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Abstract—Two oscillators are needed for passive wireless
sensor readers: a radiofrequency local oscillator generating the
carrier within the bandpass of the sensor, and a clock triggering
analog to digital conversion of the signals returned by the
sensor. We assess the influence on measurement resolution of
these two oscillators, hinting at some design rules of the sensor
based on the characteristics of the oscillators as driven by
cost, size, or power consumption. We demonstrate that local
oscillator phase noise is a significant parameter in assessing the
resolution of passive acoustic sensor probed through a wireless
link, although with different characteristic conditions whether
the sensor is in a delay line configuration (short term –far from
carrier – response) or a resonator (long term – close to carrier
– response).

Keywords-surface acoustic wave; sensor; passive; wireless;
phase noise; RADAR.

I. INTRODUCTION

Wireless passive sensors are either piezoelectric or dielec-

tric transducers coupling with an incoming electromagnetic

field following conditions dependent on the physical prop-

erty under investigation. For instance, surface acoustic wave

(SAW) delay lines convert an incoming electromagnetic

pulse to a mechanical wave propagating on a piezoelectric

substrate. Mirrors patterned on this substrate reflect a frac-

tion of this wave back to the interdigitated transducer (IDT)

connected to the antenna: the direct piezoelectric effect

converts these acoustic pulses to electromagnetic signals

detected by the receiver. Hence, a passive acoustic delay

line reader operates following principles similar to RADAR,

with a delayed echo not associated with reflections of the

emitted signal over dielectric or conductive interfaces, but

with delays associated with a measurement. Thus, all the

well known RADAR techniques have been applied to passive

wireless sensing, whether dielectric [1], [2], [3] or based on

piezoelectric substrates [4], [5], [6], [7], [8], [9]: wideband

pulsed RADAR [10], [11], FMCW RADAR [12], [13],

FSCW RADAR [14], [8], [9], and chirped RADAR [15],

[16].

Since it is well known that the local oscillator character-

istics drives the detection capability of RADARs as will be

discussed in the first introductory section of this presentation

(Fig. 1), one might consider how local oscillator phase noise
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Figure 1. In case of a static target, a CW RADAR receiver noise detection
limit is associated with the local oscillator frequency fluctuation between
the emitted pulse at time t and the received pulse delayed by τ , the two-way
transit duration.

affects passive wireless sensor resolution [17]. We extend in

the third section the discussion from the classical passive

target to the short-term – wideband – delay line acoustic

sensor configuration in which the phase noise characteristics

far from the carrier defines the measurement resolution.

Since wideband acoustic delay lines are only compatible

with the allocated 2.45 GHz band, we consider in the fourth

section the same approach applied to narrowband resonators,

compliant with the narrowband 434 MHz radiofrequency

band, and the phase noise characteristics now shifted to the

region close to the carrier. Such considerations will bring us

in the fifth section to consider a second oscillator usually

found on such circuits: the clock defining the analog to

digital conversion rate. Thus, the reader is led throughout

this paper to consider the various regions of the phase noise

spectrum as a limiting factor for acoustic sensing resolution

depending on the transducer characteristic time constants.

II. PHASE NOISE INFLUENCE ON CW RADAR

This introductory section reminds the reader of basic

concepts related to phase noise of oscillators and their

effect on RADAR detection capability. We will focus on

the continuous wave (CW) RADAR where the explanation

is straight forward.

CW RADARs are used whenever a velocity information

is considered without ranging capability: a radiofrequency

(RF) wave is generated by an oscillator. This signal is on

the one hand fed to an antenna (after being amplified by a

power amplifier, PA) and on the other hand a fraction of the

output of the oscillator is sent to one input of a mixer. The

second input of this mixer is fed with the signal detected by
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either a second antenna in a bistatic configuration, or at the

output of a circulator in a monostatic configuration, after

amplification by a low noise amplifier (LNA). The output

of the mixer m is the product of the frequency generated at

time t by the oscillator but shifted by the Doppler frequency

due to target motion δf , and the oscillator frequency delayed

by a duration τ due to the electromagnetic wave propagation

in air to and from the target:

m = cos (2π (f(t) + δf))× cos (2π (f(t+ τ)))

