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HEAT KERNEL COUPLED WITH GEOMETRIC FLOW,
AND RICCI FLOW

KOLÉHÈ A. COULIBALY-PASQUIER

Abstract. We prove on-diagonal upper bound for the minimal funda-
mental solution of the heat equation evolving under geometric flow. In
the case of Ricci flow, with non-negative Ricci curvature and a condition
on the growth of volume of ball for the initial manifold, we derive Gauss-
ian bounds for the minimal fundamental solution of the heat equation,
and then for the conjugate heat equation.

1. Introduction

Let (M, g(t)) be a complete Riemannian manifold, either non compact
or compact without boundary, g(t) be a family of metrics on M , ∇g(t) and
∆g(t) the corresponding gradient and Laplace-Beltrami operator, Ricg(t) the
corresponding Ricci curvature, µg(t) the corresponding Riemannian volume,
dg(t)(x, y) be the distance function, and Bg(t)(x, r) the geodesic ball of radius
r for the distance dg(t). Sometimes to reduce the notation, when there are
no risk of confusion concerning the family of metric we simply write ∇t, ∆t,
µt, ...

Let αi,j(t) be a family of symmetric 2-tensors on M . We consider the
following heat equation coupled with a geometric flow.

(1.1)


∂tgi,j(t) = αi,j(t),
∂tf(t, x) = 1

2∆tf(t, x),
f(0, x) = f0(x).

We are interested in estimating the minimal fundamental solution of (1.1).
For the existence of minimal fundamental solution in non compact case we
refer to Chapter 24 of [9]. An estimate of this fundamental solution, already
give an estimate of the conjugate heat equation, which is the density of the
g(t)-Brownian motion introduced in [1, 10] see also [11]. Moreover estimate
of the fundamental solution of the heat equation have many geometric ap-
plications, both in constant metric case and geometric flows for instance in
[21, 8, 5, 23].

Such a flow, have been investigated in the literature. We mention the
following situations.

• The most famous case is when αi,j(t) := 0. This is the case of
constant metric and equation (1.1) is the usual heat equation in M .
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2 K.A. COULIBALY-PASQUIER

• The Ricci flow corresponds to α(t) := −Ricg(t).
• We can also consider αi,j(t) := −2hHi,j(g(t)), where Hi,j(g(t)) is the
second fundamental form according to the metric g(t), and h is the
mean curvature, when the family of metric derives from the mean
curvature flow.

The existence of the Ricci flow ∂tg(t) = −Ricg(t) for compact manifold was
proved in [18]. Under additional assumptions, the existence of the Ricci
flow for a complete manifold was proved in [24]. For the last example, the
existence result of the mean curvature flow for a compact manifold could be
found in [12].

Using stochastic calculus we prove on-diagonal upper bound for the min-
imal fundamental solution of the heat equation (1.1), for general geometric
flow. As far as we know this result is new. We derive a Gaussian upper
bound for the minimal heat kernel coupled with the Ricci flow, in the case
of positive Ricci curvature and condition on the growth of volume of ball for
the initial manifold (i.e Hypothesis H1 in Theorem 4.8).

Related results. Previous stochastic proof of Harnack inequality with
power appear in [3] for the constant metric case. Note that our coupling is
different from the coupling in [3], and simplify the argument since we do not
need to take care of different cutlocus. The Harnack inequality with power
we obtain also appears in [7], and is obtain by different way.

For the Ricci flow, Gaussian upper bounds could be found as example in
[23] where the author use Harnack inequality and doubling volume property.
An over one by Zhang and Cao [5] uses Sobolev type inequality that is
conserved along Ricci flow.

Outline. The paper is organized as follows. In section 2 we define a
horizontal coupling. We use this coupling and Girsanov’s Theorem in or-
der to generalize Harnack inequality with power -for inhomogeneous heat
equation - introduced by F.Y Wang [25] see also [14, 3]. We also use this
coupling to give some isoperimetric-type Harnack inequality in Lemma 2.7
and ultracontractivity of the heat kernel in Corollary 2.11.

In Section 3, since the heat kernel of (1.1) is in general non symmetric,
the Gaussian bound is not a direct consequence of Harnack inequality with
power as in [14]. To overcome this difficulty we use the dual process and
derive on-diagonal upper estimate of the heat kernel of (1.1) in Theorem
3.1.

The Section 4 is devoted to the case of Ricci flow. We use modification
of Grigor’yan trick to derive Gaussian Heat kernel bounds from the on-
diagonal upper bound. The principal result of this section is Theorem 4.8
and Corollary 4.9.

2. Coupling and Harnack inequality with power

2.1. Coupling. In the first part of this section, we focus on the operator
of type Lt := 1

2∆g(t), where ∆g(t) is the Laplace operator associated to a
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time dependent family of metrics g(t)t∈[0,Tc[. We suppose that (M, g(t)) is
complete for all t ∈ [0, Tc[. Let x ∈M and t 7→ Xt(x) be the g(t)-Brownian
motion started at x. The notion of g(t)-Brownian motion, i.e. a Lt diffu-
sion, parallel transport, and damped parallel transport has been given in
[10, 1]. We also suppose in this section that all g(t)-Brownian motion is
non-explosive (i.e. stochastically complete).

Since we use different family of metrics all construction depends on the
family of metrics.

Let //g(t),X.(x)
t be the g(t) parallel transport above t 7→ Xt(x), which is a

linear isometry

//
g(t),X.(x)
t : (TxM, g(0)) −→ (TXt(x)M, g(t))

//
g(t),X.(x)
0 = IdTxM

Let Wg(t),X.(x)
t be the damped parallel transport that satisfies the follow-

ing Stratonovich covariant equation:

∗ d(//
g(t),X.(x)
t )−1(Wg(t),X.(x)

t )

= −1

2
(//

g(t),X.(x)
t )−1

(
Ricg(t)−∂tg(t)

)#g(t)
(Wg(t),X.(x)

0,t ) dt.

It is a linear operator between:

Wg(t),X.(x)
t : TxM −→ TXt(x)M

Wg(t),X.(x)
0 = IdTxM .

In [2] we give a construction of a process with value in a space of curves.
Since we sometimes change the underlying family of metrics, we incorporate
this family of metrics in the notation.

Let x, y ∈ M , u 7→ γ(u) be a g(0) geodesic curve such that γ(0) = x
and γ(1) = y and t 7→ (Xt(u)u∈[0,1]) be the horizontal Lt-diffusion in C1

path space C1([0, 1],M) over Xt(x) that starts at γ, where Xt(x) is a g(t)-
Brownian motion that starts at x. By assumption it is defined for all t ∈ [0, T ]
with T < Tc.

We will recall the usual properties satisfied by the horizontal Lt-diffusion
in C1 path space Theorem 3.1 [2] :

The family
u 7→ (Xt(u))t∈[0,T ]

is a family of Lt-diffusions. It is a.s. continuous in (t, u) and C1 in u, satisfies

Xt(0) = Xt(x) and X0(u) = γ(u),

and solves the equation

(2.1) ∂uXt(u) = Wg(t),X(u)
t (γ̇(u)).
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Furthermore, X.(u) satisfies the following Itô stochastic differential equation

(2.2) d∇tXt(u) = P
g(t),Xt(.)
0,u d∇tXt(0),

where
P
g(t),Xt(.)
0,u : TXt(0)M → TXt(u)M

denotes usual parallel transport along the C1-curve

[0, u]→M, v 7→ Xt(v),

with respect to the metric g(t).
We often use the notation //t for //

g(t),X.(x)
t when there no risk of confusion

of the underling process and the family of metrics.

Proposition 2.1. Suppose that the g(t)-Brownian motion starting at x is
non-explosive. The diagonal process t 7→ Xt(

t
T ) satisfies the following sto-

chastic differential equation :

d∇t(X.(
.

T
))t = P

g(t),Xt(.)

0, t
T

d∇tXt(0) +
1

T
W

g(t),X.(
t
T

)
t γ̇(

t

T
) dt

Proof. We pass to the Stratonovich differential to obtain the following chain
rule formula at time t0:

∗d(X.(
.

T
))t0 = ∗d(X.(

t0
T

))t0 +
dXt0( tT )

dt
|t=t0dt0.

We use (2.1) to identify the last term of the right hand side:

dXt0( tT )

dt
|t=t0 =

1

T
W

g(t),X.(
t0
T

)
t0

(γ̇(
t0
T

)).

Now we come back to the Itô differential equation using the following rela-
tion:

d∇tYt = //Y.t

(
d

∫ t

0
(//Y.s )−1 ∗ dYs

)
,

and we obtain

d∇t0 (X.(
.

T
))t0

= //t0

(
d

∫ t0

0
//−1
s ∗ d

(
X.

(
t0
T

))
s

+
1

T
//−1
s W

g(s),X.(
s
T

)
s

(
γ̇
( s
T

))
ds

)
= d∇t0

(
X.

(
t0
T

))
t0

+
1

T
W

g(t0),X.(
t0
T

)
t0

γ̇

(
t0
T

)
.

We then use (2.2) to identify

d∇t0 (X.(
t0
T

))t0 = P
g(t0),Xt0 (.)

