
HAL Id: hal-00767634
https://hal.science/hal-00767634v1

Submitted on 20 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Digital in-line holography with an elliptical, astigmatic
Gaussian beam : wide-angle reconstruction

Nicolas Verrier, Sébastien Coëtmellec, Marc Brunel, Denis Lebrun, Augustus.
J. E. M Janssen

To cite this version:
Nicolas Verrier, Sébastien Coëtmellec, Marc Brunel, Denis Lebrun, Augustus. J. E. M Janssen.
Digital in-line holography with an elliptical, astigmatic Gaussian beam : wide-angle reconstruction.
Journal of the Optical Society of America. A Optics, Image Science, and Vision, 2008, 25, pp.1459.
�10.1364/JOSAA.25.001459�. �hal-00767634�

https://hal.science/hal-00767634v1
https://hal.archives-ouvertes.fr


Digital in-line holography with an elliptical, astigmatic

Gaussian beam : wide-angle reconstruction

N. Verrier, S. Cotmellec, M. Brunel and D. Lebrun

Groupe d’Optique et d’Optolectronique, UMR-6614 CORIA, Av. de l’Universit,

76801 Saint-Etienne du Rouvray cedex, France

A.J.E.M Janssen

Philips Research Laboratories-Building WO-02, Prof. Holstlaan 4, 5656 AE Eindhoven, The

Netherlands

coetmellec@coria.fr, a.j.e.m.janssen@philips.com

We demonstrate in this paper that the effect of object shift in an elliptical, astigmatic

Gaussian beam does not affect the optimal fractional orders used to reconstruct the

holographic image of a particle or another opaque object in the field. Simulations and

experimental results are presented. c© 2012 Optical Society of America

OCIS codes: 090.0090, 070.0070

1. Introduction

Digital in-line holography (DIH) is widely used in microscopy for biological applications [1, 2], in

3D Holographic Particle Image Velocimetry (HPIV) for fluid mechanics studies [3] and in refrac-

tometry [4]. In most theoretical DIH studies, the optical systems or the objects used, for example

particles, are considered to be centered on the optical axis [5,6]. Nevertheless, in many practical ap-

plications, the systems and objects are not necessarily centered. This is not a problem under plane

wave illumination. But more and more studies involve a diverging beam, or astigmatic beams directly
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obtained at the output of fibered laser diodes or astigmatic laser diodes. The position of the object

in the beam becomes particularly relevant. To reconstruct the image of an object, a reconstruction

parameter must be determined in order to find the best focus plane. For wavelet transformation,

the parameter is the scale factor [7]. For Fresnel transformation, the parameter is the distance z

from the object to the quadratic sensor plane [8] and for the fractional Fourier transformation, the

parameters are the fractional orders [9,10]. It is considered here that the same parameter can be used

for all positions of the object. Recently, an analytical solution of scalar diffraction of an elliptical

and astigmatic Gaussian beam (EAGB) by a centered opaque disk under Fresnel approximation has

been proposed. By using the fractional Fourier transformation, a good particle image reconstruction

is obtained [11]. However, there are no recent publications in DIH theory demonstrating that recon-

struction parameter is constant for all transverse positions of the object in the field of the beam.

This is, however, particularly important if we want to develop wide-angle metrologies.

In this publication, the aim is to demonstrate that the same fractional orders can be used to

reconstruct an image of the particle whatever its position in the field of the beam. We exhibit the

effect of the Gaussian beam on the reconstructed image. In the first part of this publication, the

model of the analytical solution of scalar diffraction of an EAGB by a centered opaque disk is

revisited to take into account a decentered object. In the second part, the definition of the fractional

Fourier transformation is recalled and this transformation is used to reconstruct the image of the

particle. It is in this part that we demonstrate that the same orders can be used. Finally, we propose

to illustrate our results by simulations and experimental results.

2. In-line Holography with an elliptic and astigmatic Gaussian beam

The basic idea in DIH is to record by a CCD camera the intensity distribution of the diffraction

pattern of an object illuminated by a continuous or pulsed wave [12]. Figure (1) represents the

numerical and experimental set-up where all parameters are identified. The incident Gaussian beam
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of diameter ω crosses a plano-convex cylindrical lens. This cylindrical lens acts only in the η-axis. Its

focal length is equal to fη = 200mm. After propagation in free space, the elliptical and astigmatic

Gaussian beam illuminates an opaque particle. In the plane of the object, the beam widths along

the ξ-axis and η-axis are defined by ωξ and ωη. The wavefront curvatures of the astigmatic beam are

denoted by Rq with q = ξ, η. The CCD camera is located at a distance z from the opaque particle.