∝ cos (2π (f(t) + δf ± f(t+ τ))) (1)

with only the difference term remaining after filtering the

output by a low pass filter aimed at removing the signal

at frequencies above f . Let us consider the case of slowly

moving targets, where δf will be considered negligible; then

m ≃ cos (2π (f(t)− f(t+ τ))). Ideally this term should

vanish when the target is not moving and assuming the

oscillator ideally stable, i.e., f(t) constant; the only beat

frequency would be associated to δf . However, oscillators

do exhibit phase noise, and thus f(t + τ) and f(t) differ:

the phase noise spectrum of an oscillator is defined as

the Fourier transform of the autocorrelation function of the

oscillator output frequency [18].

The classical CW RADAR detection limit concludes that

a moving target will only be detectable if its RADAR cross

section is large enough so that the returned power (echo)

is stronger than the power spectrum of the local oscillator:

the phase variation is expressed in dBc/Hz, or a power with

respect to the carrier power at an offset 1/τ from the carrier

frequency. As a concluding remark, long range RADAR is

interested in the behavior of the oscillator close to the carrier

(since τ = 2d/c with d the distance to the target and c the

velocity of an electromagnetic wave: d = 5− 50 km yields

τ = 33 − 333 µs in vacuum and thus the behavior of the

oscillator at 3 to 33 kHz from the carrier is of interest). On

the other hand, RADAR aimed at detecting moving walking

people with targets in the sub-100 m range will only be

affected by the phase noise above 1.5 MHz from the carrier.

III. APPLICATION TO SAW REFLECTIVE DELAY LINE

SENSING

One implementation of SAW delay line readers acts

exactly as a CW reader: a carrier is chopped in pulses

containing as many periods as there are electrodes in the

sensor IDT (Fig. 2).

The reader on the one hand emits these pulses whose

frequency is centered on the oscillator frequency output,

and the returned signal from the sensor is centered on the

same frequency, but shifted in time by a duration dependent

on the physical property under investigation (which most

significantly affects the acoustic wave velocity on the piezo-

electric substrate). Thus, the mixer output exhibits a series

of pulses whose rough delay is estimated through maximum

returned power (threshold) or cross-correlation; but it is well
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Figure 2. Typical response from a SAW delay line, here from a temperature
sensor with 8-bit coding sold by CTR Carinthian Tech Research (Villach,
Austria), here excited by a 40-ns long pulse centered on 2.40 GHz. The
pulse at 0 s is the excitation pulse, and the returned echos are located
between 1 and 2.2 µs.

known that only a phase measurement (with 2π uncertainty)

provides the required high accuracy on the acoustic velocity

and thus the measured physical quantity [19], [20].
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Figure 3. Demodulation circuit for probing wireless passive SAW sensors.
The mixer might be replaced by an I/Q demodulator in practical systems.

Let us now add to the time delay from the acous-

tic wave propagation another contribution to the detected

phase: the local oscillator intrinsic noise as characterized

by its phase noise. The phase noise of a signal V (t) =
(V0 + ε(t)) sin (2πf0t+∆ϕ(t)) is defined as [21] the

phase fluctuations in a 1 Hz-wide bandwidth

S∆ϕ =
∆ϕ2

RMS

measurement bandwidth
rad2/Hz

and the classical representation of the noise spectrum is

given by L(f) = 1
2S∆ϕ(f) = 10× log10

(

PSSB

PS

)

dBc/Hz.

Based on these informations, we will compute the phase

noise fluctuations of the local oscillators during time inter-

vals τ which are now given by the travel duration of the

electromagnetic wave in the medium surrounding the sensor

(negligible since readout ranges are in the tens of meters at

most, or tens of nanoseconds) and the acoustic delay which

is typically in the 1 to 5 µs range: the offset to the carrier

of interest to acoustic sensing is in the 200 kHz to 1 MHz

range.

