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Asynchronous Event-based Visual Shape Tracking

for Stable Haptic Feedback in Microrobotics

Zhenjiang Ni1, Aude Bolopion2, Joël Agnus2, Ryad Benosman3 and Stéphane Régnier1

Abstract—Micromanipulation systems have recently been re-
ceiving increased attention. Tele-operated or automated microma-
nipulation is a challenging task due to the need for high-frequency
position or force feedback to guarantee stability. In addition,
the integration of sensors within micromanipulation platforms
is complex. Vision is a commonly used solution for sensing;
unfortunately the update rate of the frame-based acquisition
process of current available cameras can not ensure—at rea-
sonable costs—stable automated or tele-operated control at the
microscale level, where low inertia produces highly unreachable
dynamic phenomena. This paper presents a novel vision-based
microrobotic system combining both an asynchronous Address
Event Representation (AER) silicon retina and a conventional
frame-based camera. Unlike frame-based cameras, recent arti-
ficial retinas transmit their outputs as a continuous stream of
asynchronous temporal events, in a manner similar to the output
cells of a biological retina, enabling high update rates. This paper
introduces an Event-based Iterative Closest Point algorithm to
track a microgripper’s position at a frequency of 4 kHz. The
temporal precision of the asynchronous silicon retina is used to
provide a haptic feedback to assist users during manipulation
tasks, whereas the frame-based camera is used to retrieve the
position of the object that must be manipulated. This paper
presents the results of an experiment on tele-operating a sphere
of diameter around 50 µm using a piezo-electric gripper in a
pick-and-place task.

I. INTRODUCTION

Versatile 3D manipulation systems able to operate in am-

bient conditions on micrometer-sized objects would greatly

increase the potential applications of microtechnology [1].

However, the development of such systems faces a major

obstacle: the lack of position and force feedback [2]. Sensors

have been developed [3], [4], but their integration into dedi-

cated tools increases significantly the complexity and cost of

the tool fabrication. In particular, even if some microgrippers

offer sensing capabilities (at the expense of a complex design)

[5], [6], [7], most still lack force measurement capabilities [8],

[9].

Vision is a promising way to avoid the complexity of

integrating sensors [10], [11]. Visual information can be con-

verted to force measurements to monitor the efforts applied on

the objects during manipulation [12], [13]. This is achieved
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3 Vision Institute, Université Pierre et Marie Curie, UMR S968 Inserm,
UPMC, CNRS UMR 7210, CHNO des Quinze-Vingts, 17 rue Moreau, France.
ryad.benosman@upmc.fr

by using deformable tools after a calibration step [14]. In

particular, the stiffness of the tools must be determined in

order to relate the measured deformations to the applied forces.

However, the precise value of the force might not be necessary

for controlling micromanipulation systems, whether in the tele-

operated or the automated mode. In these cases, the position

feedback obtained from vision sensors might be sufficient. In

all cases, highly dynamic phenomena due to the low inertia at

this scale must be recorded. Most of the existing vision-based

systems provide feedback at a couple of tens of Hertz, and

their complexity depends on the size of the observed scenes

[15]. Thus they can not ensure the proper monitoring of highly

dynamic motion.

Conventional frame-based cameras’ lack of dynamic in-

formation and their redundancies set an important limit to

potential micromanipulations in automated or tele-operated

modes. Event-based computer vision based on Address Event

Representation (AER) provides a sound solution to high-

speed vision problems [16]. This newly developed discipline

is motivated by mimicking biological visual systems [17].

The Dynamic Vision Sensor (DVS) silicon retina used in the

research presented in this paper reacts to changes of contrast,

which are then converted into a stream of asynchronous time-

stamped events [18]. The reduction of redundant information

makes this technique promising for high-speed tracking.

