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Recent advances in manipulating cold atomic vapors have enabled the study of Fermi gases at the unitary limit where the scattering length a describing two-body interactions becomes infinite. It has been demonstrated both experimentally and theoretically that in this limit the system is characterized by a scale invariance leading to remarkably simple scaling laws [START_REF]BCS-BEC crossover and the Unitary Fermi Gas[END_REF]. By contrast, most experimental results on Bose-Einstein condensates were obtained in the weakly interacting regime. Recent experimental results on bosons near Feshbach resonances have revived the interest in strongly interacting bosons [2]: the development of experimental tools has enabled a precise test of the Lee-Huang-Yang corrections [3,4], and several theoretical papers have studied the hypothetical unitary Bose gas at zero [5][6][7][8] or finite [9] temperature.

Experimental investigation of ultracold bosons near unitarity has been hampered by the fast increase of the three-body recombination rate close to a Feshbach resonance [10,11]. In this case, the number of trapped atoms N (t) follows the usual three-body law

Ṅ = -L 3 n 2 N, (1) 
where n 2 = d 3 r n 3 (r)/N is the mean square density and L 3 is the three-body loss rate constant. In the zero-temperature limit L 3 increases as ha 4 /m [12] multiplied by a dimensionless log-periodic function of a revealing Efimov physics [15][16][17][18][START_REF] Petrov | Many-Body Physics with Ultra-Cold Gases: Lecture Notes of the Les Houches Summer Schools[END_REF][START_REF] Kraemer | [END_REF][21][22][23][24]. At finite temperature, L 3 saturates when a becomes comparable to the thermal wavelength λ th = h/ √ 2πmk B T , and 25,27].

L 3 ∼ ha 4 /m ∼ h5 /m 3 (k B T ) 2 [9,
This saturation suggests that a non-quantum-degenerate Bose gas near a Feshbach resonance will maintain quasithermal equilibrium [9]. Indeed, in this regime, |a| > ∼ λ th and nλ 3 th 1. Thus, the elastic collision rate γ 2 ∝ hλ th n/m is much higher than the three-body loss rate γ 3 = L 3 n 2 ∝ hλ 4 th n 2 /m. Experimental and numerical evidence for a saturation of L 3 were reported in [3,[START_REF] Kraemer | [END_REF]25]. A theoretical upper bound compatible with this scaling was derived in [26] assuming that only the lowest 3-body hyperspherical harmonic contributes, an assumption which breaks down when |a| exceeds λ th .

In this Letter, we measure the temperature dependence of the unitary three-body recombination rate and find agreement with a L 3 ∝ 1/T 2 scaling law. In a second set of measurements performed at constant temperature we study L 3 versus a. We show how this function smoothly connects to the zero-temperature calculations when |a| λ th . These observations are explained by a general theoretical result for L 3 (a, T ), exact in the zerorange approximation, that we derive in the second part. Our theory allows for a complete analytic description of the unitary case and, in particular, predicts (weak) log-periodic oscillations of the quantity L 3 T 2 . Our findings quantify the ratio of good-to-bad collisions in the system and provide a solid ground for future studies of strongly interacting Bose gases. Furthermore, on the a < 0 side, experiments have so far detected a single Efimov trimer [3,[21][22][23]30]. Our analysis predicts that a second Efimov trimer of very large size should be detectable in 7 Li at temperatures on the order of a few microkelvins.

Our experimental setup was presented in [28]. After magneto-optical trapping and evaporation in a Ioffe magnetic trap down to 30 µK, 2×10 6 7 Li atoms are transferred into a hybrid magnetic and dipole trap in the state |1, 1 . The transverse confinement is obtained by a single laser beam of waist 43(1)µm and wavelength 1073 nm, while the longitudinal trapping is enhanced by a magnetic curvature. The resulting potential has a cylindrical symmetry around the propagation axis of the laser and is characterized by trapping frequencies 0.87 kHz < ω ρ /2π < 3.07 kHz and 18 Hz < ω z /2π < 49 Hz. Further cooling is achieved by applying a homogeneous magnetic field B 718 G for which the scattering length is 200a 0 , and decreasing the depth of the trapping potential down to a variable value U allowing us to vary the final temperature of the cloud. Afterwards, the dipole trap is recompressed to a value U > U , to prevent significant atom loss due to the enhanced evaporation rate, see below. At each T we choose U so as to maintain the temperature constant during the three-body loss rate measurement. Finally, the magnetic field is ramped in 100-500 ms to B 0 737.8(3) G where the scattering length a diverges [4]. We then measure the total atom number N remaining after a variable waiting time t and the corresponding T , using in situ imaging of the thermal gas.