This frequency range usually lies above the Leeson

frequency fL = fLO/(2QLO) with fLO and QLO the
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local oscillator resonator frequency and quality factor. This

characteristic frequency defines a frequency offset from the

carrier at which the resonator no longer acts as an energy

tank and becomes transparent to the feedback amplifier

noise. Above this frequency, the phase noise of the oscillator

is constant and solely defined by the power injected in the

resonator, the noise factor of the feedback amplifier and

the operating temperature. We shall come back to such

considerations in the design section.

Two practical applications will focus on a poor oscillator

assumed to exhibit -130 dBc/Hz, and an excellent oscillator

assumed to exhibit -170 dBc/Hz as the frequency offset of

interest. Another numerical application using -90 dBc/Hz is

justified by the fact that the returned signal noise floor is the

maximum of either the initial oscillator noise floor raised by

the power amplifier (PA) and low noise amplifier (LNA), or

the LNA noise floor set by its thermal noise FLNAkBT/PR

with FLNA ≃ 1.5 dB the noise factor of the reception

amplifier, 10 log10(kBT ) = −174 dBm the product of

the Boltzmann constant with the temperature T = 290 K,

and PR the received power. From this consideration, the

measurement resolution will first be constant as long as

the LNA noise floor is lower than the LO noise floor,

and drops once the returned power becomes so low that

the LNA noise floor rises above the LO noise floor. The

received power is related to the emitted power PE – limited

to PE = +10 dBm by radiofrequency emission regulations

in 434 and 2450 MHz ISM bands – through the free space

propagation losses and the sensor insertion losses. Free space

propagation losses FSPL =
(

4πdf
c

)

are associated with

energy distribution on a sphere generated by the emitter, and

in the case of a RADAR the link budget requires the use

of FSPL4 since the target itself acts as a point-like source

generating a spherical wave. The SAW sensor insertion loss

IL is a significant source of energy loss when probing

SAW delay lines since a typical IL value is -35 dB. Thus,

PR = PE × FSPL4 × IL and switching to a logarithmic

description, the noise floor on the return branch reaching the

mixer is either the floor of the oscillator raised by the noise

floor of PA and LNA, or the noise floor of the LNA amplifier

FLNA,dB+10 log10(kBT )−10 log10(PE×FSPL4)−IL).
The lower the oscillator phase noise floor, the smaller the

range at which the LNA noise floor becomes dominant, as

shown in the numerical application of Table I.

In such cases, the phase variations due to the local

oscillator are ∆ϕRMS =
√
2× 10−(130..170)/10 rad/

√
Hz.

Since we focus on measuring the phase within a 30 ns

long pulse, the measurement bandwidth is 60 MHz and

∆ϕRMS =
√
2× 10−(130..170)/10 × 60× 106 rad whose

numerical application yields to phase fluctuations from 0.2o

to 0.002o (for -130 and -170 dBc/Hz cases respectively).

We must now relate these phase fluctuations with the

phase variations due to a physical quantity variation: we

Operating freq. osc. noise floor distance

100 MHz -170 dBc/Hz 0.04 m
100 MHz -130 dBc/Hz 0.4 m
100 MHz -90 dBc/Hz 4.2 m

2450 MHz -170 dBc/Hz 0.002 m
2450 MHz -130 dBc/Hz 0.02 m
2450 MHz -90 dBc/Hz 0.2 m

Table I
DISTANCE AT WHICH THE LNA NOISE FLOOR REACHES THE LOCAL

OSCILLATOR NOISE FLOOR, THUS BECOMING DOMINANT AT THE MIXER

OUTPUT.
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Figure 4. Phase noise of a 2.45 GHz source generated by an Analog
Devices ADF4360-0 Phase Locked Loop (poorly controlled), and Rohde
& Schwartz SMA 100A tabletop frequency synthesizer set to 2450 and
434 MHz.