0,
t0
T

d∇t0Xt0(0).

Thus concludes the proof. �
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Let

Nt := − 1

T

∫ t

0
〈P g(s),Xs(.)0, s

T
d∇sXs(0),W

g(s),X.(
s
T

)
s γ̇(

s

T
)〉g(s),

Rt := exp
(
Nt −

1

2
〈N〉t

)
.

In many situations Novikov’s criterion is satisfied. Therefore we could expect
Rt to be a martingale. Define the new probability measure Q as :

Q := RTP.

Proposition 2.2. Suppose that the g(t)-Brownian motion starting at x is
non-explosive and suppose that Novikov’s criterion is satisfied for Nt. Then
under Q, the process Xt(

t
T ) is a Lt-diffusion that starts at x, and finishes

at XT (1) = XT (y), i.e. under Q, XT (1) have the same distribution as the
g(t)-Brownian motion at time T that start at y.

Proof. One could directly apply Girsanov’s theorem. We prefer here to give
a direct proof. Let f ∈ C2

b (M,R), since Nt satisfy Novikov’s condition Rt is
a P-martingale. We use Itô formula to compute :

df(Xt(
t

T
)) = 〈∇tf(Xt(

t

T
)), d∇t(X.(

.

T
))t〉g(t)

+
1

2
Hesst f(Xt(

t

T
))(d∇t(X.(

.

T
))t, d

∇t(X.(
.

T
))t).

Since P g(t),Xt(.)
0, t
T

is an isometry for the metric g(t)

df(Xt(
t

T
)) = 〈∇tf(Xt(

t

T
)), P

g(t),Xt(.)

0, t
T

d∇tXt(0)〉g(t)

+
1

T
〈∇tf(Xt(

t

T
)),W

g(t),X.(
t
T

)
t γ̇(

t

T
)〉g(t) dt+

1

2
∆tf(Xt(

t

T
))dt.

Moreover

dRtd(f(Xt(
t

T
))) = − 1

T
Rt〈∇tf(Xt(

t

T
)),W

g(t),X.(
t
T

)
t γ̇(

t

T
)〉g(t) dt.

This implies

d(Rtf(Xt(
t

T
))) =

1

2
Rt∆tf(Xt(

t

T
))dt+ dMP

t ,

where MP
t is a martingale for P. On the other hand, since Rt is a P-

martingale, we have

Rt

∫ t

0
∆sf(Xs(

s

T
))ds =

∫ t

0
Rs∆sf(Xs(

s

T
))ds+ M̃P,

where M̃P
s is a P-martingale.

Thus

Rt

(
f(Xt(

t

T
))− 1

2

∫ t

0
∆sf(Xs(

s

T
))ds

)
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is a martingale.
Since Ut is aQ-martingale if and only if RtUt is a P-martingale, f(Xt(

t
T ))−

1
2

∫ t
0 ∆sf(Xs(

s
T ))ds is then a Q martingale i.e. Xt(

t
T ) is a Lt diffusion under

the probability Q. It is clear that it finishes at XT (y). Thus Xt(
t
T ) can be

seen as a coupling between two Lt diffusions that starts at different points
up to changing probability.

�

2.2. Harnack inequality with power and some semigroup property.
Let Tc be the maximal life time of geometric flow g(t)t∈[0,Tc[. For all T <

Tc, let XT
t be a g(T − t)-Brownian motion and //T0,t := //

g(T−t),XT
.

0,t be the
associated parallel transport. In this case, for a solution f(t, .) of (1.1),
f(T − t,XT

t (x)) is a local martingale for any x ∈ M . Hence the following
representation holds for the solution :

P0,T f0(x) := f(T, x) = Ex[f0(XT
T )].

The subscript T refers to the fact that a time reversal step is involved.
Let WT

0,t := Wg(T−t),XT
.

0,t be the damped parallel transport along the g(T−
t)-Brownian motion. We recall the covariant differential equation satisfied
by this damped parallel transport (2.1):

∗d((//T0,t)
−1(WT

0,t)) = −1

2
(//T0,t)

−1(Ricg(T−t)−∂t(g(T − t)))#g(T−t)(WT
0,t) dt

with
WT

0,t : TxM −→ TXT
t (x)M,WT

0,0 = IdTxM .

By the over subscript T we mean that the family of metrics is g(T − t).

Proposition 2.3. Suppose that there exist α, α ≥ 0 , K ≥ 0 such that for
all t ∈ [0, T ] :

−αg(t) ≤ α(t) ≤ αg(t),

−(d− 1)K2g(t) ≤ Ric(t)
then the g(t)-Brownian motion, and the g(T − t)-Brownian motion does not
explode before the time T .

Proof. This is a sufficient condition but it is far from being necessary one,
for the process to do not explode. Let x, y ∈ M and let dt(x, y) be the
Riemannian distance from x to y computed with the metric g(t). Let Cutt(x)
be the set of cutlocus of x for the metric g(t). Consider a fixed point x0 ∈M ,
andXt a g(t)-Brownian motion starting atX0. Using the Itô-Tanaka formula
for dt(x0, Xt) that have been proved for constant metric by Kendall, and
generalized to g(t)-Brownian motion in [20] Theorem 2, we have:

(2.3)
dt(x0, Xt)

= d0(x0, X0) +
∫ t

0 1Xs /∈Cuts(x0)(
1
2∆g(s)ds(x0, .) + ∂ds(x0,.)

∂s )(Xs) ds

+
∫ t

0 1Xs /∈Cuts(x0)〈∇sds(x0, Xs), d
∇sXs〉g(s) − Lt,
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where Lt is the local time at Cutt(x0). The local time is non-decreasing non
negative process that increase only when Xt touches Cutt(x0). Moreover
the distance dt(x0, x) is smooth if x /∈ Cutt(x0) ∪ x0. Let x /∈ Cutt(x0) and
γ : [0, dt(x0, x)]→M be the g(t)-geodesic from x0 to x. We have :

∂ds(x0, x)

∂s
=

1

2

∫ ds(x0,x)

0
α(s)(γ̇(u), γ̇(u)) du ≤ α

2
ds(x0, x).

Recall the Laplacian comparison Theorem:

∆g(s)ds(x0, x) ≤ (d− 1)K coth(Kds(x0, x)).

We then get the following control of the drift term (using x coth(x) ≤ 1 + x
for x ≥ 0), and F (x) := (d− 1)( αx

(d−1) + 1
x +K):

(
1

2
∆g(s)ds(x0, .) +

∂ds(x0, .)

∂s
)(x)

≤ 1

2

(
(d− 1)K coth(Kds(x0, x) + αds(x0, x))

)
≤ F (ds(x0, x)).

Since ‖∇g(t)dt(X0, .)‖g(t) = 1 and Cutt(x0) have 0 as g(t) volume, the mar-
tingale part of dt(x0, Xt) is a real Brownian motion. We finish the proof us-
ing the comparison theorem of stochastic differential equation, and the usual
criterion of non-explosion of a one dimensional diffusion. For the g(T − t)-
Brownian motion, we simply to change α by α in the above formula. �

Remark 2.4. For the backward Ricci flow, it is shown in [20] without any
assumption as in the above proposition that the g(t)-Brownian motion does
not explode. But the sufficient condition for the existence of the forward
Ricci flow in complete Riemannian manifolds as given by Shi in [24, Theorem
1.1], that is the boundedness of the initial Riemannian tensor (for the metric
g(0)) also gives a bound of the Ric tensor along the flow (for bounded time).
Hence the conditions for non explosion of the g(t)-Brownian motion given in
the above proposition is satisfied, at least for small time, if the initial metric
satisfies Shi’s condition for the complete manifolds.

In the following proposition RTt is defined as Rt but according to the
family of metrics g(T − t) instead of g(t).

Proposition 2.5. Suppose that the g(t)-Brownian motion started at x is
non-explosive for the first point, and the g(T − t)-Brownian motion started
at x is non-explosive for the second point .

(1) If there exists C ∈ R such that Ricg(t)−α(t) ≥ Cg(t), then Rt is a
martingale, and for β ≥ 1

E[Rβt ] ≤ e
1
2
β(β−1)

d20(x,y)

T2
1−e−Ct

C .
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(2) If there exists C̃ ∈ R such that Ricg(t) +α(t) ≥ C̃g(t) then RTt is a
martingale and for β ≥ 1

(2.4) E[(RTt )β] ≤ e
1
2
β(β−1)

d2T (x,y)

T2
1−e−C̃t

C̃ .

If C = 0 then we take for convention that for all t, 1−e−Ct
C = t.

Proof. Without loss of generality, we just make the proof for Rt, the com-
putation is the same as for RTt . Let Xt(x) be a g(t)-Brownian motion and
let v ∈ TxM . We use short notation for the g(t) parallel transport and the
damped parallel transport along Xt(x), //t := //

g(t),X.(x)
t and W(X.(x))t :=

Wg(t),X.(x)
t . Then we use the isometry property of the parallel transport,

i.e., //s : (TxM, g(0)) 7→ (TXs(x)M, g(s)), to deduce

∗ d〈W(X.(x))sv,W(X.(x))sv〉g(s)
= ∗d〈//−1

s W(X.(x))sv, //
−1
s W(X.(x))sv〉g(0)

= 2〈∗d//−1
s W(X.(x))sv, //

−1
s W(X.(x))sv〉g(0)

= 2〈//s ∗ d//−1
s W(X.(x))sv,W(X.(x))sv〉g(s)

= −〈(Ricg(s)−∂s(g(s)))#g(s)(W(X.(x))sv),W(X.(x))sv〉g(s) ds
≤ −C ‖W(X.(x))sv ‖2 ds.