The use of event-based retinas requires the development

of time-oriented event-based algorithms, in order to benefit

fully from the properties of this new framework [19]. Neural

shape coding is a difficult issue as there is almost an infinite

number of representations of shapes in the real world. A com-

putationally efficient method is HMax: it models a biological

visual system to extract features of different forms for object

recognition [20]. However, the shapes of micromanipulators

are not very complex. As will be shown, simpler algorithms

making full use of the high temporal resolution of the DVS

(µs precision) allow fulfilling the high-frequency requirements

of micromanipulation. The Iterative Closest Point (ICP) is

an efficient algorithm, dedicated to minimizing the difference

between a data point set and a model point set [21]. Many

variants have been proposed to enhance its performance and

adaptability [22]. However, 2D image processing can only

be achieved at a frequency of several 10 Hz, depending on

the number of points to be matched [23]. Although this is

sufficient for many robotic applications, these frequencies are

far from sufficient for automated or tele-operated microma-

nipulation, which requires refresh rates greater than 1 kHz to

ensure the stability of the control loop, because of the highly

dynamic physical phenomena involved [24].



This paper presents an Event-based Iterative Closest Point

algorithm (EICP) directly applied to the silicon retina’s output.

It allows tracking the manipulation tool at a frequency of

4 kHz. The positions of static objects are provided by a

conventional frame-based camera. This approach was validated

by a tele-operated pick-and-place task using a piezo-electric

gripper, involving a sphere with a diameter of about 50 µm.

Haptic feedback directly estimated from the output of both the

event-based retina and the conventional frame-based camera

is provided to assist users during the manipulation. The first

3D pick-and-place manipulation with haptic feedback using

a microgripper is successfully achieved. Stable vision-based

tele-operation has been achieved in this project by the use of

event-based retinas and the EICP algorithm.

This paper is based on several previous papers. In [19], DVS

was used to develop an event-based Hough transformation to

track specifically circles. Hough transformations rely on a vot-

ing scheme and maximum detection within the accumulation

spaces to identify the location of a shape. That paper ends by

showing that this can be used to detect the rapid dynamics of

Brownian motion. In this paper, we develop a new method to

track an arbitrary complex shape, which uses an incremental

method that is able to compute, in real time at several kHz,

the geometric transformation that maps a complex reference

shape to the events acquired by the DVS. This method is

related to the family of Iterative Closest Point techniques

applied to asynchronous events. This paper also combines

the use of a frame-based camera and an event-based camera.

Apart from the new vision algorithm, the contribution of this

paper includes the action of the DVS at very high frequency

as a position sensor, providing valuable haptic feedback. A

previous paper treated virtual haptic guides for pick-and-

place operations at the microscale [25]. However, it used a

homemade AFM composed of two independent cantilevers,

which made the system very difficult to use. The cantilevers

were equipped with force sensors (two optical levers) that

provided haptic feedback, but this increased the complexity

of the setup since the laser beams had to be aligned with

the cantilevers and photodiodes. It was thus definitely not

a system that could be used by non-expert users. For these

reasons, a simple gripper was chosen for the project presented

here. Compared to [25], where the two AFM cantilevers were

equipped with force sensors, the gripper used in the present

project is sensor-deprived. Vision is thus used to compute the

haptic feedback. At the microscale, the integration of sensors

inside the manipulation tools increases the complexity and cost

of the fabrication. Here, we show that event-based cameras can

provide this feedback. The integration of this sensor is then a

sound solution for microscale applications. Its high frequency

and low data load enable the monitoring of the rapid dynamics

common at the micro scale.

This paper is organized as follows. The experimental setup

is presented in Section II. Section III gives details about the

vision algorithms used to compute the haptic feedback, which

in turn is described in Section IV. The proposed approach is

validated by the experimental results presented in Section V.

Finally, Section VI concludes the paper.

