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This article is devoted to completing some aspects of the classical Cauchy-Lipschitz (or Picard-Lindelöf) theory for general nonlinear systems posed on time scales, that are closed subsets of the set of real numbers. Partial results do exist but do not cover the framework of general dynamics on time-scales encountered e.g. in applications to control theory. In the present work, we first introduce the notion of absolutely continuous solution for shifted and non shifted ∆-Cauchy problems, and then the notion of a maximal solution. We state and prove a Cauchy-Lipschitz theorem, providing existence and uniqueness of the maximal solution of a given ∆-Cauchy problem under suitable assumptions like regressivity and local Lipschitz continuity, and discuss some related issues like the behavior of maximal solutions at terminal points.

Introduction

The time scale theory was introduced by S. Hilger in his PhD thesis [START_REF] Hilger | Ein Maßkettenkalkül mit Anwendungen auf Zentrumsmannigfaltigkeiten[END_REF] in 1988 in order to unify discrete and continuous analysis, with the general idea of extending classical theories on an arbitrary non empty closed subset T of R. Such a closed subset T is called a time scale. The objective is to establish the validity of some results both in the continuous case T = R and in the purely discrete case T = N, but also to treat more general models of processes involving both continuous and discrete time elements. We refer the reader e.g. to [START_REF] Gamarra | Complex discrete dynamics from simple continuous population models[END_REF][START_REF] May | Simple mathematical models with very complicated dynamics[END_REF] where the authors study a seasonally breeding population whose generations do not overlap or to [START_REF] Atici | An application of time scales to economics[END_REF] for applications to economy. By considering T = {0} ∪ λ N with 0 < λ < 1, time scale concept also allows to cover quantum calculus [START_REF] Kac | Quantum calculus. Universitext[END_REF]. Since S. Hilger defined the ∆-derivative and the ∆-integral on a time scale, many authors have extended to time scales various results from the continuous or discrete standard calculus theory. We refer the reader to the surveys [START_REF] Agarwal | Basic calculus on time scales and some of its applications[END_REF][START_REF] Agarwal | Inequalities on time scales: a survey[END_REF][START_REF] Bohner | Dynamic equations on time scales[END_REF][START_REF] Bohner | Advances in dynamic equations on time scales[END_REF]. However, due to the recency of the field, the basic nonlinear theory is yet to be developed and refined. Some Cauchy-Lipschitz (Picard-Lindelöf) type results on time scales are provided in [START_REF] Bohner | Dynamic equations on time scales[END_REF][START_REF] Cichoń | Weak solutions for the dynamic Cauchy problem in Banach spaces[END_REF][START_REF] Hilger | Analysis on measure chains-a unified approach to continuous and discrete calculus[END_REF][START_REF] Kaymakçalan | Existence and comparison results for dynamic systems on a time scale[END_REF][START_REF] Kubiaczyk | Existence of solutions of the dynamic Cauchy problem on infinite time scale intervals[END_REF][START_REF] Lakshmikantham | of Mathematics and its Applications[END_REF] where the authors prove the existence and uniqueness of solutions for ∆-Cauchy problems of the form:

q ∆ = f (q, t), q(t 0 ) = q 0 , (1) 
where t 0 ∈ T. Note that papers are devoted to ∆-Cauchy problems with parameter in [START_REF] Hilscher | Differentiation of solutions of dynamic equations on time scales with respect to parameters[END_REF] and with time delays in [START_REF] Karpuz | Existence and uniqueness of solutions to systems of delay dynamic equations on time scales[END_REF]. Many authors are also interested in shifted ∆-Cauchy problems

q ∆ = f (q σ , t), q(t 0 ) = q 0 , (2) 
where q σ = q • σ (see further for the precise definitions of these notions). Such shifted problems are often used as models in the existing literature (see e.g.

• q 0 is not necessarily an initial or a final condition;

• the solutions take their values in an open subset Ω of R n .

We also investigate the globality feature of the maximal solution. Our results are established first for general non shifted ∆-Cauchy problems [START_REF] Agarwal | Basic calculus on time scales and some of its applications[END_REF] and then for shifted ones [START_REF] Agarwal | Inequalities on time scales: a survey[END_REF].

Our study uses the work of A. Cabada and D. Vivero in [START_REF] Cabada | Criterions for absolute continuity on time scales[END_REF], who proved a criterion for absolutely continuous functions written as the ∆-integral of their ∆-derivatives. Their result allows us to give a ∆-integral characterization of the solutions of ∆-Cauchy problems which is instrumental in our proofs.

Notice that analogous results on ∇-Cauchy problems (ρ-shifted or not) can be derived in a similar way.

The article is structured as follows. Section 2 is devoted to recall basic notions of time scale calculus. In Section 3, we define the notions of a solution, of an extension of a solution, of a maximal and a global solution for general non shifted ∆-Cauchy problems. Under suitable assumptions on the dynamics, we establish a Cauchy-Lipschitz theorem and then investigate the behavior of the maximal solution at its terminal points. Section 4 is devoted to establish similar results for shifted ∆-Cauchy problems.

Preliminaries on time scale calculus

In this section, we recall basic results in time scale calculus. The first part concerns the structure of time scales and the notion of ∆-differentiability (see [START_REF] Bohner | Dynamic equations on time scales[END_REF]). The second part concerns the ∆-Lebesgue measure defined in terms of Carathéodory extension (see [START_REF] Bohner | Advances in dynamic equations on time scales[END_REF][START_REF] Guseinov | Integration on time scales[END_REF]) and surveys results on ∆-integrability proved in [START_REF] Cabada | Expression of the Lebesgue ∆-integral on time scales as a usual Lebesgue integral: application to the calculus of ∆-antiderivatives[END_REF]. The last part gathers properties of absolutely continuous functions borrowed from [START_REF] Cabada | Criterions for absolute continuity on time scales[END_REF].

Let n ∈ N * . Throughout, the notation • stands for the Euclidean norm of R n . For every x ∈ R n and every R ≥ 0, the notation B(x, R) stands for the closed ball of R n centered at x and with radius R.

Time scale and ∆-differentiability

Let T be a time scale, that is, a closed subset of R. We assume that card(T) ≥ 2. For every A ⊂ R, we denote A T = A ∩ T. An interval of T is defined by I T where I is an interval of R.

The backward and forward jump operators ρ, σ : T → T are respectively defined by

ρ(t) = sup{s ∈ T | s < t}, σ(t) = inf{s ∈ T | s > t},
for every t ∈ T, where ρ(min T) = min T (resp. σ(max T) = max T) whenever T admits a minimum (resp. a maximum).