By Gronwall’s lemma we get

‖W(X.(x))sv ‖g(s)≤ e−
1
2
Cs ‖ v ‖g(0) .

Recall that Nt := − 1
T

∫ t
0 〈P

g(s),Xs(.)
0, s
T

d∇sXs(0),W(X.(
s
T ))sγ̇( sT )〉g(s), and

P
g(s),Xs(.)
0, s
T

is a g(s) isometry and d∇sXs(0) = //seidw
i where w is a Rn-

Brownian motion, and (ei)i=1..n is an orthonormal basis of TxM . Then

〈N〉t =
1

T 2

∫ t

0
‖W(X.(

s

T
))sγ̇(

s

T
) ‖2g(s) ds

≤ 1

T 2

∫ t

0
e−Cs ‖ γ̇(

s

T
) ‖2g(0) ds

≤ 1

T 2
d2

0(x, y)

∫ t

0
e−Cs ds.

So by Nokinov’s criterion, Rt is a martingale. Let β ≥ 1,

E[Rβt ] = E[eβNt−
β
2
〈N〉t ]

= E[eβNt−
β2

2
〈N〉te

β(β−1)
2
〈N〉t ]

≤ e
1
2
β(β−1)

d20(x,y)

T2
1−e−Ct

C .
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By the same computation we have

〈NT 〉t =
1

T 2

∫ t

0
‖WT (X.(

s

T
))sγ̇(

s

T
) ‖2g(T−s) ds

≤ 1

T 2

∫ t

0
e−C̃s ‖ γ̇(

s

T
) ‖2g(T ) ds

≤ 1

T 2
d2
T (x, y)

∫ t

0
e−C̃s ds.

Thus RTt is a martingale. Given β ≥ 1 we have similarly (2.4). �

Remark 2.6. In the case of Ricci flow, ∂tg(t) = −Ricg(t), then ∂tg(T − t) =

Ricg(T−t) so the process XT
t (x) does not explode (we do not need proposition

2.3, but [20]) and the condition of the above proposition is satisfied with
C̃ = 0 and

E[(RTT )β] ≤ e
1
2
β(β−1)

d2T (x,y)

T .

Using the horizontal Lt-diffusion, we could give a alternative proof of
Theorem 3.2 in [4] (isoperimetric-type Harnack inequality) for the constant
metric case, and also a generalisation for inhomogeneous diffusions.

Lemma 2.7. If there exists C̃ ∈ R such that Ricg(t) +α(t) ≥ C̃g(t) and if
the g(T − t)-Brownian motion does not explode then for every measurable set
A,

P0,T (1A)(x) ≤ P0,T (1AρT0
)(y).

Where ρT := e−
C̃T
2 dT (x, y) and Aε0 := {z ∈M s.t. d0(z,A) ≤ ε}

Proof. We could give a proof with the usual Kendall coupling, but we have
to manage the different cutlocus. We prefer here give a proof using the
horizontal Lt diffusion in C1 path space. Since the g(T − t)- Brownian
motion does not explode, it is the same for the LT−t-horizontal diffusion.
Let γ be a g(T ) geodesic such that γ(0) = x and γ(1) = y. By 2.1,

∂uXt(u) = WT (XT
. (γ(u)))t(γ̇(u))

and
‖WT (XT

. (x))sv ‖g(T−s)≤ e−
1
2
C̃s ‖ v ‖g(T ) .

We then get

d0(XT
T (x), XT

T (y)) ≤
∫ 1

0
‖∂uXt(u)‖g(0) du ≤ e−

1
2
C̃TdT (x, y) = ρT .

Hence {XT
T (x) ∈ A} ⊂ {XT

T (y) ∈ AρT0 } and

P0,T (1A)(x) = E[1A(XT
T (x))] ≤ E[1AρT0

(XT
T (y))] = P0,T (1AρT0

)(y).

Thus concludes the proof. �
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Corollary 2.8. (1) If ġ = 0 and Ricg ≥ K then we can take ρT =

e−
KT
2 d(x, y). This as actually Theorem 3.2 in [4] for the Riemannian

case.
(2) If g(t) satisfies the Ricci flow, ∂tg(t) = −Ricg(t), so XT

t (x) does not
explode ([20]) and since the damped parallel transport is an isometry
we could take ρT = dT (x, y)

We are now ready to give the Harnack inequality with power. Let f be a
solution of (1.1) and let P0,T be the inhomogeneous heat kernel associated
to (1.1), i.e.

P0,T f0(x) := f(T, x) = Ex[f0(XT
T )].

Theorem 2.9. Suppose that the g(T − t)-Brownian motion XT
t does not

explode, and that the process RTt is a martingale. Then for all α > 1 and
f0 ∈ Cb(M) we have :

| P0,T f0 |α (x) ≤ E[(RTT )
α
α−1 ]α−1P0,T | f0 |α (y).

Moreover if there exists C̃ ∈ R such that

Ricg(t) +α(t) ≥ C̃g(t)

then we have:

| P0,T f0 |α (x) ≤ e
α

2(α−1)

d2T (x,y)

T2
1−e−C̃T

C̃ P0,T | f0 |α (y).

Proof. We write X̃T
t := XT

t ( tT ) the diagonal process associated to the family
of metrics g(T − t), and use Proposition 2.2, and Hölder inequality:

| P0,T f0 |α (x) =| EQ[f0(X̃T
T )] |α

=| EP[RTT f0(X̃T
T )] |α

≤ EP[(RTT )
α
α−1 ]α−1EP[| f0 |α (X̃T

T )]

= EP[(RTT )
α
α−1 ]α−1EP

y [| f0 |α (XT
T (y))]

= EP[(RTT )
α
α−1 ]α−1P0,T | f0 |α (y).

The last part in the theorem is an application of Proposition 2.5. �

We will denote by µt the volume measure associated to the metric g(t),
and for A a measurable set, µt(A) :=

∫
A 1 dµt, and Bt(x, r) the ball for the

metric g(t) of center x and radius r.

Corollary 2.10. Suppose that the g(T − t)-Brownian motion XT
t does not

explode, and there exists C̃ ∈ R such that Ricg(t) +α(t) ≥ C̃g(t). Moreover
suppose that there exists a function τ : [0, T ] 7→ R such that :

1

2
traceg(t)(α(t))(y) ≤ τ(t), ∀(t, y) ∈ [0, T ]×M
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then for f0 ∈ Lα(µ0)

| P0,T f0 | (x) ≤ e

∫T
0 τ(s) ds+1

α(
µT (BT (x,

√
2(α−1)T 2

α( 1−e−C̃T
C̃

)
))
) 1
α

‖ f0 ‖Lα(µ0) .

Proof. By Proposition 2.5 RTt is a martingale. If f0 ∈ Cb(M) ∩ Lα(µ0) we
apply Theorem 2.9 and get :

| P0,T f0 |α (x) ≤ e
α

2(α−1)

d2T (x,y)

T2
1−e−C̃T

C̃ P0,T | f0 |α (y).

We integrate both sides along the ball BT
(
x,
√

2(α−1)T 2

α( 1−e−C̃T
C̃

)

)
, with respect to

the measure µT , in y and obtain :

µT (BT
(
x,

√√√√2(α− 1)T 2

α(1−e−C̃T
C̃

)

)
) | P0,T f0 |α (x)

≤ e
∫
BT

(
x,

√
2(α−1)T2

α( 1−e
−C̃T
C̃

)

) P0,T | f0 |α (y) dµT (y)

≤ e
∫
M
P0,T | f0 |α (y) dµT (y).

We have that d
dtµt(y) = 1

2 traceg(t)(α(t))(y)dµt(y), and by the Stokes theo-
rem we have :

d

dt

∫
M
P0,t | f0 |α (y) dµt(y) =

∫
M
P0,t | f0 |α (y)

d

dt
dµt(y)

≤ τ(t)

∫
M
P0,t | f0 |α (y) dµt(y).

We deduce that :∫
M
P0,t | f0 |α (y) dµt(y) ≤ e

∫ t
0 τ(s) ds ‖ f0 ‖αLα(µ0) .

Hence for f0 ∈ Cb(M) ∩ Lα(µ0)

| P0,T f0 | (x) ≤ e

∫T
0 τ(s) ds+1

α(
µT (BT (x,

√
2(α−1)T 2

α( 1−e−C̃T
C̃

)
))
) 1
α

‖ f0 ‖Lα(µ0) .

