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Production/maintenance cooperative scheduling using multi-agents and

fuzzy logic

T. COUDERTy, B. GRABOTy* and B. ARCHIMEÁ DEy

Within companies, production is directly concerned with the manufacturing sche-
dule, but other services like sales, maintenance, purchasing or workforce manage-
ment should also have an in¯uence on this schedule. These services often have
together a hierarchical relationship, i.e. the leading function (most of the time
sales or production) generates constraints de®ning the framework within which
the other functions have to satisfy their own objectives. We show how the multi-
agent paradigm, often used in scheduling for its ability to distribute decision-
making, can also provide a framework for making several functions cooperate
in the schedule performance. Production and maintenance have been chosen as an
example: having common resources (the machines), their activities are actually
often con¯icting. We show how to use a fuzzy logic in order to model the tem-
poral degrees of freedom of the two functions, and show that this approach may
allow one to obtain a schedule that provides a better compromise between the
satisfaction of the respective objectives of the two functions.

1. Introduction

Within industrial companies, several functions, often called Departments or

Services, have very close links with production at the operational level, even

though their respective objectives may be partially con¯icting. These functions can

be the following.

. Sales: main objective of which is to provide the customer with the right product

at the right moment.

. Distribution: objective of which is to respect the product due date and mini-

mize the distribution cost.

. Maintenance: aims to insure the availability of the production resources

through curative, and also preventive or cleaning activities.

. Inventory management: has to make raw materials and components available

for production.

. Purchasing management: its mission is to buy the resources and services

required by the company.

. Human Resource management: one of its operational objectives is to manage

the workforce according to technical (skill) and legal (working time) criteria.

These functions are in some cases linked by the product ¯ow, since they may act at

di�erent steps of the process elaboration. It is, for example, the case for Purchasing,

Inventory Management, Production and Sales, which are sequentially involved.

Nevertheless, their respective actors may have di�erent ideas on the optimality of
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the ¯ow that they manipulate. The link between functions may also result from the

use of common resources, like Production and Human Resource management

(which both concern the workers), or Production and Maintenance (acting on the

manufacturing machines).

Like in any control problems, the possible con¯icts may be avoided by a hier-

archical coordination, or solved by negotiation. Nevertheless, note that in practise,

the respective degrees of freedom of the functions are determined at the middle term

and are seldom set into question at an operational level like the scheduling level. Lot

sizes, inventory levels, teams or periods of maintenance are so de®ned once and

belong to the set of hypothesis which constrain the schedule.

In that context, it is paradoxical that even if scheduling has been recognized for

a long time as a multi-objective process (Smith 1992), it is seldom admitted that other

functions should interfere with production during the schedule elaboration. In prac-

tise, the objectives taken into account are usually only related to the customer’s

satisfaction (`external’ or `exogenous’ objectives, related to due date, quality or

service) or aim at satisfying internal constraints of the production system (`internal’

or `endogenous’ objectives: minimize work in progress, optimize resource use, etc.)

(ZuÈ lch et al. 1994, Grabot 1998).

Scheduling techniques like constraint-based analysis (Fox 1987) could allow one

to model and dynamically take into account objectives coming from other functions

while performing the schedule, but the division between functions seems still to be an

obstacle at the operational level. Besides, this division is often considered as pre-

venting an improvement of the manufacturing e�ciency, and process-oriented reor-

ganization techniques like Business Process Reengineering (Hammer and Champy

1994) are increasingly more widely spread.

Even in standard function-based organizations, we think that important

improvements can be obtained by providing the actors with e�cient operational

tools which could manage the negotiation process, as long as the objectives of

each function have been clearly expressed. We have chosen the multi-agent paradigm

for the de®nition of such tool because of its well-known ability to support distributed

decision-making. The prototype system that has been developed illustrates the pos-

sible cooperation of Maintenance and Production while performing a schedule: these

functions are often a source of con¯ict in companies (e.g. Weinstein and Chung

1999) since, as stated above, they both act on the manufacturing machines.

Moreover, reducing the work-in-progress requires that the machines are available

when they are required. Tight links should thus be introduced between Production

and Maintenance (Swanson 1999).

A panorama on related research is given in Section 2: some relevant studies on

multi-agent systems for scheduling are discussed, then some approaches aimed at

making Production and Maintenance cooperate are described. Our implementation

framework is based on an already existing multi-agent scheduler, the RAMSES

system, which is described in Section 3. RAMSES II, the suggested Production/

Maintenance scheduler, is described in Section 4. To allow negotiation, the degrees

of freedom of the negotiating partners must be expressed in the same formalism.

Section 5 shows that fuzzy sets allow one to de®ne the temporal degrees of freedom

of Production and Maintenance as fuzzy temporal windows, allowing one to solve

con¯icts through a negotiation process which is described. The results of this nego-

tiation-based approach are described in Section 6.