A point t ∈ T is said to be a left-dense (respectively, left-scattered, rightdense or right-scattered) point of T if ρ(t) = t (respectively, ρ(t) < t, σ(t) = t or σ(t) > t). The graininess function µ : T → R + is defined by µ(t) = σ(t)t for every t ∈ T.

We set T κ = T\{max T} whenever T admits a left-scattered maximum, and

T κ = T otherwise. A function q : T → R n is said to be ∆-differentiable at t ∈ T κ if the limit q ∆ (t) = lim s→t s∈T q σ (t) -q(s) σ(t) -s
exists in R n , where q σ = q • σ. We recall the following well known results (see [START_REF] Bohner | Dynamic equations on time scales[END_REF]):

• if t ∈ T κ is a right-dense point of T, then q is ∆-differentiable at t if and only if the limit

q ∆ (t) = lim s→t s∈T q(t) -q(s) t -s exists in R n ;
• if t ∈ T κ is a right-scattered point of T and if q is continuous at t, then q is ∆-differentiable at t, and

q ∆ (t) = q σ (t) -q(t) µ(t) .

Lebesgue ∆-measure and Lebesgue ∆-integrability

Recall that the set of right-scattered points R ⊂ T is at most countable (see [START_REF] Cabada | Expression of the Lebesgue ∆-integral on time scales as a usual Lebesgue integral: application to the calculus of ∆-antiderivatives[END_REF]Lemma 3.1]). Let µ ∆ be the Lebesgue ∆-measure on T defined in terms of Carathéodory extension in [START_REF] Bohner | Advances in dynamic equations on time scales[END_REF]Chapter 5]. We also refer the reader to [START_REF] Agarwal | Basic properties of Sobolev's spaces on time scales[END_REF][START_REF] Cabada | Expression of the Lebesgue ∆-integral on time scales as a usual Lebesgue integral: application to the calculus of ∆-antiderivatives[END_REF][START_REF] Guseinov | Integration on time scales[END_REF] for more details on the µ ∆ -measure theory. In particular, for all elements a, b of T such that a ≤ b, one has µ

∆ ([a, b[ T ) = b -a. Recall that A ⊂ T is a µ ∆ -measurable set of T if and only if A is an usual µ L -measurable set of R, where µ L denotes the usual Lebesgue measure (see [9, Proposition 3.1]). Moreover, if A ⊂ T\{sup T}, then µ ∆ (A) = µ L (A) + r∈A∩R µ(r).
Let A ⊂ T. A property is said to hold ∆-almost everywhere (shortly ∆-a.e.) on A if it holds for every t ∈ A\A 0 , where A 0 ⊂ A is some µ ∆ -measurable subset of T satisfying µ ∆ (A 0 ) = 0. In particular, since µ ∆ ({r}) = µ(r) > 0 for every r ∈ R, we conclude that if a property holds ∆-a.e. on A, then it holds for every r ∈ A ∩ R.

Let A ⊂ T\{sup T} be a µ ∆ -measurable set of T. Consider a function q defined ∆-a.e. on A with values in R n . Let à = A∪]r, σ(r)[ r∈A∩R , and let q be the extension of q defined µ L -a.e. on à by

q(t) = q(t) if t ∈ A q(r) if t ∈]r, σ(r)[ for every r ∈ A ∩ R.
We recall that q is µ ∆ -measurable on A if and only if q is µ L -measurable on à (see [START_REF] Cabada | Expression of the Lebesgue ∆-integral on time scales as a usual Lebesgue integral: application to the calculus of ∆-antiderivatives[END_REF]Proposition 4.1]).

The functional space L ∞ T (A, R n ) is the set of all functions q defined ∆-a.e. on A, with values in R n , that are µ ∆ -measurable on A and such that sup ess τ ∈A q(τ ) < +∞.

Endowed with the norm q L ∞ T (A) = sup ess τ ∈A q(τ ) , it is a Banach space (see [START_REF] Agarwal | Basic properties of Sobolev's spaces on time scales[END_REF]Theorem 2.5]). The functional space L 1 T (A, R n ) is the set of all functions q defined ∆-a.e. on A, with values in R n , that are µ ∆ -measurable on A and such that A q(τ ) ∆τ < +∞. if and only if the two following conditions are satisfied:

Endowed with the norm q

L 1 T (A,R n ) = A q(τ ) ∆τ , it is a Banach space (see [3, Theorem 2.5]). Recall that if q ∈ L 1 T (A, R n ) then A q(τ ) ∆τ = Ã q(τ ) dτ = A q(τ ) dτ + r∈A∩R µ(r)q(r) (see [9, Theorems 5.1 and 5.2]). Note that if A is bounded then L ∞ T (A, R n ) ⊂ L 1 T (A, R n ).

Properties of absolutely continuous functions

1. q is ∆-differentiable ∆-a.e. on [a, b[ T and q ∆ ∈ L 1 T ([a, b[ T , R n ); 2. For every t ∈ [a, b] T , there holds q(t) = q(t 0 ) + [t0,t[ T q ∆ (τ ) ∆τ
whenever t ≥ t 0 , and

q(t) = q(t 0 ) - [t,t0[ T q ∆ (τ ) ∆τ whenever t ≤ t 0 .
This result can be easily derived from [START_REF] Cabada | Criterions for absolute continuity on time scales[END_REF]Theorem 4.1]. By combining Proposition 1 and the usual Lebesgue's point theory in R, we infer the following result (see also [START_REF] Zhan | On existence of optimal control governed by a class of the first-order linear dynamic systems on time scales[END_REF] for a similar result).

Proposition 2. Let t 0 ∈ [a, b] T and q ∈ L 1 T ([a, b[ T , R n ). Let Q be the function defined on [a, b] T by Q(t) = [t0,t[ T q(τ ) ∆τ if t ≥ t 0 ,

and by

Q(t) = - [t,t0[ T q(τ ) ∆τ if t ≤ t 0 . Then Q ∈ AC([a, b] T ) and Q ∆ = q ∆-a.e. on [a, b[ T .
3 General non shifted ∆-Cauchy problem Throughout this section we consider the general non shifted ∆-Cauchy problem (∆-CP) q ∆ (t) = f (q(t), t), q(t 0 ) = q 0 , where t 0 ∈ T, q 0 ∈ Ω, where Ω is a non empty open subset of R n , and f : Ω × T \ {sup T} → R n is a ∆-Carathéodory function. The notation K stands for the set of compact subsets of Ω.