focus on a temperature sensor. An acoustic sensor exhibits a

phase rotation for every period, i.e., for a propagation length

of one wavelength λ. The elastic wave propagates on the

piezoelectric substrate at velocity v and the time-difference

due to the two-way trip d from IDT to the mirror yields a

phase shift of

∆ϕ = 2π × d/λ = 2π × d× f/v

The variation with temperature T of this phase difference is

associated with the velocity variation, so that

∂∆ϕ

∆ϕ

∣

∣

∣

∣

T

=
∂v

v

∣

∣

∣

∣

T

⇔ ∂∆ϕ(T ) = 2π
d× f

v
× ∂v

v

∣

∣

∣

∣

T

All quantities in this equation are known: for a LiNbO3

substrate, we consider that v ≃ 3000 m/s, ∂v/v ≃
60 ppm/K. Selecting d = 10 mm and f = 100 MHz (as

used in [22]), we conclude that 2π × 60 × 10−6 × 10−2 ×
108/3000 = 0.13 rad/K= 7.2 o/K.

By extending this analysis to various experimental param-

eters, we compare the local oscillator phase noise fluctuation

implication on the measurement resolution in Table II.

We conclude that the local oscillator stability becomes a

significant hindrance to high resolution temperature mea-

surements, and reaching the mK resolution as was done
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Phase noise half distance between reflectors resolution

-170 dBc/Hz 10 mm 2× 10−4 K

-170 dBc/Hz 1 mm 2× 10−3 K
-130 dBc/Hz 10 mm 0.02 K
-130 dBc/Hz 1 mm 0.2 K
-90 dBc/Hz 10 mm 2 K
-90 dBc/Hz 1 mm 20 K

Table II
TEMPERATURE MEASUREMENT RESOLUTION, ASSUMING A 60 PPM/K

TEMPERATURE DRIFT OF THE DELAY-LINE SENSOR, AS A FUNCTION OF

VARIOUS LOCAL OSCILLATOR PARAMETERS.

with the Hewlett Packard HP2830A resonator-based probes

is challenging.

Beyond the compliance with radiofrequency emission

regulations, the use of ultra-wideband (UWB) interroga-

tion strategies, e.g., Ground Penetrating RADAR based

approaches [22], yields the question of optimum operating

frequencies. Indeed, we have seen that the time delay is a

function of the acoustic velocity and propagation path length

(defined respectively by selecting appropriate single-crystal

piezoelectric substrate orientations, and design considera-

tions in positioning the mirrors on the sensor surface), but

also of the operating frequency:

∆ϕ = 2πd/λ = 2πdf/v = 2πfτ

where τ is the propagation duration of the pulse, i.e., ∂∆ϕ =
2πf∂τ ⇔ ∂τ = 1/(2πf)∂∆ϕ, providing the relationship

between phase noise and delay noise through the inverse of

the frequency.

The remaning design issue lies in the selection of the echo

pair used for computing acoustic propagation time delay and

thus identifying the physical quantity under investigation.

The first and last echos of a tag (start and stop bits) are

usually considered for such purposes. However, the further

away mirrors are, the longer the delay and thus the larger

the local oscillator fluctuations, associated with phase noise

rise. One should thus take care that the inverse of the

propagation delay does not reach the Leeson frequency fL
where the noise floor meets the rising phase noise slope:

fL = f0/(2Q). Considering a (very favorable) Q = 20000
resonator used for generating a 2.45 GHz oscillator, fL =
60 kHz and the associated propagation delay is 16 µs,

far above any practical limitation (such a delay would be

associated with a 24 mm-long propagation path). However,

for a more reasonable Q = 2000 [23], the Leeson frequency

reaches 600 kHz or a propagation delay of 1.6 µs. In this

case, using echos returned by mirror at extreme positions of

the delay line should be avoided (i.e., exhibiting propagation

delays larger than 1.6 µs) and adjacent echos should yield

results with higher resolutions.

