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Convex order for path-dependent derivatives: a dynamic
programming approach

GILLES PAGES *

July 23, 2014

Abstract

We investigate the (functional) convex order of for various continuous martingale processes,
either with respect to their diffusions coeflicients for Lévy-driven SDEs or their integrands for
stochastic integrals. Main results are bordered by counterexamples. Various upper and lower
bounds can be derived for pathwise European option prices in local volatility models. In view of
numerical applications, we adopt a systematic (and symmetric) methodology: (a) propagate the
convexity in a simulatable dominating/dominated discrete time model through a backward induc-
tion (or linear dynamical principle); (b) Apply functional weak convergence results to numerical
schemes/time discretizations of the continuous time martingale satisfying (a) in order to transfer
the convex order properties. Various bounds are derived for European options written on convex
pathwise dependent payoffs. We retrieve and extend former results obtains by several authors
([8, 2, 15, 13]) since the seminal paper [10] by Hajek. In a second part, we extend this approach
to Optimal Stopping problems using a that the Snell envelope satisfies (a’) a Backward Dynamical
Programming Principle to propagate convexity in discrete time; (b’) satisfies abstract convergence
results under non-degeneracy assumption on filtrations. Applications to the comparison of Ameri-
can option prices on convex pathwise payoff processes are given obtained by a purely probabilistic
arguments.

Keywords. Convex order ; local volatility models ; It6 processes ; Lévy-Ito processes ; Laplace
transform ; Lévy processes ; completely monotone functions ; pathwise European options ; pathwise
American options ; comparison of option prices.

2010 AMS Classification. Primary: 62 P05, 60E15, 91B28, secondary : 60J75, 65C30

1 Introduction

The first aim of this paper is to propose a systematic and unified approach to establish functional
convezx order results for discrete and continuous time martingale stochastic processes using the propa-
gation of convexity through some kind of backward dynamic programing principles (in discrete time)
and weak functional limit theorems (to switch to continuous time. The term “functional” mainly refers
to the “parameter” we deal with: thus, for diffusions processes (possibly with jumps) this parameter is
the diffusion coefficient or, for stochastic integrals, their integrand. Doing so we will retrieve, extend
and sometimes establish new results on functional convex order. As a second step, we will tackle
the same type of question in the framework of Optimal Stopping Theory for the Snell envelopes and
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their means, the so-called réduites (which maybe provides a better justification for the terminology
“dynamic programming approach” used in the title).

Let us first briefly recall that if X and Y are two real-valued random variables, X is dominated
by Y for the convex order — denoted X <. Y — if, for every convex functions f : R — R such that
F(X), f(V)e L\(P),

Ef(X) <Ef(Y).

Thus, if (M))r>o denotes a martingale indexed by a parameter A, then A — M) is non-decreasing for
the convex order as a straightforward consequence of Jensen’s Inequality. The converse is clearly not
true but, as first established by Kellerer in [22], whenever A — X is non-decreasing for the convex
order, there exists a martingale (X)) A>0 such that X < X, for every A > 0 (we will say that (X))
and (X,) coincide en 1-marginal distributions.

The connection with Finance and, to be more precise with the pricing and hedging of derivative
products is straightforward : let (Xt(e) )iefo,7) be a family of non-negative P-martingales on a probability
space (2, A,P) indexed by a parameter #. Such a family can be seen as possible models for the
discounted price dynamics of a risky asset under its/a risk-neutral probability where 6 (temporarily)
is a real parameter (e.g. representative of the volatility). If § — XT(FH) is non-decreasing for the convex
order, then for every convex wanilla payoff function f : Ry — R, , the function 6§ — E f (X;e)) is
non-decreasing or equivalently its greek %E f (X:(FG)) with respect to 6 is non-negative. Typically, in a
discounted Black-Scholes model )

X7 = 2T 1 0 >0,

W,

02
the function o — Ef (:17 e’ T_TT) since

_

Vte [0,T], xe’™ -7 & [eB“_%]
lu=02T

where u — P42 is a martingale as as well as its composition with o+ o>T". So (X7%)s>ocoincides
in 1-marginal distributions with a martingale. The same result holds true for the premium of convex

Asian payoff functions of the form
I o?
E f (f /0 xe"Wt—Ttdt>

but, by contrast, its proof is significantly more involved (see [6] or, more recently, the proof in [13]
where an explicit martingale based on the Brownian sheet coinciding in 1-dimensional martingale is
exhibited). Both results turn out to be examples of a general result dealing with convex pathwise
dependent functionals (see e.g. [13] or [31] where a functional co-monotony argument is used).

A natural question at this stage is to try establishing a functional version of these results in terms
of f-parameter i.e. when 6 is longer a real number or a vector but lives in a subset of a functional
space or even of space of stochastic processes. A typical example where 6 is a function is the case
where X(@) is a diffusion process, (weak) solution to a Stochastic Differential equation (SDE) of the
form

dx? = ot, xNaz,, x\V =z, te 0,1,

with Z = (Z;)i[0,r) @ martingale Lévy process (having moments of order at least 1). The parameter
0 can also be a (predictable) stochastic process when

t
x? :/ 0,dZ,, te [0,T].
0



When dealing with optimal stopping problems, i.e. with the réduite of a target process Y; =
Ft, X" te [0,T], (where Xs(e)’t = Xgi)t is the stopped process X(?) at t) and all the functionals
F(t,.) are (continuous) convex functionals defined on the path space of the process X, the functional
convex order as defined above amounts to determine the sign of the sensitivity with respect to the
functional parameter 6 of an American option with payoff functional F'(¢,.) at time ¢t € [0,T], “written”
on X@: if the holder of the American option contract exercises the option at time ¢, she receives
F(t, X,

More generally, various notions of convex order in Finance are closely related to risk modeling and
come out in many other frameworks than the pricing and hedging of derivatives.

Many of these questions have already been investigated for a long time: thus, the first result known
to us goes back to Hajek in [10] where convex order is established for Brownian martingale diffusions
“parametrized” by their (convex) diffusion coefficients (with an extension to drifted diffusions with
non-decreasing convex drifts but with a restriction to non-decreasing convex functions f of X, ). The
first application to the sensitivity of (vanilla) options of both European and American style, is due
to [8]. Tt is shown that the options with convex payoffs in a [omin, Omax|-valued local volatility model
with bounded volatility can be upper- and lower-bounded by the premium of the the same option
contracts in a Black-Scholes model with volatilities o,y and opax respectively (note however that
a PDE approach relying on a maximal principle provides an alternative easier proof). See also [15]
for a result on lookback options. More recently, in a series of papers (see [3, 2, 4]) Bergenthum
and Riischendorf extensively investigated the above mentioned problems (for both fixed maturity
and for optimal stopping problemss) for various classes of continuous and jump processes, including
general semi-martingales in [3] (where the comparison is carried out in terms of their predictable local
characteristics, assuming one of them propagates convexity, then proving this last fact). In several
of these papers, the convexity is — but not always (see [2]) — propagated directly in continuous time
which is clearly an elegant way to proceed but also seems to more heavily rely on specific features
of the investigated class of processes (see [13]). In this paper, we propose a generic and systematic
systematic — but maybe also more “symmetric” — two-fold approach which turns out to be efficient for
many classes of stochastic dynamics and processes which is based on a swathing from discrete times
to continuous time using functional weak limit theorems “a la Jacod-Shyriaev” (see [18]). To be more
precise:

— As first step, we study the propagation of convexity “through” a discrete time dynamics —
typically a GARCH model — in a very elementary way for path-dependent convex functionals relying
on repeated elementary backward inductions and conditional Jensen’s inequality. These inductions
take advantage of the “linear” backward dynamical programming principle resulting from from a
discrete time martingale property written in a step-by-step manner. This terminology borrowed from
stochastic control can be viewed as a bit excessive but refers to a second aspect of the paper devoted
to optimal stopping theory (see further on).

