Amel Mammar
email: amel.mammar@it-sudparis.eu

Marc Frappier
email: marc.frappier@usherbrooke.ca

Raphael Chane-Yack-Fa
email: raphael.chane-yack-fa@usherbrooke.ca

Proving the Absence Property Pattern Using the B Method

Keywords: Verification, Temporal properties, Absence patterns, B Method

Dynamic properties are very useful in the specification of Information Systems (IS) and security policies. They allow the user to express properties that involve several states of a system. Indeed, invariance properties do not permit to cover such kind of properties. In this paper, we suggest a formal approach, based on the use of the B method, to verifying absence properties of the form Abs(P2, From P1 Until P3) that express that some states, represented by predicate P2, should not be reached starting from a state that satisfies P1 until a state satisfies P3 is reached. Our proposal consists in defining two proof obligations based on weakest preconditions that are sufficient and necessary to prove that a system verifies such a property.

I. INTRODUCTION

The specification and the verification of dynamic properties play an essential role in the development process of Information Systems (IS). Contrary to invariance properties, dynamic properties permit to describe advanced properties that depend on several states occurring at different moments (i.e., temporal properties). In this paper, we are particularly interested in the dynamic properties that can be expressed by the absence pattern introduced in [START_REF] Dwyer | Patterns in Property Specifications for Finite-State Verification[END_REF]: Abs(P 2 , From P 1 Until P 3). This pattern expresses that some states, represented by predicate P 2 , should not be reached if the system has been in a state that satisfies P 1 until predicate P 3 becomes fulfilled. In practice, this kind of properties is very common and useful in several domains and applications. In a ticket sale system for instance, we should verify that after reserving a ticket, the client does not get it before performing the payment. Similarly in the transport domain, a signal should remain closed after a train has passed it until the route becomes completely free.

Introduced by J.R Abrial [START_REF] Chane-Yack-Fa | The B-Book: Assigning Programs to Meanings[END_REF], B is a formal method for developing safe systems. A safe system satisfies some safety properties and does no harm. To this aim, a B developer has to express such properties as invariants and specify the adequate conditions under which operations should be executed in order to maintain the desired properties. These conditions, called preconditions, aim at reducing the set of allowed system behaviors to those that preserve the invariants. In B, the temporal (dynamic) properties are not supported. Ad hoc techniques can be used to encode a dynamic property into invariants, but they require tweaking of the specification, by adding new state variables, thus making the specification more complex.

In this paper, we propose a formal approach to verifying dynamic properties, expressed by the absence pattern Abs(P 2 , From P 1 Until P 3)), using the B formal method. Our approach consists in defining sufficient and necessary conditions that ensure the satisfaction of such properties.

II. THE B METHOD AND CASE STUDY PRESENTATIONS A. Overview of B

In B, the specifications are organized into abstract machines. Each machine encapsulates state variables on which operations are expressed. The set of the possible states of the system are described using an invariant. The invariant is a predicate in a simplified version of the ZF-set theory [START_REF] Kunen | Set theory : An Introduction to Independence Proofs[END_REF], enriched with many relational operators. Operations are specified in the Generalized Substitution Language (GSL) [START_REF] Chane-Yack-Fa | The B-Book: Assigning Programs to Meanings[END_REF]. A substitution is like an assignment statement. An elementary substitution is denoted by x := E, where x is a state variable and E an expression. It allows one to identify which variables are modified by the operation, while avoiding mentioning ones which are not. The generalization allows the definition of non-deterministic and preconditioned substitutions. To ensure the correctness of a B specification, a set of proof obligations is generated for each B component. These proofs aim at verifying that the invariant of the system is satisfied after the execution of each operation. Of course, such an invariant is assumed to be satisfied before an operation is executed. For each invariant Inv and operation op whose precondition and substitution are P and S respectively, the following proof obligation is raised: (Inv ∧ P) ⇒ [S]Inv. More explanations about the B notation will be given when needed.

B. Case study presentation

We illustrate our proposal with a management system that deals with ticket sales to customers for some destinations. We make the assumption that the number of places on each flight is equal to N bP laces. If a place is available on the desired flight, the customer gets his/her ticket (GetTicket) otherwise, he/she is put in the waiting queue associated with the flight (WaitQueue). Such a customer will get a ticket when a place becomes free on the flight and he/she is at the head of the waiting queue (TakeTicket). The B specification corresponding to this system is depicted in Figure 1 where the following operators are used.

• x → y denotes the pair (x, y).

