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General Cauchy-Lipschitz theory for shifted and

non shifted ∆-Cauchy problems on time scales

Löıc Bourdin∗, Emmanuel Trélat†

Abstract

This article is devoted to completing some aspects of the classical
Cauchy-Lipschitz (or Picard-Lindelöf) theory for general nonlinear sys-
tems posed on time scales, that are closed subsets of the set of real num-
bers. Partial results do exist but do not cover the framework of general
dynamics on time-scales encountered e.g. in applications to control theory.
In the present work, we first introduce the notion of absolutely continu-
ous solution for shifted and non shifted ∆-Cauchy problems, and then
the notion of a maximal solution. We state and prove a Cauchy-Lipschitz
theorem, providing existence and uniqueness of the maximal solution of
a given ∆-Cauchy problem under suitable assumptions like regressivity
and local Lipschitz continuity, and discuss some related issues like the
behavior of maximal solutions at terminal points.

Keywords: Time scale; Cauchy-Lipschitz (Picard-Lindelöf) theory; existence;
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1 Introduction

The time scale theory was introduced by S. Hilger in his PhD thesis [14] in
1988 in order to unify discrete and continuous analysis, with the general idea
of extending classical theories on an arbitrary non empty closed subset T of
R. Such a closed subset T is called a time scale. The objective is to establish
the validity of some results both in the continuous case T = R and in the
purely discrete case T = N, but also to treat more general models of processes
involving both continuous and discrete time elements. We refer the reader e.g.
to [12, 26] where the authors study a seasonally breeding population whose
generations do not overlap or to [4] for applications to economy. By considering
T = {0} ∪ λN with 0 < λ < 1, time scale concept also allows to cover quantum
calculus [20]. Since S. Hilger defined the ∆-derivative and the ∆-integral on
a time scale, many authors have extended to time scales various results from
the continuous or discrete standard calculus theory. We refer the reader to the
surveys [1, 2, 6, 7]. However, due to the recency of the field, the basic nonlinear
theory is yet to be developed and refined.

Some Cauchy-Lipschitz (Picard-Lindelöf) type results on time scales are
provided in [6, 10, 15, 22, 23, 24] where the authors prove the existence and
uniqueness of solutions for ∆-Cauchy problems of the form:

q∆ = f(q, t), q(t0) = q0, (1)

where t0 ∈ T. Note that papers are devoted to ∆-Cauchy problems with pa-
rameter in [18] and with time delays in [21]. Many authors are also interested
in shifted ∆-Cauchy problems

q∆ = f(qσ, t), q(t0) = q0, (2)

where qσ = q ◦ σ (see further for the precise definitions of these notions). Such
shifted problems are often used as models in the existing literature (see e.g.
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[5, 17, 25], [16, Remark 3.9] and [18, Remark 3.6]), because they emerge in
adjoint equations accordingly to the shifted Leibniz formula [6]

(q1q2)
∆ = q∆1 qσ2 + q1q

∆
2 = q∆1 q2 + qσ1 q

∆
2 . (3)

Nevertheless, to the best of our knowledge, there does not exist a general
Cauchy-Lipschitz theory on time scales that is fully complete in order to be
applied to problems arising for example in control theory1.

Let us recall briefly the bibliographical context on the Cauchy-Lipschitz
theory on time scales. The first result on ∆-Cauchy problems is due to S. Hilger
in [15, Paragraph 5], who derived the existence and uniqueness of C 1

rd-solutions
for continuous dynamics. This framework is not suitable for general control
problems where controls are measurable functions that have discontinuities in
general. Note that similar frameworks and results are provided in [6, Paragraph
8.2], in [22, 24, 27] and references therein. In [10, 23], the authors respectively
treat weak continuous and Carathéodory dynamics living in a general Banach
space. Note that they only treat the non shifted case where q0 is an initial
condition, that is, solutions are only defined for t ≥ t0. In view of considering
adjoint equations, it is of interest to study backward ∆-Cauchy problems where
q0 is a final condition, for which solutions are def ined for t ≤ t0. As is very
well known in time scale calculus, the solvability of such backward non shifted
∆-Cauchy problems requires a regressivity assumption on the dynamics (see e.g.
[6, 15] and [16, Remark 3.8]). This important issue is not addressed in these
two articles. Another issue which is not addressed is the fact that the usual
Cauchy-Lipschitz theory treats Cauchy problems constraining the solutions to
take values in an open subset Ω of Rn (see e.g. [11, 19]). Finally, up to our
knowledge, the notion of extension of a solution on time scales, and the behavior
of the maximal solution at terminal points, have not been studied. Similarly, we
are not aware of articles treating both shifted and non shifted general nonlinear
∆-Cauchy problems.

This article is thus devoted to fill an existing gap of the literature, and to
provide a general Cauchy-Lipschitz theory on time scales generalizing the basic
notions and results of the classical continuous theory surveyed e.g. in [11, 19].
Precisely, we first introduce the notion of an absolutely continuous solution.
Then we define the concept of extension of a solution, and of maximal and
global solutions in the time scale context. We establish a general version of the
Cauchy-Lipschitz theorem (existence and uniqueness of the maximal solution,
also referred to as Picard-Lindelöf theorem) for dynamics posed on a time scale,
under regressivity and local Lipschitz continuity assumptions, for shifted and
non shifted general nonlinear ∆-Cauchy problems in the following framework:

• f is a general ∆-Carathéodory function, where ∆-measure µ∆ on a time
scale T is defined in terms of Carathéodory extension in [7, Chapter 5];

1Actually, the present article was motivated by the needs of completing the existing results
on Cauchy-Lipschitz theory on time scales, in order to investigate general non linear control
systems on time scales, and more precisely to derive a general version of the Pontryagin
Maximum Principle in optimal control.
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• q0 is not necessarily an initial or a final condition;

• the solutions take their values in an open subset Ω of Rn.

We also investigate the globality feature of the maximal solution. Our results
are established first for general non shifted ∆-Cauchy problems (1) and then for
shifted ones (2).

Our study uses the work of A. Cabada and D. Vivero in [8], who proved a
criterion for absolutely continuous functions written as the ∆-integral of their
∆-derivatives. Their result allows us to give a ∆-integral characterization of the
solutions of ∆-Cauchy problems which is instrumental in our proofs.

Notice that analogous results on ∇-Cauchy problems (ρ-shifted or not) can
be derived in a similar way.

The article is structured as follows. Section 2 is devoted to recall basic
notions of time scale calculus. In Section 3, we define the notions of a solution,
of an extension of a solution, of a maximal and a global solution for general
non shifted ∆-Cauchy problems. Under suitable assumptions on the dynamics,
we establish a Cauchy-Lipschitz theorem and then investigate the behavior of
the maximal solution at its terminal points. Section 4 is devoted to establish
similar results for shifted ∆-Cauchy problems.