— As a second step, we use that these discrete time GARC H model are discretization schemes for
the “target” continuous time dynamics (typically the “Euler schemes as concerns diffusion processes)
and we transfer to this target the searched functional convex order property by calling upon functional
limit theorems for the convergence of stochastic integrals (typically borrowed form [20] and/or [23].

Our typical result for jump diffusions reads as follows (for a more complete and rigorous statements
see e.g. Theorems 2.1 and 2.2 in Section 2). If 0 < k1 < k < kg are continuous functions with linear
growth defined on R and & is convex then the existing weak solutions X ), 4 = 1,2, to the SDEs

X =z 4 / ri(X)d2Z,
(0.4



where Z = (Zt)te[QT] is a martingale Lévy process with Lévy measure v satisfying v(z?) < oo,
then X (1) < fe X (%2) for the convex order defined on (continuous for the Skorokhod topology) convex
functionals (with polynomial growth). Note that when Z is a Brownian motion, the continuity of
the functional appears as a consequence of its convexity (under the polynomial growth assumption,
see the remark in Section 2.1). Equivalently, we have X (k1) =fe X () =fe X(#2) a5 soon as both
functions k; are convex. Results in the same spirit are obtained for stochastic integrals, Doléans
exponentials (which unfortunately requires one of the two integrands H; and Hj to be deterministic).
Counter-examples to put the main results in perspective are exhibited to prove the consistency of

these assumptions in both settings.

We also deal with non-linear problems, typically optimal stopping problems, framework where we
use the same approach from discrete to continuous time, taking advantage of the Backward Dynamic
Programming Principle in the first framework and using various convergence results for the Snell
envelope (see [25]). In fact, a similar approach in discrete time has already been been developed to
solve the propagation of convexity in a stochastic control problem “through” the dynamic programming
principle in a pioneering work by Herndndez-Lerma and Runggaldier [11].

The main reason for developing in a systematic manner this approach is related with Numerical
Probability: our discrete time models appear as simulatable discretization schemes of the continuous
time dynamics of interest. It is important for applications, especially in Finance, to have at hand
discretization schemes which both preserve the (functional) convex order and can be simulated at
a reasonable cost. So is the case of the Euler scheme for Lévy driven diffusions (as soon as the
underling Lévy processes is itself simulatable). This is not always the case: think e.g. to the (second
order) Milstein scheme for Brownian diffusions, in spite of its better performances in term of strong
convergence rate.

The paper is organized as follows. Section 2 is devoted to functional convex order for path-
dependent functionals of Brownian and Lévy driven martingale diffusion processes. Section 3 is devoted
to comparison results for Itd6 processes based on comparison of their integrand. Section 4 deals with
réduites, Snell envelopes of path dependent obstacle processes (American options) in both Brownian
and Lévy driven martingale diffusions. In the two-fold appendix, we provide short proofs of functional
weak convergence of the Euler scheme toward a weak solution of SDFEs in both Brownian and Lévy
frameworks under natural continuity-linear growth assumptions on the diffusion coefficient.

NOTATION: e For every T' > 0 and every integer n > 1, one denotes the uniform mesh of [0,7] by

ty = %, k =0,...,n. Then for every t € [%,W), we set t, = % and " = W with the
. . . k+1)T
convention T,, = 7. We also set t,,_ = lim,_; s, = £ if te (&L, %]

e For every u = (u1,...,uq), v = (v1,...,v4) € R%, (ulv) = Z?:l wvg, |ul = /(ulu) and T, =
(Tm, - -y xn) (Where m < n, m, ne N\ {0}).

e 7([0,T],R) denotes the R-vector space of R-valued functions f : [0,7] — R and C(]0,7],R) denotes
the subspace of R-valued continuous functions defined over [0, T].

e For every a € F([0,T],R), we define Cont(a) = {t€ [0,T] : « is continuous at ¢} with the usual
left- and right- continuity conventions at 0 and T respectively. We also define the uniform continuity
modulus of o by where w(a, 8) = sup {|a(u) — a(v)], u,v € [0,T], |u —v| < 8§} (5€ [0,T7).

o L2 = L((0,T),dt), 1 < p < o0, |flpp = (ST IFOPde)? < 00, 1 < p < +oo and ||z =
dt-esssup| f| where dt stands for the Lebesgue measure on [0, 7] equipped with its Borel o-field.

e For a function f: [0,7] — R, we denote || f|[sup = supyefo,r) [ (u)]-

o Let (2, A,P) be a problability space and let p€ (0, +00). For every random vector X : (Q, 4) — R?

we set || X[, = (E|X[P)>. L2 4(2, A,P) denotes the vector space of (classes) of R%valued random



vectors X such that || X||, < +oc. ||. ||, is a norm on L, (€2, A, P) for pe [1, +00) (the mention of €,
A and the subscript g« will be dropped when there is no ambiguity).

o If 7 = (Fi)iecfo,7) denotes a filtration on (€2, A, P), let T[Ofﬂ ={7:Q —[0,T], F-stopping time}.

o IV = (F) )ielo,7) 1s the smallest right continuous filtration (Gi);e(o,7] that makes the process Y =
(Yo)ieo,r) @ (Gt )iefo,r-adapted process.

e ID([0, T], R?) denotes the set of R%-valued right continuous left limited (or cadlag following the French
acronym) function defined on the interval [0, 7], T' > 0. It is usually endowed with the Skorokhod
topology denoted Sk (see [17], chapter VI or [1], chapter 3, for an introduction to Skorokhod topology).
e If two random vectors U and V have the same distribution, we write U L V. If an (S,ds)-
valued sequence of random variable ((S, d) Polish space equipped with its Borel o-field Bor(S)) weakly

converges toward an (5, d)-valued random variable Y., (we will also say converge in distribution or in
. L(S,d . .. L(d
law), we will denote Y, (—>S) Y, or, if no ambiguity, Y;, QQ Yoo -
We will extensively make use the following classical result:

Let (Y,)n>1be a sequence of tight random variables taking values in a Polish space (S,dy) (see [1],
Chapter 1). If Y, weakly converges toward Y, and (®(Y;)),>1 is uniformly integrable where @ :
S — R is a Borel function then, for every Py_-a.s. continuous Borel functional F': S — R such that
|F'(u)| < C(1+ ®(u)) for every ue S, one has E F(Y,,) - EF(Yy).

2 Functional convex order

2.1 Brownian martingale diffusion

The main result of this section is the proposition below.

Theorem 2.1. Let o, 6 : [0,T] xR — R be two continuous functions with linear growth in x uniformly
inte [0,T)]. Let X @) and X be two Brownian martingale diffusions, supposed to be the unique weak
solutions starting from x at time 0, to the stochastic differential equations (with 0 drift)

= o(t, , =x an = 0(t, , =z 2.1
X = o, X)W, X0 =2 and X = 00t X awi®, X0 o)

respectively, where W @) and W are standard one dimensional Brownian motions.