Preliminaries

In what follows it will be important to distinguish between three cases:

1. t 0 = min T;
2. t 0 = max T;

3. t 0 = inf T and t 0 = sup T.
Indeed, the interval of definition of a solution of (∆-CP) will depend on the specific case under consideration. If t 0 = min T, then a solution can only go forward since ]-∞, t 0 [ T = ∅. If t 0 = max T, then a solution can only go backward.

If t 0 = inf T and t 0 = sup T, then a solution can go backward and forward.

Definition 1. For all (a, b) ∈ T 2 , we say that a t 0 b if

• a = t 0 < b in the case t 0 = min T;
• a < t 0 = b in the case t 0 = max T;

• a < t 0 < b in the case t 0 = inf T and t 0 = sup T.

If a t 0 b then [a, b]
T is a potential interval of definition for a solution of (∆-CP). Due to this difference of intervals, it is required to make different assumptions on f accordingly, whence the following series of definitions. Definition 2. The function f is said to be locally bounded on Ω × T\{sup T} if, for every K ∈ K, for all (a, b) ∈ T 2 such that a < b, there exists

M ≥ 0 such that f (x, t) ≤ M, (H ∞ ) for every x ∈ K and for ∆-a.e. t ∈ [a, b[ T .
In what follows this property will be referred to as (H ∞ ).

Definition 3. The function f is said to be locally Lipschitz continuous with respect to the first variable at right-dense points if, for every x ∈ Ω and every right-dense point t ∈ T\{sup T}, there exist R > 0, δ > 0 and L ≥ 0 such that B(x, R) ⊂ Ω and t + δ ∈ T, and such that

f (x 1 , t) -f (x 2 , t) ≤ L x 1 -x 2 , (H rd loc-Lip ) for all x 1 , x 2 ∈ B(x, R) and for ∆-a.e. t ∈ [t, t + δ[ T .
In what follows this property will be referred to as (H rd loc-Lip ). Definition 4. The function f is said to be forward Ω-stable at right-scattered points if the mapping

G + (t) : Ω → R n x → x + µ(t)f (x, t) (H forw stab )
takes its values in Ω, for every t ∈ R.

In what follows this property will be referred to as (H forw stab ). Definition 5. The function f is said to be locally Lipschitz continuous with respect to the first variable at left-dense points if, for every x ∈ Ω and every left-dense point t ∈ T\{inf T}, there exist R > 0, δ > 0 and L ≥ 0 such that B(x, R) ⊂ Ω and tδ ∈ T and such that

f (x 1 , t) -f (x 2 , t) ≤ L x 1 -x 2 , (H ld loc-Lip ) for all x 1 , x 2 ∈ B(x, R) and for ∆-a.e. t ∈ [t -δ, t[ T .
In what follows this property will be referred to as (H ld loc-Lip ). Definition 6. The function f is said to be backward regressive at right-scattered points if

G + (t) is invertible, (H back regr ) for every t ∈ R.
In what follows this property will be referred to as (H back regr ). Assumption (H ∞ ) will be instrumental to provide a ∆-integral characterization of the solutions of (∆-CP) (see Lemma 1 in Section 5.1). The other assumptions play a role in order to go forward or backward for a solution of a non shifted ∆-Cauchy problem. More precisely, (H rd loc-Lip ) and (H forw stab ) allow to go forward, and (H ld loc-Lip ) and (H back regr ) allow to go backward (see the proofs of Propositions 3 and 4 in Section 5.1 for more details).

In view of investigating global solutions, the following definition will be also useful.

Definition 7. The function f is said to be globally Lipschitz continuous if there exists L ≥ 0 such that

f (x 1 , t) -f (x 2 , t) ≤ L x 1 -x 2 .
(H glob Lip ) for all x 1 , x 2 ∈ Ω and for ∆-a.e. t ∈ T\{sup T}.

In what follows this property will be referred to as (H glob Lip ).

Definition of a maximal solution

We first define the notion of a solution of (∆-CP) on an interval [a, b] T with a t 0 b.

Definition 8. Let (a, b) ∈ T 2 be such that a t 0 b and let q : [a, b] T → Ω. The couple (q, [a, b] T ) is said to be a solution of (∆-CP) if q ∈ AC([a, b] T ), if q(t 0 ) = q 0 , and if q ∆ (t) = f (q(t), t) for ∆-a.e. t ∈ [a, b[ T . Note that, if (q, [a, b] T ) is a solution of (∆-CP), then (q, [a ′ , b ′ ] T ) is as well a solution of (∆-CP) for all a ′ , b ′ ∈ [a, b] T satisfying a ′ t 0 b ′ .
In view of defining the notion of a solution of (∆-CP) on more general intervals, we set

I = {I T | ∃a, b ∈ I T , a t 0 b}.
The set I is the set of potential intervals of T for a solution of (∆-CP).

Definition 9. Let I T ∈ I and let q :

I T → Ω. The couple (q, I T ) is said to be a solution of (∆-CP) if (q, [a, b] T ) is a solution of (∆-CP) for all a, b ∈ I T satisfying a t 0 b.
Finally, we define the concept of a maximal solution.

Definition 10. Let (q, I T ) and (q 1 , I 1 T ) be two solutions of (∆-CP). The solution (q 1 , I 1 T ) is said to be an extension of the solution (q, I T ) if I T ⊂ I 1 T and q 1 = q on I T . A solution (q, I T ) of (∆-CP) is said to be maximal if, for every extension (q 1 , I 1 T ) of (q, I T ), there holds I 1 T = I T . A solution (q, I T ) of (∆-CP) is said to be global if I T = T.

Note that, if (q, I T ) is a global solution of (∆-CP), then (q, I T ) is a maximal solution of (∆-CP).

Main results

Recall that we consider the general non shifted ∆-Cauchy problem

(∆-CP) q ∆ (t) = f (q(t), t), q(t 0 ) = q 0 ,
where t 0 ∈ T, q 0 ∈ Ω, where Ω is a non empty open subset of R n , and f : Ω × T \ {sup T} → R n is a ∆-Carathéodory function. We have the following general Cauchy-Lipschitz result.

Theorem 1. We make the following assumptions on the dynamics f , depending on t 0 .