II. SETUP

Several tools have been developed to manipulate

micrometer-sized objects in ambient conditions. The most

common ones include cantilevers and grippers. Cantilevers

can be used for 2D manipulations, such as pushing or pulling

[2]. Pick and place operations have also been demonstrated

using two protruding tip cantilevers, but the complexity

of the setup limits its applicability [25]. A microgripper

designed at the FEMTO-ST Institute1 (Fig. 1) is used in

this project to perform 3D manipulations that will enable a

large range of applications, including microassembly. It is

based on a pair of piezo-electric beams with two degrees

of freedom, called a duo-bimorph, as the actuation principle

of the two fingers [26]. On each actuator, four electrodes

referred to a central ground and two voltages are necessary

to impose the displacements, based on the deflections of

the piezo-electric beam. This configuration offers a number

of capabilities: not only an open-and-close motion, but

also an up-and-down motion that allows, for example,

a fine up-and-down approach or a fine alignment of the

finger tips. Objects are grasped by the mean of two silicon

end effectors, fabricated by a DRIE (Deep Reactive-Ion

Etching) process. They are designed to minimize the sticking

effects between the end effector and the objects, in order

to facilitate the release of the objects. The end-effectors

are fixed on the piezo-electric actuators with reversible

thermal glue. The gripper is controlled with instructions

sent from a PC to a high-voltage interface (four channels

of +/− 150 V) via an RS232 link. Such a microgripper

presents a typical stroke of open/close motion and up/down

motion of, respectively, 320 µm and 200 µm at the end of

the finger tips for +/− 100 V. The gripping force is on the

order of a millinewton. The gripper is mounted on a 3-axis

motorized micromanipulator2 to allow accurate positioning

with respect to the substrate (Fig. 1). The manipulator used

relies on stepper motors with a step size of 0.040 µm. It is

a cable-driven system with cross roller bearings, it has a sub

micrometer resolution, and a travel range of 25 mm. The

manipulator was originally controlled through a serial port.

However, to increase the communication frequency, a joystick

is emulated by programming the manipulator’s parallel port

using a PCI6259 National Instrument acquisition card.

As shown in Fig. 1, the observed scene is monitored by

two optical sensors which record the same view. The light

beam is divided into two optical paths, and redirected to an

asynchronous event-based silicon retina and a conventional

frame-based camera (GigE vision, Basler). The scene recorded

by both sensors is magnified by a 10× objective (Olympus).

Haptic feedback is provided to users by an Omega haptic

device3, with three degrees of freedom for both displacement

and force feedback. Forces higher than 5 N are saturated, to

avoid any damage to the interface. Both the micromanipulator

and the gripper are controlled through the use of this device.

A single PC (Intel Xeon core, 2.93 GHz) operating under

1http://www.femto-st.fr/
2Sutter Instrument, http://www.sutter.com/MP 285
3Force Dimension, http://www.forcedimension.com



Fig. 1. Setup of the micromanipulation platform

Windows 7 runs the threads corresponding to the gripper,

the micromanipulator, the vision detection, and the haptic

feedback.

III. VISUAL TRACKING

A. Event-based artificial vision

Information about a visual scene is transmitted in an

asynchronous manner by biological retinas, unlike frame-

based cameras, and with less redundancy. The event-based

vision sensor compresses the digital data in the form of

events, removing redundancy, reducing latency, and increasing

the dynamic range compared with conventional imagers. A

complete review of the history and the existing sensors can be

found in [17].

The Dynamic Vision Sensor (DVS) used in this work is

an Address-Event Representation (AER) silicon retina with

128×128 pixels [18]. As shown in Fig. 2(a), when the change

in scene reflectance in log units exceeds a set threshold, a

+1 or −1 event is generated by the pixel, depending on

whether the log intensity increased or decreased. Because the

DVS is not clocked (as are conventional cameras), the timing

of the events can be conveyed with a temporal resolution

of approximately 1 µs. Thus the ‘effective frame rate’ is

typically several kilohertz. The absence of events when no

change of contrast is detected implies that the redundant visual

information usually recorded in frames is not carried in the

stream of events. Events are transmitted to a computer using

a standard USB connection.

Let us denote by ev(p, t) an event occurring at time t at

the spatial location p = (x,y)T . Fig. 2(b) shows an example

of the spatio-temporal visualization of a set of DVS events

in response to the microgripper’s closing on a microsphere.

An event ev(p, t) describes an activity in the spatio-temporal

space. Similar to biological neurons, its influence lasts for a

certain amount of time after it has been active. This temporal

property of events can be introduced in the form of a decay

function applied to model this phenomenon. We can then

define S(t), the spatio-temporal set of events active at time

t, by

S(t) =
{

ev(p, ti)|e
t−ti

τ > δt

}

, (1)

with τ being the time constant parameter of the decay function

and δt the predefined threshold.