(a) Partitioning assumption: Let k : [0,T] x R — Ry be a continuous function with (at most) linear
growth in x uniformly in t€ [0,T], satisfying

k(t,.) is convex for every t€ [0,T] and 0 <o <k <4.

Then, for every convex functional F' : C([0,T],R) — R with (r,|| . ||sup)-polynomial growth, r > 1, in
the following sense
VaeC([0,T],R), [F(a)] < C1+ [laflgp)

one has
EF(X©)) <EF(X®).
From now on, the function k is called a partitioning function.

(a') Claim (a) can be reformulated equivalently as follows: if either o(t,.) is convex for every te [0,T]
or 6(t,.) is convex for every t€ [0,T] and 0 < o < 0, then the conclusion of (a) still holds true.

(b) Domination assumption: If |o| < 0 and 0 is convez, then

EF(X©)) <EF(X®).



Remarks. e The linear growth assumption on the convex functional F' implies its everywhere
local boundedness on the Banach space (C([0,T],R),||.[lsup), hence its |.|[sup-continuity (see e.g.
Lemma 2.1.1 in [27], p.22).

e The introduction of two standard Brownian motions W(?) and W) in the above claim (a) is just a
way to recall that the two diffusions processes can be defined on different probability spaces, although
it may be considered as an abuse of notation. By “unique weak solutions”, we mean classically that
two such solutions (with respect to possibly different Brownian motions) share the same distribution
on the Wiener space.

e Weak uniqueness holds true as soon as strong uniqueness holds e.g. as soon as o and 6 are Lipschitz
continuous in z, uniformly in ¢ € [0, 77, (as it can easily be derived from Theorem A.3.3, p.271, in [5]).

The proof of this theorem can be decomposed in two main steps: the first one is a dynamic
programming approach in discrete time detailed in Proposition 2.1 below which relies itself on a
revisited version of Jensen’s Inequality. The second one remiss on a functional weak approximation
argument.

The first ingredient is a simple reinterpretation of the celebrated Jensen Lemma.

Lemma 2.1. (Revisited Jensen’s Lemma) Let Z : (2, A,P) — R be an integrable centered R-valued
random vector.

(a) Assume that Z € L"(P) for an r > 1. For every Borel function ¢ : R — R such that |o(x)| <
C(1+ |z|"), x€ R, we define

VueR, Qp(u) =Ep(uZ). (2.2)
If ¢ is convex, then, Qg is conver and u — Qp(u) is non-decreasing on Ry, non-increasing on R_.

(b) If Z has exponential moments in the sense that
Vue R, E(e*?) < 400

or equivalently E(e™?!) < +o00 for every a > 0), then claim (a) holds true for any convex function
Y ) Y

¢ : R — R satisfying an exponential growth condition of the form |p(z)| < CeCl*l, x € R, for a real

constant C > 0.

(¢) If Z has a symmetric distribution (i.e. Z and —Z have the same distribution) and ¢ : R — R is
convex, then Qy is an even function, hence satisfying the following maximum principle:

Vae Ry, \STl<p Qp(u) = Qp(a).

Proof. (a)-(b) Existence and convexity of Q¢ are obvious. The function Q¢ is clearly finite on R and
convex. Furthermore, Jensen’s Inequality implies that

Qo(u) =Ep(uZ) > p(EuZ) = ¢(0) = Qp(0)

since Z is centered. Hence @ ¢ is convex and minimum at v = 0 which implies that it is non-increasing
on R_ and non-decreasing on R .

(c) is obvious. [

Proposition 2.1. Let (Zj)i1<k<n be a sequence of independent, centered, R-valued random vectors
lying in L"(Q, A, P), r > 1, and let (F¥)o<k<n denote its natural filtration. Let (Xy)o<k<n and
(Yi)o<k<n be two sequences of random vectors recursively defined by

X1 = X + 0u(Xi) Zig1, Vi1 =YV + 0 (Vi) Zi1, 0<k<n—-1, Xo =Yy == (2.3)



where o, O : R - R, k=0,...,n — 1, are Borel functions with linear growth i.e. |og(x)| + |0k (z)] <
C(1+ |z]), x€ R, for a real constant C' > 0.

(a) Assume that, either oy is convex for every k € {0,...,n — 1}, or 0y is convex for every k €
{0,...,n— 1}, and that
Vke {0,...,77,—1}, 0 < op <O

Then, for every convex function ® : R™1 — R with r-polynomial growth, r > 1, i.e. satisfying
|®(z)] < C(1+|z|"), x€ R, for a real constant C > 0,

E®(Xo.,) <E®(Y.p).
(b) If the random variables Zy have symmetric distributions, if the functions 0y, are all convex and if
Vke{0,...,n—1}, |ox| < b,
then the conclusion of claim (a) remains valid.

Proof. (a) First one shows by an easy induction that the random variables X} and Y} all lie in L".
Let Qg, k =1,...,n, denote the operator attached to Zj by (2.2) in Lemma 2.1.
Then, one defines the following martingales

My, =E(®(Xo:n) | FF) and Ny =E(®(Yo,) | F7), 0<k <n.

Their existence follows from the growth assumptions on ®, o5 and 6, £k = 1,...,n. Now we define
recursively in a backward way two sequences of functions ®;, and U : Rt - R, k=0,...,n,

®, =& and Py(zor) = (Qrs1Pri1(Tom, xr +.)) (on(2r)), zor€ RFTL k=0,...,n—1,
on the one hand and, on the other hand,
U, =@ and Uy(zox) = (Qur1Prs1(Toms Tk +.)) (O(zk)), mo€ RF k=0,...,n— 1

This can be seen as a linear Backward Dynamical Programming Principle. It is clear by a (first)
backward induction and the definition of the operators Q) that, for every k€ {0,...,n},

Mk = (I)k(XO:k) and Nk = \IJ(}[Ok)

Let k€ {0,...,n — 1}. One derives from the properties of the operator Q1 (and the representation
below as an expectation) that, for any convex function G : R¥*? — R with r-polynomial growth,
r > 0, the function

G: (a:OZR,u) — (QkHG(xo;k,xk + ))(u) = EG(Q:O;k,JJk + UZk—l-l) (2.4)

is convex. Moreover, owing to Lemma 2.1(a), for fixed zg.x, G is non-increasing on (—oo,0), non-
decreasing on (0,+00) as a function of w. In turn, this implies that, if v : R — R, is convex (and
non-negative), then & — Go v(&) = Qr1G(zo.k, T + )(’y(g)) is convex in &.

> Assume all the functions o, £k =0,...,n — 1, are non-negative and convex. One shows by a
(second) backward induction that the functions @y are all convex.

Finally, we prove that &} < Wy for every k = 0,...,n—1, using again a (third) backward induction
on k. First note that &, = ¥, = ®. If &1 < Ui, then

Pr(zok) = (Qrs1Prr1 (o, v + ) (Ou(zk) < (Qr1Prs1 (@ouks 2k + ) (O (2k))
< (Qrp1¥ks1(@ouks Tk + ) Ok (zr)) = Vil@ou).

EN|



In particular, when k = 0, we get ®o(x) < ¥p(x) or, equivalently, taking advantage of the martingale
property, E ®(Xg.,) <E®(Yy.p).