We conclude by a classical density argument that the same inequality is true
for f0 ∈ Lα(µ0). �

Corollary 2.11. If the family of metric comes from the Ricci flow and if

(τ(t)) = −1

2
inf
y∈M

R(t, y) <∞,∀t ∈ [0, T ]
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where R(t, y) is the scalar curvature at y for the metric g(t) then we have

| P0,T f0 | (x) ≤ e

∫T
0 τ(s) ds+1

α(
µT (BT (x,

√
2(α−1)T

α ))
) 1
α

‖ f0 ‖Lα(µ0) .

If infx∈M
(
µT (BT (x,

√
2(α−1)T

α ))
)

=: CT > 0 then as a linear operator :

‖P0,T ‖Lα(µ0)7→L∞(µ0) ≤
e

∫T
0 τ(s) ds+1

α

C
1
α
T

.

Proof. If g(t) comes from Ricci flow then g(T − t) satisfies a backward Ricci
flow. Then the process XT

t (x) does not explode before T [20]. Moreover we
have C̃ = 0 in Proposition 2.5, then the process RTt is a martingale and we
could apply the above corollary. �

3. Non symmetry of the inhomogeneous heat kernel, and heat
kernel estimate

Unfortunately the non homogeneous heat kernel is non symmetric in gen-
eral. The goal of this section is to by-pass this difficulty. This will be achieved
by the study of the dual process and time reverse.

Let ∂
∂t
g(t) := α(t) where α is a time-dependent symmetric 2-tensor. We

suppose that there exist functions τ(t) and τ(t) such that :

(3.1)
{

1
2 supy∈M traceg(t)(α(t))(y) ≤ τ(t)
1
2 infy∈M traceg(t)(α(t))(y) ≥ τ(t).

Consider the following heat operator where the subscript mean the variable
in which we differentiate: Lt,x := − ∂

∂t
+ 1

2∆g(t). Let x, y ∈ M and 0 < τ <

σ ≤ t. Denote by P (x, t, y, τ) the fundamental solution of

(3.2)
{
Lt,xP (x, t, y, τ) = 0
limt↘τ P (., t, y, τ) = δy(.)

Using Itô’s formula we obtain as in [10]:

Xt−.
t−τ (x)

L
= P (x, t, y, τ) dµτ (y)

Let v, u ∈ C1,2(R,M), the space of functions that are differentiable in
time, and differentiable twice in space. Consider the adjoint operator L∗

of L with respect to 〈Lu, v〉 :=
∫ T

0

∫
M (Lu)vdµt dt. As in Guenther [17], it

satisfies

L∗t,x =
1

2
∆t +

∂

∂t
+

1

2
traceg(t)(α(t)).

The fundamental solution P ∗(y, τ, x, t) of L∗, satisfies :
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(3.3)
{
L∗τ,yP

∗(y, τ, x, t) = 0
limτ↗t P

∗(., τ, x, t) = δx(.).

Using Duhamel’s principle the adjoint property yields:

P (x, t, y, τ) = P ∗(y, τ, x, t).

After a time reversal, P ∗(y, t− s, x, t) satisfies the following heat equation :

(3.4)
{
∂sP

∗(y, t− s, x, t) = 1
2∆g(t−s),yP

∗ + 1
2 traceg(t−s)(α(t− s))(y)P ∗

lims↘0 P
∗(y, t− s, x, t) = δy.

Using the Feynman-Kac formula, we conclude that :

P ∗(y, t− s, x, t) ≤ e
1
2

∫ s
0 τ(t−u)duP (y, s, x, t),

where P (y, s, x, t) be the fundamental solution of

(3.5)
{
∂sf(s, x) = 1

2∆g(t−s)f(s, x)
f(0, x) = f0(x);

i.e., P (y, s, x, t) satisfies :

(3.6)
{
∂sP (y, s, x, t) = 1

2∆g(t−s),yP (y, s, x, t)

lims↘0 P (., s, x, t) = δx(.).

Theorem 3.1. Suppose that (3.1) is satisfied and that:

• the g(s)-Brownian motion does not explode before the time t
2 and

there exists C ∈ R such that ∀s ∈ [0, t2 ]:

Ricg(s)−α(s) ≥ Cg(s);

• the g(t− s)-Brownian motion does not explode before the time t
2 and

there exist C̃ ∈ R such that ∀s ∈ [0, t2 ]:

Ricg(t−s) +α(t− s) ≥ C̃g(t− s).

Then the fundamental solution of (1.1) that we note P (x, t, y, 0) satisfies for
all 0 < t < Tc:

P (x, t, y, 0) ≤ e e
1
2

∫ t
0 τ(s) ds(

µt(Bt(x,

√
( t
2

)2

( 1−e−C̃
t
2

C̃
)

))
) 1

2

e−
1
2

∫ t
2
0 τ(s) ds(

µ0(B0(y,

√
( t
2

)2

( 1−e−C
t
2

C
)

))
) 1

2

.
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Proof. By the Chapman-Kolmogorov formula we have:

P (x, t, y, 0) =

∫
M
P (x, t, z,

t

2
)P (z,

t

2
, y, 0) dµ t

2
(z)

=

∫
M
P (x, t, z,

t

2
)P ∗(y, 0, z,

t

2
) dµ t

2
(z)

≤
( ∫

M
(P (x, t, z,

t

2
))2dµ t

2
(z)
) 1

2
( ∫

M
(P ∗(y, 0, z,

t

2
))2dµ t

2
(z)
) 1

2 .

Recall that P (x, t2 + s, z, t2) is the fundamental solution, which starts at δx
at time s = 0, of :

(3.7)
{
∂sf(s, x) = 1

2∆g( t
2

+s)f(s, x)

f(0, x) = f0(x)

Then we have :

P0, t
2
f0(x) := f(

t

2
, x) = E[f0(Xt−.

t
2

(x))].

According to the proof of Corollary 2.10, for f0 ∈ Cb(M) ∩ L2(µ t
2
) :

| P0, t
2
f0 | (x) ≤ e

∫ t2
0 τ( t2+s) ds+1

2(
µt(Bt(x,

√
( t
2

)2

( 1−e−C̃( t2 )

C̃
)

))
) 1

2

‖ f0 ‖L2(µ t
2

) .

Given x0 ∈ M and n ∈ N, we apply the above inequality to f0(y) :=
P (x, t, y, t2) ∧ (n1B(x0,n)(y)) to obtain :∫
M

(
P (x, t, z,

t

2
) ∧ (n1B(x0,n)(z))

)2
dµ t

2
(z)

≤
∫
M
P (x, t, z,

t

2
)
(
P (x, t, z,

t

2
) ∧ n1B(x0,n)(z)

)
dµ t

2
(z)

≤ e

∫ t2
0 τ( t2+s) ds+1

2(
µt(Bt(x,

√
( t
2

)2

( 1−e−C̃( t2 )

C̃
)

))
) 1

2

(∫
M

(
P (x, t, z,

t

2
) ∧ (n1B(x0,n)(z))

)2
dµ t

2
(z)
) 1

2
.

Letting n goes to infinity, we obtain that z → P (x, t, z, t2) is in L2(µ t
2
) for

t > 0, and that:

(∫
M

(
P (x, t, z,

t

2
)
)2
dµ t

2
(z)
) 1

2 ≤ e

∫ t2
0 τ( t2+s) ds+1

2(
µt(Bt(x,

√
( t
2

)2

( 1−e−C̃( t2 )

C̃
)

))
) 1

2

.
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Recall that:

P ∗
(
y, 0, x,

t

2

)
≤ e

1
2

∫ t
2
0 τ(u)duP

(
y,
t

2
, x,

t

2

)
,

where P (y, t2 , x,
t
2) is the heat kernel at time t

2 , which starts at time 0 at δy,
of the following equation:

(3.8)
{
∂sf(s, x) = 1

2∆g( t
2
−s)f(s, x)

f(0, x) = f0(x).

We also have:

P 0, t
2
f0(x) := f(

t

2
, x) = E[f0(X

g(.)
t
2

(x))]

To make a direct link with 2.10, we could think that the family of metrics
is s 7→ g( t2 − s), so many changes of signs are involved. However, the proof
of the following is the same as the one of Corollary 2.10. We get for f0 ∈
Bb(M) ∩ L2(µ t

2
) :

| P 0, t
2
f0 | (y) ≤ e

−
∫ t2
0 τ(s) ds+1

2(
µ0(B0(y,

√
( t
2

)2

( 1−e−C( t2 )

C
)

))
) 1

2

‖ f0 ‖L2(µ t
2

) .

Similarly z → P (y, t2 , z,
t
2) is in L2(µ t

2
) and

(∫
M

(
P (y,

t

2
, z,

t

2
)
)2
dµ t

2
(z)
) 1

2 ≤ e
−

∫ t2
0 τ(s) ds+1

2(
µ0(B0(y,

√
( t
2

)2

( 1−e−C( t2 )

C
)

))
) 1

2

.

We obtain : ( ∫
M

(P ∗(y, 0, z,
t

2
))2dµ t

2
(z)
) 1

2

≤ e
1
2

∫ t
2
0 τ(u)du

( ∫
M
P

2
(y,

t

2
, z,

t

2
) dµ t

2
(z)
) 1

2

≤ e
1
2

∫ t
2
0 τ(u)du e

−
∫ t2
0 τ(s) ds+1

2(
µ0(B0(y,

√
( t
2

)2

( 1−e−C( t2 )

C
)

))
) 1

2

.