Our data are limited to the range of temperature 1µK ≤ T ≤ 10µK. For T > ∼ 1µK, the rate γ 3 = -Ṅ /N remains small with respect to other characteristic rates in our cloud (elastic scattering rate, trapping frequencies), which guarantees that a quasi-thermal equilibrium is maintained.

We check that for these parameters the in situ integrated density profile is indeed gaussian, and we use it to extract the temperature of the cloud, found to be in agreement with that of time of flight. The peak phase-space density varies within 0.07 × 10 -2 < n 0 λ 3 th < 1.1 × 10 -2 . A typical time dependence of N and T is shown in Fig. 1.

The time dependence of the atom number is fitted using the usual three-body recombination law Eq. ( 1) [START_REF]We neglect four-and higher-body losses which, dimensionally[END_REF]. For a non-degenerate gas of temperature T , the density profile is gaussian, and we have

n 2 = N 2 A(T ) = N 2 (mω 2 /2π √ 3k B T ) 3 , with ω = (ω 2
ρ ω z ) 1/3 being the mean trapping frequency. We then have:

Ṅ = -L 3 (T )A(T )N 3 .
(

) 2 
Assuming constant temperature, integrating Eq. ( 2) gives

N (t) = N (0) 1 + 2A(T )L 3 (T )N 2 (0)t , (3) 
which we use as a fitting function to analyze N (t), and extract L 3 (T ) as shown in Fig. 1. Because of their n 3 /T 2 dependence, three-body losses preferentially remove atoms of low kinetic energy and those located at the center of the trap where the density is the highest and potential energy is the smallest. As a result, three-body loss events heat up the cloud [12]. We ensure constant temperature by operating with a typical trap depth U ηk B T with 6 ≤ η ≤ 8, for which the residual evaporation then balances recombination heating, see Fig. 1b. This ensures that L 3 is time independent, but, as a drawback, evaporation contributes to losses. To quantify the relative importance of evaporative and three-body losses, we first note that an atom expelled by evaporation removes on average an energy (η + κ) k B T , where, following [13], we take κ from [14], while each three-body event leaves on average an excess heat of δk B T per particle. Extending the derivation of [12] to the case of an energy dependent three-body loss rate ∝ E -2 , we obtain δ = 5/3 [36]. The energy balance required to keep the temperature constant thus implies that the evaporation rate is δ/(η + κ -3) times smaller than the three-body loss rate. Neglecting this effect would induce a systematic overestimation of L 3 of about 50 % for η = 6 and 30 % for η = 8. Therefore, we apply this systematic correction to our data.

The temperature dependence of L 3 obtained from our measurements at unitarity is shown in Fig. 2. It is well fit by the scaling law L 3 (T ) = λ 3 /T 2 , with λ 3 = 2.5(3) stat × 10 -20 (µK) 2 cm 6 s -1 as the best-fit value. In order to discuss the systematic uncertainty of this measurement we note that the quantity L 3 T 2 scales in all experimental parameters identically to the thermodynamic quantity (µ 2 /P ) 2 of a zero-temperature BEC, with chemical potential µ, and pressure P [36]. We use this relation to calibrate our experimental parameters [4] and obtain a systematic uncertainty on λ 3 of ≤ 25 % resulting in λ 3 = 2.5(3) stat (6) sys × 10 -20 (µK) 2 cm 6 s -1 .