IV. SENSOR DESIGN WITH RESPECT TO LOCAL

OSCILLATOR CHARACTERISTICS

Consider two applications: a 434 MHz delay line (which

would not comply with RF regulations) and a 2450 MHz

delay line. Resonators in the former frequency range exhibit

typical quality factors of 10000, and fL = 22 kHz, well

below the 200-1000 kHz range we have been considering:

a classical delay line design will be probed at best by the

reader. However at 2450 MHz, since the product Q × f is

constant for a given technology, the local oscillator Q drops

to 1800, and the Leeson frequency rises to 680 kHz. The

designer of a 2450 MHz delay line would be wise to avoid

the phase noise rise below fL and limit the maximum time

delay on the acoustic path to 1.5 µs. Since electromagnetic

clutter fades within the first 700 ns (assuming 100 m

range) and the typical pulse length is 40 ns spaced by

at least 100 ns to account for manufacturing variability,

limiting the delay to 1.5 µs still leaves enough space for

5 reflections, more than enough for multi-parameter-sensing

(one reference pulse and 4 pulses for probing 4 different

physical quantities, e.g., temperature [24], pressure [25] and

two chemical compounds [26].

V. APPLICATION TO SAW RESONATOR SENSING

SAW resonator probing aims at identifying a characteristic

frequency: in one embodiment of this approach, a frequency

sweep network analyzer sequentially probes multiple fre-

quencies in order to identify the frequency at which the

sensor returns a maximum power. SAW resonators store

energy during the electromagnetic signal emission phase,

and release this energy (as an electromagnetic wave at the

sensor resonance frequency f0) during the listening stage:

the time constant of each step is Q/(πf0) with Q the

sensor quality factor. The fastest approach to the best of

our knowledge [27] for probing a resonance frequency of a

resonator requires two signals at different frequencies, one

above and one below f0 (Fig. 5).

2Q/(  f)π

|S11|

f

Figure 5. For a dual-mode resonator, required for a differential measure-
ment, a minimum of 4 measurements each lasting 2Q/(πf) seconds, with
f the resonance frequency of one mode and Q its quality factor, is needed
(red). A more classical approach of a frequency sweep network analyzer
requires up to 128 measurements in the 434-MHz European ISM band
(blue).

Hence, the minimum measurement duration is 2Q/(πf0)
for each probed frequency. For f0 = 434 MHz and Q =
10000 in a dual resonator configuration, eight time constants

(two resonators, and for earch two-measurement points, and

for each one time constant for loading and unloading the

resonator) yield 59 µs measurement duration, so that the

oscillator stability at 17 kHz from the carrier is of interest.
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Phase noise frequency Q ∆fRMS(Hz) resolution

-170 dBc/Hz 434 MHz 10000 0.01 4.10−7 K

-130 dBc/Hz 434 MHz 10000 1 4.10−5 K
-90 dBc/Hz 434 MHz 10000 140 5 mK

-170 dBc/Hz 2.450 GHz 1500 2 10−5 K
-130 dBc/Hz 2.450 GHz 1500 230 1 mK
-90 dBc/Hz 2.450 GHz 1500 23000 0.1 K

Table III
FREQUENCY STANDARD DEVIATION AS A FUNCTION OF THE

CHARACTERISTICS OF THE RESONATOR USED AS SENSOR (DEFINING

THE TIME CONSTANT OF THE INTERROGATION).

The phase noise S∆ϕ and frequency noise (or stability) S∆f

at f from the carrier are related through

S∆f = f2 × S∆ϕ =
∆f2

RMS

BW

So, with a measurement bandwidth BW of 2f , frequency

fluctuations are given by

∆fRMS =
√

BW × f2 × 2L(f)

The result of this calculation is summarized in table III,

assuming that the Q × f product is constant, as is usually

considered for a given technology, with values representative

of SAW resonators patterned on a quartz substrate. The

temperature resolution – last column of Table III – is

computed assuming a 60 ppm/K sensitivity. This last result

scales as the temperature sensitivity of the substrate: a sensor

allowing for a 170 K measurement range within the 1.7 MHz

wide 434 MHz European ISM band – as sold by SENSeOR

(Mougins, France) – only exhibits a 5.7 ppm/K sensitivity

and hence the values in the last column are multiplied by

10.