�

Remark 3.2. Having a heat kernel estimate for the heat equation we have
simultaneously a kernel estimate of conjugate equation.
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Remark 3.3. The hypothesis Ricg(t−s) +α(t− s) ≥ C̃g(t− s), for s ∈ [0, t2 ]

is a kind of quantitative super Ricci flow as defined in [22] (if C̃ = 0 this is
exactly the definition of super Ricci flow). This quantitative version of super
Ricci flow allow us to control the rate of expansion of the damped parallel
transport along the g(t− .)-Brownian motion.
The hypothesis Ricg(s)−α(s) ≥ Cg(s) for s ∈ [0, t2 ] allow us to control the
rate of expansion of the damped parallel transport along the dual process,
namely the process associated to P i.e. g(.)-Brownian motion.

Remark 3.4. If g(t) = g(0) is constant, and Ricg(0) ≥ 0 we have τ(t) =

τ(t) = 0, C = C̃ = 0 and we deduce a Li-Yau on-diagonal estimate of the
usual heat equation on complete manifolds as in [21] (up to some constant):

Pt(x, y) ≤ e 1(
µ0(B0(x,

√
t
2))
) 1

2

1(
µ0(B0(y,

√
t
2))
) 1

2

.

Using the symmetry of the heat kernel in the constant metric case we do not
need to consider the dual as in the above theorem.

4. Grigor’yan tricks, on-diagonal estimate to Gaussian
estimate, the Ricci flow case

In this section we use the on-diagonal estimate of the previous section to
derive a Gaussian type estimate of the minimal heat kernel coupled with Ricci
flow (for complete manifold with non negative Ricci curvature). The proof
involves several steps. In particular, we use a modification of Grigor’yan
tricks [16, 15] to control integrability of the square of the heat kernel outside
some ball, combined to an adapted version of Hamilton entropy estimate to
control the difference of the heat kernel at two points. This type of strategy,
is a modification of differents arguments which appears in the literature on
the Ricci flow (e.g. Cao-Zhang [5]).

Proposition 4.1. Let g(t)t∈[0,Tc[ be a family of metrics that satisfy the Ricci
flow i.e. ġ(t) = −Ricg(t). Suppose that for all t ∈ [0, Tc[, Ricg(t) ≥ 0 then
we have the following on-diagonal estimate for the heat kernel and so for the
conjugate heat kernel:

P (x, t, y, 0) ≤ e e
− 1

4

∫ t
t
2

infM R(s,.) ds(
µt(Bt(x,

√
t
2))
) 1

2

e
1
4

∫ t
2
0

(
supM R(s,.)−infM R(s,.)

)
ds(

µ0(B0(y,
√

t
2))
) 1

2

.

Proof. We could use Proposition 2.3 with K = 0 and α = 0 to get the non-
explosion of the g(t)-Brownian motion, and as in [20] the g(T − t)-Brownian
motion does not explode. We then use Theorem 3.1 with C = 0 and C̃ = 0



HEAT KERNEL COUPLED WITH GEOMETRIC FLOW, AND RICCI FLOW 17

to get the following on-diagonal estimate, for all t ∈]0, Tc[ :

P (x, t, y, 0) ≤ e e
1
2

∫ t
0 τ(s) ds(

µt(Bt(x,
√

t
2))
) 1

2

e−
1
2

∫ t
2
0 τ(s) ds(

µ0(B0(y,
√

t
2))
) 1

2

.

Recall that in the case of Ricci flow : τ(s) = −1
2 infM R(s, .) ≤ 0. �

Remark 4.2. Note that in the proof of Theorem 3.1 the time t
2 is arbitrary

and so in Proposition 4.1. Thus if we have only a control of supM R for small
time, we also have a on-diagonal estimate.

We start this section by the following Hamilton estimate.

Lemma 4.3. Let f be a positive solution of (1.1), where αi,j(t) = −(Ricg(t))i,j ,
t ∈]0, Tc[ and M t

2
:= supx∈M f( t2 , x) then for all x, y ∈M,

f(t, x) ≤
√
f(t, y)

√
M t

2
e
d2t (x,y)

t .

Proof. By the homogeneity of the desired inequality under multiplication
by a constant, and the linearity of the heat equation, we can suppose that
f > 1, by taking for ε > 0, fε = f+2ε

infM f+ε and take the limit in ε.
Since no confusion could arise, we will simply write without subscript ∇, ‖.‖,
and ‖.‖HS , for ∇g(t), ‖.‖g(t), ... Recall the Hilbert-Schmidt norm is defined
as ‖α‖2HS = gilgjmαijαlm, for a 2-tensor α := αijdxi ⊗ dxj .
Using an orthonormal frame and Weitzenbock’s formula, we obtain the fol-
lowing equation

(−∂t+
1

2
∆g(t))

(
‖ Of ‖2

f

)
(t, x) =

1

f

(
‖ Hess f − Of ⊗ Of

f
‖2HS +(Ricg(t) +ġ)(Of,Of)

)
(t, x).

Thus, in the case of Ricci flow

(−∂t +
1

2
∆g(t))

(‖ Of ‖2
f

)
≥ 0.

By a direct computation

(−∂t +
1

2
∆g(t))(f log f)(t, x) =

1

2

‖ Of ‖2

f
(t, x).

Let

Ns := h(s)
‖ Of ‖2

f
(t− s,Xt

s(x)) + (f log f)(t− s,Xt
s(x)),

where Xt
s(x) is a g(t − s)-Brownian motion started at x. If h(s) := t/2−s

2
then by Itô formula, it is easy to see that Ns is a super-martingale. So we
have :

E[N0] ≤ E[N t
2
],
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that is :
t

4

‖ Of ‖2

f
(t, x) + (f log f)(t, x) ≤ E[(f log f)(

t

2
, Xt

t
2
(x))]

≤ E[f(
t

2
, Xt

t
2
(x))] log(M t

2
)

= f(t, x) log(M t
2
),

where we use f > 1 and that f(t − s,Xt
s(x)) is a martingale. The above

computation yields

‖ Of ‖
f

(t, x) ≤ 2√
t

√
log(

M t
2

f(t, x)
),

and consequently ∥∥∥∥∥∥∇
√

log(
M t

2

f(x, t)
)

∥∥∥∥∥∥ ≤ 1√
t
.

After integrating this inequality along a g(t)-geodesic between x and y, we
get √√√√log

(
M t

2

f(y, t)

)
≤

√√√√log

(
M t

2

f(x, t)

)
+
dt(x, y)√

t
,

that yields to

f(t, x) ≤
√
f(t, y)

√
M t

2
e
d2t (x,y)

t .

�

Now, we adapt the argument of Grigor’yan to the situation of Ricci flow
(with non negative Ricci curvature).

Lemma 4.4. Suppose that (3.1) is satisfied, the family of metrics g(t) comes
from the Ricci flow, and let B be a measurable set, then:

e−
1
2

∫ t
0 τ(s) ds

µ0(B)
1
2

≤ 1

µt(B)
1
2

≤ e−
1
2

∫ t
0 τ(s) ds

µ0(B)
1
2

.

Moreover if Ricg(t) ≥ 0 for all t ∈ [0, Tc[ then for all x ∈ M and r > 0 we
have :

1

µ0(Bt(x, r))
1
2

≤ 1

µ0(B0(x, r))
1
2

.

Proof. Recall that:
d

dt
µt =

1

2
traceg(t)(ġ(t))µt.

In the case of a Ricci flow this becomes d
dtµt(dx) = −1

2R(x, t)µt(dx). Thus,
the first inequality of the lemma follows from an integration. For the second
point, it is clear that Ric ≥ 0 yields that dt(x, y) is non increasing in time.
Then B0(x, r) ⊂ Bt(x, r), which clearly gives 1

µ0(Bt(x,r))
1
2
≤ 1

µ0(B0(x,r))
1
2
. �
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The above lemma immediately yields the following remark.

Remark 4.5. Suppose ġ(t) = −Ricg(t) and Ricg(.) ≥ 0. Using the estimate
in Lemma 4.1 and Lemma 4.4 we have the following estimate :

P (x, t, y, 0) ≤ ee
1
4

∫ t
0

(
supM R(s,.)−infM R(s,.)

)
ds(

µ0(B0(x,
√

t
2))
) 1

2

e
1
4

∫ t
2
0 supM R(s,.) ds(

µ0(B0(y,
√

t
2))
) 1

2

.

Proposition 4.6. Let g(t) be a solution of Ricci flow such that Ricg(t) ≥ 0,
and let r > 0 , t0 > t ≥ 0, and define:

ξ(y, t) =

{
−(r−dt(x,y))2

(t0−t) if dt(x, y) ≤ r
0 if dt(x, y) ≥ r

and Λ(t) = 1
2

∫ t
0 infx∈M (R(s, x))ds. If f is a solution of (1.1) then for

t2 < t1 < t0:

∫
M
f2(t1, y)eξ(y,t1)µt1(dy) ≤ e−(Λ(t1)−Λ(t2))

∫
M
f2(t2, y)eξ(y,t2)µt2(dy).