2 Preliminaries on time scale calculus

In this section, we recall basic results in time scale calculus. The first part
concerns the structure of time scales and the notion of ∆-differentiability (see
[6]). The second part concerns the ∆-Lebesgue measure defined in terms of
Carathéodory extension (see [7, 13]) and surveys results on ∆-integrability
proved in [9]. The last part gathers properties of absolutely continuous functions
borrowed from [8].

Let n ∈ N
∗. Throughout, the notation ‖ · ‖ stands for the Euclidean norm

of Rn. For every x ∈ R
n and every R ≥ 0, the notation B(x,R) stands for the

closed ball of Rn centered at x and with radius R.

2.1 Time scale and ∆-differentiability

Let T be a time scale, that is, a closed subset of R. We assume that card(T) ≥ 2.
For every A ⊂ R, we denote AT = A ∩ T. An interval of T is defined by IT
where I is an interval of R.

The backward and forward jump operators ρ, σ : T → T are respectively
defined by

ρ(t) = sup{s ∈ T | s < t},

σ(t) = inf{s ∈ T | s > t},

for every t ∈ T, where ρ(minT) = minT (resp. σ(maxT) = maxT) whenever T
admits a minimum (resp. a maximum).
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A point t ∈ T is said to be a left-dense (respectively, left-scattered, right-
dense or right-scattered) point of T if ρ(t) = t (respectively, ρ(t) < t, σ(t) = t
or σ(t) > t). The graininess function µ : T → R

+ is defined by µ(t) = σ(t) − t
for every t ∈ T.

We set Tκ = T\{maxT} whenever T admits a left-scattered maximum, and
T
κ = T otherwise. A function q : T → R

n is said to be ∆-differentiable at
t ∈ T

κ if the limit

q∆(t) = lim
s→t
s∈T

qσ(t)− q(s)

σ(t) − s

exists in R
n, where qσ = q ◦ σ. We recall the following well known results (see

[6]):

• if t ∈ T
κ is a right-dense point of T, then q is ∆-differentiable at t if and

only if the limit

q∆(t) = lim
s→t
s∈T

q(t)− q(s)

t− s

exists in R
n;

• if t ∈ T
κ is a right-scattered point of T and if q is continuous at t, then q

is ∆-differentiable at t, and

q∆(t) =
qσ(t)− q(t)

µ(t)
.

2.2 Lebesgue ∆-measure and Lebesgue ∆-integrability

Recall that the set of right-scattered points R ⊂ T is at most countable (see [9,
Lemma 3.1]).

Let µ∆ be the Lebesgue ∆-measure on T defined in terms of Carathéodory
extension in [7, Chapter 5]. We also refer the reader to [3, 9, 13] for more
details on the µ∆-measure theory. In particular, for all elements a, b of T such
that a ≤ b, one has µ∆([a, b[T) = b − a. Recall that A ⊂ T is a µ∆-measurable
set of T if and only if A is an usual µL-measurable set of R, where µL denotes the
usual Lebesgue measure (see [9, Proposition 3.1]). Moreover, if A ⊂ T\{supT},
then

µ∆(A) = µL(A) +
∑

r∈A∩R

µ(r).

Let A ⊂ T. A property is said to hold ∆-almost everywhere (shortly ∆-a.e.) on
A if it holds for every t ∈ A\A0, where A0 ⊂ A is some µ∆-measurable subset
of T satisfying µ∆(A0) = 0. In particular, since µ∆({r}) = µ(r) > 0 for every
r ∈ R, we conclude that if a property holds ∆-a.e. on A, then it holds for every
r ∈ A ∩ R.

Let A ⊂ T\{supT} be a µ∆-measurable set of T. Consider a function q
defined ∆-a.e. on A with values in R

n. Let Ã = A∪]r, σ(r)[r∈A∩R , and let q̃ be
the extension of q defined µL-a.e. on Ã by

q̃(t) =

{

q(t) if t ∈ A
q(r) if t ∈]r, σ(r)[ for every r ∈ A ∩ R.
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We recall that q is µ∆-measurable on A if and only if q̃ is µL-measurable on Ã
(see [9, Proposition 4.1]).

The functional space L∞

T
(A,Rn) is the set of all functions q defined ∆-a.e.

on A, with values in R
n, that are µ∆-measurable on A and such that

sup ess
τ∈A

‖q(τ)‖ < +∞.

Endowed with the norm ‖q‖L∞

T
(A) = sup ess

τ∈A

‖q(τ)‖, it is a Banach space (see

[3, Theorem 2.5]). The functional space L1
T
(A,Rn) is the set of all functions q

defined ∆-a.e. on A, with values in R
n, that are µ∆-measurable on A and such

that
∫

A

‖q(τ)‖ ∆τ < +∞.

Endowed with the norm ‖q‖L1

T
(A,Rn) =

∫

A
‖q(τ)‖ ∆τ , it is a Banach space (see

[3, Theorem 2.5]). Recall that if q ∈ L1
T
(A,Rn) then

∫

A

q(τ) ∆τ =

∫

Ã

q̃(τ) dτ =

∫

A

q(τ) dτ +
∑

r∈A∩R

µ(r)q(r)

(see [9, Theorems 5.1 and 5.2]). Note that if A is bounded then L∞

T
(A,Rn) ⊂

L1
T
(A,Rn).

2.3 Properties of absolutely continuous functions

Let a and b be two elements of T such that a < b. Let C ([a, b]T,R
n) denote

the space of continuous functions defined on [a, b]T with values in R
n. Endowed

with its usual norm ‖ · ‖∞, it is a Banach space. Let AC([a, b]T,R
n) denote the

subspace of absolutely continuous functions. We recall the two following results.

Proposition 1. Let t0 ∈ [a, b]T and q : [a, b]T → R
n. Then q ∈ AC([a, b]T,R

n)
if and only if the two following conditions are satisfied:

1. q is ∆-differentiable ∆-a.e. on [a, b[T and q∆ ∈ L1
T
([a, b[T,R

n);

2. For every t ∈ [a, b]T, there holds

q(t) = q(t0) +

∫

[t0,t[T

q∆(τ) ∆τ

whenever t ≥ t0, and

q(t) = q(t0)−

∫

[t,t0[T

q∆(τ) ∆τ

whenever t ≤ t0.

This result can be easily derived from [8, Theorem 4.1]. By combining
Proposition 1 and the usual Lebesgue’s point theory in R, we infer the following
result (see also [28] for a similar result).
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Proposition 2. Let t0 ∈ [a, b]T and q ∈ L1
T
([a, b[T,R

n). Let Q be the function
defined on [a, b]T by

Q(t) =

∫

[t0,t[T

q(τ) ∆τ

if t ≥ t0, and by

Q(t) = −

∫

[t,t0[T

q(τ) ∆τ

if t ≤ t0. Then Q ∈ AC([a, b]T) and Q∆ = q ∆-a.e. on [a, b[T.