> If all the functions 6, £k = 0,...,n — 1 are convex, then all functions ¥y, k = 0,...,n, are
convex and one shows like wise that &, < Uy for every k =0,...,n — 1.

(b) The proof follows the same lines as (a) calling upon Claim (c) of Lemma 2.1. In particular, the
functions u — G(zo.x, u) is also even so that sup,e(_q o) G(To:k, u) = G(20:4, @) for any a > 0. O

To prove Theorem 2.1 we need to transfer the above result into a continuous time setting by
a functional weak approximation result. To this end, we introduce the notion of piecewise affine
interpolator and recall an elementary weak convergence lemma.

Definition 2.1. (a) For every integer n > 1, let i, : R"™ — C(]0,T],R) denote the piecewise affine
interpolator defined by
Voo, € R™L VE=0,...,n— 1, Vte [t} t}1],  in(Ton)(t) = %((tzJrl — t)ag + (t — 1) Tpy1).

(b) For every integer n > 1, let I, : F([0,T],R) — C(]0,T],R) denote the functional interpolator
defined by
Vae F([0,T,R), I,(a)= in(a(tg), .. ,a(tﬁ)).

We will use extensively the following obvious fact

sup |[In(a)¢] < sup |a(t)]
te[0,7T] te[0,T]

in particular for uniform integrability purpose.

Lemma 2.2. Let X", n > 1, be a sequence of continuous processes weakly converging towards X
for the || . ||sup-norm. Then the sequence of continuously interpolated processes X™ = I,,(X™) of X",
n > 1, is weakly converging toward X for the || . ||sup-norm topology.

Proof. For every integer n > 1 and every a€ F([0,T],R?%), the interpolation operators I,,(a) reads
n
(@) = (41— Dlt) + (— (R)altfy) 1€ [ ) k=0, -1

Note that I,, maps C([0,T],R?) into itself. One easily checks that || I, (o) — @l|sup < w(a, T/n) (keep

in mind that w denotes the uniform continuity modulus of a) and ||, () — In,(8)lsup < |lae — B|sup-
We use the standard distance d,,; for weak convergence on Polish metric spaces defined by

Qo (£(X), £(V)) = sup {|[E P(X) — EF(Y)], [Fluip < 1, | Fllup < 1}.
Then

du (L(In(X™)), L(X)) Qe (L(In(X™)), L(Tn (X)) + duk (L(In(X)), L(X))

<
< duk(L(X™), L(X)) + E (w(X,T/n) A2)
which goes to 0 since X has continuous paths. [

Proof of Theorem 2.1. We consider now for both SDEs (related to X (@) and X)) their continuous
(also known as “genuine”) Euler schemes with step %, starting at  with respect to a given standard



Brownian motion W defined on an appropriate probability space. E.g., to be more precise, the Euler
scheme related to X(?) is defined by

ng;n = X" oty XD (W, = W), k=0, =1, X" =2
X = X o, X (W - W), tE [t ).

k

It is clear that both sequences (Xt(;?)’n)k:om and (Xt(g)’")kzo;n are of the form (2.3) with the Gaussian
white noise sequence Zy = Win — Wy, k = 1,...,n. Furthermore, owing to the linear growth
assumption made on o and 6, the sup-norm of these Euler schemes of Brownian diffusions lie in
LP(P) for any p€ (0,400), uniformly in n, (see e.g. Lemma B.1.2 p.275 in [5] or Proposition A.1 in
Appendix A)
sup || sup |X |H + Sup H sup |X |Hp < +o00.
t€[0,7] t€[0,T]

Furthermore, I,,(X (7)) = zn((X (")’")t&n) is but the piecewise affine interpolated Euler scheme
(which coincide with X (7" at times ¢}). Note that the sup-norm of I,,(X (7)) also has finite polyno-
mial moments uniformly in n like the genuine Euler scheme.

Let F : C([0,T],R) — R be a convex functional with (7, . ||sup)-polynomial growth. For every
integer n > 1, we define on R**! the function F),, by

Fo(20:n) = F(in(70:0))s T0m € R™TL (2.5)

It is clear that the convexity of F' on C([0,T],R) is transferred to the functions F,,, n > 1. So does
the polynomial growth property. Moreover, F' is ||.||sup-continuous since it is convex with || . ||sup-
polynomial growth (see Lemma 2.1.1 in [27]). It follows from Proposition 2.1 applied with ® = F,,,
(Zk)1<k<n = (th — Wtﬁ,l)lﬁkﬁna o =o(t},.) and 0 = 0(t},.), k =0,...,n which obviously satisfy
the required linear growth and integrability assumptions, that, for every n > 1,

E F (LX) = EFy (X" Yrmom) < EF (X" ko) = EF(L(XO™). (2.6)

On the other hand, it is classical background that the genuine (continuous) Euler schemes X (@).n
weakly converges for the ||. ||sup-norm topology toward X (@), unique weak solution to the SDE =
dX; = o(X3)dWy, Xog = x, as n — +oo. For a proof we refer e.g. to exercise 23 in [32], p.359 when o

is homogeneous in ¢, see also [20, 23]; we also provide a short self-contained proof in Proposition A.1
in Appendix A). The key in all them being the weak convergence theorem for stochastic integrals first
established in [20].

It follows from Lemma 2.2 and the LP(P)-boundedness of the sup-norm of the sequence (I, (X (7)")),>1
for p > r that
EF(X) = imE F(L,(X™)) = 117?1EF,1((X§§>’")0§,€§”).

The same holds true for the diffusion X and its Euler scheme. The conclusion follows.

(a) Applying successively what precedes to the couples (o, k) and (k,#) until Equation (2.6) respec-
tively, we derive that for every n > 1,

E F(I,(X"™) < EF(I,(X®") <EF(L,(X®™)
and one concludes likewise by letting n go to infinity in the resulting inequality

EF(I,(X©™) <EF(L,(X™)).
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(b) The proof follows the same lines by calling upon item (c¢) of the above Lemma 2.1, having in mind
that the distribution of a standard Brownian increment is symmetric with polynomial moments at
any order as a Gaussian random vector. [

Remarks. e Note that no “weak uniqueness” assumption is requested for the function k.

e The Euler scheme has already been successfully used to establish convex order in [2].

The following corollaries can be obtain with obvious adaptations of the above proof.

Corollary 2.1. Under the above assumption of Claim (a), if, furthermore, the SDE
(k) _ (%) ®) _
dX,” =k(t, X, )dW, Xy =«x

has a unique weak solution, then, for every convex functional F' : C([0,T],R) — R with (r,]| . ||sup)-

polynomial growth,
EF(X“)<EF(X®)<EFX®Y).

Corollary 2.2. If 0,0 : [0,T] x I — R, where I is a nontrivial interval of R, are continuous with
polynomial growth and if the related Brownian SDFEs satisfy a weak uniqueness assumption for every
I-valued weak solution starting from x € I, at time t = 0. Then the above Proposition remains
true (the extension of the functional weak convergence of the Euler scheme established in Appendiz A
(Proposition A.1) under the assumption made on the drift b is left to the reader).

This approach based on the combination of a (linear) dynamic programming principle and a
functional weak approximation argument also allows us to retrieve Hajek’s result for drifted diffusions.