2. Panorama on related research

2.1. Multi-agent approaches for scheduling

The multi-agent paradigm o�ers a convenient framework for modelling the

various entities that constitute the manufacturing system: an agent class can repre-

sent a type of entity of the system (machines, orders, workers, etc.) and allows to

encapsulate the behaviour of each entity (objectives, reaction to events, etc.). The

schedule performance emerges then from the local behaviour of the involved agents,

allowing distributed decision-making and reaction capacities. A state-of-the-ar t of

multi-agent approaches for intelligent manufacturing can be found in (Shen and

Norrie 1999), which describes more than 30 di�erent studies among which many

are oriented on scheduling. Most of these approaches are based on the Contract-Net

communication protocol (Smith 1980). Using the Contract-Net, an announcement

concerning a task to perform is sent within the multi-agent system. Bids are made by

the agents capable of performing the task. The bids are collected and compared, and

a contract is made with the agent which has made the best proposal. YAMS (Yet

Another Manufacturing System) (Parunak 1987) is certainly the ®rst attempt of

using the Contract-Net for task allocation within a manufacturing system. The

production system is considered as a hierarchy of manufacturing cells, each node

being modelled by an agent. YAMS does not directly allow to generate a schedule,

but can repair an existing solution set into question by the occurrence of a distur-

bance. A multi-agent scheduler, also based on the Contract-Net approach, has been

suggested in (Saad et al. 1996). Agents model the articles to manufacture and the

machines, the manufacturing objectives being to minimize resource use and cycle

time, and to meet the due dates. When an article enters the system, the corresponding

agent makes an announce concerning its manufacturing operations. For each opera-

tion, bids are made by the capable machine-agents, including a beginning date and

the list of operations already planned on the machine. The article-agent chooses the

machine which agent suggests the earliest beginning date.

The Contract-Net protocol is again used in Metamorph (Maturana et al. 1999):

agents model one more time products and resources, and are coordinated by higher

level agents which can keep trace of the machines which bids have not been selected.

If a disturbance occurs, a reaction can be de®ned using these machines.

Other approaches, like Liu and Sycara (1994), suggest a coordination mechanism

requiring the de®nition of the scheduling problem as a constraint satisfaction pro-

blem. Resource-agents express the capacity constraints, whereas job-agents express

the precedence constraints between tasks, so that the earliest beginning and delivery

dates. A similar method is suggested in Miyashita (1998) with the di�erence that each

agent addresses its own constraint satisfaction problem separately from the others. A

negotiation process then solves the con¯icts.

In other studies, the multi-agent approach is used to repair a schedule (e.g.

Tranvouez et al. 1998) or for real-time control of ¯exible cells (Sohier et al. 1998).

In this last case, the interaction between static agents modelling the production

environment (robots, machines, etc.) and dynamic agents (modelling parts, tools

or Numerical Control programs) allows one to generate a production scenario.

These studies do not all have the same goals, and di�erences may be noticed

between the communication or negotiation protocols which are used. Nevertheless,

they have some important common points.



. In most of these approaches, the agents that model the parts have in charge the

respect of the `external’ manufacturing objectives, i.e. those related to the

customer’s satisfaction, whereas the agents modelling the resources have in

charge the respect of the `internal’ objectives, i.e. objectives expressing the

need to produce at best cost.

. Approaches using constraint propagation do not usually allow one to add or

remove constraints during the solving process, having for consequence the

de®nition of a rather rigid framework. An advantage is that their global

approach may lead to an optimal solution.

. Contact-Net o�ers a rather ¯exible way to manage the degrees of freedom that

may exist in the choice of the resource to perform an operation. A drawback is

that the method is myopic, i.e. the choice of a resource is usually based on a

local performance evaluation.

. In all the cases, the negotiation process must be carefully controlled: many

resource con¯icts are usually to be solved during the schedule elaboration, and

solving these con¯icts through negotiation can be time consuming. Therefore,

it is important to only introduce negotiation where it brings an added value.

2.2. Cooperation between production and maintenance

Several types of Maintenance are to be distinguished since they lead to di�erent

kinds of interactions with Production (e.g. Paz and Leigh 1994). Their classi®cation

may vary according to the chosen criterion, but the following categories are usually

de®ned.

. Curative maintenance occurs after a machine breakdown. In that case, there is

no con¯ict between Production and Maintenance since the concerned machine

is not anymore available for Production. Nevertheless, con¯icts may arise

between several manufacturing resources when they require at the same time

a curative maintenance activity. This type of con¯ict may be considered as

internal to the Production function and is usually solved thanks to an implicit

of explicit level of priority between machines requiring a curative maintenance

activity.

. In preventive maintenance, the decision to perform an activity precedes the

occurrence of disturbance. Three main preventive maintenance categories may

be distinguished:

. Systematic preventive maintenance, characterized by a periodicity between

maintenance activities, determined arbitrarily or according to the resource

law of behaviour.

. Condition-based maintenance, triggered by the occurrence of symptoms or

by reaching a given level of damage.

. Predictive maintenance, based on the occurrence of events that may lead to

disturbances.

Scheduling maintenance activities is a problem on its own: the duration of the

maintenance activities may be imprecisely known (Paz and Leigh 1994) and the

beginning date of a preventive maintenance activity may be brought forward or

postponed in comparison with the optimal date (Gits 1994). Many studies have

been done on the composition of maintenance teams, like Basker and Husband

(1982) and Barnett and Blundell (1981). The e�ciency and cost of maintenance



policies are also often compared (PateÂ -Cornell et al. 1987, De Carvalho and Noyes

1996, Kelly et al. 1997).

Three possible hierarchical positions of Production and Maintenance can be used

in industrial systems.

. Production can have a higher position, with the result that preventive main-

tenance is only performed during under-loaded periods. This can be the case

when a high utilization ratio of the machines is required, especially when the

machines are easy to maintain.

. Maintenance can have the higher position: preventive maintenance activities

are positioned ®rst and de®ne closed periods in the machine calendars. The

manufacturing operations are scheduled as a second step.