3 General non shifted ∆-Cauchy problem

Throughout this section we consider the general non shifted ∆-Cauchy problem

(∆-CP)
q∆(t) = f(q(t), t),

q(t0) = q0,

where t0 ∈ T, q0 ∈ Ω, where Ω is a non empty open subset of Rn, and f :
Ω × T \ {supT} → R

n is a ∆-Carathéodory function. The notation K stands
for the set of compact subsets of Ω.

3.1 Preliminaries

In what follows it will be important to distinguish between three cases:

1. t0 = minT;

2. t0 = maxT;

3. t0 6= inf T and t0 6= supT.

Indeed, the interval of definition of a solution of (∆-CP) will depend on the
specific case under consideration. If t0 = minT, then a solution can only go
forward since ]−∞, t0[T= ∅. If t0 = maxT, then a solution can only go backward.
If t0 6= inf T and t0 6= supT, then a solution can go backward and forward.

Definition 1. For all (a, b) ∈ T
2, we say that a E t0 E b if

• a = t0 < b in the case t0 = minT;

• a < t0 = b in the case t0 = maxT;

• a < t0 < b in the case t0 6= inf T and t0 6= supT.

If a E t0 E b then [a, b]T is a potential interval of definition for a solution
of (∆-CP). Due to this difference of intervals, it is required to make different
assumptions on f accordingly, whence the following series of definitions.
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Definition 2. The function f is said to be locally bounded on Ω × T\{supT}
if, for every K ∈ K, for all (a, b) ∈ T

2 such that a < b, there exists M ≥ 0 such
that

‖f(x, t)‖ ≤ M, (H∞)

for every x ∈ K and for ∆-a.e. t ∈ [a, b[T.
In what follows this property will be referred to as (H∞).

Definition 3. The function f is said to be locally Lipschitz continuous with
respect to the first variable at right-dense points if, for every x ∈ Ω and every
right-dense point t ∈ T\{supT}, there exist R > 0, δ > 0 and L ≥ 0 such that
B(x,R) ⊂ Ω and t+ δ ∈ T, and such that

‖f(x1, t)− f(x2, t)‖ ≤ L‖x1 − x2‖, (Hrd
loc−Lip)

for all x1, x2 ∈ B(x,R) and for ∆-a.e. t ∈ [t, t+ δ[T.
In what follows this property will be referred to as (Hrd

loc−Lip).

Definition 4. The function f is said to be forward Ω-stable at right-scattered
points if the mapping

G+(t) : Ω → R
n

x 7→ x+ µ(t)f(x, t)
(Hforw

stab )

takes its values in Ω, for every t ∈ R.
In what follows this property will be referred to as (Hforw

stab ).

Definition 5. The function f is said to be locally Lipschitz continuous with
respect to the first variable at left-dense points if, for every x ∈ Ω and every
left-dense point t ∈ T\{inf T}, there exist R > 0, δ > 0 and L ≥ 0 such that
B(x,R) ⊂ Ω and t− δ ∈ T and such that

‖f(x1, t)− f(x2, t)‖ ≤ L‖x1 − x2‖, (Hld
loc−Lip)

for all x1, x2 ∈ B(x,R) and for ∆-a.e. t ∈ [t− δ, t[T.
In what follows this property will be referred to as (Hld

loc−Lip).

Definition 6. The function f is said to be backward regressive at right-scattered
points if

G+(t) is invertible, (Hback
regr )

for every t ∈ R.
In what follows this property will be referred to as (Hback

regr ).

Assumption (H∞) will be instrumental to provide a ∆-integral character-
ization of the solutions of (∆-CP) (see Lemma 1 in Section 5.1). The other
assumptions play a role in order to go forward or backward for a solution of a
non shifted ∆-Cauchy problem. More precisely, (Hrd

loc−Lip) and (Hforw
stab ) allow to

go forward, and (Hld
loc−Lip) and (Hback

regr ) allow to go backward (see the proofs of
Propositions 3 and 4 in Section 5.1 for more details).

In view of investigating global solutions, the following definition will be also
useful.

8



Definition 7. The function f is said to be globally Lipschitz continuous if there
exists L ≥ 0 such that

‖f(x1, t)− f(x2, t)‖ ≤ L‖x1 − x2‖. (Hglob
Lip )

for all x1, x2 ∈ Ω and for ∆-a.e. t ∈ T\{supT}.

In what follows this property will be referred to as (Hglob
Lip ).

3.2 Definition of a maximal solution

We first define the notion of a solution of (∆-CP) on an interval [a, b]T with
a E t0 E b.

Definition 8. Let (a, b) ∈ T
2 be such that a E t0 E b and let q : [a, b]T → Ω.

The couple (q, [a, b]T) is said to be a solution of (∆-CP) if q ∈ AC([a, b]T), if
q(t0) = q0, and if q∆(t) = f(q(t), t) for ∆-a.e. t ∈ [a, b[T.

Note that, if (q, [a, b]T) is a solution of (∆-CP), then (q, [a′, b′]T) is as well a
solution of (∆-CP) for all a′, b′ ∈ [a, b]T satisfying a′ E t0 E b′.

In view of defining the notion of a solution of (∆-CP) on more general
intervals, we set

I = {IT | ∃a, b ∈ IT, a E t0 E b}.

The set I is the set of potential intervals of T for a solution of (∆-CP).

Definition 9. Let IT ∈ I and let q : IT → Ω. The couple (q, IT) is said to
be a solution of (∆-CP) if (q, [a, b]T) is a solution of (∆-CP) for all a, b ∈ IT
satisfying a E t0 E b.

Finally, we define the concept of a maximal solution.

Definition 10. Let (q, IT) and (q1, I
1
T
) be two solutions of (∆-CP). The solution

(q1, I
1
T
) is said to be an extension of the solution (q, IT) if IT ⊂ I1

T
and q1 = q

on IT. A solution (q, IT) of (∆-CP) is said to be maximal if, for every extension
(q1, I

1
T
) of (q, IT), there holds I1

T
= IT. A solution (q, IT) of (∆-CP) is said to

be global if IT = T.

Note that, if (q, IT) is a global solution of (∆-CP), then (q, IT) is a maximal
solution of (∆-CP).

3.3 Main results

Recall that we consider the general non shifted ∆-Cauchy problem

(∆-CP)
q∆(t) = f(q(t), t),

q(t0) = q0,

where t0 ∈ T, q0 ∈ Ω, where Ω is a non empty open subset of Rn, and f :
Ω × T \ {supT} → R

n is a ∆-Carathéodory function. We have the following
general Cauchy-Lipschitz result.
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Theorem 1. We make the following assumptions on the dynamics f , depending
on t0.

