
HAL Id: hal-00767744
https://hal.science/hal-00767744

Submitted on 10 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proving the absence property pattern using the B
method

Amel Mammar, Marc Frappier, Raphael Chane-Yack-Fa

To cite this version:
Amel Mammar, Marc Frappier, Raphael Chane-Yack-Fa. Proving the absence property pattern using
the B method. HASE 2012 : 14th IEEE International High Assurance Systems Engineering Sympo-
sium, Oct 2012, Omaha, United States. pp.167-170, �10.1109/HASE.2012.26�. �hal-00767744�

https://hal.science/hal-00767744
https://hal.archives-ouvertes.fr


Proving the Absence Property Pattern Using the B Method

Amel Mammar

Institut Telecom SudParis
CNRS/SAMOVAR

Paris, France
amel.mammar@it-sudparis.eu

Marc Frappier

Université de Sherbrooke
GRIL

Sherbrooke (Québec), Canada
marc.frappier@usherbrooke.ca

Raphael Chane-Yack-Fa

Université de Sherbrooke
GRIL

Sherbrooke (Québec), Canada
Raphael.Chane-Yack-Fa@USherbrooke.ca

Abstract—Dynamic properties are very useful in the specifi-
cation of Information Systems (IS) and security policies. They
allow the user to express properties that involve several states
of a system. Indeed, invariance properties do not permit to
cover such kind of properties. In this paper, we suggest a
formal approach, based on the use of the B method, to verifying
absence properties of the form Abs(P2, From P1 Until P3) that
express that some states, represented by predicate P2, should
not be reached starting from a state that satisfies P1 until a
state satisfies P3 is reached. Our proposal consists in defining
two proof obligations based on weakest preconditions that are
sufficient and necessary to prove that a system verifies such a
property.

Keywords-Verification; Temporal properties; Absence pat-
terns; B Method.

I. INTRODUCTION

The specification and the verification of dynamic prop-

erties play an essential role in the development process of

Information Systems (IS). Contrary to invariance properties,

dynamic properties permit to describe advanced proper-

ties that depend on several states occurring at different

moments (i.e., temporal properties). In this paper, we are

particularly interested in the dynamic properties that can

be expressed by the absence pattern introduced in [10]:

Abs(P2, From P1 Until P3). This pattern expresses that

some states, represented by predicate P2, should not be

reached if the system has been in a state that satisfies P1

until predicate P3 becomes fulfilled. In practice, this kind

of properties is very common and useful in several domains

and applications. In a ticket sale system for instance, we

should verify that after reserving a ticket, the client does

not get it before performing the payment. Similarly in the

transport domain, a signal should remain closed after a train

has passed it until the route becomes completely free.
Introduced by J.R Abrial [1], B is a formal method for

developing safe systems. A safe system satisfies some safety

properties and does no harm. To this aim, a B developer

has to express such properties as invariants and specify

the adequate conditions under which operations should be

executed in order to maintain the desired properties. These

conditions, called preconditions, aim at reducing the set

of allowed system behaviors to those that preserve the

invariants. In B, the temporal (dynamic) properties are not

supported. Ad hoc techniques can be used to encode a

dynamic property into invariants, but they require tweaking

of the specification, by adding new state variables, thus

making the specification more complex.

In this paper, we propose a formal approach to verify-

ing dynamic properties, expressed by the absence pattern

Abs(P2, From P1 Until P3)), using the B formal method.

Our approach consists in defining sufficient and necessary

conditions that ensure the satisfaction of such properties.

II. THE B METHOD AND CASE STUDY PRESENTATIONS

A. Overview of B

In B, the specifications are organized into abstract ma-

chines. Each machine encapsulates state variables on which

operations are expressed. The set of the possible states of

the system are described using an invariant. The invariant

is a predicate in a simplified version of the ZF-set the-

ory [9], enriched with many relational operators. Opera-

tions are specified in the Generalized Substitution Language

(GSL) [1]. A substitution is like an assignment statement.