• The domain of a relation r is defined as

dom(r) = {x | ∃ y • x → y ∈ r} • the negative domain restriction of relation r by set X is defined as X¡ -r = {x → y | x → y ∈ r ∧ x / ∈ X}. • the override of relation r 1 by relation r 2 is defined as r 1 < + r 2 = (dom(r 2)¡ -r 1) ∪ r 2 . • A sequence of length n of elements of type X is
represented in B with a total function of type 1..n → X. • The set iseq(X) denotes the injective sequences of elements of X. • s ← x denotes the insertion of element x at the end of sequence s. • tail(s) represents sequence s, without its first element.

• first(s) represents the first element of sequence s.

• The substitution S 1 S 2 denotes the simultaneous execution of S 1 and S 2 , assuming that S 1 and S 2 operate on disjoint sets of modified variables.

• Given an operation op of the form PRE P THEN T END, we let S op denote the substitution T of op and pre(op) its preconditions . Using the prover of AtelierB, we have proved the correctness of the F lightSystem specification by generating 12 proof obligations in order to ensure that the execution of each operation re-establishes the invariant: 10 of them have been discharged automatically while the others have required our intervention to help the prover find the right rules to apply. Nevertheless, such proof obligations do not guarantee fairness to ensure, for instance, that if a customer cu 1 is put in a waiting queue of a flight fl 1 before a customer cu 2 , then he/she will get a place before cu 2 . This property can be expressed by:

Abs(cu 2 → fl 1 ∈ tickets, From(cu 1 ∈ ran(waitingQueue(fl 1)) ∧ cu 2 / ∈ ran(waitingQueue(fl 1)) ∧ cu 2 → fl 1 / ∈ tickets) Until(cu 1 → fl 1 ∈ tickets)) (1)
The rest of the paper addresses the proof of such dynamic properties by defining the B proof obligations that are necessary and sufficient to prove them.

III. PROVING THE ABSENCE PATTERNS A. Derivation of the necessary and sufficient conditions

In this section, we show the derivation of the B sufficient and necessary assertions to prove the absence pattern Abs(P 2 , From P 1 Until P 3) and its application to the running case study. Our proposal consists in demonstrating that starting from a state satisfying P 1 , the system will behave as follows (See Figure 2):

1) In the state that satisfies P 1 :

• Predicate P 3 is satisfied: the property is fulfilled and the verification stops, or • Predicates P 2 and P 3 are not satisfied: the property is not violated yet. The verification process must continue because neither P 2 nor P 3 is true. • otherwise, the property is violated. That case is represented by dashed lines and a black state in Figure 2 and denotes the forbidden behavior. These cases are depicted by a transition labelled with the skip action that does nothing. 2) Being in state (¬P 2 ∧ ¬P 3), we have to verify that the execution of any operation op makes the system move to state P 3 or stay in state (¬P 2 ∧ ¬P 3). This yields the following proof obligations:

1) the temporal property is satisfied in the state where P 1 holds:

∀(→ x , → y).(P1 ⇒ (¬P2 ∨ P3)) (2)
2) predicate P 2 should stay not satisfied while P 3 is not satisfied yet

∀(→ x , → y , → v).(¬P2 ∧ pre(op) ⇒ [Sop](¬P2 ∨ P3)) (3)
where

→
x denote the values of the machine variables (x 1 , . . . , x n), → y are the variables (y 1 , . . . , y m) that may appear in predicates P 1 , P 2 and P 3 and which are distinct from variables → x , and → v denote the parameters of operation op. Let us stress that (3) should be satisfied only on intermediate states between P 1 and P 3 . However predicate ¬P 2 may be larger than the set of these intermediate states, thus we may have to restrict ¬P 2 (i.e., enlarge P 2) in order to be exactly equal to this set. In order to be clearer, let us illustrate that on the running case study and try to prove (3) for property (1) and operation TakeTicket:

∀(tickets, waintingQueue, cu1, cu2, fl1, cu, fl). ⎛ ⎝ cu2 → fl1 / ∈ tickets ∧ pre(T akeT icket) ⇒ [S T akeT icket] (cu2 → fl1 / ∈ tickets ∨ cu1 → fl1 ∈ tickets) ⎞ ⎠
Let us remark that the set of states denoted by predicate (cu 2 → fl 1 / ∈ tickets) includes states such that a place is available on flight fl 1 and customer cu 2 is at the head of the waiting queue, i.e, before customer cu 1 . It is obvious that such states violate the previous proof obligation since it is possible to execute operation TakeTicket and make a reservation for customer cu 2 (cu = cu 2 , fl = fl 1). These counterexamples are found using a model checker like ProB [START_REF]ProB[END_REF] or Alloy [START_REF] Jackson | Software Abstractions, Logic, Language, and Analysis[END_REF]. Nevertheless, such a counterexample is a false one since we know that such states do not belong to F rom T o(P 1 , P 3). Indeed, position of customer cu 2 cannot be before that of customer cu 1 in the waiting queue, since new waiting customers are added at the end of the queue. In addition, cu 1 remains in the queue until he gets a place. So, the specifier, given his knowledge of the specification and the counter-example found, has to enrich predicate P 2 in order to rule out this false counterexample. So now, we have to enlarge P 2 with P defined by: ⎛