1. If t0 = minT, then we assume that

• f satisfies (H∞), that is, f is locally bounded on Ω× T\{supT};

• f satisfies (Hrd
loc−Lip), that is, f is locally Lipschitz continuous with

respect to the first variable at right-dense points;

• f satisfies (Hforw
stab ), that is, f is forward Ω-stable at right-scattered

points.

2. If t0 = maxT, then we assume that

• f satisfies (H∞), that is, f is locally bounded on Ω× T\{supT};

• f satisfies (Hld
loc−Lip), that is, f is locally Lipschitz continuous with

respect to the first variable at left-dense points;

• f satisfies (Hback
regr ), that is, f is backward regressive in right-scattered

points.

3. If t0 6= inf T and t0 6= supT, then we assume that

• f satisfies (H∞), that is, f is locally bounded on Ω× T\{supT};

• f satisfies (Hrd
loc−Lip), that is, f is locally Lipschitz continuous with

respect to the first variable at right-dense points;

• f satisfies (Hforw
stab ), that is, f is forward Ω-stable at right-scattered

points;

• f satisfies (Hld
loc−Lip), that is, f is locally Lipschitz continuous with

respect to the first variable at left-dense points;

• f satisfies (Hback
regr ), that is, f is and backward regressive in right-

scattered points.

Then, the non shifted ∆-Cauchy problem (∆-CP) has a unique maximal solution
(q, IT). Moreover, (q, IT) is the maximal extension of any other solution of
(∆-CP).

This theorem is proved in Section 5.1. The following result gives information
on the behavior of a maximal solution at its terminal points.

Theorem 2. Under the assumptions of Theorem 1, let (q, IT) be the maximal
solution of the non shifted ∆-Cauchy problem (∆-CP). Then either IT = T, that
is, the maximal solution (q, IT) is global, or the maximal solution is not global
and then

1. if t0 = minT then IT = [t0, b[T where b ∈]t0,+∞[T is a left-dense point of
T;

2. if t0 = maxT then IT =]a, t0]T where a ∈]−∞, t0[T is a right-dense point
of T;
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3. if t0 6= inf T and t0 6= supT then IT =]a,+∞[T or IT =]−∞, b[T or IT =
]a, b[T, where a ∈] −∞, t0[T is a right-dense point of T and b ∈]t0,+∞[T
is a left-dense point of T;

and moreover, for every K ∈ K there exists t ∈ IT (close to a or b depending
on the cases listed above) such that q(t) ∈ Ω \K.

This theorem is proved in Section 5.2. It states that the maximal solution
must go out of any compact of Ω near its terminal points whenever it is not
global.

The following last result states that, under global Lipschitz assumption, the
maximal solution is global.

Theorem 3. If t0 = minT, Ω = R
n, if f satisfies (H∞), that is, f is locally

bounded on R
n × T\{supT}, and if f satisfies (Hglob

Lip ), that is, f is globally
Lipschitz continuous, then the non shifted ∆-Cauchy problem (∆-CP) has a
unique maximal solution (q, IT), which is moreover global.

The proof is done in Section 5.3.

Remark 1. As an application of Theorem 3, we recover the well known fact
that, in the linear case

q∆(t) = h(t)× q(t),

where h ∈ L∞

T
(T\{supT},Rn×n), solutions are global.

3.4 Further comments

In this section, we provide simple examples (in the one-dimensional case) show-
ing the sharpness of the assumptions made in Theorem 1. Indeed, if one of
these assumptions is not satisfied, then the existence or the uniqueness of the
maximal solution is no more guaranteed.

Example 1 (Lack of Assumption (Hrd
loc−Lip) in the first case). Let T = [0,+∞[,

Ω = R, t0 = 0, q0 = 0 and f : R × T → R be defined by f(x, t) = 2
√

|x|.
The function f obviously satisfies (Hforw

stab ) since R = ∅, however it does not
satisfy (Hrd

loc−Lip). The corresponding ∆-Cauchy problem (∆-CP) has two global

solutions q1 and q2 given by q1(t) = 0 and q2(t) = t2, for every t ∈ T.
This example shows that, in the absence of Assumption (Hrd

loc−Lip), the
uniqueness of the maximal solution is not guaranteed.

Example 2 (Lack of Assumption (Hforw
stab ) in the first case). Let T = {0, 1},

Ω =]− 1, 1[, t0 = 0, q0 = 0 and f : Ω× {0} → R be defined by f(x, t) = 1. The
function f obviously satisfies (Hrd

loc−Lip) since T\{supT} = {0} does not admit

any right-dense point of T, however it does not satisfy (Hforw
stab ) since x+1 /∈ Ω for

x ∈ [0, 1[. Since q(0) = 0 and q(1) = q(0) + µ(0)f(q(0), 0) imply q(1) = 1 /∈ Ω,
we conclude that (∆-CP) does not admit any solution.

Therefore, in the absence of Assumption (Hforw
stab ), (∆-CP) may fail to have a

solution.
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Example 3 (Lack of Assumption (Hld
loc−Lip) in the second case). Let T =] −

∞, 0], Ω = R, t0 = 0, q0 = 0 and f : R×T → R be defined by f(x, t) = −2
√

|x|.
The function f obviously satisfies (Hback

regr ) since R = ∅, however it does not

satisfy (Hld
loc−Lip). The corresponding ∆-Cauchy problem (∆-CP) ha two global

solutions q1 and q2 given by q1(t) = 0 and q2(t) = t2 for every t ∈ T.
This example shows that, in the absence of Assumption (Hld

loc−Lip), the
uniqueness of the maximal solution is not guaranteed.

Example 4 (Lack of Assumption (Hback
regr ) in the second case). Let T = {0, 1},

Ω = R, t0 = 1, q0 ∈ R and f : R × {0} → R be defined by f(x, t) = −x. The
function f obviously satisfies (Hld

loc−Lip) since T\{inf T} = {1} does not admit

any left-dense point of T, however it does not satisfy (Hback
regr ) sinceG

+(0) = 0. As
a consequence, if q0 6= 0, (∆-CP) does not admit any solution. Indeed, q(1) = q0
and q(1) = q(0) + µ(0)f(q(0), 0) imply q(1) = 0, which is a contradiction. If
q0 = 0, we obtain an infinite number of global solutions. Indeed, any function
q defined on T with q(1) = 0 is then a global solution of (∆-CP).

4 General shifted ∆-Cauchy problem

Throughout this section we consider the general shifted ∆-Cauchy problem

(∆-CPσ)
q∆(t) = f(qσ(t), t),

q(t0) = q0,

where t0 ∈ T, q0 ∈ Ω, where Ω is a non empty open subset of Rn and f :
Ω× T\{supT} → R

n is a ∆-Carathéodory function.
The results of the section follow the same lines as in the previous section.