An elementary substitution is denoted by x := E, where

x is a state variable and E an expression. It allows one to

identify which variables are modified by the operation, while

avoiding mentioning ones which are not. The generalization

allows the definition of non-deterministic and preconditioned

substitutions. To ensure the correctness of a B specification,

a set of proof obligations is generated for each B component.

These proofs aim at verifying that the invariant of the

system is satisfied after the execution of each operation.

Of course, such an invariant is assumed to be satisfied

before an operation is executed. For each invariant Inv
and operation op whose precondition and substitution are

P and S respectively, the following proof obligation is

raised: (Inv ∧ P ) ⇒ [S]Inv. More explanations about the

B notation will be given when needed.

B. Case study presentation

We illustrate our proposal with a management system that

deals with ticket sales to customers for some destinations.

We make the assumption that the number of places on each

flight is equal to NbPlaces. If a place is available on the

desired flight, the customer gets his/her ticket (GetTicket)

1



otherwise, he/she is put in the waiting queue associated with

the flight (WaitQueue). Such a customer will get a ticket

when a place becomes free on the flight and he/she is at the

head of the waiting queue (TakeTicket). The B specification

corresponding to this system is depicted in Figure 1 where

the following operators are used.

• x �→ y denotes the pair (x, y).
• The domain of a relation r is defined as dom(r) = {x |
∃ y · x �→ y ∈ r}

• the negative domain restriction of relation r by set X
is defined as X�−r = {x �→ y | x �→ y ∈ r ∧ x /∈ X}.

• the override of relation r1 by relation r2 is defined as

r1<+r2 = (dom(r2)�−r1) ∪ r2.

• A sequence of length n of elements of type X is

represented in B with a total function of type 1..n→ X .

• The set iseq(X) denotes the injective sequences of

elements of X .

• s← x denotes the insertion of element x at the end of

sequence s.

• tail(s) represents sequence s, without its first element.

• first(s) represents the first element of sequence s.

• The substitution S1 ‖ S2 denotes the simultaneous

execution of S1 and S2, assuming that S1 and S2

operate on disjoint sets of modified variables.

• Given an operation op of the form PRE P THEN T
END, we let Sop denote the substitution T of op and

pre(op) its preconditions .

Using the prover of AtelierB, we have proved the cor-

rectness of the FlightSystem specification by generating

12 proof obligations in order to ensure that the execution

of each operation re-establishes the invariant: 10 of them

have been discharged automatically while the others have

required our intervention to help the prover find the right

rules to apply. Nevertheless, such proof obligations do not

guarantee fairness to ensure, for instance, that if a customer

cu1 is put in a waiting queue of a flight fl1 before a customer

cu2, then he/she will get a place before cu2. This property

can be expressed by:

Abs(cu2 �→ fl1 ∈ tickets,
From(cu1 ∈ ran(waitingQueue(fl1)) ∧

cu2 /∈ ran(waitingQueue(fl1)) ∧
cu2 �→ fl1 /∈ tickets)

Until(cu1 �→ fl1 ∈ tickets))

(1)

The rest of the paper addresses the proof of such dynamic

properties by defining the B proof obligations that are

necessary and sufficient to prove them.

III. PROVING THE ABSENCE PATTERNS

A. Derivation of the necessary and sufficient conditions

In this section, we show the derivation of the B suffi-

cient and necessary assertions to prove the absence pattern

Abs(P2, From P1 Until P3) and its application to the

Machine
FlightSystem

Sets
Customers; Flights

Variables
tickets, waitingQueue

Constants
NbP laces

Properties
NbP laces ∈ NAT1

Invariant
tickets ∈ Customers ↔ Flights ∧
waitingQueue ∈ Flights → iseq(Customers) ∧
∀ fl. (fl ∈ Flights ⇒ card(tickets−1[{fl}]) ≤ NbP laces)