. Production and Maintenance can be considered as having the same hier-

archical level, requiring either coordination or cooperation. This cooperation

or coordination is particularly needed when the periods of preventive main-

tenance are short regarding the manufacturing processing times, and/or when

the maintenance activities are long in comparison with the manufacturing

operations.

In that context, the coordination or cooperation between Maintenance and

Production has several objectives.

. Be sure that enough time is left by Production to Maintenance activities.

. Be sure that Maintenance performs the preventive maintenance activities at the

right moment.

. Be sure that Maintenance reacts rapidly to machine breakdowns (Gits 1994,

Rishel and Christy 1996, Swanson 1999).

Rishel and Christy (1996) described an approach where Maintenance is considered

together with Production in an MRP system: a Material Requirement Planning is

performed for the two types of activities and various maintenance policies are tested

and assessed. Weinstein and Chung (1999) showed a multi-objective linear program-

ming method that performs a hierarchical planning for production and maintenance

activities. In Brandolese et al. (1996), a ¯ow-shop system is scheduled, and a prob-

abilistic model taking into account cost and reliability calculates the temporal win-

dows where the maintenance operations should be located. The use of probabilistic

approaches has also been considered in order to plan maintenance activities on

production lines in Sanmarti et al. (1997) where, in each temporal interval of the

simulation horizon, a model allows one to choose between producing and having the

risk to see a failure occur and performing a maintenance activity and making the cost

increase. A similar approach is used in Ashayeri et al. (1996): the maintenance

activities are modelled as ®ctive manufacturing orders (MOs) and scheduled together

with manufacturing operations. In Deniaud et al. (1999), an industrial case is con-

sidered in which simulation is used for balancing maintenance and manufacturing

activities.

In all these works, it can be seen that a higher level coordination is de®ned, which

may prevent a good reactivity of the system. On the other hand, this coordination is

less time consuming than cooperation when a schedule is performed.

More generally, in Ayel (1994) can be found the description of a multi-agent

system where each agent represents a decision centre of the production system. The

various agents may then represent di�erent functions and the possible con¯icts



between functions are solved by negotiation. Nevertheless, the purpose of this multi-

agent system is mainly to synchronize di�erent activities and not to coordinate

di�erent functions acting on the same activity. Consequently, the results can

hardly be adapted to the problem of cooperative scheduling.

As stated above, multi-agent systems may provide an e�cient paradigm for

modelling negotiation activities between di�erent entities and have e�ciently been

used in scheduling. We describe below how an existing multi-agent scheduling system

has been modi®ed to provide a cooperation medium for scheduling maintenance and

production activities.

3. RAMSES multi-agent scheduler

The RAMSES (ReActive Multi-agent SystEm for Scheduling) environment has

been developed to test various scheduling strategies in a multi-agent context

(ArchimeÁ de and Coudert 2001). It is quite open and ¯exible and allows one, for

instance, to deal with ¯exible routings (an operation can be performed by several

machines under di�erent conditions, operations can be de®ned as permutable, etc.)

and to associate di�erent objectives to the agents. The RAMSES multi-agent model

is based on the architecture described in ®gure 1.

This communication protocol between agents used in RAMSES is close to the

Contract Net protocol. At the beginning of the scheduling process, the supervisor

agent creates and initializes the MO and machine agents. The possible objectives of a

MO agent are to minimize its cycle time, to respect a due date or to minimize a

manufacturing cost (the machines can have di�erent hourly rates). The supervisor is

in charge of controlling the execution of the negotiation cycles between agents and

the access to the blackboard describing the current solution and the bids under

negotiation.

A MO agent has to plan manufacturing operations de®ned in its associated

routing. It expresses its requirements by an announce containing the operations,

their characteristics (activity, minimum processing times) and an earliest in®nite

capacity planning which is communicated to the blackboard. This blackboard can

be seen as a virtual Gantt chart representing the current state of the negotiation

process at di�erent conceptual levels: operations are ®rst associated to activities

Figure 1. RAMSES architecture.



(drilling, lathe, etc.), then to machines while some operations are de®nitively located

whereas others can still be moved.

Like in the Contract-Net, the Machine Agents make bids on the operations

o�ered by the MO agents. Each bid includes a correction of the processing time

according to the capacity of the machine to perform the activity, and suggests a

location of the operation. The particularity of the RAMSES approach compared

with the classical Contract Net protocol concerns the nature of the bids. In

RAMSES, two di�erent bids are made by each Machine agent, corresponding to

an e�ective and potential position.

. E�ective position: takes into account all the other operations that have already

been placed on the machine, and also all the operations that the machine has

o�ered to process and which have not yet been accepted by the MO agents. It

refers so to a situation in which all the bids in progress would be accepted.

. Potential position: obtained by only taking into account the considered opera-

tion. All the other bids in progress are considered as being rejected.

Consequently, the e�ective position gives the worst proposition of a

Machine Agent, while the potential position gives its best possible proposition,

subject to deterioration through time if bids in progress are accepted.

Each MO agent compares the di�erent bids received from the machine agents to its

objectives. The MO agents can accept the e�ective positions suggested by the

machine agents: in that case, the negotiation process ends. If the e�ective position

does not give satisfaction, and if the potential position is much better, the MO agent

can take the risk to wait, expecting that this potential position will become e�ective.

In that purpose, the MO agent makes a new bid on the base of the potential position.

Another major di�erence between RAMSES and the Contract-Net is that in the

latter, an order is usually planned operation by operation without any competition

with the other orders: the processing sequence of the MOs has so a great in¯uence on

the result. In RAMSES, MOs are competing with each other for each operation.