Therefore we do not give any proof nor counterexamples as above. Some com-
ments are however done in Section 5.4.

4.1 Preliminaries

As in Section 3.1, it will be important to distinguish between three cases:

1. t0 = minT;

2. t0 = maxT;

3. t0 6= inf T and t0 6= supT.

With respect to Section 3.1, we introduce two additional concepts.

Definition 11. The function f is said to be backward Ω-stable at right-scattered
points if the mapping

G−(t) : Ω → R
n

x 7→ x− µ(t)f(x, t)
(Hback

stab )

takes its values in Ω, for every t ∈ R.
In what follows this property will be referred to as (Hback

stab ).
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Definition 12. The function f is said to be forward regressive at right-scattered
points if

G−(t) : Ω → R
n is invertible, (Hforw

regr )

for every t ∈ R.
In what follows this property will be referred to as (Hforw

regr ).

These above assumptions play a role in order to go forward or backward for a
solution of a shifted ∆-Cauchy problem. Precisely, (Hrd

loc−Lip) and (Hforw
regr ) allow

to go forward. Similarly, (Hld
loc−Lip) and (Hback

stab ) allow to go backward.

4.2 Definition of a maximal solution

Definition 13. Let (a, b) ∈ T
2 satisfying a E t0 E b and let q : [a, b]T → Ω.

The couple (q, [a, b]T) is said to be a solution of (∆-CPσ) if q ∈ AC([a, b]T),
q(t0) = q0, and q∆(t) = f(qσ(t), t) for ∆-a.e. t ∈ [a, b[T.

Definition 14. Let IT ∈ I and let q : IT → Ω. The couple (q, IT) is said to
be a solution of (∆-CPσ) if (q, [a, b]T) is a solution of (∆-CPσ) for all a, b ∈ IT
satisfying a E t0 E b.

Definition 15. Let (q, IT) and (q1, I
1
T
) be two solutions of (∆-CPσ). The

solution (q1, I
1
T
) is said to be an extension of the solution (q, IT) if IT ⊂ I1

T
and

q1 = q on IT. A solution (q, IT) of (∆-CPσ) is said to be maximal if, for every
extension (q1, I

1
T
) of (q, IT), there holds I1

T
= IT. A solution (q, IT) of (∆-CPσ)

is said to be global if IT = T.

4.3 Main results

Recall that we consider the general shifted ∆-Cauchy problem

(∆-CPσ)
q∆(t) = f(qσ(t), t),

q(t0) = q0,

where t0 ∈ T, q0 ∈ Ω where Ω is a non empty open subset of R
n and f :

Ω× T\{supT} → R
n is a ∆-Carathéodory function.

Theorem 4. We make the following assumptions on the dynamics f , depending
on t0.

1. If t0 = minT, then we assume that

• f satisfies (H∞), that is, f is locally bounded on Ω× T\{supT};

• f satisfies (Hrd
loc−Lip), that is, f is locally Lipschitz continuous with

respect to the first variable at right-dense points;

• f satisfies (Hforw
regr ), that is, f is forward regressive in right-scattered

points.
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2. If t0 = maxT, then we assume that

• f satisfies (H∞), that is, f is locally bounded on Ω× T\{supT};

• f satisfies (Hld
loc−Lip), that is, f is locally Lipschitz continuous with

respect to the first variable at left-dense points;

• f satisfies (Hback
stab ), that is, f is backward Ω-stable in right-scattered

points.

3. If t0 6= inf T and t0 6= supT, then we assume that

• f satisfies (H∞), that is, f is locally bounded on Ω× T\{supT};

• f satisfies (Hrd
loc−Lip), that is, f is locally Lipschitz continuous with

respect to the first variable at right-dense points;

• f satisfies (Hforw
regr ), that is, f is forward regressive at right-scattered

points;

• f satisfies (Hld
loc−Lip), that is, f is locally Lipschitz continuous with

respect to the first variable at left-dense points;

• f satisfies (Hback
stab ), that is, f is backward Ω-stable at right-scattered

points.

Then the shifted ∆-Cauchy problem (∆-CPσ) has a unique maximal solution
(q, IT). Moreover, (q, IT) is the maximal extension of any other solution of
(∆-CPσ)

Theorem 5. Under the assumptions of Theorem 4, let (q, IT) be the maximal
solution of the shifted ∆-Cauchy problem (∆-CPσ). Then either IT = T, that
is, the maximal solution (q, IT) is global, or the maximal solution is not global
and then

1. if t0 = minT then IT = [t0, b[T where b ∈]t0,+∞[T is a left-dense point of
T;

2. if t0 = maxT then IT =]a, t0]T where a ∈]−∞, t0[T is a right-dense point
of T;

3. if t0 6= inf T and t0 6= supT then IT =]a,+∞[T or IT =] − ∞, b[T or
IT =]a, b[T where a ∈]−∞, t0[T is a right-dense point of T and b ∈]t0,+∞[T
is a left-dense point of T;

and moreover, for every K ∈ K there exists t ∈ IT (close to a or b depending
on the cases listed above) such that q(t) ∈ Ω \K.

Theorem 6. If t0 = maxT, Ω = R
n, if f satisfies (H∞), that is, f is locally

bounded on R
n × T\{supT}, and if f satisfies (Hglob

Lip ), that is, f is globally
Lipschitz continuous, then, the shifted ∆-Cauchy problem (∆-CPσ) has a unique
maximal solution (q, IT), which is moreover global.

Remark 2. As in Remark 1, in the linear case the maximal solution of any
shifted ∆-Cauchy problem is automatically global.
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5 Proofs of the results

5.1 Proof of Theorem 1

If f satisfies (H∞), then for all (a, b) ∈ T
2 such that a < b, there holds

f(q, t) ∈ L∞

T
([a, b[T,R

n) ⊂ L1
T
([a, b[T,R

n), (4)

for every q ∈ C ([a, b]T,R
n). Then, from Section 2.3, we have the following

∆-integral characterization of the solutions of (∆-CP).

Lemma 1. Let IT ∈ I and let q : IT → Ω. If f satisfies (H∞), then the
couple (q, IT) is a solution of (∆-CP) if and only if for all a, b ∈ IT satisfying
a E t0 E b, one has q ∈ C ([a, b]T) and

q(t) =

{

q0 +
∫

[t0,t[T
f(q(τ), τ) ∆τ if t ≥ t0,

q0 −
∫

[t,t0[T
f(q(τ), τ) ∆τ if t ≤ t0.

for every t ∈ [a, b]T.

This characterization allows one to prove the following result.

Lemma 2. If f satisfies (H∞), then every solution of (∆-CP) can be extended
to a maximal solution.