Proposition 2.2 (Extension to drifted diffusions, see [10]). Let o and 0 be two functions on [0,T] x R
satisfying the partitioning or the dominating assumptions (a) or (b) from Theorem 2.1 respectively.
Let b : [0,T] x R — R be a continuous function with linear growth in x uniformly in t and such
that b(t,.) is convex for every t € [0,T]. Let Y@ and YO be the weak solutions, supposed to be

unique, starting from x at time 0 to the SDEs dYt(U) = b(t,Yt(o))dt + J(t,Yt(U))th ) and dYt(e) =
b(t, Yt(e))dt + 0(t, Yt(e))th(e)‘ Then, for every non-decreasing convex function f: R — R,

E f(X() <Ef(X).

Proof. We have to introduce the operators Q¢+, v > 0, t € [0,T], defined for every Borel function
f: R — R (satisfying the appropriate polynomial growth assumption in accordance with the existing
moments of Z) by

Qo (f)(w,u) =E f(z+~b(t, x) +uZ).

One shows like in Lemma 2.1 above that, if the function f is convex, Q. f is convex in (z,u),
non-decreasing in v on R, non-increasing in ue R_. 0O

2.2 Applications to (Brownian) functional peacocks
We consider a local volatility model on the discounted risky asset dynamics given by

s\ = 8o (t, SNaw | 587 = 54> 0, (2.7)
where 0 : [0,7] x R — R is a bounded continuous function so that the above equation has at least a

weak solution (SISU) )telo,r] With distribution on a probability space (£2,.4,P) on which lives a Brownian
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motion (Wt(a))e[O,T] (with augmented filtration (.EW(J))tE[O,T]). This follows from the proof of Propo-
sition A.1 in Appendix A (see also [33], p. 7?). Then, (Sgg))te[o,ﬂ is a true (}}W(U))tE[O,T]-martingale
satisfying

t 1 [t
S\ = spexp (/ o (s, S)dw (") — _/ o?(s, Sga))ds)
0 2Jo

so that St(a) > 0 for every t € [0,7]. One introduces likewise the local volatility model (St(e))te[oﬂ
related to the bounded volatility function 6 : [0,7] x Ry — R, still starting from sp > 0. Then, the
following proposition holds which appears as a functional or non-parametric extension of the fact that

o2
(fOT eUBt_Ttdt>U>0 is a peacock (see e.g. [6, 13]).

Proposition 2.3 (Functional peacocks). Let o and 6 be two real valued bounded continuous functions
defined on [0,T] x R. Assume that S\?) is the unique weak solution to (2.7) as well as SO for its
mutatis mutandis counterpart involving 0. If one of the following additional conditions holds

(7) Partitioning function: there exists a function r : [0,T] x Ry — Ry such that, for every te [0,T],
x = xKk(t,x) is convexr on Ry and 0 < o(t,.) < k(t,.) <0(t,.) on Ry,
or
(74) Domination property: for every t€ [0, 7] the function x — x 6(t,x) is convex on Ry and
lo(t,.)| < 0(t,.),

then, for every conver (hence continuous) function f :R — R with polynomial growth

er( ' soutas)) <5 ( | ' Sutas) )

where p is a signed (finite) measure on ([0,T], Bor([0,T])). More generally, for every convex functional
F:C([0,T],Ry) = R with (1] . ||sup)-polynomial growth polynomial growth, one has,

EF(S) <EF(SY). (2.8)

Proof. We focus on the first partitioning setting. The second one can be treated likewise. First
note that  is bounded since 6 is. As a consequence, the function z — x k(t,x) is zero at x = 0 and
can be extended into a convex function on the whole real line by setting x x(t,z) = 0 if x < 0. One
extends z o(t,x) and x 0(t,z) by zero on R_ likewise. Once this has been done, this claim appears as
a straightforward consequence of Theorem 2.1 for the (martingale) diffusion processes whose diffusion
coefficients are given by (the extension) of x o(t,x) and x 6(¢,z) on the whole real line. As above, the
sup-norm continuity follows from the convexity and polynomial growth. In the end we take advantage
of the a posteriori positivity of S and $(@) when starting from so > 0 to conclude. O

APPLICATIONS TO VOLATILITY COMPARISON RESULTS. The corollary below shows that comparison
results for vanilla European options established in [8] appear as a special case of Proposition 2.3.

Corollary 2.3. Let 0 : [0,T] x R — R4 be a bounded continuous function
0 < omin(t) < o(t,.) < omax(t), t€ [0,T7,

then for every convex functional F : C([0,T],Ry) — R with (r,|| . ||sup)-polynomial growth (r > 1),

EF (s§%m>> <EF (5§“>) <EF (sgamaﬂ) . (2.9)
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Proof. We successively apply the former Proposition 2.3 to the couple (omin, o) and the partitioning
function k(t,z) = omin(t) to get the left inequality and to the couple (0, omax) With kK = opax to get
the right inequality. O

Note that the left and right hand side of the above inequality are usually considered as quasi-closed
forms since they correspond to Hull-White model (or even to the regular Black-Scholes model if oyip,
Omax are constant). Moreover, it has to be emphasized that no convexity assumption on o is requested.

2.3 Counter-example (discrete time setting)

The above comparison results for the convex order can fail when the assumptions of Theorem 2.1 are
not satisfied by the diffusion coefficient. In fact, for simplicity, the counter-example below is developed
in a discrete time framework corresponding to Proposition 2.1. We consider the 2-period dynamics
X = X7% = (X{) satisfying

X =2+4+0Z and Xo=X;+/20(X1)Z,

where Zj.9 £ N(0;13), 0 >0, and v : R — R, is a bounded C2-function such that v has a strict local
maximum at xo satisfying v/(z¢) =0 and v"(xg) < —1 (so is the case if v(z) =v(zo) — p(z — m0)? +
o((z—10)?), 0 < p < %, in the neighbourhood of zy). Of course this implies that /v cannot be convex.

Let f(x) =e®. Tt is clear that

oz, 0) :=Ef(X3) = exE(eUZﬁ”(”"Zl)).

Elementary computations show that

ol (z,0) = exE<e"Zl+”(I+°Zl) (1+0'(z+ O'Zl))Zl>

4,022 (x,0) = €° <E<e"zl+v(w+0z1) (1 +'(z + aZl))zZ%) + E(eozl+v(w+0zl)v”(a: + UZQZ%)) .
In particular

¢ (2,0) = " T@ (1 +0'(2))EZ =0 and ol (2,0) = e*tv(@) ((1 + ' (x))% + v"(m))
so that gpg »(20,0) < 0 which implies that there exists a small enough oy > 0 such that
¢! (xg,0) <0 for every o€ (0,00],

This clearly exhibits a counter-example to Proposition 2.1 when the convexity assumption is fulfilled
neither by the functions (o)g—o., nor the functions (kj)r—o., (here with n =1).

2.4 Lévy driven diffusions

Let Z = (Zi)ico,m) be a Lévy process with Lévy measure v satisfying / |z|Pv(dz) < 400, p €
|z|>1
[1,+00). Then Z; € L*(P) for every t€ [0,T]. Assume furthermore that E Z; = 0: then (Z;)iejo 1) is

an FZ-martingale.