Other originalities of RAMSES concern the de®nition of the routings, e.g. with the

concept of activity which provides more degrees of freedom for negotiation. Finally,

a global validation process can be used in order to validate at the same time all the

operations of a MO, on the base of the e�ective positions suggested by the machines.

A graph is built containing the possible choices for performing the operations, and

the most favourable path according to the current objectives (mainly duration and

cost) can be adopted in a single step. This possibility permits a more global view on

the manufacturing process, which corrects the myopia which is often inherent to the

Contract-Net approach.

RAMSES has been implemented in C‡‡ on a PC and uses a standard Windows

Interface. It is compliant with the CORBA communication standard and can there-

fore be remotely used through a network.

The modi®cations of RAMSES allowing a Production and Maintenance coop-

eration are detailed below.

4. RAMSES II: a production/maintenance multi-agent scheduler

4.1. RAMSES_Maintenance multi-agent system

As stated above, scheduling maintenance activities cannot be directly assimilated

to scheduling manufacturing activities. As a ®rst step, a RAMSES_Maintenance



multi-agent system has so been derived from the RAMSES system. This multi-agent

system is dedicated to the schedule of maintenance operations and has required the

following changes:

Several types of `maintenance orders’ can be planned.

. A preventive maintenance order is characterized by a preferred temporal win-

dow, whose de®nition is discussed in Section 5.2. It is associated to one or

several maintenance activities de®ning a maintenance routing. Each mainte-

nance activity requires maintenance resources (operators and/or tools).

. A condition-based maintenance order is created according to a condition

related to the schedule of manufacturing operations (schedule of a soiling

activity, schedule of a given sequence of manufacturing activities, etc.). This

type of order is not associated to a temporal window and requires the

RAMSES_Maintenance system to be connected to a RAMSES_Production

system.

. A corrective maintenance order is associated with a machine. It is character-

ized by an earliest beginning date and composed of one or several maintenance

activities. A priority level can also be considered if available. A corrective

maintenance order is only planned in the case of reactive scheduling when a

machine breakdown occurrence has been reported. It will only be used if the

RAMSES_Maintenance is connected with a RAMSES_Production , which is

also used for executing the schedule.

In an autonomous mode, the maintenance supervisor agent activates the main-

tenance order agents, which write on the blackboard the announcement concerning

the operations they need to perform. The possible maintenance resource agents make

bids on these announces with a process similar to the RAMSES_Production one.

The main di�erence is that the maintenance order agents consider the respect of the

temporal windows as performance criteria for assessing the bids and not the due

dates like in RAMSES.

4.2. RAMSES II: connection of RAMSES_Production and

RAMSES_Maintenance systems

A RAMSES II scheduler is composed of several RAMSES_Production and

RAMSES_Maintenance multi-agent systems, which blackboards are actualized

during the negotiation process. Each RAMSES_Production system represents a

workshop, and each RAMSES_Maintenance system represents a set of maintenance

resources (for instance, a team). Within the Maintenance multi-agent system, a

maintenance agent is created for each manufacturing machine. For simpli®cation,

we shall illustrate the system behaviour on the case of one production and one

maintenance system. Two new types of agents have been added to the system.

. `User agent’, in order to allow a direct action of the human user on the

scheduling process. The possible actions that can be performed through the

user agent concern changes in the rules that de®ne the behaviour of the

Machine agents, changes in the objectives of the involved agents or relaxation

of di�erent types of constraints. The user agent also allows one to describe a

disturbance occurring while the schedule is executed.

. `Negotiator agent’, in charge of the negotiation process. This agent does not

have a higher hierarchical position than the maintenance and production



agents but aims at accelerating negotiation by gathering the data coming from

the two systems. The de®nition of the compromise between the requirements

expressed by the maintenance and production agents, contained in the

Negotiator, can be modi®ed by the User agent.

When only systematic preventive maintenance activities and manufacturing opera-

tions are considered, the negotiation process is performed as summarized in ®gure 2.

. When a manufacturing operation is to be scheduled by a machine agent, a

temporal window showing the earliest and latest possible beginning date for

the operation is calculated. Details on these temporal windows are given in

Section 5. The information is sent to the Negotiator (message À).

. Negotiator asks the Maintenance agent of the considered machine whether

maintenance activities could interfere with the temporal window of the man-

ufacturing operation (message Á).

. Maintenance agent sends the list of the concerned Maintenance activities with

their temporal windows (message Â).

. Negotiator checks whether there is a real con¯ict between the manufacturing

and maintenance operations. If a position of the operations allows to satisfy

the constraints expressed by the temporal windows, there is no con¯ict, and the

Negotiator asks the Machine agent to plan the operation according to this

position (message Ã).

. If there is a real con¯ict, i.e. the positions cannot give full satisfaction, the

Negotiator suggests a compromise and asks the Machine agent to schedule the

manufacturing operation at the suggested beginning date (message Ã) and

asks the Maintenance agent to reschedule the Maintenance activities at the

suggested beginning date (message Ä).

When condition-based maintenance activities are considered, the role of the

Negotiator is slightly modi®ed: if a manufacturing operation has to be scheduled,

the Negotiator checks whether the condition for creating a condition-based main-

tenance activity is veri®ed. If yes, the Negotiator asks the Maintenance agent to

Figure 2. Cooperation/negotiation between maintenance and machine agents.



create the Maintenance order, then to calculate its temporal window. Condition-

based maintenance orders can be strict, i.e. no manufacturing operation can be

scheduled on the machine before the maintenance operation, or may accept a

given tolerance on their positioning. This tolerance is described in the temporal

window attached to the condition-based maintenance order. If the Maintenance

order is mandatory, there is no con¯ict since it is planned ®rst. Otherwise, the

global negotiation process is performed as explained above.