Proof. Let γ(s) be the g(t)-geodesic between x and y. Using Remark 6 in
[22] and the fact that Ricg(t) ≥ 0 we get

d

dt
d2
t (x, y) =

d

dt

∫ 1

0
‖ γ̇(s) ‖2g(t) ds

= −
∫ 1

0
Ricg(t)(γ̇(s), γ̇(s)) ds ≤ 0.

So for y ∈ Bt(x, r) we have

d

dt
ξ(y, t) ≤ −(r − dt(x, y))2

(t0 − t)2
.

We also have

‖ ∇tξ(y, t) ‖2g(t)=
4(r − dt(x, y))2

(t0 − t)2
.

Then

d

dt
ξ(y, t) ≤ −

‖ ∇tξ(y, t) ‖2g(t)
4

,
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and the above inequality is clear if y /∈ Bt(x, r). Let f(t, x) a solution of
(1.1) then we have :

d

dt

∫
M
f2(t, y)eξ(y,t)µt(dy)

=

∫
M

(
f(t, y)∆tf(t, y) + f2(t, y)

d

dt
ξ(y, t)− R(y, t)

2
f2(t, y)

)
eξ(y,t) µt(dy)

=

∫
M
−〈∇tf,∇t(feξ)〉g(t) + f2 d

dt
ξeξ − R

2
f2eξ µt(dy)

=

∫
M

(
− 〈∇tf,∇tf〉g(t) − 〈∇tf, f∇tξ〉g(t) + f2 d

dt
ξ
)
eξ − R

2
f2eξ µt(dy)

≤ −
∫
M

(
〈∇tf,∇tf〉+ 2〈∇tf, f∇t ξ

2
〉+ f2 ‖ ∇tξ ‖2

4

)
eξ − R

2
f2eξ µt(dy)

= −
∫
M

(
〈∇tf,∇tf〉+ 2〈∇tf, f∇t ξ

2
〉+ f2 ‖ ∇tξ ‖2

4

)
eξ − R

2
f2eξ µt(dy)

= −
∫
M
‖ ∇tf + f∇t ξ

2
‖2g(t) µt(dy)−

∫
M

R

2
f2eξ µt(dy)

≤ −
∫
M

R

2
f2eξ µt(dy).

The result follows. �

We define

Ir(t) :=

∫
M\Bt(x,r)

f2(t, y)µt(dy).

Proposition 4.7. Under the same assumptions as in Proposition 4.6. Let
ρ < r and f be a solution of (1.1). We have:

Ir(t1) ≤ e−(Λ(t1)−Λ(t2))

(
Iρ(t2) + e

−(r−ρ)2
(t1−t2)

∫
M
f2(t2, y)µt2(dy)

)

for t2 < t1.
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Proof. For t2 < t1,

Ir(t1) =

∫
M\Bt1 (x,r)

f2(t1, y)µt1(dy) ≤
∫
M
f2(t1, y)eξ(y,t1)µt1(dy)

≤ e−(Λ(t1)−Λ(t2))

∫
M
f2(t2, y)eξ(y,t2)µt2(dy)

≤ e−(Λ(t1)−Λ(t2))
(∫

Bt2 (x,ρ)
f2(t2, y)eξ(y,t2)µt2(dy)

+

∫
M\Bt2 (x,ρ)

f2(t2, y)eξ(y,t2)µt2(dy)
)

≤ e−(Λ(t1)−Λ(t2))
(
Iρ(t2) +

∫
Bt2 (x,ρ)

f2(t2, y)eξ(y,t2)µt2(dy)
)

≤ e−(Λ(t1)−Λ(t2))
(
Iρ(t2) + e

−(r−ρ)2
A(t0−t2)

∫
M
f2(t2, y)µt2(dy)

.

Then remark that the definition of Ir(t) is independent of t0 and of the
corresponding ξ, so we can pass to the limit when t0 ↘ t1 to obtain the
desired result. �

We apply the above proposition to the heat kernel P (x, t, y, 0) of the
equation (3.2) which also satisfies (1.1).

Theorem 4.8. If ġ(t) = −Ricg(t) for all t ∈ [0, Tc[ and the following as-
sumptions are satisfied :

• H1 : if M is not compact, we suppose that there exists a uniform
constant cn > 0 such that for all x ∈ M we have µ0(Bg(0)(x, r)) ≥
cnr

n (that is a non collapsing condition).
• H2 : Ricg(t) ≥ 0 for all t ∈ [0, Tc[.

Then for all a > 1 there exist two positive explicit constants qa, ma de-
pending only on a, cn and the dimension, such that we have the following
heat kernel estimate for all t ∈]0, Tc[ and x0, y0 ∈M :

P (y0, t, x0, 0) ≤ qa
e
∫ t
0

1
2

supM R(u,.)− 1
4

infM R(u,.)du(
µ0(B0(x0,

√
t))
) 1

2µ0(B0(y0,
√
t))

1
2

e−
madt(x0,y0)

2

16t .

The values of qa and ma are given by (4.3) in the proof. Moreover we
could optimize ma, in terms of a > 1, to get a better control for points which
are far.

Proof. We could suppose that
∫ t

0 supM R(s, .) ds <∞ for all t ∈ [0, Tc[, else
the conclusion is satisfied. Let f(t, x) := P (x, t, y, 0) be the heat kernel
of (1.1) that is the solution of equation (3.2). Note that H2 gives also a
condition for non-explosion of the g(t)-Brownian motion by Proposition 2.3.
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Then we have by the proof of Theorem 3.1:∫
M
f2(t, x)µt(dx) =

∫
M
P 2(x, t, y, 0)µt(dx)

=

∫
M
P ∗2(y, 0, x, t)µt(dx)

≤ e e
∫ t
0 τ(u)−τ(u) du(

µ0(B0(y,
√
t))
)

= e
e

1
2

∫ t
0 supM R(u,.)−infM R(u,.)du(

µ0(B0(y,
√
t))
) .

.

Let 0 < ρ < r , and t2 < t1 < t0 then apply Proposition 4.7 to f(t, x) :=
P (x, t, y, 0) to get :

Ir(t1) ≤ e−(Λ(t1)−Λ(t2))
(
Iρ(t2) + e

−(r−ρ)2
(t1−t2)

∫
M
f2(t2, y)µt2(dy)

)
≤ e−(Λ(t1)−Λ(t2))

(
Iρ(t2) + e · e

−(r−ρ)2
(t1−t2)

e
1
2

∫ t2
0 supM R(u,.)−infM R(u,.)du(
µ0(B0(y,

√
t2))
) )

.

Let a > 1 be a constant. Let us define rk := (1
2 + 1

k+2)r and tk := t
ak
.

Thus Proposition 4.7 can be applied to rk+1 < rk and tk+1 < tk, yielding
to the same estimate as before :

Irk(tk)

≤ e−(Λ(tk)−Λ(tk+1))
(
Irk+1

(tk+1) + e · e
−(rk−rk+1)

2

(tk−tk+1)
e

1
2

∫ tk+1
0 supM R(u,.)−infM R(u,.)du(
µ0(B0(y,

√
tk+1))

) )
≤ e−(Λ(tk)−Λ(tk+1))

(
Irk+1

(tk+1) + e · e
−(rk−rk+1)

2

(tk−tk+1)
e

1
2

∫ t0
0 supM R(u,.)−infM R(u,.)du(
µ0(B0(y,

√
tk+1))

) )
.

Applying recursively this inequality, and use H2 to see that Λ is non decreas-
ing, we have for all k :
(4.1)

Ir0(t0) ≤ e−(Λ(t0)−Λ(tk+1))Irk+1
(tk+1) + e

k∑
i=0

e−Λ(t0)e
−(ri−ri+1)

2

(ti−ti+1)
e

1
2

∫ t0
0 supM R(u,.)du(

µ0(B0(y,
√
ti+1))

)
We also have limk−→∞ Irk(tk) = 0 (see Lemma 5.1 in Appendix).
So we can pass to the limit when k goes to infinity in Equation (4.1) to

get :

Ir0(t0) ≤ e · e−Λ(t0)e
1
2

∫ t0
0 supM R(u,.)du

∞∑
i=0

e
−(ri−ri+1)

2

(ti−ti+1)
1(

µ0(B0(y,
√
ti+1))

) .
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Recall that ri − ri+1 = r
(i+3)(i+2) and ti − ti+1 = t

ai
(1− 1

a). Moreover, by
Bishop-Gromov theorem, Theorem 4.19 [13] in the case Ric ≥ 0 we have

µ0(B0(y,
√
ti))

µ0(B0(y,
√
ti+1))

≤ a
n
2 := ca.

Iterating the above inequality we get :

µ0(B0(y,
√
t0))

µ0(B0(y,
√
ti+1))

≤ (ca)
i+1.