1. If t 0 = min T, then we assume that

• f satisfies (H ∞ ), that is, f is locally bounded on Ω × T\{sup T};
• f satisfies (H rd loc-Lip ), that is, f is locally Lipschitz continuous with respect to the first variable at right-dense points;

• f satisfies (H forw stab ), that is, f is forward Ω-stable at right-scattered points.
2. If t 0 = max T, then we assume that

• f satisfies (H ∞ ), that is, f is locally bounded on Ω × T\{sup T}; • f satisfies (H ld loc-Lip ),
that is, f is locally Lipschitz continuous with respect to the first variable at left-dense points;

• f satisfies (H back regr ), that is, f is backward regressive in right-scattered points.

3. If t 0 = inf T and t 0 = sup T, then we assume that

• f satisfies (H ∞ ), that is, f is locally bounded on Ω × T\{sup T}; • f satisfies (H rd loc-Lip ),
that is, f is locally Lipschitz continuous with respect to the first variable at right-dense points;

• f satisfies (H forw stab ), that is, f is forward Ω-stable at right-scattered points;

• f satisfies (H ld loc-Lip ), that is, f is locally Lipschitz continuous with respect to the first variable at left-dense points;

• f satisfies (H back regr ), that is, f is and backward regressive in rightscattered points.

Then, the non shifted ∆-Cauchy problem (∆-CP) has a unique maximal solution (q, I T ). Moreover, (q, I T ) is the maximal extension of any other solution of (∆-CP). This theorem is proved in Section 5.1. The following result gives information on the behavior of a maximal solution at its terminal points.

Theorem 2. Under the assumptions of Theorem 1, let (q, I T ) be the maximal solution of the non shifted ∆-Cauchy problem (∆-CP). Then either I T = T, that is, the maximal solution (q, I T ) is global, or the maximal solution is not global and then

1. if t 0 = min T then I T = [t 0 , b[ T where b ∈]t 0 , +∞[ T is a left-dense point of T; 2. if t 0 = max T then I T =]a, t 0 ] T where a ∈] -∞, t 0 [ T is a right-dense point of T; 3. if t 0 = inf T and t 0 = sup T then I T =]a, +∞[ T or I T =] -∞, b[ T or I T = ]a, b[ T , where a ∈] -∞, t 0 [ T is a right-dense point of T and b ∈]t 0 , +∞[ T is a left-dense point of T;
and moreover, for every K ∈ K there exists t ∈ I T (close to a or b depending on the cases listed above) such that q(t) ∈ Ω \ K.

This theorem is proved in Section 5.2. It states that the maximal solution must go out of any compact of Ω near its terminal points whenever it is not global.

The following last result states that, under global Lipschitz assumption, the maximal solution is global.

Theorem 3. If t 0 = min T, Ω = R n , if f satisfies (H ∞ ), that is, f is locally bounded on R n × T\{sup T}, and if f satisfies (H glob
Lip ), that is, f is globally Lipschitz continuous, then the non shifted ∆-Cauchy problem (∆-CP) has a unique maximal solution (q, I T ), which is moreover global.

The proof is done in Section 5.3.

Remark 1.

As an application of Theorem 3, we recover the well known fact that, in the linear case

q ∆ (t) = h(t) × q(t),
where h ∈ L ∞ T (T\{sup T}, R n×n ), solutions are global.

Further comments

In this section, we provide simple examples (in the one-dimensional case) showing the sharpness of the assumptions made in Theorem 1. Indeed, if one of these assumptions is not satisfied, then the existence or the uniqueness of the maximal solution is no more guaranteed.

Example 1 (Lack of Assumption (H rd loc-Lip ) in the first case). Let T = [0, +∞[, Ω = R, t 0 = 0, q 0 = 0 and f : R × T → R be defined by f (x, t) = 2 |x|. The function f obviously satisfies (H forw stab ) since R = ∅, however it does not satisfy (H rd loc-Lip ). The corresponding ∆-Cauchy problem (∆-CP) has two global solutions q 1 and q 2 given by q 1 (t) = 0 and q 2 (t) = t 2 , for every t ∈ T.

This example shows that, in the absence of Assumption (H rd loc-Lip ), the uniqueness of the maximal solution is not guaranteed.

Example 2 (Lack of Assumption (H forw stab ) in the first case). Let T = {0, 1}, Ω =] -1, 1[, t 0 = 0, q 0 = 0 and f : Ω × {0} → R be defined by f (x, t) = 1. The function f obviously satisfies (H rd loc-Lip ) since T\{sup T} = {0} does not admit any right-dense point of T, however it does not satisfy (H forw stab ) since x+1 / ∈ Ω for x ∈ [0, 1[. Since q(0) = 0 and q(1) = q(0) + µ(0)f (q(0), 0) imply q(1) = 1 /

∈ Ω, we conclude that (∆-CP) does not admit any solution.

Therefore, in the absence of Assumption (H forw stab ), (∆-CP) may fail to have a solution.

Example 3 (Lack of Assumption (H ld loc-Lip ) in the second case). Let T =] -∞, 0], Ω = R, t 0 = 0, q 0 = 0 and f : R × T → R be defined by f (x, t) = -2 |x|. The function f obviously satisfies (H back regr ) since R = ∅, however it does not satisfy (H ld loc-Lip ). The corresponding ∆-Cauchy problem (∆-CP) ha two global solutions q 1 and q 2 given by q 1 (t) = 0 and q 2 (t) = t 2 for every t ∈ T.

This example shows that, in the absence of Assumption (H ld loc-Lip ), the uniqueness of the maximal solution is not guaranteed.

Example 4 (Lack of Assumption (H back regr ) in the second case). Let T = {0, 1}, Ω = R, t 0 = 1, q 0 ∈ R and f : R × {0} → R be defined by f (x, t) = -x. The function f obviously satisfies (H ld loc-Lip ) since T\{inf T} = {1} does not admit any left-dense point of T, however it does not satisfy (H back regr ) since G + (0) = 0. As a consequence, if q 0 = 0, (∆-CP) does not admit any solution. Indeed, q(1) = q 0 and q(1) = q(0) + µ(0)f (q(0), 0) imply q(1) = 0, which is a contradiction. If q 0 = 0, we obtain an infinite number of global solutions. Indeed, any function q defined on T with q(1) = 0 is then a global solution of (∆-CP).

General shifted ∆-Cauchy problem

Throughout this section we consider the general shifted ∆-Cauchy problem

(∆-CP σ ) q ∆ (t) = f (q σ (t), t), q(t 0 ) = q 0 ,
where t 0 ∈ T, q 0 ∈ Ω, where Ω is a non empty open subset of R n and f : Ω × T\{sup T} → R n is a ∆-Carathéodory function.

The results of the section follow the same lines as in the previous section. Therefore we do not give any proof nor counterexamples as above. Some comments are however done in Section 5.4.