Theorem 2.2. Let Z = (Zt)te[O,T} be a martingale Lévy process with Lévy measure v satisfying
v(]z|P) < 400 for a p€ (1,4+00) if Z has no Brownian component and v(z%) < 400 if Z does have a
Brownian component. Let k;:[0,T] x R — R, i=1,2, be continuous functions with linear growth in
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x uniformly in te [0,T]. Fori =1,2, let X) = (Xt(ﬁi))tE[QT} be the weak solution, assumed to be
unique, to
dX\") = ki, X\5)dzZ"™), X = ze R, (2.10)

where Z(4), i = 1,2 have the same distribution as Z. Let F : ID([0,T],R) — R be a Borel convex
functional, Py(x;)-a.s. Sk-continuous, i=1,2, with (1, ||.||sup)-polynomial growth for some r € [1,p) i.e.

Vae D([0,T),R), [F(e)| < C(1 + [[alsyp)-

(a) Partitioning function: If there exists a function  : [0,T] x R — R such that k(t,.) is convex for
every t€ [0,T] and 0 < k1 < Kk < Ka, then

EF(X®)) <E F(Xx®#2).

(a') An equivalent form for claim (a) is: if 0 < k1 < ko and, either k1(t,.) is convex for every te [0,T],
or ka(t,.) is convex for every t€ [0,T)], then the conclusion of (a) still holds true.

(b) Domination property: If Z has a symmetric distribution, |k1| < ko and k2 is convex, then
EF(X®)) <EF(X®#2).

Remarks. e The Py (;)-a.s. Sk-continuity of the functional F, i = 1,2, is now requested sinceSk-
continuity no longer follows form the convexity ((ID([0,T],R),Sk) is a Polish space but not even a
topological vector space). Thus the function o — |a(tg)| for a fixed ¢g € (0,T) is continuous at a given
ge ID([0,T],R) if and only if § is continuous at ¢y (see [1], Chapter 3).

e The result remains true under the less stringent moment assumption on the Lévy measure v:
v(|2[P142>13 < +oo but would require much more technicalities since one has to carry out the rea-
soning of the proof below between two large jumps of Z and “paste” these inter-jump results.

The following technical lemma is the key that solves the approximation part of the proof in this
cadlag setting.

Lemma 2.3. Let a€ ID([0,T],R). The sequence of stepwise constant approzimations defined by
Oén(t) = a(£n)7 te [OvT]7
converges toward o for the Skorokhod topology.

Proof. See [18]Proposition VI.6.37 p.387 (second edition). [

Proof of Theorem 2.2. STEP 1. Let (Xf)te[O’T} be the genuine Euler scheme defined by
X' =u +/ K(8,, X2 )dZs
(0,¢] e

where k = k1 or kg. Then, owing to the linear growth of k, we derive (seee.g. Proposition B.2 in
Appendix B) that

H sup ]Xt]H —|—supH sup \X’Z‘]H < +o00.
te[0,T) P n>1"1tel0,T] p

We know, e.g. from form Proposition B.1 in Appendix B, that (X"),>1 functionally weakly converges
for the Skorokhod topology toward the unique weak solution X of the SDE dX) = s(t,X;_)dZ,
Xo =x. In turn, Lemma 2.3 implies that (X& )telo,r) Sk-weakly converges toward X.
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STEP 2. Let F': ID([0,T],R) — R be a P, -Sk-continuous convex functional. For every integer n > 1,
we still define the sequence of convex functional F, : R"*! — R by

n—1
Fn(x():n) = F(Z xkl[t27tn ) + xnl{T}) so that Fn((X%)on) = F((Xﬁ)te[O,T})'
k=0

k+1

Now, for every n > 1, the discrete time Euler schemes X (ki)n j—1.9, related to the jump diffusions
with diffusion coefficients x; and kg are of the form (2.3) and |F,(zo.n)| < C(1 + ||z |"), 7€ [1,p).

(a) Assume 0 < k1 < k2. Then, taking advantage of the partitioning function x, it follows from Propo-
sition 2.1(a) that, for every n > 1, EFn((Xt(gl)’n)om) < EFn((Xt(gQ)’")om) i.e. EF((X;:”’")tG[O’T}) <

EF((XE(HZ)’n)tE[OvT}). Letting n — +o0o completes the proof like in that of Theorem 2.1 since F' is
P -a.s. Sk-continuous. [J

(b) is an easy consequence of Proposition 2.1(b). O

3 Convex order for non-Markovian It6 and Doléans martingales

The results of this section illustrates another aspects of our paradigm in order to establish functional
convex order for various classes of continuous time stochastic processes. Here we deal with (couples
of) Ito-intregrals with the restriction that one of the two integrands needs to be deterministic.

3.1 Ito martingales

Proposition 3.1. Let (Hy)ejo,r) be an (Fy)-progressively measurable process defined on a ) filtered
probability space (2, A, (F)iepo, 1), P) satisfying the usual conditions and let h = (hy)iejo,m) € L?F. Let
F:C([0,T],R) — R be a convex functional with (r,||.||sup)-polynomial growth, r>1.

(a) If |Hy| < hy P-a.s. for every t € [0,T], then

EF (/0 Hde8> <EF </0 hSdW8>.

(b) If Hy > hy > 0 P-a.s. for every t € [0,T] and HHHL% € L"(P) for v’ > r, then

EF (/0 HSdWS> >EF </0 hdes>.

Remarks. e In the “marginal” case where F' is of the from F(a) = f(«(T)), it has been shown in [14]
that the above assumptions on H and h in (a) and (b) are too stringent and can be relaxed into

T T T T
/EHfdtg/ hZdt  and /EHfdtz/ hZdt
0 0 0 0

respectively. The main ingredient of the proof is the Dambis-Dubins-Schwartz representation theorem
for one-dimensional Brownian martingales (see e.g. Theorem 1.6 in [33], p.181).

e The first step of the proof below, can be compared to Proposition 2.1 in a Markov framework as an
autonomous proposition devoted to discrete time setting.

Proof. STEP 1 (Discrete time). Let (Zj)1<k<n be an n-tuple of independent symmetric (hence
centered) R-valued random variables satisfying Z € L"(Q, A, P), r > 1, and let FZ = {0,Q}, FZ =
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O'(Z7 A Zk), k =1,...,n be its natural filtration. Let (Hy)o<r<n be an (f,f)ogkgn—adapted sequence
such that Hye L"(P), k=1,...,n

Let X = (Xj)o<k<n and Y = (Y} )o<k<n be the two sequences of random variables recursively defined
by

Xpr1 =Xk + HpZgy1, Yer1 =Y+ hpZipr, 0<k<n-1 Xo=Yy=uw.
These are the discrete time stochastic integrals of (Hp) and (hy) with respect to (Zi)i<k<n. It is
clear by induction that Xy, Y; € L"(P) for every k =0,...,n since Hy, is ]-"kZ -measurable and Zj 4 is
independent of ]:kZ .

Let ® : R"™! — R be a convex function such that |®(x)] < C(1 + |z|") where C > 0 is a real
constant. Let us focus on the first inequality (discrete time counterpart of claim (a)). One proceeds
like in the proof Proposition 2.1 to prove by (three) backward induction(s) that if |Hy| < hy, k = 0:n,
then

E®(X) <E®(Y).