We now study the a-dependence of L 3 on both sides of the resonance by employing the same experimental procedure as in the unitary case. We tune the scattering length Temperature dependence of the three-body loss rate L3.

Filled circles: experimental data; green dashed line: best fit to the data L3(T ) = λ3/T 2 with λ3 = 2.5(3)stat( 6)sys × 10 -20 (µK) 2 cm 6 s -1 ; the green band shows the 1σ quadrature sum of uncertainties. Solid line: prediction from Eq. ( 5), λ3 = 1.52 × 10 -20 (µK) 2 cm 6 s -1 with η * = 0.21 from [29,30].

while keeping the temperature within 10 % of 5.9 µK, see Fig. 3. The excess heat δ entering in the correction now depends on the value of ka. The correction is applied to all data points (filled circles) except in the range 1500 a 0 < a < 5000 a 0 (open circles), where the assumptions of our model are not applicable [36]. In the limit |a| λ th , we observe that L 3 (a) saturates to the same value on both sides of the resonance. In the opposite limit |a| λ th , our data connect to the zero temperature behavior [18] studied experimentally in [START_REF] Kraemer | [END_REF][21][22][23][24]. On the a < 0 side, the dashed line is the zero-temperature prediction for L 3 from [18]. We clearly see that finite temperature reduces the three-body loss rate. On the a > 0 side, temperature effects become negligible for a < 2000 a 0 as testified by our measurements performed on a low temperature Bose-Einstein condensate (green squares) which agree with the total recombination rate to shallow and deep dimers calculated at T = 0 in [18] (dashed line). The data around unitarity and on the a < 0 side are seen to be in excellent agreement with our theory Eq. ( 4) described below.

In order to understand the dependence L 3 (a, T ) theoretically, we employ the S-matrix formalism developed in [18,31,32]. According to the method, at hyperradii R |a| one defines three-atom scattering channels (i = 3, 4, ...) for which the wavefunction factorizes into a normalized hyperangular part, Φ i ( R), and a linear superposition of the incoming, R -5/2 e -ikR , and outgoing, R -5/2 e +ikR , hyperradial waves. The channel i = 2 is defined for a > 0 and describes the motion of an atom relative to a shallow dimer. The recombination or relaxation to deep molecular states (with a size of order the van der Waals range R e ) requires inclusion of other atom-dimer channels. In the zero-range approximation, FIG. 3: a) Scattering-length dependence of the three-body rate constant L3(a) for constant T = 5.9( 6) µK (filled and open circles). For small positive a, L3(a) for a low temperature condensate is also shown (green squares). The solid blue line corresponds to our theoretical prediction Eq. ( 4) for T = 5.9 µK. The blue range is the same theory for 5.3 to 6.5 µK. The dashed lines represent the zero-temperature prediction for L3(a) [18]. All theory curves are for the 7 Li parameters η * = 0.21 and R0 = 270 a0 measured in [29,30]. The vertical dotted lines correspond to |a|/λ th = 1. The open circles in the range 1500 a0 < a < 5000 a0 are not corrected for residual evaporation as our model is not applicable. b) Logarithmic plot of the a < 0 side, displaying the two Efimov loss resonances.

valid when R e R m ≡ Min (1/k, |a|), the overall effect of these channels and all short-range physics in general can be taken into account by introducing a single Efimov channel (i = 1) defined for R e R R m : the wavefunction at these distances is a linear superposition of the incoming, Φ 1 ( R)R -2+is0 , and outgoing, Φ 1 ( R)R -2-is0 , Efimov radial waves. Here s 0 ≈ 1.00624. The notion "incoming" or "outgoing" is defined with respect to the long-distance region R m < ∼ R < ∼ |a|, so that, for example, the incoming Efimov wave actually propagates towards larger R whereas incoming waves in all other channels propagate towards smaller hyperradii. The matrix s ij relates the incoming amplitude in the i th channel with the outgoing one in the j th channel and de-scribes the reflection, transmission, and mixing of channels in the long-distance region. This matrix is unitary and independent of the short-range physics. The shortrange effects are taken into account by fixing the relative phase and amplitude of the incoming and outgoing Efimov waves R 2 Ψ ∝ (R/R 0 ) is0 -e 2η * (R/R 0 ) -is0 , where R 0 is the three-body parameter and the short-range inelastic processes are parametrized by η * > 0, which implies that the number of triples going towards the region of R ∼ R e is by the factor e 4η * larger than the number of triples leaving this region [33]. Braaten et al. [32] have shown that for a given incoming channel i ≥ 2 the probability of recombination to deeply bound states is [START_REF]Our s11 differs[END_REF]. For a < 0, by using the fact that s 11 is unitary (