So we have :

Ir0(t0) ≤ ee
−Λ(t0)e

1
2

∫ t0
0 supM R(u,.)du

µ0(B0(y,
√
t0))

∞∑
i=0

e
−(ri−ri+1)

2

(ti−ti+1) (ca)
i+1

≤ ee
−Λ(t0)e

1
2

∫ t0
0 supM R(u,.)du

µ0(B0(y,
√
t0))

∞∑
i=0

e

−( r
(i+3)(i+2)

)2

( t
ai

(1− 1
a ))

+(i+1) log(ca)

≤ ee
−Λ(t0)e

1
2

∫ t0
0 supM R(u,.)du

µ0(B0(y,
√
t0))

∞∑
i=0

e
−ai+1r2

t0(a−1)(i+3)4
+(i+1) log(ca).

There exists a constant ma such that ai+1

(a−1)(i+3)4
≥ ma(i + 2), and thus we

get :

Ir0(t0) ≤ ee
−Λ(t0)e

1
2

∫ t0
0 supM R(u,.)du

µ0(B0(y,
√
t0))

∞∑
i=0

e
−mar2
t0

(i+2)+(i+1) log(ca)

≤ ee
−Λ(t0)e

1
2

∫ t0
0 supM R(u,.)du

µ0(B0(y,
√
t0))

e
−mar2
t0

∞∑
i=0

e
−(i+1)(mar

2

t0
−log(ca))

.

If mar
2

t0
− log(ca) ≥ log(2) then

Ir0(t0) ≤ ee
−Λ(t0)e

1
2

∫ t0
0 supM R(u,.)du

µ0(B0(y,
√
t0))

e
−mar2
t0 ,

If mar
2

t0
− log(ca) < log(2) then

Ir0(t0) ≤
∫
M
P 2(x, t0, y, 0)µt0(dx)

=

∫
M
P ∗2(y, 0, x, t0)µt0(dx)

≤ ee
1
2

∫ t0
0 supM R(u,.)−infM R(u,.)du(
µ0(B0(y,

√
t0))
)

≤ ee
1
2

∫ t0
0 supM R(u,.)−infM R(u,.)du(
µ0(B0(y,

√
t0))
) e

log(2)+log(ca)−mar
2

t0 .
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We have that for all a > 1 there exists a constant qa := 2ea
n
2 and

(e ln a)5

a2(a−1)55
≤ ma, so we could take in the following ma = (e ln a)5

a2(a−1)55
such

that :

(4.2) Ir(t) ≤ qa
e

1
2

∫ t
0 supM R(u,.)−infM R(u,.)du(

µ0(B0(y,
√
t))
) e−

mar
2

t .

Case 1 points which are far.
Let x0, y0 ∈ M such that dt(x0, y0) ≥

√
t, let r := dt(x0,y0)

2 , then by
(4.2) (with Ir(t) defined with f(t, x) = P (x, t, x0, 0), there exists z0 ∈
Bt(y0,

√
t
4) ⊂M\Bt(x0, r) such that :

µt(Bt(y0,

√
t

4
)P 2(z0, t, x0, 0) ≤ Ir(t)

≤ qa
e

1
2

∫ t
0 supM R(u,.)−infM R(u,.)du(
µ0(B0(x0,

√
t))
) e−

madt(x0,y0)
2

4t .

Then there exists z0 ∈ Bt(y0,
√

t
4) such that:

P 2(z0, t, x0, 0) ≤ qa
e

1
2

∫ t
0 supM R(u,.)−infM R(u,.)du(

µ0(B0(x0,
√
t))µt(Bt(y0,

√
t
4)
)e−madt(x0,y0)24t

By Lemma 4.4 (comparison of volume)

P (z0, t, x0, 0) ≤ (qa)
1
2 (ψ(t))

1
2

e
1
4

∫ t
0 supM R(u,.)−infM R(u,.)du√(

µ0(B0(x0,
√
t))µ0(B0(y0,

√
t
4))
)e−madt(x0,y0)28t ,

where ψ(t) = e
1
2

∫ t
0 supM R(u,.)du.

We conclude the proof by using Lemma 4.3 (for f(t, x) := P (x, t, x0, 0))
to compare the solution of the heat equation at different points. We have :

P (y0, t, x0, 0) ≤
√
P (z0, t, x0, 0)

√
sup
M

P (.,
t

2
, x0, 0)e

dt(z0,y0)
2

t

≤
√
P (z0, t, x0, 0)

√
sup
M

P (.,
t

2
, x0, 0)e

1
4
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Note that using Remark 4.5 and H1 we have, where cn is the constant coming
from H1:

sup
M

P (.,
t

2
, x0, 0) ≤

eψ( t4)
1
2 e

1
4

∫ t
2
0

(
supM R(s,.)−infM R(s,.)

)
ds(

µ0(B0(x0,
√

t
4))
) 1

2 c
1
2
n

(√
t
4

)n
2

≤
c̃
1
2
neψ( t4)

1
2 e

1
4

∫ t
2
0

(
supM R(s,.)−infM R(s,.)

)
ds(

µ0(B0(x0,
√

t
4))
) 1

2 c
1
2
n

(
µ0(B0(y0,

√
t
4))
) 1

2

≤ qn
ψ(t)

1
2 e

1
4

∫ t
0

(
supM R(s,.)−infM R(s,.)

)
ds(

µ0(B0(x0,
√
t))
) 1

2
(
µ0(B0(y0,

√
t))
) 1

2

,

where in second and last inequality we use Bishop-Gromov theorem to com-
pare volume of ball in positive Ricci curvature case to the corresponding
Euclidean volume, i.e. (r 7→ µ(B(x,r))

c̃nrn
is non increasing and smaller than 1)

and c̃n is the volume of the Euclidean unit ball in dimension n, we have

qn = c̃
1
2
n e2

n

c
1
2
n

. Hence we have for q̃n = (qn2
n
2 )

1
2 :

P (y0, t, x0, 0) ≤ q̃n(qa)
1
4
ψ(t)

1
2 e

1
4

∫ t
0

(
supM R(s,.)−infM R(s,.)

)
ds(

µ0(B0(x0,
√
t))
) 1

2
(
µ0(B0(y0,

√
t))
) 1

2

e−
madt(x0,y0)

2

16t .

Case 2 points are close.
For points x0, y0 which are closed that is dt(x0, y0) ≤

√
t the above in-

equality is a consequence of 4.5 since in this case e
−ma
16 ≤ e

−mad2t (x0,y0)
16t .

Then after changing the function ψ we get :

P (y0, t, x0, 0) ≤ q̃a
e
∫ t
0

1
2

supM R(u,.)− 1
4

infM R(u,.)du(
µ0(B0(x0,

√
t))
) 1

2µ0(B0(y0,
√
t))

1
2

e−
madt(x0,y0)

2

16t

where

(4.3) q̃a = (q̃n(2ea
n
2 )

1
4 ) ∨ (e2

n
2 e

ma
16 ),ma =

(e ln a)5

a2(a− 1)55
.

�

Proposition 4.9. With the same Hypothesis as in the Theorem 4.8, there
exist c, λ > 0 that depend on n, cn,ma such that we get the following lower
bound estimate:

c
e
∫ t
0 −λ supM R(u,.)+ 1

4
infM R(u,.) du

µ0(B0(z0,
√
t)

1
2µ0(B0(y,

√
t)

1
2

e
−4dt(z0,y)

2

t ≤ P (z0, t, y, 0).
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Proof. We will get the lower bound from the upper bound. Since

d

dt

∫
M
P (x, t, y, 0)µt(dx) = −1

2

∫
M
P (x, t, y, 0)R(t, x)µt(dx)

≥ −1

2
sup
M

R(t, .)

∫
M
P (x, t, y, 0)µt(dx)

we have ∫
M
P (x, t, y, 0)µt(dx) ≥ e−

∫ t
0

1
2

supM R(t,.).

Let β > 0 large enough, we use Schwarz’s inequality :∫
Bt(y,

√
βt)
P 2(x, t, y, 0)µt(dx) ≥ 1

µt(Bt(y,
√
βt))

(∫
Bt(y,

√
βt)
P (x, t, y, 0)µt(dx)

)2

=
1

µt(Bt(y,
√
βt))

(∫
M
P (x, t, y, 0)µt(dx)−

∫
M\Bt(y,

√
βt)
P (x, t, y, 0)µt(dx)

)2

.