To be more precise, let us introduce by analogy with this proposition the sequence (¥j)o<g<n of
functions recursively defined by

Uy, =@, Vi(zok) = (Qur Ys1(Towk, w + ) (), wor € R k=0,...,n—1.
First note that the functions ¥y satisfy a linear dynamic programing principle
Uy,(You) = E(Upi1 (Vo) | FF), k=0,...,n—1
so that by the chaining rule for conditional expectations, we have
Oy (You) = E(®(Youn) | FE), k=0,...,n

Furthermore, owing to the properties of the operator Qj.1, we already proved that for any convex
function G : R¥2 — R such that |G(x)| < C(1 + |2|"), the function

(o> w) = (Qry1G(Tok, 71 + ) (w) = E G(20:1, T + uZp11)

is convex and even as a function of w for every fixed zg.r,. As a consequence, it also satisfies the
maximum principle established in Lemma 2.1(c) since the random variables Zj have symmetric dis-
tributions.

Now, let us introduce the martingale induced by ®(Xj,), namely

My, = E(®(Xom) | FF)), ke {0,...,n}.

We will show by a backward induction that M) < Wy (X.x) for every k€ {0,...,n}. If £ = n, this is

trivial. Assume now that Myy1 < Uiy1(Xo.k41) for a k€ {0,...,n —1}. Then we get the following
string of inequalities

My, =E(Mpy | Ff) < E

= E

E(Vi1(zok, Th + uZii1) | FE ))

(U1 (Xows1) | FE)
(g1 (Xowk, Xi + HpZs1) | FE)
|zo;=X0:,u=Hj,

|20, =X0:k

<
= (QuinWri o,z + ) (Hy))
(

IN

Qr1V ity (Tok, Th + )(hk)) = U(Xo:x) (3.11)

|z0;e=X0:k
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where we used in the fourth line that Zy,; is independent of ]:kZ and in the penultimate line the
assumption |Hg| < hy and the maximum principle. Finally, at k& = 0, we get E®(Xo,) = My <
&g (o) = EP(Y).,,) which is the announced conclusion.

STEP 2 (Approximation-Regularization). We temporarily assume that the function A (has a modifi-
cation which) is bounded by a real constant so that P(dw)-a.s. ||H (w)||sup V [|2|lsup < K. We first need
a technical lemma inspired by Lemma 2.4 in [21] (p.132, ond edition) about approximation of pro-
gressively measurable processes by simple processes, with in mind the preservation of the domination
property requested in our framework.

Lemma 3.1. (a) For every c€ (0,T) and every g€ L*([0,T),dt) we define

t
Acg(t) =tr— E g(s)dse C([0,T],R).
€ J(t—e)+

The operator A : Li — C([0,T],R) is non-negative. In particular, if g, v € Li with |g| <y A-a.e.,
then |Acg| < Acy and [Acgllup < Igliz

(b) If g€ C([0, T],R), define for every integer m > 1, the stepwise constant caglad (for left continuous
right limited) approximation g, of g by

g (t) = g(0)1ypy (1) +ZQ they 1(tk Lt
=1

Il 1ls

Then ¢g" "—=3" g as m — +o0. Furthermore, if g, v€ C([0,T],R) and |g| < v, then for every m > 1,

lgm <A™
The details of the proof are left to the reader.

By the Lebesgue fundamental Theorem of Calculus we know that

|A;H—H|L2 — 0 P-a.s.
n T

Since |[A1 H — H| 7 < 2K, the Lebesgue dominated convergence theorem implies that

T
E/ |A1 Hy — Hy*dt — 0 as n — +oo. (3.12)
0 n

By construction, A1 H is an (F;)-adapted pathwise continuous process satisfying the domination

property |A1 H| < A1 h so that, in turn, using this time claim (b) of the above lemma, for every
n, m>1,

AH, | <Ash
On the other hand, for every n > 1, the a.s. uniform continuity of A1 H over [0,7] implies
/ |A1Ht — AlHt| dt < sup \AlHt —AlHt\z —0 as m — +oo P-a.s.
te[0,T] "

One concludes again by the Lebesgue dominated convergence theorem that, for every n > 1,

T m 2
E/ A1H —A1Hi dt — 0 as m — +o0.
0 n n
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One shows likewise for the function h it self that

|Alh—h|L2 —0 as n— +x©
n T

and, for every n > 1,
—~—m
‘Alh _Alh|L2 — 0 as m — +oo.
n n T

Consequently there exists an increasing subsequence m(n) 1 400 such that

T m(n) 2 T m(n) 2
E/ AL H, —AlHt‘ dt—i—/ ALy —Alht‘ dt — 0 as 1 — +oo
0 n n 0 n n

which in turn implies, combined with (3.12) (and its deterministic counterpart for h),

n

T m(n) 2 T ) 2
E/ ‘AlHt —Ht‘ dt—l—/ A1l —ht‘ dt — 0 as n — +oo.
0 0 n

At this stage, we set for every integer n > 1,

™ = A" and M = Alhtm(") (3.13)

n

which satisfy
E|H - H™ |L2 +|h = |L2 — 0 as n — 4o0. (3.14)

It should be noted that these processes H(™, H and these functions h(™, h are all bounded by 2K.

We consider now the continuous modifications of the four (square integrable) Brownian martingales
associated to the integrands H™, H, h{™ and h (the last two being of Wiener type in fact). It is

clear by Doob’s Inequality that
¢ t
‘ / W) aw, — /
tel0,7] ' JO 0

sup / H; (n)
te[0,7]
In particular ( / -H &S")dVVS>tE functionally weakly converges to ( /0 -HdeS)te[O - for the

0
|| . ||sup-norm topology. We also have, owing to the B.D.G. Inequality, that for every pe (0, +00),

E sup /H(”
te[0,T]

L2(P
s —(>)O as n — +o00.

)

P < LA E|H™ || < ¢, K? (3.15)

where ¢, is the universal constant involved in the B.D.G. inequality. The same holds true for the
three other integrals related to h(™, H, and h.

Let n > 1. Set HY = H™  hn = pl)

m(n)? m(n) ’
b,

k= 0,...,m(n) and Z7' = Wm(n) - Wm(n), k =
tk: tk*l
tZL(n) k
1,...,n(m). One easily checks that / HMdw, = ZH?Z?, k=0,...,m(n) so that
0 =1

' k
/=1
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Let Fy,(n) be defined by (2.5) from the convex functional F' (with (]| .[|sup)-polynomial growth). It
is clearly convex. One derives from Step 1 with applied with horizon m(n) and discrete time random

sequences (Z]?)kzlzm(n)v (H]?)kzo:m(n)7 (hk)kzo:m(n) that

EFoIm(n)</0. Hs(")dWs> = EFnm <(§:H?Z?>k=0:m(n)>

(=1

k .
E Fp(n) <(;h’gzg>k:&m(n)> = E Fol, /0 B,

Combining the above functional weak convergence, Lemma 2.2 and the uniform integrability derived
form (3.15) (with any p > r) yields the expected inequality by letting n go to infinity.

STEP 3. (Second approximation) Let K € N and xx : R — R the thresholding function defined by
xr(u) = (uANK)V (=K). It follows from the B.D.G. Inequality that for every pe (0, +00)

IN

t t
E sup (/ HSdWS—/ Xk (H)dW|" < EE[H — xx(H),
te[o, 7' Jo 0 T
- cgE\(yHy—K)+§2T (3.16)
< gl = K), [, (3.17)

where uy = max(u,0), u€ R;. The same bound obviously holds when replacing H by h. This shows
that the convergence holds in every LP(P) space, p€ (0,+00) as K — +oo. Hence, one may let K go
to infinity in the inequality

EF (/0 XK(HS)dWS> <EF (/0 XK(hs)dWs> —EF </0 he A KdWs> (3.18)

which yield the expected inequality.
(b) We consider the same steps as for the upper-bound established in (a) with the same notations.