Preliminaries

As in Section 3.1, it will be important to distinguish between three cases:

1. t 0 = min T; 2. t 0 = max T; 3. t 0 = inf T and t 0 = sup T.
With respect to Section 3.1, we introduce two additional concepts. Definition 11. The function f is said to be backward Ω-stable at right-scattered points if the mapping

G -(t) : Ω → R n x → x -µ(t)f (x, t) (H back stab )
takes its values in Ω, for every t ∈ R.

In what follows this property will be referred to as (H back stab ).

Definition 12. The function f is said to be forward regressive at right-scattered points if

G -(t) : Ω → R n is invertible, (H forw regr ) for every t ∈ R.
In what follows this property will be referred to as (H forw regr ).

These above assumptions play a role in order to go forward or backward for a solution of a shifted ∆-Cauchy problem. Precisely, (H rd loc-Lip ) and (H forw regr ) allow to go forward. Similarly, (H ld loc-Lip ) and (H back stab ) allow to go backward.

Definition of a maximal solution

Definition 13. Let (a, b) ∈ T 2 satisfying a t 0 b and let q : [a, b] T → Ω. The couple (q, [a, b] T ) is said to be a solution of (∆-CP σ ) if q ∈ AC([a, b] T ), q(t 0 ) = q 0 , and q ∆ (t) = f (q σ (t), t) for ∆-a.e. t ∈ [a, b[ T . Definition 14. Let I T ∈ I and let q : I T → Ω. The couple (q, I T ) is said to be a solution of (∆-CP σ ) if (q, [a, b] T ) is a solution of (∆-CP σ ) for all a, b ∈ I T satisfying a t 0 b. Definition 15. Let (q, I T ) and (q 1 , I 1 T ) be two solutions of (∆-CP σ ). The solution (q 1 , I 1 T ) is said to be an extension of the solution (q, I T ) if I T ⊂ I 1 T and q 1 = q on I T . A solution (q, I T ) of (∆-CP σ ) is said to be maximal if, for every extension (q 1 , I 1 T ) of (q, I T ), there holds I 1 T = I T . A solution (q, I T ) of (∆-CP σ ) is said to be global if I T = T.

Main results

Recall that we consider the general shifted ∆-Cauchy problem (∆-CP σ ) q ∆ (t) = f (q σ (t), t), q(t 0 ) = q 0 , where t 0 ∈ T, q 0 ∈ Ω where Ω is a non empty open subset of R n and f : Ω × T\{sup T} → R n is a ∆-Carathéodory function.

Theorem 4. We make the following assumptions on the dynamics f , depending on t 0 .

1. If t 0 = min T, then we assume that

• f satisfies (H ∞ ), that is, f is locally bounded on Ω × T\{sup T};
• f satisfies (H rd loc-Lip ), that is, f is locally Lipschitz continuous with respect to the first variable at right-dense points;

• f satisfies (H forw regr ), that is, f is forward regressive in right-scattered points.

2. If t 0 = max T, then we assume that

• f satisfies (H ∞ ), that is, f is locally bounded on Ω × T\{sup T};
• f satisfies (H ld loc-Lip ), that is, f is locally Lipschitz continuous with respect to the first variable at left-dense points;

• f satisfies (H back stab ), that is, f is backward Ω-stable in right-scattered points.

3. If t 0 = inf T and t 0 = sup T, then we assume that Then the shifted ∆-Cauchy problem (∆-CP σ ) has a unique maximal solution (q, I T ). Moreover, (q, I T ) is the maximal extension of any other solution of (∆-CP σ ) Theorem 5. Under the assumptions of Theorem 4, let (q, I T ) be the maximal solution of the shifted ∆-Cauchy problem (∆-CP σ ). Then either I T = T, that is, the maximal solution (q, I T ) is global, or the maximal solution is not global and then

• f satisfies (H ∞ ), that is, f is locally bounded on Ω × T\{sup T}; • f satisfies (H rd loc-Lip ),
1. if t 0 = min T then I T = [t 0 , b[ T where b ∈]t 0 , +∞[ T is a left-dense point of T; 2. if t 0 = max T then I T =]a, t 0 ] T where a ∈] -∞, t 0 [ T is a right-dense point of T; 3. if t 0 = inf T and t 0 = sup T then I T =]a, +∞[ T or I T =] -∞, b[ T or I T =]a, b[ T where a ∈]-∞, t 0 [ T is a right-dense point of T and b ∈]t 0 , +∞[ T is a left-dense point of T;
and moreover, for every K ∈ K there exists t ∈ I T (close to a or b depending on the cases listed above) such that q(t) ∈ Ω \ K.

Theorem 6. If t 0 = max T, Ω = R n , if f satisfies (H ∞ ), that is, f is locally bounded on R n × T\{sup T}, and if f satisfies (H glob Lip )
, that is, f is globally Lipschitz continuous, then, the shifted ∆-Cauchy problem (∆-CP σ ) has a unique maximal solution (q, I T ), which is moreover global.

Remark 2. As in Remark 1, in the linear case the maximal solution of any shifted ∆-Cauchy problem is automatically global.

Proofs of the results

Proof of Theorem 1

If f satisfies (H ∞ ), then for all (a, b) ∈ T 2 such that a < b, there holds

f (q, t) ∈ L ∞ T ([a, b[ T , R n ) ⊂ L 1 T ([a, b[ T , R n ), (4) 
for every q ∈ C ([a, b] T , R n ). Then, from Section 2.3, we have the following ∆-integral characterization of the solutions of (∆-CP).

Lemma 1. Let I T ∈ I and let q : I T → Ω. If f satisfies (H ∞ ), then the couple (q, I T ) is a solution of (∆-CP) if and only if for all a, b ∈ I T satisfying a t 0 b, one has q ∈ C ([a, b] T ) and

q(t) = q 0 + [t0,t[ T f (q(τ ), τ ) ∆τ if t ≥ t 0 , q 0 -[t,t0[ T f (q(τ ), τ ) ∆τ if t ≤ t 0 . for every t ∈ [a, b] T .
This characterization allows one to prove the following result.

Lemma 2. If f satisfies (H ∞ ), then every solution of (∆-CP) can be extended to a maximal solution.

Proof. Let (q, I T ) be a solution of (∆-CP). Let us define the non empty set F of extensions of (q, I T ). The set F is ordered by (q 1 , I 1 T ) ≤ (q 2 , I 2 T ) if and only if (q 2 , I 2 T ) is an extension of (q 1 , I 1 T ).