(a)

Fig. 2. (a) Principle of the generation of events of DVS pixels, adapted
from Lichtsteiner et al. [18]. Events with +1 or -1 polarity are emitted when
the change in log intensity exceeds a predefined threshold. (b) Events are
generated in (X ,Y, t) space when the gripper closes on a sphere. Images
(1)–(3) are shown at chosen temporal locations; they correspond to the
accumulation maps of the events, namely, the projection of all events over
a time interval on a single plane (X ,Y ) regardless of their timings.

B. The Event-based Iterative Closest Point algorithm

The principle of ICP algorithms is to use iteratively a model

point set delineating the desired object contour to match an

acquired data point set (the matching step). Each step estimates

a rigid transformation between the known model and the

data, which expresses their geometric relationship (the tracking

step). The ICP algorithm is particularly adapted to the task

of tracking the gripper’s position, as most of its constituent

shapes remain unchanged over time; more importantly, the

scale of the observation remains unchanged during all the

tracking. Let G(t) be the set of positions of 2D model points

defining the shape of the gripper at time t. Mev(t) is the set of

pixellic locations of active pixels of the silicon retina at time

t, defined by

Mev(t) =
{

p ∈ R
2|ev(p, t) ∈ S(t)

}

. (2)

Following the ICP algorithm, a matching function is needed

to pair the model points with the active pixels of the silicon

retina. An active event is matched with an element of G(t) by

computing the minimal distance between the event’s position

and all points of G(t) that have not yet been paired.

We can then define the matching function by

match : Me(t) → G(t)

p 7→ pk, k | argmin
k∈{1,...,NG}

d(p,pk), (3)

where d(p,pk) is the Euclidean distance between two points

and NG is the size of G(t).



It then becomes possible to estimate the rigid body trans-

formation (R,T) between Mev(t) and G(t) by minimizing a

mean square cost function:

min
R∈SO(2),T∈R2

∑
p∈Mev(t)

‖ Rp−T−match(p) ‖2, (4)

where R is the rotation matrix belonging to the 2D special or-

thogonal group SO(2) and T is the translation vector. Readers

interested in the details of this minimization can refer to [21].

Fig. 3 provides the principle of the event-based algorithm.

Algorithm 1 Event-based Iterative Closest Point Algorithm

Require: Event ev(p, t)

1: for every incoming ev(p, t) do

2: Update the content of S(t) and Mev(t).
3: Compute match(p).
4: Estimate (R,T) according to equation (4).

5: Update the position of model points of G(t) using (R,T).

6: end for

The gripper closes at a speed of 13 pixels per second

(1 pixel=1.5 µm), producing a mean rate of 14k events per

second. The edge width of the gripper in the DVS focal

plane is around three pixels. When the gripper finger passes a

pixel, 10.6 events on average are generated on it. Therefore,

according to the timestamp, one pixel remains active for

2.46 ms. The decay function permits a pixel’s activity to be

considered during a certain period after it has been spiked,

which is tuned to about 10∼ 15 ms. The EICP is event driven,

and its update rate has a mean value of 4 kHz. The algorithm

is implemented in Java under the JAER open-source project

[27].

As far as we know, high speed tracking of relatively

complex shaped micromanipulation tools by using software

alone has not yet been reported. However, the general visual

tracking performance of an ICP algorithm has been experi-

mentally demonstrated. The closest performance can be found

in a hardware implementation of a frame-based technique in

[28], where it is shown that the processing speed reaches a

rate of 200 fps for 512 data points and 2048 model points.

That paper also demonstrates that a software implementation

of the same algorithm runs at a rate of 39 Hz with extra

optimization. The use to be presented here of an event-based

camera using a classic PC with no particular software speeding

process outperforms existing algorithms, since several kHz are

reached.

The performance benefits of using DVS over frame-based

cameras is significant. A dynamic vision sensor does not

generate frames: its pixels are autonomous and react asyn-

chronously to temporal contrast changes. The current shape

registration algorithms are designed to work on image frames,

usually acquired at a fixed rate. An acquired frame must then

be processed, an edge detection must be applied, and in a

second stage the registration algorithm is used to track the

object. This operation is time consuming. The data load of a

classic frame grabber at a frequency of 1 kHz would be so

huge that the computation power needed would require specific

hardware or a computer grid. The benefits of a dynamic

vision sensor is that it encodes during its acquisition process a

compression and a natural edge detection. Thus, the amount of

data provided by a DVS is really low: the seminal paper [18]

shows that this can amount to 10% of an equivalent frame-

camera of the same resolution. The second advantage of its

computation is that it introduces an alternative approach to

visual processing by introducing the timing of the changes as

a main computational feature, and not grey level values.