STEP 1: First, in a discrete time setting, we assume that 0 < hy, < Hp € L"(P) and we aim at showing
that by backward induction that My > Wy (Xq.x) where My = E(@(Xo,n) |]-'kz)

If k& = n, the inequality hold as an equality since ¥,, = ®. Now assume M1 > Wy y1(Xopq1)-
Then, like in (a),

My, = E(Mgy1|FE)
E(®(Xos11) | FE) = E(®(Xok, Xy + HpZp11) | FE) = (Qk\l’k+1($o;k,ﬂ?k +. )(Hk))

(Qk‘l’kﬂ(fﬂo:k, T + -)(hk)) = U(Xok)-

|z0:.=X0:k

v

|z0.x=X0:k

v

STEP 2. This step is devoted to approximation in a bounded setting where 0 < h; < H; < K. It
follows the lines of its counterpart in claim (a) taking advantage of the global boundedness by K.

STEP 3. This last step is devoted to the approximation procedure in the general setting. It differs
from the above one since there is no longer a deterministic upper-bound provided by the function
he Li. Then, the key is to show that the process fo Xr (Hg)dWy converges for the sup norm over
[0,7] in L" (P) toward the process J HsdWs. In fact, it follows from (3.16) applied with p =+’ that

7,,/

t t
E sup ‘ / Hdes - / XK(Hs)dWS
te[0,7] ' J0 0

< GE|(H| - K), |72
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As |H| 2 € L™ (P), one concludes by the Lebesgue dominated convergence theorem by letting K —
+oo. O

Remarks. e Step 1 can be extended to non-symmetric, centered independent random variables
(Z)1<k<n if the sequences (Hy)o<k<n—1 and (hy)o<k<n—1 under consideration satisfy 0 < Hy < hy,
k=0,...,n—1.

e When H has left continuous paths, the proof can be significantly simplified by considering the
simpler approximating sequence Ht(") = ]?It" which clearly converges toward H dP ® dt-a.e. (and in
the appropriate LP(dP ® dt)-spaces as well).

3.2 Lévy-Ito martingales

Proposition 3.2. Let Z = (Zt)te[o,T] be an integrable centered Lévy process with Lévy measure v satis-
fying v(|z[P1y>13) < +oo for a real exponent p > 1. Let I : ID([0,T],R) — R be a convex Skorokhod-
continuous functional with (p, || . [|sup)-polynomial growth. Let (Hy)icpo,r) be an (Fy)-predictable process
and let h = (h¢)iejo,1) € Hh||L;%v2 < +o0.

(a) If 0 < H; < hy dt-a.e., P-a.s. then

EF (/O'Hsdzs> <EF </0 hsts> .

If furthermore Z is symmetric, the result holds as soon as |H| < hy dt-a.e., P-a.s..
(b) If Hy > hy > 0 dt-a.e., P-a.s. and |H| pv2 € LP(P), then
T

EF (/O'Hsdzs> >EF </0 hsts> .

(c) If the Lévy process Z has no Brownian component, the above claims claims (a) and (b) remain
true if we only assume h€ LP and ]H!Lz% € LP(IP) respectively.

Proof. (a) This proof follows the approach introduced for the is an extension of the Brownian-It6
case up to the technicalities induced by Lévy processes.

STEP 1 (Discrete time). This step does not differ from that developed for Brownian-It6 martingales,
except that in the the Lévy setting we rely on claim (a) of Lemma 2.1 since the marginal distribution
of the increment of a Lévy process has no reason to be symmetric.

STEP 2 (Approximation-Regularization). Temporarily assume that h is bounded. We consider the
approximation procedure of H by stepwise constant caglad (F;)-adapted (hence predictable) processes
H™ already defined by (3.13) in the proof of the previous proposition. Then, we first consider the
Lévy-Khintchine decomposition of the Lévy martingale Z

Vie[0,T), Zi=aW,+Z'+Z, a>0,

where Z" is a martingale with jumps of size at most 1 and Lévy measure v(. N {|z| < n}) and Z7 is a
compensated Poisson process with (finite) Lévy measure v(. N {|z| > n}). Let n be a positive integer.
We will perform a “cascade” procedure to make p decrease thanks to st the B.D.G. Inequality. This
— classical — method is more detailed in the proof of Proposition 3.1 in Appendix B (higher moments
of Lévy driven diffusions).
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We first assume assume that p€ (1,2]. Combining Minkowski’s and B.D.G.’s Inequalities yields

sup /HdZ /H(”
te[0,T]

< cpaH|H—H(")|L2
Tllp

—l—CpH OZ;T(HS — Hg"))2(AZs)21{AZSI>17}H§
<s<

—|—cpH0§;T(H H(")) (AZy) 1{AZS|<"}H%
<s<

where we used in the last line the monotony of L?(P)-norm & < 1.
€ (0,1]

Using now the compensation formula and again that £ ¢ , it follows
D
E‘ > (H (AZ)1yaz s < E D |He— HPIAZP1az, 50
0<s<T 0<s<T

= E’H — H(n) pp V(‘Z’p1{|z|>n})

< T'Y“SE|H — H( )Lz V(2P gz5m))
1-2 2
< T (E!H H ’LZ) (2l Lz5ny)-
On the other hand,
E‘ Z — HM)?2(AZ,)? Ljaz, \<77}‘ = E[H - H" ’L2 v(z* An).

0<s<T

We derive from (3.14) that the above three terms go to 0 as n goes to infinity so that

sup ( / H™dz, — 8o,

t€[0,T

Then, Lemma 2.3 applied to the subsequence (m(n)),>; implies that the stepwise constant process

Ln(n) .
< / H s(")dZs> satisfies
0 t€[0,T]
. =m(n) : P
distgy ( / H™dZz,, / Hsts> —0
0 0

which in turn implies the functional Sk-weak convergence. Furthermore, the above LP-convergence

implies that the sequence | sup / H, (n) dZ
te[0,7)

> is uniformly LP-integrable which is also clearly

s > . Following the same lines and still using Lemma 2.3, we get
n>1

zm(n)
true for | sup ‘ / HMaz
tel0,7] ' J0
. “m(n) . P-a.s. t
distg / hg")dZS,/ hsdZs | —> 0 and sup ‘/ hg”)dZs
0 0 tefo, 7] "' Jo
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Since 0 < H; < h(t) dt-a.e. P-a.s. (or 0 < |Hy| < hy if Z is symmetric), for every fixed integer
n > 1, we have, owing to Step 1 and following the lines of Step 3 of the proof of Proposition 3.1,

E <F< / b HgdeS)te[O T}) <E (F( / . hgdes)te[O T]> .
0 > 0 )

Letting n — +oo yields the announced result since F' is Sk-continuous with (p, || . ||sup )-polynomial
growth (owing to the above uniform LP-integrability results).

Assume now p > 2. First note that since h is bounded one can extend (3.14) as follows: there exists
a sequence m(n) T 4-oco such that the processes H™ and the functions h(™ defined by (3.13) satisfy

E|H — H™ —l—\h h ’L” — 0 as