DEFINITIONS
/*Index(fl, cu) gives the rank of a customer cu

in the waiting queue of a flight fl*/

Index(fl,cu) =̂ (waitingQueue(fl))−1(cu)
Operations
GetTicket(cu , fl)=̂
PRE
cu ∈ Customers ∧ fl ∈ Flights ∧
card(tickets−1[{fl}]) < NbP laces ∧
waitingQueue(fl) = []

THEN
tickets := tickets ∪{cu 
→ fl}

END;
TakeTicket(cu , fl)=̂
PRE
cu ∈ Customers ∧ fl ∈ Flights ∧
card(tickets−1[{fl}]) < NbP laces ∧
first(waitingQueue(fl)) = cu

THEN
tickets := tickets ∪ {first(waitingQueue(fl)) 
→ fl}‖
waitingQueue := waitingQueue<+

{fl 
→ tail (waitingQueue(fl))}
END;
WaitQueue(cu, fl)=̂
PRE
cu ∈ Customers ∧ fl ∈ Flights ∧
cu /∈ ran(waitingQueue(fl))∧ cu 
→ fl /∈ tickets ∧
(card(tickets−1[{fl}]) = NbP laces ∨

(waitingQueue(fl) 
= []))
THEN

waitingQueue := waitingQueue<+

{fl 
→ ((waitingQueue(fl)← cu)}
END
END

Figure 1. The B specification of the tickets management system

running case study. Our proposal consists in demonstrating

that starting from a state satisfying P1, the system will

behave as follows (See Figure 2):

1) In the state that satisfies P1:

• Predicate P3 is satisfied: the property is fulfilled

and the verification stops, or

• Predicates P2 and P3 are not satisfied: the prop-

erty is not violated yet. The verification process

must continue because neither P2 nor P3 is true.

2



Figure 2. Graphical representation of property
Abs(P2,From P1 Until P3)

• otherwise, the property is violated. That case is

represented by dashed lines and a black state in

Figure 2 and denotes the forbidden behavior.

These cases are depicted by a transition labelled with

the skip action that does nothing.

2) Being in state (¬P2∧¬P3), we have to verify that the

execution of any operation op makes the system move

to state P3 or stay in state (¬P2 ∧ ¬P3).

This yields the following proof obligations:

1) the temporal property is satisfied in the state where P1
holds:

∀(→x,→y ).(P1 ⇒ (¬P2 ∨ P3)) (2)

2) predicate P2 should stay not satisfied while P3 is not
satisfied yet

∀(→x,→y ,→v ).(¬P2 ∧ pre(op)⇒ [Sop](¬P2 ∨ P3)) (3)

where
→
x denote the values of the machine variables

(x1, . . . , xn),
→
y are the variables (y1, . . . , ym) that

may appear in predicates P1, P2 and P3 and which are

distinct from variables
→
x , and

→
v denote the parameters

of operation op.

Let us stress that (3) should be satisfied only on

intermediate states between P1 and P3. However predicate

¬P2 may be larger than the set of these intermediate states,

thus we may have to restrict ¬P2 (i.e., enlarge P2) in order

to be exactly equal to this set. In order to be clearer, let us

illustrate that on the running case study and try to prove

(3) for property (1) and operation TakeTicket:

∀(tickets, waintingQueue, cu1, cu2, f l1, cu, fl).⎛
⎝ cu2 
→ fl1 /∈ tickets ∧ pre(TakeT icket)

⇒
[STakeTicket] (cu2 
→ fl1 /∈ tickets ∨ cu1 
→ fl1 ∈ tickets)

⎞
⎠

Let us remark that the set of states denoted by predicate

(cu2 �→ fl1 /∈ tickets) includes states such that a place is

available on flight fl1 and customer cu2 is at the head of

the waiting queue, i.e, before customer cu1. It is obvious

that such states violate the previous proof obligation since

it is possible to execute operation TakeTicket and make a

reservation for customer cu2 (cu = cu2, f l = fl1). These

counterexamples are found using a model checker like ProB

[17] or Alloy [7]. Nevertheless, such a counterexample is a

false one since we know that such states do not belong to

From To(P1, P3). Indeed, position of customer cu2 cannot

be before that of customer cu1 in the waiting queue, since

new waiting customers are added at the end of the queue.