P i = (1 -e -4η * )|s i1 | 2 /|1 + (kR 0 ) -2is0 e -2η * s 11 | 2
∞ i=1 |s 1i | 2 = 1)
and averaging over the Boltzmann distribution we then obtain the total loss rate constant

L 3 = 72 √ 3π 2 h(1-e -4η * ) mk 6 th ∞ 0 (1-|s 11 | 2 )e -k 2 /k 2 th kdk |1+(kR 0 ) -2is0 e -2η * s 11 | 2 , (4) 
where k th = √ mk B T /h. Note that in deriving Eq. (4) we closely followed [32] where the scattering length was assumed to be finite. However, we easily generalize this derivation to the case a = ∞, in which the channels become decoupled at distances R 1/k and the long-distance region can now be defined by R ∼ 1/k. A less trivial result of our analysis is that for any ka there exists a unitary transformation of the matrix s ij which leaves the element s 11 invariant, but all channels with i > 3 become decoupled from the Efimov channel [36]. This transformation constructs a new large-R channel characterized by a certain hyperangular wavefunction Φ3 ( R). For negative or infinite a this is the only channel that can "talk" to the lossy short-distance Efimov channel via a unitary 2×2 matrix. Therefore, the three-body loss rate can not exceed the so-called maximum value L max 3 = 36 √ 3π 2 h5 (k B T ) -2 /m 3 reached in the case when the outgoing flux in this newly constructed channel vanishes. Previous derivations of L max 3 [26] essentially implied that Φ3 ( R) is the lowest non-interacting hyperspherical harmonics. This approximation can be made only for k|a| 1. In general, Φ3 ( R) is not an eigenstate of the angular momentum operator. In particular, at unitarity Φ3

( R) = Φ 1 ( R) [36].
The function s 11 (ka) is calculated in [36]. At unitarity it equals s 11 (∞) = -e -πs0 e 2i[s0 ln 2+Arg Γ(1+is0)] and from Eq. ( 4) one sees that L 3 T 2 should be a log-periodic function of T . However, due to the numerically small value of |s 11 | ≈ 0.04, in the case of three identical bosons the oscillations are very small and L 3 is well approximated by setting s 11 = 0:

L 3 ≈ h5 m 3 36 √ 3 π 2 1 -e -4η * (k B T ) 2 . ( 5 
)
This explains the L 3 ∝T -2 experimental observation seen in Fig. 2 at unitarity. Taking η * = 0.21, which is the average of two measurements made for our 7 Li Feshbach resonance in [29,30], we get L 3 = λ 3 /T 2 with λ 3 = 1.52 × 10 -20 (µK) 2 cm 6 s -1 . This is 40 % below the experimentally determined value without any adjustable parameter and the agreement between theory and experiment is 1.4σ. We should point out that Eq. ( 4) can be easily generalized to the case of other three-body systems with smaller s 0 . Then, the terms neglected in Eq. ( 5) can become important. They also become important in our system of three identical bosons when departing from resonance in the direction of a < 0. Then |s 11 (ka)| monotonically increases as a function of 1/k|a| reaching 1 in the limit ka→0 -, the argument of s 11 also being a monotonic function of 1/k|a| [36]. The solid blue line in Fig. 3 is the result obtained from Eq. ( 4) using the same η * as above and R 0 = 270a 0 also taken from [29,30]. The shaded blue area reflects our experimental range of temperatures. More or less visible maxima of L 3 appear when the denominator in the integrand of Eq. ( 4) reaches its minimum, i.e., becomes resonant. The approximate condition for this is Arg s 11 (ka) = π+2s 0 ln kR 0 and the features become increasingly more pronounced for larger |s 11 | and smaller η * . Note that from the viewpoint of the visibility of the maxima, decreasing |a| is equivalent to decreasing √ T . Fig 3b shows the pronounced resonance at a = a -≈-274a 0 observed in [29,30]. This resonance is associated with the passage of an Efimov trimer through the three-atom threshold. Another Efimov trimer, larger in size by a factor of e π/s0 = 22.7, is expected to go through the threshold at around a ≈ -6350a 0 leading to another zero energy resonance. As we deduce from Eq. ( 4) and show in Fig. 3 for 5.9µK, the thermally averaged remnants of this predicted resonance lead to a maximum of L 3 at a ≈ -5100a 0 . As seen in Fig. 3b the agreement between theory and experiment is very good over the entire a < 0 range.