In the ®rst version of RAMSES II, the temporal windows of the operations have

been de®ned as crisp intervals (Coudert et al. 1999). The satisfaction provided by the

position of a maintenance activity was as a consequence binary: full satisfaction if

the operation was beginning within the window, null satisfaction if not. As discussed

above, this is not very consistent with the location of preventive maintenance activ-

ities, which is subject to preferences, but is seldom mandatory. For instance, it is

clear that being early or late by a few hours is not very important for a monthly

maintenance operation. A well-known interest of fuzzy logic is to cope with the

problem of arbitrary thresholds: we explain below how the system behaviour has

been made more realistic by modelling the temporal degrees of freedom of the

operations by fuzzy windows.

5. Modelling degrees of freedom and con¯ict solving in RAMSES II

The idea of de®ning relaxable temporal constraints by fuzzy sets has often been

used in scheduling, from Kerr and Walker (1989) to Ishii (2000). We shall see below

how fuzzy temporal windows can be de®ned for due dates, manufacturing operations

and maintenance operations. The degree of satisfaction attached to the location

of an operation (maintenance or manufacturing) will provide a way to assess a

compromise, which is a mandatory condition for an e�cient management of the

negotiation process.

5.1. Fuzzy modelling of a due date

The modelling of the preference associated to the respect of a due date `a’ by a

fuzzy set was ®rst introduced by Kerr and Walker (1989) and it is now a classic in

fuzzy scheduling. We have chosen to represent a fuzzy due date satisfaction as

described in ®gure 3, expressing that the order may be early …full satisfaction, i.e.

·…t† ˆ 1 8t < a† and that a delay becomes progressively unacceptable …satisfaction

from ·…t† ˆ 1 to ·…t† ˆ 0 for a < t < b†. In ®gure 3, the last manufacturing opera-

tion is represented by a hatched rectangle: in that example, the satisfaction of the due

date constraint is ·…t† ˆ 0:3.

Figure 3. Fuzzy modelling of the preference attached to the due date respect.



This type of model is more consistent with the industrial reality than a binary

evaluation, but in some exceptional cases the due date can of course remain a crisp

constraint (departure of a truck or ship, real just-in-time with the customer, etc.).

5.2. Fuzzy modelling of a maintenance operation

According to what has been stated in Section 2.2, the preference attached to the

beginning date of a maintenance activity can be modelled by the fuzzy set of ®gure 4.

Starting from the centre, the left slope can be interpreted as a decreasing satisfaction

due to an early maintenance that increases the maintenance cost. The right slope can

be interpreted as a decreasing satisfaction due to a possible loose of reliability. This

fuzzy set allows one to assess the degree of satisfaction associated to the position of a

maintenance operation: it is, for example, 0.8 for the activity represented by a grey

rectangle in ®gure 4.

5.3. Fuzzy modelling of a manufacturing operation

In our opinion, the fuzzy maintenance temporal windows as described above are a

quite realistic extension of the classical maintenance windows. Performing a negotia-

tion process requires one to model the degrees of freedom available for each partner:

describing the preference attached to the possible location of a manufacturing opera-

tion by a fuzzy set is so necessary. The di�culty is that RAMSES_Production

performs a schedule in a way close to list scheduling (when a machine can perform

several operations, the machine agent chooses their sequence according to a dis-

patching rule). Therefore, the system does not de®ne temporal windows for manu-

facturing operations. Nevertheless, other techniques like analysis under constraints

(Erschler et al. 1976) perform a schedule by de®ning temporal windows for manu-

facturing operations, then by propagating these constraints in order to ®nd a feasible

schedule. Even if this method is not implemented in RAMSES, we have used the

same approach in order to de®ne the temporal windows of the manufacturing opera-

tions. The window of the nth manufacturing operation is de®ned by placing the

previous operations of the routing as early as possible, and the following ones as

late as possible. The time between the end of operation …n ¡ 1† and the beginning of

operation …n ‡ 1† de®nes the temporal window of operation n. We could have used

these crisp temporal windows in RAMSES II, but the consequence would be an

imbalance between the maintenance operations, which location could provide a

partial satisfaction, and the manufacturing operations which location would only

Figure 4. Preferred beginning dates for a maintenance activity.



be 0 or 1. What we really need is a way to model to what extent the constraint

expressed by the window can be relaxed. Figure 5 shows a way to de®ne this possible

relaxation. The hull of the fuzzy set describing the preferred position (i.e. the points

for which ·…t† 6ˆ 0† is the period between the ®rst possible beginning of the operation

(place À on ®gure 5) and the last possible beginning, i.e. when the operation is set at

the latest possible position, denoted Á).

Consider the slack time of the operation to be planned, de®ned as the time left

until its due date minus the sum of processing times of the remaining operations of

the MO. To determine what positions give complete satisfaction …i.e. the kernel of

the fuzzy set, which is the set of points for which ·…t† ˆ 1†, let us share the slack time

between the operations to be planned (considered operation ‡ remaining ones). In

®gure 5, three operations plus the considered one remain to be planned. The slack

time is divided by 4, and we consider that the beginning of the manufacturing

operation to be planned gives full satisfaction if the operation only consumes its

portion of slack time. This slack time is equivalent to the free slack time of the PERT

method. If the beginning of the operation is outside the kernel of the fuzzy set, the

slack time of the following operations is progressively consumed, even if the due date

can still be met. This is the equivalent of the total slack in PERT: the satisfaction

provided by this location decreases progressively as far as the total slack is con-

sumed. After position Á of ®gure 5, it is not possible anymore to meet the due date:

this position is considered as providing a null satisfaction.