Let us prove that F is inductive. Let G = ∪ p∈P {(q p , I p T )} be a non empty totally ordered subset of F . Let us prove that G admits an upper bound.

Let us define I = ∪ p∈P I p . This is an interval of R, since t 0 ∈ ∩ p∈P I p . Then I T = ∪ p∈P I p T ∈ I. For every t ∈ I T , there exists p ∈ P such that t ∈ I p T and, since G is totally ordered, if t ∈ I p1 T ∩ I p2 T then q p1 (t) = q p2 (t). Consequently, we can define q by ∀t ∈ I T , q(t) = q p (t) ∈ Ω where t ∈ I p T .

Our aim is to prove that (q, I T ) is a solution of (∆-CP). Let a, b ∈ I T satisfying a t 0 b. Since G is totally ordered, there exists p ∈ P such that [a, b] T ⊂ I p T and q = q p on [a, b] T . Since (q p , I p T ) is a solution of (∆-CP), we obtain that q p satisfies the necessary and sufficient condition of Lemma 1 on [a, b] T . Consequently, this holds true as well for q on [a, b] T . Finally, since this last sentence is true for all a, b ∈ I T satisfying a t 0 b, we infer from Lemma 1 that (q, I T ) is a solution of (∆-CP). Since (q, I T ) is obviously an extension of any element of G , we obtain that G admits an upper bound and then, F is inductive.

Finally, F is a non empty ordered inductive set and consequently, from Zorn's lemma, admits a maximal element. The proof is complete.

Proposition 3 (Existence of a local solution)

. There exist a, b ∈ T satisfying a t 0 b and q : [a, b] T → Ω such that (q, [a, b] T ) is a solution of (∆-CP).

Proof. We only prove this proposition in the third case of Theorem 1 (the two first cases are derived similarly) for which t 0 = inf T and t 0 = sup T. We distinguish between four situations.

First case: t 0 is a left-and a right-scattered point of T. In this case, it is sufficient to consider a = ρ(t 0 ) ∈] -∞, t 0 [ T , b = σ(t 0 ) ∈]t 0 , +∞[ T and the function q defined on [a, b] T = {a, t 0 , b} with values in Ω by q(a) = G + (a) -1 (q 0 ), q(t 0 ) = q 0 and q(b) = G + (t 0 )(q 0 ). We note that q(a) is well-defined in Ω from (H back regr ) and q(b) ∈ Ω from (H forw stab ).

Second case: t 0 is a left-and a right-dense point of T. Let R ′ , δ ′ and L ′ associated with q 0 and t 0 in (H ld loc-Lip ) and let R ′′ , δ ′′ and L ′′ associated with q 0 and t 0 in (H rd loc-Lip ). We define

R = min(R ′ , R ′′ ) > 0 and L = max(L ′ , L ′′ ) ≥ 0. Let M associated with B(q 0 , R) ∈ K and [t 0 -δ ′ , t 0 + δ ′′ [ T in (H ∞ ). Consider 0 < δ 1 ≤ δ ′ and 0 < δ 2 ≤ δ ′′ such that a = t 0 -δ 1 ∈] -∞, t 0 [ T , b = t 0 + δ 2 ∈
]t 0 , +∞[ T and δ 1 and δ 2 are sufficiently small in order to have max(δ 1 , δ 2 )M ≤ R and max(δ 1 , δ 2 )L < 1. Then, we can construct the max(δ 1 , δ 2 )L-contraction map with respect to the norm

• ∞ F : C ([a, b] T , B(q 0 , R)) → C ([a, b] T , B(q 0 , R)) q → F (q), with 
F (q) : [a, b] T → B(q 0 , R) t → q 0 + [t0,t[ T f (q(τ ), τ ) ∆τ if t ≥ t 0 q 0 -[t,t0[ T f (q(τ ), τ ) ∆τ if t ≤ t 0 .
It follows from the Banach fixed point theorem that F has a unique fixed point denoted by q, and then (q, [a, b] T ) is a solution of (∆-CP).

Third case: t 0 is a left-scattered and a right-dense point of T. Let R, δ and L associated with q 0 and t 0 in (H rd loc-Lip ). Let M associated with B(q 0 , R) ∈ K and [t 0 , t 0 + δ[ T in (H ∞ ). Consider 0 < δ 1 ≤ δ such that b = t 0 + δ 1 ∈]t 0 , +∞[ T and δ 1 is sufficiently small in order to have δ 1 M ≤ R and δ 1 L < 1. Then, we can construct the δ 1 L-contraction map with respect to the norm

• ∞ F : C ([t 0 , b] T , B(q 0 , R)) → C ([t 0 , b] T , B(q 0 , R)) q → F (q) with F (q) : [t 0 , b] T → B(q 0 , R) t → q 0 + [t0,t[ T f (q(τ ), τ ) ∆τ.
It follows from the Banach fixed point theorem that F has a unique fixed point denoted by q defined on [t 0 , b] T . Finally, since t 0 is a left-scattered point of T and from (H back regr ), we define a = ρ(t 0 ) ∈] -∞, t 0 [ T and q(a) = G + (a) -1 (q 0 ) ∈ Ω. We have thus obtained a solution (q, [a, b] T ) of (∆-CP).

Fourth case: t 0 is a left-dense and a right-scattered point of T. Let R, δ and L associated with q 0 and t 0 in (H ld loc-Lip ). Let M associated with B(q 0 , R) ∈ K and [t 0δ, t 0 [ T in (H ∞ ). Consider 0 < δ 1 ≤ δ such that a = t 0δ 1 ∈] -∞, t 0 [ T and δ 1 is sufficiently small in order to have δ 1 M ≤ R and δ 1 L < 1. Then, we can construct the δ 1 L-contraction map with respect to the norm

• ∞ F : C ([a, t 0 ] T , B(q 0 , R)) → C ([a, t 0 ] T , B(q 0 , R)) q → F (q) with F (q) : [a, t 0 ] T → B(q 0 , R) t → q 0 - [t,t0[ T f (q(τ ), τ ) ∆τ.
It follows from the Banach fixed point theorem that F admits a unique fixed point denoted by q defined on [a, t 0 ] T . Since t 0 is a right-scattered point of T, and from (H forw stab ), we define b = σ(t 0 ) ∈]t 0 , +∞[ T and q(b) = G + (t 0 )(q 0 ) ∈ Ω. We have thus obtained a solution (q, [a, b] T ) of (∆-CP).

From Lemma 2, we can extend the solution given in Proposition 3 and we obtain the existence of a maximal solution. The following result proves that it is unique.

