11|2)e−k
2/k2T kdk

|1 + (kR0)−2is0e−2η∗s11|2

}

(S21)

where L3n
3(r)/3 is the frequency of three-body events

per unit volume, 3U(r) and 3kBT/2 are the loss of
trapping potential energy and of center-of-mass ki-
netic energy by each recombining triple, and the
last term is the loss of relative-motion kinetic en-
ergy [13]. Let us write the lost energy per lost atom

as Ė3body/Ṅ3body = (3 − δ)kBT where δ kBT is the ex-
cess energy as compared to the average energy per atom
3kBT .

For evaporation, Ėevap/Ṅevap ≈ (η + κ)kBT , where
we can take the expression of κ in terms of η given for
a harmonic trap given in terms of incomplete gamma
functions in [8]. Indeed, as realized in [9], two-body col-
lisions leading to an evaporative loss occur mainly in the
cloud center where the trap is harmonic, and the rel-
ative momentum for such a collision is approximately
fixed by the trap depth so that the result derived in [8] for
an energy-independent two-body cross-section is applica-
ble. The condition of constant temperature means that
Ėevap + Ė3body = 3kB T (Ṅevap + Ṅ3body), which yields

Ṅevap/Ṅ3body = δ/(η + κ − 3). At unitarity, we can ne-
glect s11 in (S21), which gives δ ≈ 5/3. For −a�λth,
we recover δ= 1 as in [11].

For a> 0, we use δ= 5/3 when a>λth. In the opposite
limit a�λth we use δ= 1 from [11].

VIII. DISCUSSION OF UNCERTAINTIES

We make use of the grand-canonical equation of state
for a degenerate Bose gas in the mean-field limit to cal-
ibrate our measurement of the value of λ3 [12]. We pro-
duce a condensate at a = 200 a0 and measure the normal-
ized pressure h versus the gas parameter ν = µ

g a
3, where

g = 4πh̄2a/m. Next, we find that in order to match h(ν)
to the mean-field prediction, we must multiply the pres-
sure by a constant ξ = 2.4. ξ corrects for errors in the
calibrations of our experimental system, e.g. our absolute
atom counting, through the product ωr

2/(ωz
4 (px)

3
σ0),

where px is the size of a camera pixel magnified through
the imaging system to the gas location and σ0 is the
atomic absorption cross-section for the imaging light.
When fitting Eq. (3) to our data, we extract two fit
parameters: γ3 = A(T )L3(T )N2(0) and N(0). Conse-
quently, our result for λ3 = L3T

2 ∝ γ3T 5/(N2(0)ωr
4ωz

2)

scales as ωz
8 (px)

6
σ0

2/ωρ
4. This factor is exactly ξ−2.

Ultimately, we estimate our uncertainty in ξ−2 to be
25 %, dominated by the uncertainty in our trap frequency
measurements. For the data in Fig. 3, we have an addi-
tional 20 % uncertainty arising from the T 2 scaling with
(px)4.
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