If the due date is itself fuzzy, the crisp due date of ®gure 5 is replaced by the last

point of the fuzzy due date …point for which ·…t† 6ˆ 0†. If it is not possible to meet the

due date (end of last operation > due date), we consider that only an immediate

beginning of the operation provides satisfaction: the fuzzy temporal window is then

reduced to a point. It can be noticed that the upper boundary of the fuzzy window is

crisp since it is given by the ®rst possible location of the operation.

Let us now explain more precisely the negotiation process described in ®gure 2

using these fuzzy temporal windows.

5.4. Con¯ict solving through negotiation in the presence of fuzzy temporal windows

First, the maintenance agents must be provided with a method to allow them

to detect con¯icts with the manufacturing operation which has to be planned. With

the notation shown in ®gure 6, the condition of con¯ict is that …b1 ‡ L1 > c2† AND
…b2 ‡ L2 > c1†.

The comparison of the possible location of a maintenance activity or manufac-

turing operation with its temporal window allows us to assess the satisfaction pro-

vided by each position. It is then necessary to de®ne an operator allowing one to

Figure 5. Fuzzy temporal window for the beginning of a manufacturing operation.



aggregate these two degrees of satisfaction in order to assess the quality of the

compromise de®ned by these two positions. If we consider as a ®rst step that main-

tenance and production have the same priority, the choice of an aggregation opera-

tor is ®rstly constrained by conditions on limits:

. if the two operations have a fully satisfactory position, the aggregated result

should be 1;

. if one of the operations has a null satisfaction, the result should be 0.

Taking the average degree of satisfaction does not ®t these requirements, or the

maximum operator. The minimum or product operator can be used. The ®rst one

has been used here, but other criteria may be de®ned in order to express more

complex relationships between maintenance and production (weighted average

value, etc.). Multicriteria optimization can also be of interest in order to address

this aggregation problem.

Because of this choice, our goal while trying to ®nd an acceptable position for the

maintenance and manufacturing activities is to maximize the minimum degree of

satisfaction provided by the two positions.

From ®gure 6, we can see the following.

. The manufacturing operation can be performed ®rst without having a null

satisfaction of the maintenance activity position if …b2 ‡ L2 < d1†. In that

case, the optimal position is de®ned by a manufacturing operation performed

as early as possible (beginning at b2) followed by the maintenance activity
…beginning at …b2 ‡ L2††. In ®gure 6, the position of the manufacturing opera-

tion gives satisfaction with a degree 1, whereas the position of the maintenance

activity gives satisfaction with a degree 0.4.

. The maintenance activity (denoted MaintAct) can be performed ®rst without

having a null satisfaction of the manufacturing operation (ManOp) position if
…a1 ‡ L1 < d2†. Since we want to maximize: M ˆ min …·…begin ManOp†,

·…begin MaintAct††, the best position is obtained when ·…begin ManOp† ˆ

·…begin MaintAct†. The maintenance activity begins in the ascending slope of

the fuzzy set of the top of ®gure 6 or in its kernel, whereas the manufacturing

operation begins in the kernel of the fuzzy set of the bottom of ®gure 6, or in its

descending slope.

Figure 6. Example of con¯ict between a maintenance activity and a manufacturing opera-
tion.



If the two conditions ……b2 ‡ L2 < d1† and …a1 ‡ L1 < d2†† are satis®ed, the two

previous solutions must be tested (maintenance ®rst and production ®rst) in order

to check which positions provide the best aggregated satisfaction degrees. If none of

the two conditions is satis®ed, one of the positions will be satis®ed with a degree 1,

the other with a degree 0. In that case, it is necessary to ask the user whether the

maintenance or the production is to be privileged.

5.5. Taking into account the capacity of the maintenance resources

Until now, we have implicitly considered that the resources required to perform

the maintenance activities were always available, i.e. we have performed a schedule

with ®nite capacity on the manufacturing resources, but in®nite capacity on the

maintenance resources.

As explained above, several di�erent maintenance resources can be available in

order to perform a required maintenance activity. In that case, the negotiation

protocol shown in ®gure 2 is modi®ed as follows.

. When the maintenance agent identi®es that a maintenance activity is required

on a machine, it reacts like a MO agent, i.e. it sends an announcement to the

maintenance resources describing the type of maintenance activity and the

required temporal window.

. Each maintenance resource has its own blackboard, i.e. a virtual Gantt chart

showing its periods of occupancy. It can so generate a calendar showing the

periods when it can perform the suggested activity. A bid including the calen-

dar of each possible resource is then sent to the Maintenance agent by the

Resource agents, which can perform the maintenance activity.

. The bid that best ®ts the Maintenance objectives is selected. In this ®rst version,

the assessment only concerns the respect of the location of the maintenance

activity, then the cost (depending of the resource hourly rate). The resource

that has the calendar with the largest intersection with the maintenance window

is selected. If several resources have a full intersection, the resource with the

lower cost is selected. The test of more complex strategies, e.g. based on multi-

criteria optimization, is in progress.

The temporal window of the selected resource is sent to the Supervisor, which tries to

®nd the best position for the maintenance and manufacturing operations, according

to the earlier detailed protocol.