In addition, cu1 remains in the queue until he gets a place.

So, the specifier, given his knowledge of the specification

and the counter-example found, has to enrich predicate P2

in order to rule out this false counterexample. So now, we

have to enlarge P2 with P ′ defined by:⎛
⎜⎜⎜⎜⎝

cu1 /∈ ran(waitingQueue(fl1))
∨⎛

⎝
cu2 ∈ ran(waitingQueue(fl1))

∧
Index(fl1, cu2) < Index(fl1, cu1)

⎞
⎠

⎞
⎟⎟⎟⎟⎠

We have to repeat the process until no counterexample is

found. By doing that, we will characterize all the states

belonging to From To(P1, P3). This leads to the following

theorem.

Theorem 1: Let P1, P2 and P3 be three predicates. Prop-

erty (Abs(P2,From P1 Until P3)) is satisfied iff there exists

a predicate P ′ such that the following proof obligations hold

for each operation op:

(i) ∀(→x,→y ).(P1 ⇒ (¬(P2 ∨ P ′) ∨ P3))

(ii) ∀(→x,→y ,→v ).(¬(P2 ∨ P ′) ∧ pre(op)⇒
[Sop](¬(P2 ∨ P ′) ∨ P3)) �

B. Proving the Assertions in B

In this section, we report the results obtained on our case

study and the absence property (1). Applying the proof rules

(i) and (ii), provided in Theorem 1 gives the following proof

obligations (POs):

• PO1. ∀ →v .(P1 ⇒ (¬(P2 ∨ P ′) ∨ P3))

• PO2. ∀ →
v .(¬(P2 ∨ P ′) ∧ pre(op) ⇒ [Sop](¬(P2 ∨

P ′) ∨ P3))

where
→
v includes the free variables of the absence property

({cu1, cu2, f l1}) and the formal input parameters of opera-

tion op. Predicates P1, P2, P ′ and P3 are as follows:

P1 =

⎛
⎜⎜⎜⎝
cu1 ∈ ran(waitingQueue(fl1))

∧
cu2 /∈ ran(waitingQueue(fl1))

∧
cu2 
→ fl1 
∈ tickets

⎞
⎟⎟⎟⎠

P2 = (cu2 
→ fl1 ∈ tickets)

P ′ =

⎛
⎜⎜⎜⎝

cu1 /∈ ran(waitingQueue(fl1))
∨⎛

⎝ cu2 ∈ ran(waitingQueue(fl1))
∧

Index(fl1, cu2) < Index(fl1, cu1))

⎞
⎠

⎞
⎟⎟⎟⎠

P3 = (cu1 
→ fl1 ∈ tickets)

3



Proof obligation Automatic Proofs Interactive Proofs
PO1 1 0
PO2 1 6

Table I
PROOF RESULTS

To be discharged using the prover of AtelierB, proof

obligations (PO1) and (PO2) are added as assertions (clause

ASSERTIONS of the B notation) to machine FlightSystem
of page 2. Table I gives the statistics we obtained on

operations GetTicket, TakeTicket and WaitQueue. The

proof are not very difficult, the automatic prover fails to

discharge them because they require several steps and also

the following rule, related to the sequence structure, is

missing in its rule base:

a ∈ iseq(b)) ∧
a 
= [] ∧
c ∈ ran(tail(a))

⇒
(tail(a))−1(c) = a−1(c)− 1

IV. CONCLUSION

In this paper, we have defined necessary and sufficient

conditions for proving dynamic properties of the form

Abs(P2, From P1 Until P3). Such a property ensures that

starting from a state verifying P1, the system will not reach

a state satisfying P2 before predicate P3 becomes true. The

key idea of the suggested approach is to characterize the

set of states that can be reached starting from any state

verifying P1 and before reaching any state that would satisfy

P3. This set being defined, the proposal consists in proving

that the execution of any operation on these states makes

the system move to a state verifying P3 or ¬P2. To ensure

the correctness of the approach, proofs are carried out to

formally establish the soundness and the completeness of

the defined conditions.