Proposition 4 (Local uniqueness of a solution). Let (q 1 , I 1 T ) and (q 2 , I 2 T ) be two solutions of (∆-CP). Then, q 1 = q 2 on I 1 T ∩ I 2 T . Proof. As before, we only prove this proposition in the third case of Theorem 1. We denote by I = I 1 ∩ I 2 (interval of R). One can easily prove that

I T = I 1 T ∩ I 2 T ∈ I. It is sufficient to prove q 1 = q 2 on [a, b] T for all a, b ∈ I T satisfying a t 0 b. Let a, b ∈ I T satisfying a t 0 b. Set A = {t ∈ [a, t 0 ] T , q 1 (t) = q 2 (t)}, and B = {t ∈ [t 0 , b] T , q 1 (t) = q 2 (t)}.
Let us prove by contradiction that A ∪ B = ∅. Assume that A = ∅ and let t = sup A. Note that t ∈ [a, t 0 ] T (since T is closed) and that q 1 = q 2 on ]t, t 0 ] T .

In order to raise a contradiction, we first derive the four following facts.

1. Fact 1: t < t 0 . If t 0 is a left-scattered point of T, this claim is obvious since q 1 (t 0 ) = q 2 (t 0 ) = q 0 and q 1 (ρ(t 0 )) = q 2 (ρ(t 0 )) = G + (ρ(t 0 )) -1 (q 0 ) from (H back regr ). If t 0 is a left-dense point of T, let R, δ and L associated with q 0 and t 0 in (H ld loc-Lip ). Let M associated with B(q 0 , R) ∈ K and

[t 0 -δ, t 0 [ T in (H ∞ ). Consider 0 < δ 1 ≤ δ such that c = t 0 -δ 1 ∈ [a, t 0 [
T and δ 1 is sufficiently small in order to have δ 1 M ≤ R, δ 1 L < 1 and q 1 , q 2 ∈ C ([c, t 0 ] T , B(q 0 , R)). Since q 1 and q 2 are solutions of (∆-CP) on [a, b] T , they are in particular fixed points of the δ 1 L-contraction map

F : C ([c, t 0 ] T , B(q 0 , R)) → C ([c, t 0 ] T , B(q 0 , R)) q → F (q) with F (q) : [c, t 0 ] T → B(q 0 , R) t → q 0 - [t,t0[ T f (q(τ ), τ ) ∆τ.
Since F has a unique fixed point from the Banach fixed point theorem, we conclude that q 1 = q 2 on [c, t 0 ] T . Hence t < t 0 .

2. Fact 2: q 1 (t) = q 2 (t). If t is a right-scattered point of T, then σ(t) is a left-scattered point of T and q 1 (σ(t)) = q 2 (σ(t)). As a consequence, q 1 (t) = q 2 (t) = G + (t) -1 (q 1 (σ(t))). If t is a right-dense point of T, then q 1 (t) = q 2 (t) from the continuity of q 1 and q 2 and since q 1 = q 2 on ]t, t 0 ] T .

3. Fact 3: t > a. Indeed, if t = a then A = ∅ since q 1 (t) = q 2 (t);

4. Fact 4: t is a left-dense point of T. Indeed, if t were to be a leftscattered point of T, since q 1 (t) = q 2 (t), then q 1 (ρ(t)) = q 2 (ρ(t)) = G + (ρ(t)) -1 (q 1 (t)) and then it would raise a contradiction with the definition of t.

Let us denote by x = q 1 (t) = q 2 (t). Let R, δ and L associated with t and x in (H ld loc-Lip ). Let M associated with B(x, R) ∈ K and [tδ, t[ T in (H ∞ ). Consider 0 < δ 1 ≤ δ such that c 0 = tδ 1 ∈ [a, t[ T and δ 1 is sufficiently small in order to have δ 1 M ≤ R, δ 1 L < 1 and q 1 , q 2 ∈ C ([c 0 , t] T , B(x, R)). Since q 1 and q 2 are solutions of (∆-CP) on [a, b] T , they are in particular fixed points of the δ 1 L-contraction map

F 0 : C ([c 0 , t] T , B(x, R)) → C ([c 0 , t] T , B(x, R)) q → F 0 (q) with F 0 (q) : [c 0 , t] T → B(x, R) t → x - [t,t[ T f (q(τ ), τ ) ∆τ.
Since F 0 has a unique fixed point from the Banach fixed point theorem, we conclude that q 1 = q 2 on [c 0 , t] T , and this is a contradiction. Consequently A = ∅.

In the same way, we prove that B = ∅ and the proof is complete.

Theorem 1 follows from Lemma 2, Propositions 3 and 4.

for every t ∈ [t 0 , b] T . In particular q 1 : [t 0 , b] T → Ω and q 1 ∈ C ([t 0 , b] T ). Our aim is to prove that (q 1 , [t 0 , b] T ) is a solution of (∆-CP). Since (q, [t 0 , b[ T ) is a solution of (∆-CP), it follows from Lemma 1 that

q 1 (t) = q(t) = q 0 + [t0,t[ T f (q(τ ), τ ) ∆τ = q 0 + [t0,t[ T f (q 1 (τ ), τ ) ∆τ, (7) 
for every b

′ ∈]t 0 , b[ T and every t ∈ [t 0 , b ′ ] T . Since f (q 1 , t) ∈ L 1 T ([t 0 , b[ T , R n ) (see ( 4 
)), we infer from Lebesgue's dominated convergence theorem that

q 1 (b) = q b = q 0 + [t0,b[ T f (q 1 (τ ), τ ) ∆τ.
Therefore (7) also holds for b ′ = b. It follows from Lemma 1 that (q 1 , [t 0 , b] T ) is a solution of (∆-CP) and is a strict extension of (q, [t 0 , b[ T ). It is a contradiction with the maximality of (q, [t 0 , b[ T ). Lemma 4. Under the assumptions of Theorem 1, let (q, I T ) be the maximal solution of (∆-CP). If (q, I T ) is not global, then for every K ∈ K there exists t ∈ I T (close to a or b depending on the cases listed in the theorem) such that q(t) ∈ Ω \ K.