6. Examples and results

6.1. Examples of schedules

A ®rst example of the result is shown in ®gure 7, which was obtained with 25

MOs using two machines on which nine preventive maintenance activities were

performed. The upper Gantt chart shows the planning of the Maintenance team

(only one team is considered here), while the bottom Gantt chart shows the schedule

of the operations on the manufacturing resources. On this chart, manufacturing

operations are represented by coloured rectangles and maintenance operations by

hatched ones. The two Gantt charts can be visualized on di�erent computers

since the negotiation process can be performed through the Net using the

CORBA protocol.

The fuzzy sets representing the preference given to the beginning dates of the

maintenance operations have been drawn on the upper Gantt chart for clarity, and



the degrees of satisfaction provided by the position of each operation are given. It

can be seen in ®gure 7 that after the negotiation process, the maintenance activities 3,

4, 6 and 8 have been delayed, while activity 9 is performed earlier than expected. For

maintenance activities 1, 2, 5 and 7, it has been possible to ®nd a location allowing

one to keep a satisfaction degree equal to 1.

The use of condition-based maintenance operations is shown in ®gure 8. Two

operations of 60 minutes and three of 30 minutes have been positioned on the

maintenance and manufacturing planning: these operations are conditioned by

their following manufacturing activity. Therefore, they stand here for set-up opera-

tions. If they are conditioned by their previous operations, they can also model

cleaning operations.

A drawback of the method is that the bid and negotiation processes are time

consuming. Consequently, the scheduling process is much slower than a classical

Figure 7. Negotiated schedule of preventive maintenance operations.

Figure 8. Gantt chart with preventive and condition-based maintenance activities.



one. The time needed not only depends on the negotiation, which is speeded up by

the presence of the negotiator, but also mainly on the number of resources that can

perform an activity (manufacturing or maintenance activity), which all send bids in

response to an announcement . This will be shown with the following schedule.

. Manufacturing: 50 MOs, six machines in the workshop, six operations per

routing.

. Maintenance: 24 maintenance activities, one maintenance activity per day for

each machine, one maintenance team.

The time needed to perform a schedule in this example according to the number of

activities that can be performed by each machine is shown in table 1. The processor

used here is very slow (Pentium 133 MHz), but the increasing power of the proces-

sors makes the comparison between the di�erent processing times more relevant than

their absolute values.

Table 1 shows that the time needed to perform a schedule through a Production/

Maintenance negotiation increases exponentially with the number of activities that

can be performed on each machine of the workshop. Nevertheless, if the routings do

not use the `activity’ concept and if no maintenance activity is considered, the time

required to perform a schedule remains reasonable and it can be compared with the

time taken by market schedulers. The reason is that in this example the MOs alone

do not represent an important load for the workshop: when the best machine that

o�ers to perform an activity is chosen according to the cost and delay objectives, this

choice is seldom set into question since most of the orders can be delivered on time.

The time needed to perform the production schedule alone increases in that case

almost linearly when the number of activities that can be performed by a machine

increases.

On the other hand, the manufacturing activities set new tight constraints. Each

time a maintenance activity is in con¯ict with a manufacturing operation, the choice

of the machine is set into question if the con¯ict solving does not allow total satis-

faction of the two partners. This case occurs very often and, consequently, the

management of the degrees of freedom created by the activities makes the processing

time increase exponentially. The increase of the processing time can be limited if

thresholds are set on the satisfaction degrees of the manufacturing and maintenance

operations, the machine allocation only being set into question if the satisfaction

decreases under these thresholds.

6.2. Test conditions and results

The interest of a negotiation between Production and Maintenance depends very

much on the workshop and routings characteristics, e.g. if the machines do not have

Number of activities per machine Manufacturing Manufacturing ‡ maintenance

1 0:00:06 0:01:41
2 0:00:27 0:08:50
3 0:00:30 0:19:27
4 0:00:45 0:30:15
6 0:01:30 1:26:40

Table 1. Time needed to perform a schedule.



an important load, planning the maintenance operation ®rst at their optimal loca-

tion, then planning the manufacturing operations around these maintenance activ-

ities should not make an important di�erence with the negotiated schedule. On the

other hand, the global satisfaction provided by negotiation increases when real

con¯icts occur, which requires that the workshop has an important load and that

degrees of freedom do exist.

These are the main characteristics having an in¯uence on the interest of negotia-

tion.

. Interval of time between two preventive maintenance activities: a preventive

maintenance operation performed once a month is clearly less disturbing than

if it occurs twice a day.

. Compared duration of the maintenance and manufacturing activities.

. Degree of freedom existing in the positioning of a maintenance activity,

modelled by the hull of the fuzzy sets described in ®gure 4.

Production/maintenance negotiation should be of main interest when maintenance

activities are long compared with manufacturing activities and when they are fre-

quently performed. Moreover, the negotiation requires degrees of freedom: as a

consequence, the result should be better if su�cient degrees of freedom exist on

the positioning of the maintenance activities, i.e. if the hull of the fuzzy temporal

windows is not too narrow.

To check these assumptions, we have de®ned a set of tests combining di�erent

categories of the previous characteristics. Three categories have been de®ned for

each characteristic, standing for `low’, `average’ and `important’ and they are de®ned

as follows.

. Frequency of Maintenance (FM) activities:

. Low: maintenance activity every 4 days.

. Medium: maintenance activity every 2 days.

. High: one maintenance activity per day.

. Maintenance Duration (MD): each duration is drawn according to a uniform

law in the range:

. Low: average duration: ·dd ˆ 60 mn, dmin
ˆ 30 min, dmax

ˆ 90 mn.