The frame-based camera in our system serves as a com-

plement to the DVS silicon retina solely for static object

detection. The focal planes of both the DVS (128×128 pixels)

and the frame camera (659 × 494 pixels) are related by a

homography transform, as both observe the same 2D plane

[29]. The homography is estimated off-line by extracting from

both sensors’ focals plane the coordinates of six corner points

of the gripper fingers and linking them to the actual metric

of the gripper’s points in the scene (see Fig. 4). During

the application, the circle corresponding to the sphere to be

manipulated is detected using a frame-based Hough transform

through the conventional camera output. Once detected, its

location is converted into the coordinate system of the focal

plane of the event-based retina. This operation provides the

locations of both the gripper and the sphere in the same

coordinate system. It then becomes possible to estimate the

distance δx between the gripper’s fingers. If an object is

detected between the two fingers, the relative finger–object

distance on the left and the right sides δxl , δxr and the distance

between the centre of the sphere and the gripper δy (Fig. 4)

are estimated as well. These distances will be used to compute

the haptic feedback.

IV. HAPTIC COUPLING

A. Manipulation modes

Fig. 5 represents the coupling between the haptic device

and the microgripper. The operator applies a force Fop to the

haptic device and receives a force feedback Fh based on the

distance between the gripper and the sphere δx, δxl , δxr and δy

determined from vision. Using the haptic interface, the user

can control the displacement of the micromanipulator as well

as the opening and the closing of the gripper. Scaling factors

αd and αoc are introduced to convert the position of the haptic

handle to the variables used to control the position and the

actuation of the gripper.

To ensure ease of manipulation, different modes have been

defined with adapted haptic feedback:

• Planar displacement: the operator controls the displace-

ment of the gripper in a plane parallel to the substrate,

the (x, y) plane. No force feedback is provided: Fh
T =

[

0 0 0
]

,

• Vertical displacement: the operator controls the displace-

ment of the gripper along the vertical direction. A con-

stant repulsive force feedback is provided along the z

direction so that the user has to make an effort to approach

the gripper to the substrate, to avoid unexpected contact:

Fh
T =

[

0 0 Fhz

]

,
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Fig. 3. The principle of event-based iterative closest point tracking (EICP). The first row is a sequence of conventional images showing the closing of the
gripper. The middle row shows the events’ accumulation maps. The last row is the convergence of the EICP model to the gripper edges. The four images in
the first column (a) show the initial state when the gripper is fully opened. The model set (solid lines) is trying to match the corresponding closest events,
which are represented on an accumulation map (AC map), and the rigid body transformation (R,T ) is estimated to update the model position. In (b), the
model is converging to the real gripper’s position, until it converges to the gripper’s location (c). Finally, in (d), while the gripper is closing, the model’s
position is updated simultaneously.
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X

Fig. 4. The calibration between the classical image (left) and the DVS
accumulation map (right). Six points (crosses (1)–(6)) have been chosen to
calculate the homography transform H. The detected circle (left) is transferred
by UDP socket so that the DVS part has both gripper and circle position
available (right). δxl and δxr describe the distance between the gripper’s fingers
and the sphere on the left side and the right side, δx is the distance between
the two fingers, and δy is the distance between the centre of the fingers and
the centre of the sphere.

• Gripper control: the operator controls both the opening

and closing of the gripper and its position along the

y-axis to align the gripper with the middle line of the

sphere. A 2D force feedback (explained in detail in the

next paragraph) is provided to assist the user: Fh
T =

[

Fhoc 0 Fhy

]

.