Proof. We only prove this lemma in the first case of Theorem 1. By contradiction, assume that there exists K ∈ K such that q takes its values in K on

I T = [t 0 , b[ T with b a left dense point of T. Consider M ≥ 0 associated with K ∈ K and [t 0 , b[ T in (H ∞ ). For all t 1 ≤ t 2 elements of [t 0 , b[ T , one has q(t 2 ) -q(t 1 ) ≤ [t1,t2[ T f (q(τ ), τ ) ∆τ ≤ M (t 2 -t 1 ).
Therefore q is Lipschitz continuous and thus uniformly continuous on [t 0 , b[ T with b a left-dense point of T. Hence q can be continuously extended at t = b with a value q b ∈ R n . Moreover, since q takes its values in the compact K ⊂ Ω, it follows that q b ∈ Ω. Using Lemma 3, this raises a contradiction.

The proof of Theorem 2 follows from Proposition 5 and Lemma 4.

Proof of Theorem 3

Note that since Ω = R n and since f satisfies (H glob Lip ), f automatically satisfies (H forw stab ) and (H rd loc-Lip ). Since t 0 = min T, (∆-CP) admits a unique maximal solution (q, I T ) from Theorem 1. Proving that I T = T requires the following result. We define the mapping

F : C (T, R n ) → C (T, R n ) q → F (q)
with F (q) : T → R n t → q 0 + [t0,t[ T f (q(τ ), τ ) ∆τ.

From Lemma 5, one can easily prove by induction that F k (q 1 )(t) -F k (q 2 )(t) ≤ L k k! q 1q 2 ∞ (tt 0 ) k , for every k ∈ N * , all q 1 , q 2 ∈ C (T, R n ), and every t ∈ T. Then,

F k (q 1 ) -F k (q 2 ) ∞ ≤ (L(b -a)) k k! q 1 -q 2 ∞ ,
for every k ∈ N * , all q 1 , q 2 ∈ C (T, R n ). Therefore F admits a contraction iterate and thus has a unique fixed point that is a global solution of (∆-CP). This concludes the proof of Theorem 3. For example, if f satisfies (H ∞ ), then for all (a, b) ∈ T 2 such that a < b,

Further comments for the shifted case

f (q σ , t) ∈ L ∞ T ([a, b[ T , R n ) ⊂ L 1 T ([a, b[ T , R n ),
for every q ∈ C ([a, b] T , R n ). This remark permits to prove (from Section 2.3) the following ∆-integral characterization of the solutions of (∆-CP σ ).

Lemma 6. Let I T ∈ I and q : I T → Ω. If f satisfies (H ∞ ), then the couple (q, I T ) is a solution of (∆-CP σ ) if and only if for all a, b ∈ I T satisfying a t 0 b, one has q ∈ C ([a, b] T , R n ) and q(t) = q 0 + [t0,t[ T f (q σ (τ ), τ ) ∆τ if t ≥ t 0 , q 0 -[t,t0[ T f (q σ (τ ), τ ) ∆τ if t ≤ t 0 .

for every t ∈ [a, b] T .

All results permitting to prove Theorems 4 and 5 can be derived as in Section 5. Nevertheless, in order to derive Theorem 6, the following result is required.

Lemma 7. If t 0 = max T then [t,t0[ T (t 0 -σ(τ )) k ∆τ ≤ (t 0 -t) k+1 k + 1 ,
for every k ∈ N and every t ∈ T.

Proof. One has 

Let a and b beProposition 1 .

 1 two elements of T such that a < b. Let C ([a, b] T , R n ) denote the space of continuous functions defined on [a, b] T with values in R n . Endowed with its usual norm • ∞ , it is a Banach space. Let AC([a, b] T , R n ) denote the subspace of absolutely continuous functions. We recall the two following results. Let t 0 ∈ [a, b] T and q : [a, b] T → R n . Then q ∈ AC([a, b] T , R n )

  An important remark in the shifted case is the following. Let (a, b) ∈ T 2 satisfying a t 0 b and let q :[a, b] T → Ω. Since σ(t) ∈ [a, b] T for every t ∈ [a, b[ T , q σ is well defined on [a, b[ T .This remark permits to derive all results of Section 3 in a similar way since ∆-integrals are considered on intervals of the form [a, b[ T .

  that is, f is locally Lipschitz continuous with respect to the first variable at right-dense points;• f satisfies (H forw regr ), that is, f is forward regressive at right-scattered points;• f satisfies (H ld loc-Lip ), that is, f is locally Lipschitz continuous with respect to the first variable at left-dense points;• f satisfies (H back stab ), that is, f is backward Ω-stable at right-scattered points.

  Lemma 5. If t 0 = min T then [t0,t[ T (τt 0 ) k ∆τ ≤ (tt 0 ) k+1 k + 1 ,for every k ∈ N and every t ∈ T.(τt 0 ) k dτ + r∈[t0,t[ T ∩R µ(r)(rt 0 ) k ,for every k ∈ N and every t ∈ T. Sincer∈[t0,t[ T ∩R µ(r)(rt 0 ) k = r∈[t0,t[ T ∩R ]r,σ(r)[ (rt 0 ) k dτ ≤ r∈[t0,t[ T ∩R ]r,σ(r)[ (τt 0 ) k dτ,

	Proof. One has	
	(τ -t 0 ) k ∆τ =	
	[t0,t[ T	[t0,t[ T
	it follows that	
	[t0,t[	

T (τt 0 ) k ∆τ ≤ [t0,t[ (τt 0 ) k dτ = (tt 0 ) k+1 k + 1 ,

and the proof is complete.

Actually, the present article was motivated by the needs of completing the existing results on Cauchy-Lipschitz theory on time scales, in order to investigate general non linear control systems on time scales, and more precisely to derive a general version of the Pontryagin Maximum Principle in optimal control.

Proof. We only prove this proposition in the first case of Theorem 1 (the other ones are derived similarly).

Let us first prove that if

As in Proposition 3, we can prove that it has a solution (z, [b,

for every t ∈ [t 0 , b 1 ] T . Then q 1 ∈ C ([t 0 , b 1 ] T ) and one can easily prove that

for every t ∈ [t 0 , b 1 ] T . It follows from Lemma 1 that (q 1 , [t 0 , b 1 ] T ) is a solution of (∆-CP) and is a strict extension of (q, [t 0 , b] T ). It is a contradiction with the maximality of (q, [t 0 , b] T ). Lemma 3. Under the assumptions of Theorem 1, let (q, I T ) be the maximal solution of (∆-CP). If (q, I T ) is not global, then q cannot be continuously extended with a value in Ω at t = a or at t = b (see Proposition 5 for a and b).

Proof. We only prove this lemma in the first case of Theorem 1. By contradiction, let us assume that q can be continuously extended with a value in Ω at t = b, that is, lim t→b, t∈[t0,b[ T q(t) = q b ∈ Ω. Then, we define q 1 by