Proof. Let (q, IT) be a solution of (∆-CP). Let us define the non empty set F

of extensions of (q, IT). The set F is ordered by

(q1, I
1
T
) ≤ (q2, I

2
T
) if and only if (q2, I

2
T
) is an extension of (q1, I

1
T
).

Let us prove that F is inductive. Let G = ∪p∈P{(qp, I
p
T
)} be a non empty

totally ordered subset of F . Let us prove that G admits an upper bound.
Let us define I = ∪p∈PIp. This is an interval of R, since t0 ∈ ∩p∈PIp. Then

IT = ∪p∈PIp
T
∈ I. For every t ∈ IT, there exists p ∈ P such that t ∈ Ip

T
and,

since G is totally ordered, if t ∈ Ip1

T
∩ Ip2

T
then qp1

(t) = qp2
(t). Consequently,

we can define q by

∀t ∈ IT, q(t) = qp(t) ∈ Ω where t ∈ Ip
T
. (5)

Our aim is to prove that (q, IT) is a solution of (∆-CP). Let a, b ∈ IT satisfying
a E t0 E b. Since G is totally ordered, there exists p ∈ P such that [a, b]T ⊂
Ip
T

and q = qp on [a, b]T. Since (qp, I
p
T
) is a solution of (∆-CP), we obtain

that qp satisfies the necessary and sufficient condition of Lemma 1 on [a, b]T.
Consequently, this holds true as well for q on [a, b]T. Finally, since this last
sentence is true for all a, b ∈ IT satisfying a E t0 E b, we infer from Lemma 1
that (q, IT) is a solution of (∆-CP). Since (q, IT) is obviously an extension of
any element of G , we obtain that G admits an upper bound and then, F is
inductive.

Finally, F is a non empty ordered inductive set and consequently, from
Zorn’s lemma, admits a maximal element. The proof is complete.
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Proposition 3 (Existence of a local solution). There exist a, b ∈ T satisfying
a E t0 E b and q : [a, b]T → Ω such that (q, [a, b]T) is a solution of (∆-CP).

Proof. We only prove this proposition in the third case of Theorem 1 (the two
first cases are derived similarly) for which t0 6= inf T and t0 6= supT. We
distinguish between four situations.

First case: t0 is a left- and a right-scattered point of T. In this case, it
is sufficient to consider a = ρ(t0) ∈] − ∞, t0[T, b = σ(t0) ∈]t0,+∞[T and the
function q defined on [a, b]T = {a, t0, b} with values in Ω by q(a) = G+(a)−1(q0),
q(t0) = q0 and q(b) = G+(t0)(q0). We note that q(a) is well-defined in Ω from
(Hback

regr ) and q(b) ∈ Ω from (Hforw
stab ).

Second case: t0 is a left- and a right-dense point of T. Let R′, δ′ and L′

associated with q0 and t0 in (Hld
loc−Lip) and let R′′, δ′′ and L′′ associated with q0

and t0 in (Hrd
loc−Lip). We define R = min(R′, R′′) > 0 and L = max(L′, L′′) ≥ 0.

Let M associated with B(q0, R) ∈ K and [t0 − δ′, t0 + δ′′[T in (H∞). Consider
0 < δ1 ≤ δ′ and 0 < δ2 ≤ δ′′ such that a = t0 − δ1 ∈] −∞, t0[T, b = t0 + δ2 ∈
]t0,+∞[T and δ1 and δ2 are sufficiently small in order to have max(δ1, δ2)M ≤ R
and max(δ1, δ2)L < 1. Then, we can construct the max(δ1, δ2)L-contraction
map with respect to the norm ‖ · ‖∞

F : C ([a, b]T, B(q0, R)) → C ([a, b]T, B(q0, R))
q 7→ F (q),

with

F (q) : [a, b]T → B(q0, R)

t 7→

{

q0 +
∫

[t0,t[T
f(q(τ), τ) ∆τ if t ≥ t0

q0 −
∫

[t,t0[T
f(q(τ), τ) ∆τ if t ≤ t0.

It follows from the Banach fixed point theorem that F has a unique fixed point
denoted by q, and then (q, [a, b]T) is a solution of (∆-CP).

Third case: t0 is a left-scattered and a right-dense point of T. Let R, δ and
L associated with q0 and t0 in (Hrd

loc−Lip). Let M associated with B(q0, R) ∈ K
and [t0, t0 + δ[T in (H∞). Consider 0 < δ1 ≤ δ such that b = t0 + δ1 ∈]t0,+∞[T
and δ1 is sufficiently small in order to have δ1M ≤ R and δ1L < 1. Then, we
can construct the δ1L-contraction map with respect to the norm ‖ · ‖∞

F : C ([t0, b]T, B(q0, R)) → C ([t0, b]T, B(q0, R))
q 7→ F (q)

with
F (q) : [t0, b]T → B(q0, R)

t 7→ q0 +

∫

[t0,t[T

f(q(τ), τ) ∆τ.
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It follows from the Banach fixed point theorem that F has a unique fixed point
denoted by q defined on [t0, b]T. Finally, since t0 is a left-scattered point of T
and from (Hback

regr ), we define a = ρ(t0) ∈]−∞, t0[T and q(a) = G+(a)−1(q0) ∈ Ω.
We have thus obtained a solution (q, [a, b]T) of (∆-CP).

Fourth case: t0 is a left-dense and a right-scattered point of T. Let R, δ and
L associated with q0 and t0 in (Hld

loc−Lip). Let M associated with B(q0, R) ∈ K
and [t0− δ, t0[T in (H∞). Consider 0 < δ1 ≤ δ such that a = t0 − δ1 ∈]−∞, t0[T
and δ1 is sufficiently small in order to have δ1M ≤ R and δ1L < 1. Then, we
can construct the δ1L-contraction map with respect to the norm ‖ · ‖∞

F : C ([a, t0]T, B(q0, R)) → C ([a, t0]T, B(q0, R))
q 7→ F (q)

with
F (q) : [a, t0]T → B(q0, R)

t 7→ q0 −

∫

[t,t0[T

f(q(τ), τ) ∆τ.

It follows from the Banach fixed point theorem that F admits a unique fixed
point denoted by q defined on [a, t0]T. Since t0 is a right-scattered point of T,
and from (Hforw

stab ), we define b = σ(t0) ∈]t0,+∞[T and q(b) = G+(t0)(q0) ∈ Ω.
We have thus obtained a solution (q, [a, b]T) of (∆-CP).

From Lemma 2, we can extend the solution given in Proposition 3 and we
obtain the existence of a maximal solution. The following result proves that it
is unique.

Proposition 4 (Local uniqueness of a solution). Let (q1, I
1
T
) and (q2, I

2
T
) be two

solutions of (∆-CP). Then, q1 = q2 on I1
T
∩ I2

T
.