The operator selects the appropriate manipulation mode on

a graphical user interface developed in C++. To avoid any

large and sudden changes in force feedback during transitions

between different modes, the haptic force is filtered by a

Haptic
interface

Manipulator

+

Gripper

f

X

Y
(vision)

Fig. 5. Haptic coupling scheme. The user controls the position of the
gripper and the actuation of the gripper’s fingers using the haptic interface
and receives haptic feedback through the device. The haptic force is based
on the distance between the gripper and the sphere, determined from vision
algorithms. Scaling factors αd and αoc convert the position of the haptic
handle to the variables used to control the position and the actuation of the
gripper.

second-order low-pass filter for the first couple of seconds

after the selection of the desired mode. The filter is then

deactivated to enable all the force variations to be sent to the

user without smoothing. Note that even if the haptic feedback

is delayed because of the time response of the filter, this is not

an important issue as it occurs before the user actually starts

to manipulate the gripper in the chosen mode.



B. Gripper control

To increase the success rate of the pick-and-place operation,

two criteria should be met: the sphere should be grasped on its

middle line, and the grasping force should be enough to lift the

sphere yet controlled to avoid any damages to the object. The

haptic feedback must assist the user in these two operations.

To help the user align the gripper with the middle line of the

sphere, a haptic force corresponding to a spring of stiffness k

between the position of the gripper and the sphere is provided,

Fhy =−kδy, (5)

where δy is the distance between the centre of the gripper and

the centre of sphere along the y-axis (see Fig. 4).

A haptic feedback Fhoc is provided so that the user can

monitor the grasping force. Contrary to what is commonly

proposed in the literature, we are not here interested in

computing the exact efforts applied to the object, but only

in deriving information to assist the user while performing

a given task. The calibration process which enables relating

the tool deformations to the applied force is thus unnecessary.

While closing the gripper, the user has to counteract a haptic

force Fhoc,

Fhoc =







Fmaxe
−δ

f
x

2

α if not in the contact zone

Fcontact if in the contact zone.
(6)

Here, δ
f

x is the free space between the two fingers of the

gripper. If the sphere is situated between the fingers, then

δ
f

x = δxl +δxr, which corresponds to the sum of the distances

between each of the fingers and the sphere; otherwise, δ
f

x = δx.

Fmax is the maximum force that can be transmitted to the user

when the gripper is close to the sphere but has not yet entered

the contact zone. α is a constant chosen to tune the decrease

of the haptic force as the distance between the two fingers

increases. Fcontact is the force sent while the gripper is grasping

the sphere. The step between Fmax and Fcontact must be high

enough to indicate clearly the contact between the sphere and

the gripper. The contact zone is reached if δxl and δxr are

less than a given distance δ1 = 3 µm (which corresponds to

6% of the sphere diameter). The gripper will then reach the

non-contact zone if δxl and δxr are greater than δ2 = 7.5 µm.

This hysteresis avoids undesirable frequent transitions between

contact and non-contact modes because of noise or tracking

error. The hysteresis values δ1 and δ2 were chosen, based on

our experience, for a comfortable user sensation. The force

step that is sent to the user when contact is detected is filtered

to avoid large and sudden force changes. Even if the user

does not receive the maximum force feedback at the instant

of contact, the increase in the force can be distinctly felt, and

so it can be inferred that contact has happened.

V. EXPERIMENTAL RESULTS

A. The influence of the sampling rate on stability

To visualize the influence of the sampling rate on the

stability of the haptic feedback, an experiment consisting

of grasping a sphere is performed for different resampled

frequencies from the vision algorithm output. The estimated

distances are transferred to the haptic thread with resampled

dynamics manually set to 10 ms and 100 ms for comparison

with the unfiltered output of the EICP. For each frequency,

the object is grasped and released three times (without being

lifted). The results are given in Fig. 6. It can be seen that as

the frequency decreases, the effort is less smooth. This is very

disturbing for the user, who has to counteract this variation.

The user attenuates the oscillations by grasping firmly the

haptic handle, which is equivalent to adding damping to the

system. The plots show the attenuated oscillations. Fig. 6 does

not represent an unstable response from a control point of

view, since the user manages to limit the oscillations. However,

the haptic feedback is highly uncomfortable and the user has to

concentrate to counteract it. For low frequencies, the system’s

performance decreases, which makes it unsuitable for complex

3D manipulation.
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Fig. 6. Haptic forces during the grasping operation for different frequencies
of the vision feedback. The haptic force Fhoc that helps monitor the grasping
force is provided. Note that for each experiment, the user grasped the sphere
three times, and released it. As the frequency decreases, oscillations appear.