Future work include the automation of this approach to

make it more workable. We also plan to extend our approach

to take into account other kinds of property patterns that

would be interesting in information systems. An example of

these patterns is the Response pattern that permits to specify

that a state/event is always followed by another state/event.

Such a pattern will be used to state, for instance, that a

customer will get a place if he/she requests it.

REFERENCES

[1] J.R. Abrial, The B-Book: Assigning Programs to Meanings,
Cambridge University Press, 1996.

[2] http://www.atelierb.eu

[3] M.E. Beato and M. Barrio-Solorzano and C. Cuesta and P.
De La Fuente, UML Automatic Verification Tool with Formal
Methods, volume 127, number 4, Electronic Notes in Theoret-
ical Computer Science, 2005.

[4] T. de Champs, B. Abdulrazak, H. Pigot, M. Ouenzar, M.
Frappier, B. Fraikin, Pervasive Safety Application with Model
Checking in Smart Houses: the INOVUS Intelligent Oven,
Workshop on Smart Environments to Enhance Health Care, in
2011 IEEE International Conference on Pervasive Computing
and Communications Workshops (PERCOM), IEEE Computer
Society, pp 586-591.

[5] A.E. Emerson and J.Y. Halpern, Decision Procedures and
Expressiveness in the Temporal Logic of Branching Time, J.
Comput. Syst. Sci., volume 30, number 1, 1985.

[6] M. Frappier and B. Fraikin and R. Chane-Yack-Fa and M.
Ouenzar, Comparison of Model Checking Tools for Information
Systems. In J-S. Dong and H. Zhu, editors, ICFEM, volume
6447 of LNCS, pages 581596, Springer, 2010.

[7] D. Jackson, Software Abstractions, Logic, Language, and
Analysis, MIT Press, 2012.

[8] Y. Kesten and Z. Manna and A. Pnueli, Verifying Clocked
Transition Systems. In R. Alur, T-A. Henzinger, and ED.
Sontag, editors, Hybrid Systems, volume 1066 of LNCS, pages
1340, Springer, 1995.

[9] K. Kunen, Set theory : An Introduction to Independence Proofs,
Studies in logic and the foundations of mathematics, volume
102 of Elsevier North-Holland, 1980.

[10] M.B. Dwyer and G.S. Avrunin and J.C. Corbett, Patterns in
Property Specifications for Finite-State Verification, in Pro-
ceedings of the 21st International Conference on Software
Engineering, 1999

[11] M. Leuschel and D. Plagge, Seven at one Stroke: LTL Model
Checking for High-Level Specifications in B, Z, CSP, and more.
Technical report, 2007

[12] Z. Manna and A. Pnueli, Temporal Verification of Reactive
Systems: Safety, Springer-Verlag New York, Inc., 1995

[13] K. L. McMillan, Symbolic Model Checking. An Approach
to the State Explosion Problem. Carnegie Mellon University.
CMU-CS-92-131, 1992

[14] C.C. Morgan, Programming from Specifications, Prentice
Hall, 1998

[15] OMG, Object Management Group (OMG): Unified Modeling
Language (UML 2.0). http://www.uml.org/

[16] A. Pnueli, The Temporal Logic of Programs, in 18th An-
nual Symposium on Foundations of Computer Science(FOCS),
1977

[17] ProB, http://www.stups.uni-duesseldorf.de/ProB

[18] J. Simmonds and M. Chechik and S. Nejati and E. Litani
and B. O’Farrell, Property Patterns for Runtime Monitoring
of Web Service Conversations, In 8th International Workshop
on Runtime Verification, Martin Leucker ed., volume 5289,
Lecture Notes in Computer Science, Springer, 2008

4