We will use the upper bound in Theorem 4.8 and H1 to get an estimate of
the last term in the above equation. Let I(t) := e

∫ t
0

1
2

supM R(u,.)− 1
4

infM R(u,.)du∫
M\Bt(y,

√
βt)
P (x, t, y, 0)µt(dx) ≤ qaI(t)

cnt
n
2

∫
M\Bt(y,

√
βt)
e−

madt(x,y)
2

16t µt(dx)

≤ qaI(t)

cnt
n
2

∫
M\Bt(y,

√
βt)
e−

madt(x,y)
2

32t µt(dx)e−
maβ
32

≤ qaI(t)e−
maβ
32

cnt
n
2

∞∑
k=1

∫
Bt(y,2k

√
βt)\Bt(y,2k−1

√
βt)
e−

madt(x,y)
2

32t µt(dx)

≤ qaI(t)e−
maβ
32

cnt
n
2

∞∑
k=1

e−
ma2

2(k−1)β
32 µt(Bt(y, 2

k
√
βt))

≤ qaI(t)e−
maβ
32

cn

∞∑
k=1

e−
ma2

2(k−1)β
32 c̃n(2k

√
β)n,

where use H2 and the volume comparison theorem in the last inequality. Let
β = 2(1

2

∫ t
0 supM R(u, .) du + C)/(ma/32), since for all k ≥ 0, 22(k) ≥ k + 1

and R(u, .) ≥ 0:

I(t)
∞∑
k=1

e−
ma2

2(k−1)β
32 (2k

√
β)n ≤ I(t)2nβ

n
2

∞∑
k=0

e−
ma(k+1)β

32 2nk

≤ I(t)β
n
2 e−

maβ
32

2n

1− 2n(e−
maβ
32 )

≤ e−
1
2

∫ t
0 supM R(u,.) du−Cβ

n
2

2n

1− 2n(e−
maβ
32 )

.
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The last term goes to 0 as C tends to infinity. Hence for a constant C large
enough (that only depends on n ,cn, qa and ma) and independent on t, we
have: ∫

M\Bt(y,
√
βt)
P (x, t, y, 0)µt(dx) ≤ 1

2
e−

maβ
32 ≤ 1

2
e−

1
2

∫ t
0 supM R(u,.) du.

Thus∫
Bt(y,

√
βt)
P 2(x, t, y, 0)µt(dx) ≥ 1

4µt(Bt(y,
√
βt))

(e−
1
2

∫ t
0 supM R(u,.) du)2.

Hence there exist x1 ∈ Bt(y,
√
βt) such that :

P (x1, t, y, 0) ≥ 1

2µt(Bt(y,
√
βt))

(e−
1
2

∫ t
0 supM R(u,.) du)

Using the volume comparison theorem, Hypotheses H2 and H1, we have :

µt(Bt(y,
√
βt)) ≤ c̃nβ

n
2 t

n
2 ≤ c̃n

cn
β
n
2 µ0(B0(y,

√
t)),

so there exists a constant cst that depends on the dimension and the constant
cn of H1

P (x1, t, y, 0) ≥ cst 1

µ0(B0(y,
√
t))

e−
1
2

∫ t
0 supM R(u,.) du

(
∫ t

0 supM R(u, .) du+ 2C)/(ma/32))
n
2

.

Since for all x ≥ 0 we have

e−
x
2

(x+ 2C)
n
2

≥ e−( 1
2

+ n
4C

)x

(2C)
n
2

we get for a cst(n, cn,ma) that can change from a line to line and using H2 :

P (x1, t, y, 0) ≥ cste
−( 1

2
+ n

4C
)
∫ t
0 supM R(u,.) du

µ0(B0(y,
√
t))

≥ cste
−( 1

2
+ n

4C
)
∫ t
0 supM R(u,.) du

t
n
2

.

We conclude the proof by using lemma 4.3 (for f(t, x) := P (x, t, y, 0)) to
compare the solution of the heat equation at different points. We have for
all z0 :

P (x1, t, y, 0) ≤
√
P (z0, t, y, 0)

√
sup
M

P (.,
t

2
, y, 0)e

dt(z0,x1)
2

t

With the triangle inequality

dt(z0, x1)2 ≤ 2dt(z0, y)2 + 2βt

and so

P (x1, t, y, 0) ≤
√
P (z0, t, y, 0)

√
sup
M

P (.,
t

2
, y, 0)e

2dt(z0,y)
2

t e2β.
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As in the proof of Theorem 4.8 and using H1 we get:

sup
M

P (.,
t

2
, y, 0) ≤ cst e

∫ t
0

(
1
2

supM R(s,.)− 1
4

infM R(s,.)
)
ds(

µ0(B0(z0,
√
t))
) 1

2
(
µ0(B0(y,

√
t))
) 1

2

≤ cste
∫ t
0

(
1
2

supM R(s,.)− 1
4

infM R(s,.)
)
ds

t
n
2

.

Hence :

(4.4) cst
e−( 1

2
+ n

4C
)
∫ t
0 supM R(u,.) du

t
n
2

≤ P (x1, t, y, 0)

≤
√
P (z0, t, y, 0)

√
sup
M

P (.,
t

2
, y, 0)e

2dt(z0,y)
2

t e2β.

Thus

cst
e−( 1

2
+ n

4C
)
∫ t
0 supM R(u,.) du

t
n
2

≤
√
P (z0, t, y, 0)

e
∫ t
0

(
1
4

supM R(s,.)− 1
8

infM R(s,.)
)
ds

t
n
4

e
2dt(z0,y)

2

t e2β

We recall the definition of β there exist some constants c, λ > 0 that depend
on n, cn,ma such that :

c
e
∫ t
0 −λ supM R(u,.)+ 1

8
infM R(u,.) du

t
n
4

e
−2dt(z0,y)

2

t ≤
√
P (z0, t, y, 0).

After using H1 again for a constant that could change from line to line, we
have :

c
e
∫ t
0 −λ supM R(u,.)+ 1

4
infM R(u,.) du

µ0(B0(z0,
√
t)

1
2µ0(B0(y,

√
t)

1
2

e
−4dt(z0,y)

2

t ≤ P (z0, t, y, 0),

which is the desired lower bound. �

Remark 4.10. The constants 1
2 and 1

4 are far from being optimal in Theo-
rem 4.8. Hypothesis H1 and H2 are used many time to compare the volume
of some ball and the Euclidean one’s.

Note that for manifold of dimension three, H2 reduce to Ricg(0) ≥ 0 e.g.
in Corollary 9.2 [18] and page 193 in [8].

The existence of Ricci flow for a complete non-compact manifold at least
for short time have been proved in [24] Theorem 2.1, under boundedness
conditions for the Riemannian tensor of (M, g(0)). There also have some
uniqueness results in this direction in [6] Theorem 1.1.
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5. Appendix

Lemma 5.1. With the same hypothesis as in Theorem 4.8 and suppose∫ t
0 supM R(s, .) ds < ∞ for all t ∈ [0, Tc[. Let a > 1 be a constant, rk :=

(1
2 + 1

k+2)r and tk := t
ak
. We have

lim
k−→∞

Irk(tk) = 0.

Proof. We use H1 and
∫ t

0 supM R(s, .) ds < ∞ to get a global polynomial
bound of the heat kernel i.e. Remark 4.5. We obtain that for all t ≤ Tc

2 :

P (x, t, y, 0) ≤ Cst(
µ0(B0(x,

√
t
2))
) 1

2µ0(B0(y,
√

t
2))
) 1

2

≤ cst

t
n
2

.

Then for a constant which could change from line to line :

Ir(t) =

∫
(M\Bt(y,r))

P 2(x, t, y, 0)µt(dx) ≤ cst

t
n
2

∫
(M\Bt(y,r))

P (x, t, y, 0)µt(dx)

≤ cst

t
n
2

∫
(M\Bt(y,r))

P ∗(y, 0, x, t)µt(dx)

≤ cst

t
n
2

∫
(M\Bt(y,r))

P (y, t, x, t)µt(dx)

≤ cstPy(τr < t)

t
n
2

where in τr := inf{t > 0, dt(Xt(y), y) = r}, and Xt(y) is a g(t)-Brownian
motion started at y, note that Xt(y) does not explode using H2 and Propo-
sition 2.3.

Let ρt := dt(Xt(y), y), use (2.3) and Itô’s formula we get for the real
Brownian motion bt :=

∫ t
0 1Xs /∈Cuts(y)〈∇sds(y,Xs), d

∇sXs〉g(s)

dρ2
t = 2ρtdρt + dt

≤ 2ρt
(
1Xt /∈Cutt(x0)(

1

2
∆g(t)dt(y, .) +

∂dt(y, .)

∂t
)(Xt)

)
dt+ dt

+ 2ρtdbt.

By the Laplacian comparison theorem (Theorem 3.4.2 in [19]) we also have,
since by H2, Ricg(t) ≥ 0 for all t ∈ [0, Tc[, within the cutlocus:

∆g(t)dt(y, .) ≤
n− 1

dt(y, .)
and

∂dt(y, .)

∂t
≤ 0.

Hence
dρ2

t ≤ ndt+ 2ρtdbt,
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at time t = τr ,

r2 ≤ nτr +

∫ τr

0
2ρtdbt.

On the event {τr ≤ t},
r2 − nt

2
≤
∫ τr

0
ρtdbt.

Note that
∫ τr

0 ρtdbt = WT , whereW is a Brownian motion and T =
∫ τr

0 ρ2
s ds.

On the event {τr ≤ t} we also have T ≤ r2t. Then the event {τr ≤ t} implies

r2 − nt
2

≤WT ≤ sup
s∈[0,r2t]

Ws ∼ r
√
t|W1|,

hence for r2 − nt > 0,

Py(τr < t) ≤ P0(
r2 − nt
2r
√
t
≤ |W1|)

≤ 2
√

2π( r
2−nt
2r
√
t

)
e
−( r

2−nt
2r
√
t

)2
.

Since a > 1 be a constant rk := (1
2 + 1

k+2)r and tk := t
ak
, we have

Py(τrk < tk)

t
n
2
k

→k→∞ 0

and then

lim
k−→∞

Irk(tk) = 0.

�
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