Proof. As before, we only prove this proposition in the third case of Theorem 1.
We denote by I = I1 ∩ I2 (interval of R). One can easily prove that IT =
I1
T
∩ I2

T
∈ I. It is sufficient to prove q1 = q2 on [a, b]T for all a, b ∈ IT satisfying

a E t0 E b. Let a, b ∈ IT satisfying a E t0 E b. Set

A = {t ∈ [a, t0]T, q1(t) 6= q2(t)},

and
B = {t ∈ [t0, b]T, q1(t) 6= q2(t)}.

Let us prove by contradiction that A ∪ B = ∅. Assume that A 6= ∅ and let
t = supA. Note that t ∈ [a, t0]T (since T is closed) and that q1 = q2 on ]t, t0]T.
In order to raise a contradiction, we first derive the four following facts.

1. Fact 1: t < t0. If t0 is a left-scattered point of T, this claim is obvious
since q1(t0) = q2(t0) = q0 and q1(ρ(t0)) = q2(ρ(t0)) = G+(ρ(t0))

−1(q0)
from (Hback

regr ). If t0 is a left-dense point of T, let R, δ and L associated

with q0 and t0 in (Hld
loc−Lip). Let M associated with B(q0, R) ∈ K and
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[t0 − δ, t0[T in (H∞). Consider 0 < δ1 ≤ δ such that c = t0 − δ1 ∈ [a, t0[T
and δ1 is sufficiently small in order to have δ1M ≤ R, δ1L < 1 and q1,
q2 ∈ C ([c, t0]T, B(q0, R)). Since q1 and q2 are solutions of (∆-CP) on
[a, b]T, they are in particular fixed points of the δ1L-contraction map

F : C ([c, t0]T, B(q0, R)) → C ([c, t0]T, B(q0, R))
q 7→ F (q)

with
F (q) : [c, t0]T → B(q0, R)

t 7→ q0 −

∫

[t,t0[T

f(q(τ), τ) ∆τ.

Since F has a unique fixed point from the Banach fixed point theorem, we
conclude that q1 = q2 on [c, t0]T. Hence t < t0.

2. Fact 2: q1(t) = q2(t). If t is a right-scattered point of T, then σ(t) is
a left-scattered point of T and q1(σ(t)) = q2(σ(t)). As a consequence,
q1(t) = q2(t) = G+(t)−1(q1(σ(t))). If t is a right-dense point of T, then
q1(t) = q2(t) from the continuity of q1 and q2 and since q1 = q2 on ]t, t0]T.

3. Fact 3: t > a. Indeed, if t = a then A = ∅ since q1(t) = q2(t);

4. Fact 4: t is a left-dense point of T. Indeed, if t were to be a left-
scattered point of T, since q1(t) = q2(t), then q1(ρ(t)) = q2(ρ(t)) =
G+(ρ(t))−1(q1(t)) and then it would raise a contradiction with the def-
inition of t.

Let us denote by x = q1(t) = q2(t). Let R, δ and L associated with t and
x in (Hld

loc−Lip). Let M associated with B(x,R) ∈ K and [t − δ, t[T in (H∞).

Consider 0 < δ1 ≤ δ such that c0 = t− δ1 ∈ [a, t[T and δ1 is sufficiently small in
order to have δ1M ≤ R, δ1L < 1 and q1, q2 ∈ C ([c0, t]T, B(x,R)). Since q1 and
q2 are solutions of (∆-CP) on [a, b]T, they are in particular fixed points of the
δ1L-contraction map

F0 : C ([c0, t]T, B(x,R)) → C ([c0, t]T, B(x,R))
q 7→ F0(q)

with
F0(q) : [c0, t]T → B(x,R)

t 7→ x−

∫

[t,t[T

f(q(τ), τ) ∆τ.

Since F0 has a unique fixed point from the Banach fixed point theorem, we
conclude that q1 = q2 on [c0, t]T, and this is a contradiction. Consequently
A = ∅.

In the same way, we prove that B = ∅ and the proof is complete.

Theorem 1 follows from Lemma 2, Propositions 3 and 4.
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5.2 Proof of Theorem 2

Proposition 5. Under the assumptions of Theorem 1, let (q, IT) be the maximal
solution of (∆-CP). Then either IT = T, that is, the solution (q, IT) is global,
or

1. if t0 = minT then IT = [t0, b[T where b ∈]t0,+∞[T is a left-dense point of
T;

2. if t0 = maxT then IT =]a, t0]T where a ∈]−∞, t0[T is a right-dense point
of T;

3. if t0 6= inf T and t0 6= supT then IT =]a,+∞[T or IT =]−∞, b[T or IT =
]a, b[T, where a ∈] −∞, t0[T is a right-dense point of T and b ∈]t0,+∞[T
is a left-dense point of T.

Proof. We only prove this proposition in the first case of Theorem 1 (the other
ones are derived similarly).

Let us first prove that if IT = [t0, b]T then b = maxT (and thus IT = T). By
contradiction, assume that IT = [t0, b]T with b < supT. Consider the ∆-Cauchy
problem

z∆(t) = f(z(t), t), z(b) = q(b).

As in Proposition 3, we can prove that it has a solution (z, [b, b1]T) with b1 ∈
]b,+∞[T. Then, we define q1 by

q1(t) =

{

q(t) if t ∈ [t0, b]T,
z(t) if t ∈ [b, b1]T,

(6)

for every t ∈ [t0, b1]T. Then q1 ∈ C ([t0, b1]T) and one can easily prove that

q1(t) = q0 +

∫

[t0,t[T

f(q1(τ), τ) ∆τ.

for every t ∈ [t0, b1]T. It follows from Lemma 1 that (q1, [t0, b1]T) is a solution
of (∆-CP) and is a strict extension of (q, [t0, b]T). It is a contradiction with the
maximality of (q, [t0, b]T).

If IT = [t0, b[T with b a left-scattered point of T, then IT = [a, ρ(b)]T with
ρ(b) < supT and we recover to the previous contradiction.

Lemma 3. Under the assumptions of Theorem 1, let (q, IT) be the maximal so-
lution of (∆-CP). If (q, IT) is not global, then q cannot be continuously extended
with a value in Ω at t = a or at t = b (see Proposition 5 for a and b).

Proof. We only prove this lemma in the first case of Theorem 1. By contradic-
tion, let us assume that q can be continuously extended with a value in Ω at
t = b, that is, limt→b, t∈[t0,b[T q(t) = qb ∈ Ω. Then, we define q1 by

q1(t) =

{

q(t) if t ∈ [t0, b[T
qb if t = b,
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for every t ∈ [t0, b]T. In particular q1 : [t0, b]T → Ω and q1 ∈ C ([t0, b]T). Our
aim is to prove that (q1, [t0, b]T) is a solution of (∆-CP).