⎜ ⎜ ⎜ ⎜ ⎝ cu 1 / ∈ ran(waitingQueue(fl 1)) ∨ ⎛ ⎝ cu 2 ∈ ran(waitingQueue(fl 1)) ∧ Index(fl 1 , cu 2) < Index(fl 1 , cu 1) ⎞ ⎠ ⎞ ⎟ ⎟ ⎟ ⎟ ⎠
We have to repeat the process until no counterexample is found. By doing that, we will characterize all the states belonging to F rom T o(P 1 , P 3). This leads to the following theorem.

Theorem 1: Let P 1 , P 2 and P 3 be three predicates. Property (Abs(P 2 , From P 1 Until P 3)) is satisfied iff there exists a predicate P such that the following proof obligations hold for each operation op:

(i) ∀(→ x , → y).(P 1 ⇒ (¬(P 2 ∨ P) ∨ P 3)) (ii) ∀(→ x , → y , → v).(¬(P 2 ∨ P) ∧ pre(op) ⇒ [S op](¬(P 2 ∨ P) ∨ P 3))

B. Proving the Assertions in B

In this section, we report the results obtained on our case study and the absence property [START_REF] Chane-Yack-Fa | The B-Book: Assigning Programs to Meanings[END_REF]. Applying the proof rules (i) and (ii), provided in Theorem 1 gives the following proof obligations (POs):

• PO1. ∀ → v .(P 1 ⇒ (¬(P 2 ∨ P) ∨ P 3)) • PO2. ∀ → v .(¬(P 2 ∨ P) ∧ pre(op) ⇒ [S op](¬(P 2 ∨ P) ∨ P 3))
where → v includes the free variables of the absence property ({cu 1 , cu 2 , fl 1 }) and the formal input parameters of operation op. Predicates P 1 , P 2 , P and P 3 are as follows:

P1 = ⎛ ⎜ ⎜ ⎜ ⎝ cu1 ∈ ran(waitingQueue(fl1)) ∧ cu2 / ∈ ran(waitingQueue(fl1)) ∧ cu2 → fl1 ∈ tickets ⎞ ⎟ ⎟ ⎟ ⎠ P2 = (cu2 → fl1 ∈ tickets) P = ⎛ ⎜ ⎜ ⎜ ⎝ cu1 / ∈ ran(waitingQueue(fl1)) ∨ ⎛ ⎝ cu2 ∈ ran(waitingQueue(fl1)) ∧ Index(fl1, cu2) < Index(fl1, cu1)) ⎞ ⎠ ⎞ ⎟ ⎟ ⎟ ⎠ P3 = (cu1 → fl1 ∈ tickets) Proof obligation Automatic Proofs Interactive Proofs PO1 1 0 PO2 1 6

Table I PROOF RESULTS

To be discharged using the prover of AtelierB, proof obligations (PO1) and (PO2) are added as assertions (clause ASSERTIONS of the B notation) to machine FlightSystem of page 2. Table I gives the statistics we obtained on operations GetTicket, TakeTicket and WaitQueue. The proof are not very difficult, the automatic prover fails to discharge them because they require several steps and also the following rule, related to the sequence structure, is missing in its rule base:

a ∈ iseq(b)) ∧ a = [] ∧ c ∈ ran(tail(a)) ⇒ (tail(a)) -1 (c) = a -1 (c) -1 IV. CONCLUSION
In this paper, we have defined necessary and sufficient conditions for proving dynamic properties of the form Abs(P 2 , From P 1 Until P 3). Such a property ensures that starting from a state verifying P 1 , the system will not reach a state satisfying P 2 before predicate P 3 becomes true. The key idea of the suggested approach is to characterize the set of states that can be reached starting from any state verifying P 1 and before reaching any state that would satisfy P 3 . This set being defined, the proposal consists in proving that the execution of any operation on these states makes the system move to a state verifying P 3 or ¬P 2 . To ensure the correctness of the approach, proofs are carried out to formally establish the soundness and the completeness of the defined conditions.

Future work include the automation of this approach to make it more workable. We also plan to extend our approach to take into account other kinds of property patterns that would be interesting in information systems. An example of these patterns is the Response pattern that permits to specify that a state/event is always followed by another state/event. Such a pattern will be used to state, for instance, that a customer will get a place if he/she requests it.

Figure 1 .

 1 Figure 1. The B specification of the tickets management system

 Figure 2. Graphical representation of property Abs(P 2 , From P 1 Until P 3)