Here again, for resonators acting as temperature sensors

with 2.5 kHz/K temperature sensitivity (in order to fit

a 170 K measurement range within the 1.7 MHz wide

434 MHz Industrial, Scientific and Medical (ISM) band, ac-

counting for manufacturing variations), the 25 Hz frequency

resolution (10 mK resolution) is only met if a reasonably

stable local oscillator is used as reference, with a phase noise

below -105 dBc/Hz. This result is consistent with the phase

noise spectra provided in [28], with a phase noise around

-105 dBc/Hz in the 500-5000 Hz carrier offset range at the

434 MHz DDS output. The former range boundary is met

when probing 128-samples in a frequency-sweep network

analyzer approach: 128 points each requiring 2Q/(πf0)
requires a duration of 1.8 ms or an update rate of 530 Hz.

VI. ANALOG TO DIGITAL CONVERSION JITTER

We now change oscillator type to consider the analog

to digital conversion (ADC) stage. The phase measurement

requires two simultaneous measurements of the I and Q

components of the returned signal after mixing with the local

RF oscillator. The typical pulse duration is 30 ns so that the

ADC bandwidth must be at least in the fs = 60 MHz range,

or practically (3 points/period at least) 100 MHz.

Measuring a phase with 0.13 rad resolution over the full

2π range requires bits = 6 bit resolution. Since the jitter

on the clock controlling the ADC yields a resolution loss

(linear scale) of SNR = (2πfsσt), the jitter σt must not

exceed

σt ≤ 2−bits/(2π × fs)

which is here equal to 42 ps [29]. However, increasing 10-

fold this resolution yields a 9 bit ADC resolution and a

maximum jitter of 5 ps.

On the other hand, let us estimate the jitter induced by an

oscillator exhibiting a -130 dBc/Hz phase noise level in the

200 kHz-200 MHz range, representative of the influence of

the clock controlling the ADC sampling at 100 MS/s for a

maximum duration of 5 µs. The RMS jitter (in seconds) is

given [30] by

σt =

√
2× 10−130/10 × 108

(2π × 108)

which is equal to 7 ps, dropping the lower integration limit

(200 kHz) by assuming that the constant phase noise level

extends to the carrier. Thus, although even a very poor refer-

ence oscillator controlling the ADC meets the requirements

of 9-bit resolution needed for high resolution temperature

measurements, care should nevertheless be taken to reach

sub-10 ps jitter. As an example, the Digital PLL gener-

ating the clock output of an iMX27 CPU as used on the

APF27-board from Armadeus Systems (Mulhouse, France)

for prototyping our experiments is specified at a maximum

of 200 ps, hardly usable for the application described here

[31].

VII. CONCLUSION

While the debate on the advantages between delay line

and resonator approaches is still ongoing, local oscillator

characteristics brings some hint on which strategy might

bring the most accurate result. From a local oscillator

perspective, moving the frequency offset as far as possible

from the carrier, i.e., allowing for as short a duration

between various measurements of the sensor characteristics

as possible, clearly hints at an advantage towards delay

lines. However, this partial picture does not include the

receiver noise level, especially the high bandwidth on the

ADC sampling required to recover and digitize the fast delay

line response: only an extremely stable (low jitter) clocking

circuit for the receiver ADC will provide measurements with

resolutions comparable to those of resonators. Furthermore,

as opposed to FMCW or frequency sweep approaches which

require tunable frequency sources (VCO, frac-PLL, DDS),

a pulsed (UWB-like) delay line approach only requires a

fixed frequency source generating a stable signal within

the bandpass of the sensor, hence allowing for improved

stability. Such results are most significantly the target of

high quality factor piezoelectric resonator based oscillators

aimed at reaching the targetted radiofrequency band.
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Design rules concerning the oscillator characteristics are

provided for delay lines: the maximum two-way trip duration

should be lower than the inverse of the Leeson frequency,

while only low noise floor enables high resolution mea-

surements as explicitly stated with relationships between

local oscillator phase noise densities and measured returned

signal phase resolution. For resonator probed through a

frequency sweep network analyzer approach, the tunable

local oscillator source is clearly a limiting factor in the

measured resonance frequency resolution.
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