Since (q, [t0, b[T) is a solution of (∆-CP), it follows from Lemma 1 that

q1(t) = q(t) = q0 +

∫

[t0,t[T

f(q(τ), τ) ∆τ = q0 +

∫

[t0,t[T

f(q1(τ), τ) ∆τ, (7)

for every b′ ∈]t0, b[T and every t ∈ [t0, b
′]T. Since f(q1, t) ∈ L1

T
([t0, b[T,R

n) (see
(4)), we infer from Lebesgue’s dominated convergence theorem that

q1(b) = qb = q0 +

∫

[t0,b[T

f(q1(τ), τ) ∆τ.

Therefore (7) also holds for b′ = b. It follows from Lemma 1 that (q1, [t0, b]T) is
a solution of (∆-CP) and is a strict extension of (q, [t0, b[T). It is a contradiction
with the maximality of (q, [t0, b[T).

Lemma 4. Under the assumptions of Theorem 1, let (q, IT) be the maximal
solution of (∆-CP). If (q, IT) is not global, then for every K ∈ K there exists
t ∈ IT (close to a or b depending on the cases listed in the theorem) such that
q(t) ∈ Ω \K.

Proof. We only prove this lemma in the first case of Theorem 1. By contra-
diction, assume that there exists K ∈ K such that q takes its values in K on
IT = [t0, b[T with b a left dense point of T. Consider M ≥ 0 associated with
K ∈ K and [t0, b[T in (H∞). For all t1 ≤ t2 elements of [t0, b[T, one has

‖q(t2)− q(t1)‖ ≤

∫

[t1,t2[T

‖f(q(τ), τ)‖ ∆τ ≤ M(t2 − t1).

Therefore q is Lipschitz continuous and thus uniformly continuous on [t0, b[T
with b a left-dense point of T. Hence q can be continuously extended at t = b
with a value qb ∈ R

n. Moreover, since q takes its values in the compact K ⊂ Ω,
it follows that qb ∈ Ω. Using Lemma 3, this raises a contradiction.

The proof of Theorem 2 follows from Proposition 5 and Lemma 4.

5.3 Proof of Theorem 3

Note that since Ω = R
n and since f satisfies (Hglob

Lip ), f automatically satisfies

(Hforw
stab ) and (Hrd

loc−Lip). Since t0 = minT, (∆-CP) admits a unique maximal
solution (q, IT) from Theorem 1. Proving that IT = T requires the following
result.

Lemma 5. If t0 = minT then

∫

[t0,t[T

(τ − t0)
k ∆τ ≤

(t− t0)
k+1

k + 1
,

for every k ∈ N and every t ∈ T.
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Proof. One has
∫

[t0,t[T

(τ − t0)
k ∆τ =

∫

[t0,t[T

(τ − t0)
k dτ +

∑

r∈[t0,t[T∩R

µ(r)(r − t0)
k,

for every k ∈ N and every t ∈ T. Since

∑

r∈[t0,t[T∩R

µ(r)(r − t0)
k =

∑

r∈[t0,t[T∩R

∫

]r,σ(r)[

(r − t0)
k dτ

≤
∑

r∈[t0,t[T∩R

∫

]r,σ(r)[

(τ − t0)
k dτ,

it follows that
∫

[t0,t[T

(τ − t0)
k ∆τ ≤

∫

[t0,t[

(τ − t0)
k dτ =

(t− t0)
k+1

k + 1
,

and the proof is complete.

We define the mapping

F : C (T,Rn) → C (T,Rn)
q 7→ F (q)

with
F (q) : T → R

n

t 7→ q0 +

∫

[t0,t[T

f(q(τ), τ) ∆τ.

From Lemma 5, one can easily prove by induction that

‖F k(q1)(t)− F k(q2)(t)‖ ≤
Lk

k!
‖q1 − q2‖∞(t− t0)

k,

for every k ∈ N
∗, all q1, q2 ∈ C (T,Rn), and every t ∈ T. Then,

‖F k(q1)− F k(q2)‖∞ ≤
(L(b− a))k

k!
‖q1 − q2‖∞,

for every k ∈ N
∗, all q1, q2 ∈ C (T,Rn). Therefore F admits a contraction

iterate and thus has a unique fixed point that is a global solution of (∆-CP).
This concludes the proof of Theorem 3.

5.4 Further comments for the shifted case

An important remark in the shifted case is the following. Let (a, b) ∈ T
2 satisfy-

ing a E t0 E b and let q : [a, b]T → Ω. Since σ(t) ∈ [a, b]T for every t ∈ [a, b[T, q
σ

is well defined on [a, b[T. This remark permits to derive all results of Section 3
in a similar way since ∆-integrals are considered on intervals of the form [a, b[T.
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For example, if f satisfies (H∞), then for all (a, b) ∈ T
2 such that a < b,

f(qσ, t) ∈ L∞

T ([a, b[T,R
n) ⊂ L1

T([a, b[T,R
n),

for every q ∈ C ([a, b]T,R
n). This remark permits to prove (from Section 2.3)

the following ∆-integral characterization of the solutions of (∆-CPσ).

Lemma 6. Let IT ∈ I and q : IT → Ω. If f satisfies (H∞), then the couple
(q, IT) is a solution of (∆-CPσ) if and only if for all a, b ∈ IT satisfying a E

t0 E b, one has q ∈ C ([a, b]T,R
n) and

q(t) =

{

q0 +
∫

[t0,t[T
f(qσ(τ), τ) ∆τ if t ≥ t0,

q0 −
∫

[t,t0[T
f(qσ(τ), τ) ∆τ if t ≤ t0.

for every t ∈ [a, b]T.

All results permitting to prove Theorems 4 and 5 can be derived as in Section
5. Nevertheless, in order to derive Theorem 6, the following result is required.

Lemma 7. If t0 = maxT then

∫

[t,t0[T

(t0 − σ(τ))k ∆τ ≤
(t0 − t)k+1

k + 1
,

for every k ∈ N and every t ∈ T.

Proof. One has

∫

[t,t0[T

(t0 − σ(τ))k ∆τ =

∫

[t,t0[T

(t0 − τ)k dτ +
∑

r∈[t,t0[T∩R

µ(r)(t0 − σ(r))k ,

for every k ∈ N and every t ∈ T. Since

∑

r∈[t,t0[T∩R

µ(r)(t0 − σ(r))k =
∑

r∈[t,t0[T∩R

∫

]r,σ(r)[

(t0 − σ(r))k dτ

≤
∑

r∈[t,t0[T∩R

∫

]r,σ(r)[

(t0 − τ)k dτ,

we infer that

∫

[t,t0[T

(t0 − σ(τ))k ∆τ ≤

∫

[t,t0[

(t0 − τ)k dτ =
(t0 − t)k+1

k + 1
,

and the statement follows.
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