. Medium: ·dd ˆ 180 mn, dmin
ˆ 90 min, dmax

ˆ 270 mn.

. High: ·dd ˆ 360 mn, dmin
ˆ 180 min, dmax

ˆ 540 mn.

. Constraint on Maintenance Operation Positioning (MP): this constraint is low

when the size of the maintenance fuzzy window is large, and conversely:

. Low: kernel ˆ 120 mn, hull ˆ 600 mn.

. Medium: kernel ˆ 60 mn, hull ˆ 240 mn.

. High: kernel ˆ 30 mn, hull ˆ 120 mn.

A test denoted `HHM’ means for instance that the frequency of maintenance

duration is high, the maintenance duration is high and the constraint on mainte-

nance positioning is medium.

When combining these values, some test benches are clearly not relevant, e.g.

performing twice-a-day maintenance operations with an average duration of 3 hours

sets constraints that are not possible to satisfy and, moreover, which are irrelevant.



Consequently, we have selected the 20 sets of hypothesis described in ®gure 9 among

the 27 possible ones.

Finally, for each set of hypothesis, 95 schedules have been performed on di�erent

workshops, generated as follows.

. Workshop composed of ®ve machines is considered.

. Ten routings composed of ®ve operations each have been generated with pre-

de®ned processing times associated with each operation. Each processing time

has a duration of between 30 and 135 mn.

. Forty MOs are generated with prede®ned due dates, each being associated with

one of the routings, randomly drawn. To each operation is then associated a

resource, randomly drawn among the machines of the workshop.

To compare the Production/Maintenance negotiation with a classical scheduling

technique, we have also performed two other schedules for each test:

. one in which production activities have systematically priority on maintenance

activities;

. the other in which maintenance activities are scheduled ®rst.

We have mainly analysed in the following the lateness of the MOs and the degree of

satisfaction provided by the location of maintenance activities.

Figure 9 shows the average lateness of the MOs in the 20 examples according to

the three types of schedule performed (the percentage of late orders gives very similar

graphs). The lateness of the MOs is of course minimum when production has priority

on maintenance (dark front bars) and do not depend on the test conditions which

only concern maintenance parameters. When maintenance has priority (white rear

bars), it can be checked that the size of the fuzzy window has no in¯uence (main-

tenance activities are positioned as early as possible): the results are always similar

for three consecutive tests. One can also verify that the lateness increases with

maintenance frequency and duration. We can also verify in ®gure 9 that negotiation

provides intermediate results between priority to maintenance and priority to pro-

duction. The bene®t for the lateness is not very high in the very tight cases (tests 3±5),

but is more important in the `intermediate’ tests (tests 6±14). Of course, we shall see

Figure 9. Average lateness of the manufacturing orders.



below that this improvement is obtained at the price of a less good positioning of the

maintenance activities.

Figure 10 shows the average degree of satisfaction provided by the positioning of

the maintenance activities. As expected, this degree is equal to 1 when maintenance

has priority (white rear bars). Figure 10 shows that the satisfaction of the positioning

is drastically improved by negotiation: the average positioning satisfaction on all the

tests jumps from 0.3 (priority to production) to 0.85 (compromise). The average

Figure 10. Satisfaction provided by the positioning of maintenance activities.

Figure 11. (a) Distribution of maintenance activities satisfaction: priority to production. (b)
Distribution of maintenance activities satisfaction: negotiation.

(a)

(b)



satisfaction increases when the constraint on the maintenance activities position

decreases (size of the fuzzy window increasing), which is denoted by increasing

steps in three consecutive examples. The domain of interest of compromises can

be veri®ed by correlating ®gures 9 and 10: on tests 3±5, which denote the most

tighten cases, the increase in the maintenance activity positioning requires one to

accept an almost maximum lateness of the MOs. On tests that present higher degrees

of freedom (e.g. tests 6±14), the increase of MOs lateness remains limited while the

satisfaction of the maintenance activities positioning is drastically improved. As

suggested by the good sense, negotiation is particularly interesting when each partner

has su�cient degrees of freedom for negotiation

Figures 11a and 11b show the distribution of the satisfaction degrees provided by

the maintenance activities position in case of priority to production (®gure 11a) and

negotiation (®gure 11b). In the ®rst case, the majority of the maintenance activities

have a positioning providing a null satisfaction, while almost 85% of the mainte-

nance activities have fully satisfactory positioning in case of negotiation.

7. Conclusion

The planning of preventive maintenance activities in given time intervals may

disturb the schedule of the MOs, but is mandatory to insure the long-term avail-

ability of the production system, especially when maintenance activities are often

required. These maintenance activities may be performed on the machine itself, but

they may also concern tools, changes of baths in thermal treatments or cleaning

activities in dirty processes, like painting or o�set printing. In that context, the multi-

agent paradigm may provide an implementation framework allowing one to model

the negotiation process between the maintenance and production functions. We have

shown here that fuzzy logic provides interesting facilities for modelling the degrees of

freedom of the negotiation in a quite natural way. New developments are now in

progress in order to de®ne negotiation frameworks for other functions. Two types of

cooperation seem promising at this moment: workforce management/production,

especially in the context of annualized hours, which is now increasingly more

common in France, and inventory control/production. Since the RAMSES II envir-

onment can coordinate the schedules of several workshops, the latter gives one the

opportunity to address Supply Chain problems with a negotiation point of view,

which opens new areas of investigation.
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