B. Pick-and-place of microspheres

Some experiments were performed to validate the use of

event-based vision in computing haptic feedback. The mi-

crospheres are glass beads of about 50µm in diameter from

Polysciences, Inc.4. To avoid issues of sticking while releasing

the spheres, a Gel-Pack substrate was selected. When the

gripper lets go of the sphere, the Gel-Pack substrate provides

enough adhesion to prevent the sphere from sticking to the

gripper.

The experiment consists of positioning the gripper with

respect to the sphere (in plane displacements), grasping it,

picking it up, moving it, putting it down, and, finally, releasing

it. The precision of gripper tracking during this process is

depicted in Fig. 7, where the ratio of the mean ICP tracking

error to the microsphere diameter is calculated. It can be seen

4http://www.polysciences.com/



Tr
ac

ki
ng

 e
rr

or
/c

irc
le

 d
ia

m
et

er
 (%

)

initializing

converging
converged tracking

defocused

(a)
(b)

(c)
(d)

(e) Y

X

Fig. 7. Gripper position-tracking error. Images represent different steps. a–b): the gripper converges to the gripper contour from its initial position; c–d): the
gripper closes, and its position is tracked; e): the sphere is lifted and the gripper starts to defocus. This induces a smoothing of contours that then lowers the
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that when the gripper closes, the tracking error converges to

a constant value, which corresponds to 7% of the diameter

of the sphere. The ‘picking up’ operation may cause a z-axis

defocusing, so the error slightly increases. The ‘putting down’

operation produces similar results. For the sake of clarity, it

has been omitted from the figure.

To assist the user in aligning the gripper with the sphere,

haptic feedback is provided for both the grasping and the

releasing tasks. The results are given in Fig. 8 for the grasping.

They are similar for the releasing stage, which is hence

omitted. The user controls the position of the gripper along the

y-axis. A haptic force Fhy that corresponds to a virtual stiffness

between the centre of the gripper’s fingers and the centre of

the sphere is transmitted to the operator. At the beginning of

the experiment, the gripper is misaligned, and the user feels an

attractive force that pulls the user to the correct position. After

13 s, the gripper is correctly aligned, and the haptic feedback

drops to zero.

The evolution of Fhoc, the haptic force that helps the user

monitor the grasping force, is given in Fig. 9 for both the

grasping and releasing stages. When t1 < 11.8 s, the user

closes the gripper on the sphere. As the free space between the

gripper’s fingers and the sphere decreases, the operator has to

counteract an increasing haptic force Fhoc. At t1 = 11.8 s, the

gripper enters the contact zone, and the user feels a large and

sudden increase of the haptic force. The sphere is grasped.

Due to an initial misalignment of the finger tips (along the

vertical z-axis), this grasping causes a rotation of the sphere

between the two fingers and amplifies the misalignment. Thus,

the right finger goes down, and left finger goes up. Since the
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Fig. 8. The haptic force Fhy that assists the user to align the gripper with
the middle line of the sphere during the grasping operation. Eq. (5) is used
with the following parameters: k = 50000 N ·m−1 (a misalignment of 100 µm
produces the maximum force admissible by the haptic interface, 5 N). The
displacement scaling factor along the y-axis is set to α

y
d = 2.5×103.

gripper is mounted with an angle of about 45 ◦ with respect

to the horizontal plane (see Fig. 1), a shift between the finger

tips along the y-axis can be observed by the projection on

the top view in the inset of Fig. 9 (or more clearly in the

insets of Figs. 7d) or 7e)). At t2 = 15.6 s, the operator begins

the pick-and-place operation. To avoid any disturbance during

this operation, Fhoc is set to zero. The user starts to release



the sphere at time t3 = 43.5 s. As the gripper contacts the

sphere, a constant haptic force is felt (equal to 5 N), which

helps the user open the gripper. At t4 = 45.3 s, the gripper is

opened, and the fingers are out of the contact zone. The haptic

force drops suddenly. It can be noted that it does not reach

0, as the force is still assisting the user to open the gripper

(and avoid unexpected closing). For the entirety of each of
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Fig. 9. Haptic force Fhoc used to control the grasping force. It is computed
using Eq. (5) with the following coefficients: Fcontact = 5 N (set to the max-
imum admissible force of the haptic interface), Fmax = 2 N, α = 1.44 ·10−8

(a distance of 100 µm produces a haptic force of 1 N). The opening/closing
scaling factor is set to αoc = 1.8×10−3 m.V−1.

the grasping and releasing operations, the user receives haptic

feedback which helps in the performance of the task.