Because of the existence of a shallow dimer state, the case a > 0 becomes, in general, a complicated dynamical problem which should take into account the atomdimer and dimer-dimer relaxation as well as various nonuniversal factors: the finite trap depth, chemical imbalance between trapped shallow dimers and free atoms, and deviations from thermal equilibrium, possibly dependent on the preparation sequence. These issues require an extensive discussion beyond the scope of this Letter. The situation obviously simplifies in the case of very small a when the system is purely atomic and the three-body recombination to deep and shallow molecules leads to an immediate loss of three atoms.

Discussing the opposite limit of large a > 0, we first note that dimers are well defined when their size ∼ a is smaller than n -1/3 , which we assume in the following (the limit na 3 1 is equivalent to the case a = ∞). In the regime a λ th we find using the Skorniakov-Ter-Martirosian equation that s 12 →0 for ka→∞, which im-plies that the atom-dimer relaxation rate vanishes and that shallow dimers remain at chemical quasi-equilibrium with the decaying atomic ensemble [36]. Shallow dimer formation and breakup are then balanced, so that the atomic decay is just given by Eq. ( 1). The expression of L 3 for a > 0 was obtained in [32] and reduces to Eq. ( 4) for s 12 → 0. We conclude that the loss rate must be continuous across the resonance, in accordance with our experimental data. Therefore, in Fig. 3a the result of Eq. ( 4) is simply continued to positive a for a λ th .

In summary, we have systematically studied the dependence of the three-body loss rate on T and a in a Bose gas near unitarity. The T -2 temperature dependence seems to contradict the well-known Arrhenius law L 3 ∝ exp(-∆E/k B T ) for a chemical reaction with activation energy ∆E. This paradox is resolved by noting that three-body recombination occurs through the -1/R 2 Efimov three-body potential that does not display any potential hill. Moreover, a quantum interference effect in Efimov three-body scattering leads to an enhanced decay rate at a negative a, suggesting the possibility to observe the signature of a second Efimov trimer of large size. Another future direction is to explore the approach to the quantum degenerate regime and test whether the virial expansion of the unitary Bose gas can be measured by using quasi-equilibrium thermodynamics [9].

FIG. 1 :

 1 FIG. 1: Time dependence of the atom number (a) and temperature (b) for U = η kBT , with T = 5.2(4) µK, η = 7.4 and (uncorrected) L3 = 1.2(2)stat × 10 -21 cm 6 s -1 . The dotted line shows the long time t -1/2 dependence of the number of atoms.

  FIG. 2:Temperature dependence of the three-body loss rate L3.Filled circles: experimental data; green dashed line: best fit to the data L3(T ) = λ3/T 2 with λ3 = 2.5(3)stat(6)sys × 10 -20 (µK) 2 cm 6 s -1 ; the green band shows the 1σ quadrature sum of uncertainties. Solid line: prediction from Eq. (5), λ3 = 1.52 × 10 -20 (µK) 2 cm 6 s -1 with η * = 0.21 from[29,30].
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