During the lifting and the putting operations, a constant

repulsive haptic force field, set to 2 N, is provided to avoid

any involuntary contact with the substrate (Fig. 10). When the

sphere has been lifted above the substrate to the desired height,

the user can move it freely in the (x, y) plane parallel to the

substrate (αx
d = 4.0×103, α

y
d = 2.5×103)5. For this operation,

the haptic feedback is turned off.

A high frequency capability for the sensor is of the utmost

importance for real-time applications at the microscale, since

the low inertia of the objects induces rapid dynamics. In

addition, due to the scale difference, position and/or force

scaling factors are necessary to decrease the movements per-

formed by the user so that they can be used as an input for

the micromanipulation system and to enhance the force so

that it can be used as a haptic feedback (if the interaction

force between the gripper and the sphere is measured). To

ensure stability, the ratio of these scaling factors multiplied

by the square of the sampling rate of the system and the

stiffness of the contact must be less than the inertia of the

haptic device (see [30]). Ensuring stability is possible either

by adapting the scaling factors or by increasing the sampling

5Different factors are used along the three axes of the micromanipulator
to achieve easy positioning. They are set according to the user’s comfort of
manipulation.
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Fig. 10. The vertical haptic force Fhz sent to users during lifting, moving,
and putting down operations. To perform the vertical displacements, a scaling
factor α

z
d = 12.5×103 is used.

rate. Adapting the scaling factors leads to time consuming

experiments or very weak haptic feedback. In practice, this

renders the system uncomfortable and difficult to use. A sens-

ing capability higher than 1 kHz is commonly recommended

[24]. Getting high frequency sensing is the only solution

for providing usable haptic feedback systems. In this paper,

the vision sensors and detection algorithms provided a high-

frequency feedback that enabled users to successfully perform

a 3D tele-operated manipulation on micrometer-sized objects.

The results in this paper will surely benefit tele-operated

or automated microassembly and open new perspectives for

complex micromanipulation.

VI. CONCLUSION

To overcome the lack of sensing capabilities at the mi-

croscale, a vision-based system has been proposed. To enable a

wide range of applications, in particular for automated or tele-

operated micromanipulations, the frequency of the vision feed-

back must be higher than 1 kHz, as the low inertia present at

this scale induces highly dynamic phenomena. This is ensured

by the output of the DVS sensor, which conveys temporal

contrast in the scene in the form of time-stamped events. An

Event-based Iterative Closest Point algorithm (EICP) has been

proposed, to track the tool at more than 4 kHz. This feedback

is combined with the output of a classical frame-based camera,

used to derive information about static parts of the scene,

and in particular the position of the object that must be

manipulated. This approach was tested with a pick-and-place

experiment of a glass sphere with a diameter about 50 µm

using a piezo-electric gripper. The task was realized by tele-

operation with haptic feedback. This application is especially

challenging as a frequency of more than 1 kHz is required for

the system’s stability. The influence of the frequency rate on

the system’s stability has been experimentally highlighted, and

the benefits of the DVS sensor over conventional frame-based



cameras with lower frequencies was shown. A successful pick-

and-place task of micrometer-sized objects with 3D haptic

feedback based on vision tracking was performed with this

system.

These results can be easily extended to other applications,

involving different objects or tools. In particular, vision-based

force measurement could be performed with the DVS sensor

after the calibration of the tool. Fully automated manipulation

also would benefit from the high frequency of the feedback

to guarantee the system’s stability. Future research projects

include the use of a model of the gripper to avoid tracking

drift from the loss of focus while performing out-of-plane

movements.
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[1] V. Sariola, M. Jääskeläinen, and Q. Zhou, “Hybrid microassembly com-
bining robotics and water droplet self-alignment,” IEEE Transactions on

Robotics, vol. 26, no. 6, pp. 965–977, 2010.
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