The basic model to describe the intensity distribution of the diffracted beam by an object recorded

by the CCD camera is the integral of Kirchhoff-Fresnel given by the scalar integral for the complex

amplitude A in the quadratic sensor plane:

A =
exp(i 2πλ z)

iλz

∫

R2

ET (ξ, η) exp

(
iπ

λz

[
(ξ − x)2 + (η − y)2

]
)

dξdη, (1)

in which ET (ξ, η) is the product of the optical incident beam, denoted E(ξ, η), by the spatial trans-

mittance of the shifted opaque 2D-object, denoted 1−T (ξ−ξ0, η−η0). The quadratic sensor records

the intensity defined by |A|2. If we consider that the function ET is the product of an elliptic and

astigmatic Gaussian beam by an opaque disk of diameter D, then

ET (ξ, η) = exp
[
cξξ

2 + cηη
2
]

︸ ︷︷ ︸

=E(ξ,η)

· [1− T (ξ − ξ0, η − η0)]
︸ ︷︷ ︸

shifted object

. (2)

The complex coefficients cξ and cη are

cξ = − 1

ω2
ξ

− i
π

λRξ
, cη = − 1

ω2
η

− i
π

λRη
, (3)

For an opaque disk centered at the origin O, the transmittance function T (ξ, η) in the object plane

is:

T (ξ, η) =







1, 0 <
√

ξ2 + η2 < D/2,

1/2, 0 <
√

ξ2 + η2 = D/2,

0,
√

ξ2 + η2 > D/2 > 0.

(4)

¿From Eqs. (1) and (2), the expression for A(x, y) can split into two integral terms, denoted A1 and
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A2 so that:

A(x, y) =
exp(i 2πλ z)

i
[A1 −A2] . (5)

The expression of these two terms is given in the Appendix (A). The complex amplitude A1 repre-

sents the propagation of the incident beam without diffraction by the particle and A2 contains the

diffraction by a pinhole of diameter D. After some development detailed in the Appendix (A), the

expression of A2 becomes:

A2 =
πD2

λz
exp [Φ(ξ0, η0)] · exp

(
icz

[
(x− ξ0)

2 + (y − η0)
2
])

·
∞∑

k=0

(−i)kεk Tk(r, γ) cos(2kθ), (6)

with

Tk(r, γ) =
∞∑

p=0

β2k
2k+2p(δ)V

2k
2k+2p(r, γ), (7)

and

V 2k
2k+2p(r, γ) = exp(iγ/2)

∞∑

m=0

(2m+ 1)imjm(γ/2) ·

m+p∑

l=max(0,m−2k−p,p−m)

(−1)lωml

J2k+2l+1(r)

r
. (8)

The coefficients ωml are given explicitly in [11] and [14]. Finally, the expression of A1 contains only

the characteristics of the incident beam and A2 contains a shifted linear chirp function linked to the

object shift in the EAGB. The previous function is modulated by a series of Bessel functions which

constitutes the envelope of the amplitude distribution of A2.

A similar expression has been established in [11] for a particle located on the axis of the beam,

i.e. ξ0 = 0 and η0 = 0. This last expression is more general and can be applied to a particle located

everywhere in the field of the beam.

In our previous study, we demonstrated that a fractional-order Fourier transformation allows a

particle located on the axis of the beam to be reconstructed. Unfortunately, the expression of the

diffraction pattern (and particularly A2) is so complex that it cannot be proved theoretically that a

digital (or optical) reconstruction leads effectively to an opaque disk function. The demonstration is

empirical. In addition, nothing proves that the fractional orders used for the reconstruction would

be appropriate if the object were shifted transversely.
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In the next developments, we will thus prove theoretically that the reconstruction leads effectively

to the object. We will then demonstrate that the reconstruction process is successful whatever the

transversal position of the particle in the field of the beam. In addition, we show that the same

fractional orders have to be applied. We will thus be able to conclude that reconstruction is possible

for a whole wide-field object or wide particle field in such a beam.

Now, to obtain the desired accuracy, we should analyze the number of terms necessary in the

series over k in Eq. (6) and over p in Eq. (7). The series which should be analyzed are in Eq.(8).

The first upper bound that is relevant here is [14–16]

∣
∣
∣jm

(γ

2

)∣
∣
∣ ≤ 1

(2m+ 1)1/2
min

(

1,
(π

2

)1/2 |γ/4|m
m!

)

. (9)

The coefficients ωml verify ωml ≥ 0 and
∑

l ωml = 1, so the ω’s are completely innocent. Using

the bound (9) for the function
∣
∣jm

(
γ
2

)∣
∣ requires a rough estimate of the variable γ. In practical

experiments, we have D ≈ 10−4m, λ ≈ 10−6m, z ≈ 10−1m, Rq ≈ 0.5 · 10−1 then γ ≈ 0.785 · 10−1 +

0.816 · 10−3i. The right-hand side of Eq. (9) is less than 0.142 · 10−1 for m ≥ 1. The second upper

bound we use concerns the Bessel functions J2k+2l+1. From [17], 9.1.62 on p.362 and [14] we obtain:

∣
∣
∣
∣

J2k+2l+1(r)

r

∣
∣
∣
∣
≤ min

(

1,
1

2

|r|2k+2l exp(|r|2)
(2k + 2l+ 1)!

)

. (10)

The evaluation of the accuracy concerns the product of the left-hand side of Eqs. (9) and (10):

∣
∣
∣jm

(γ

2

)∣
∣
∣

∣
∣
∣
∣

J2k+2(m+p)+1(r)

r

∣
∣
∣
∣
. (11)

With the previous values, all the quantities in (11) are less than 0.142 · 10−1 for all (k, p,m) ≥ 1.

Thus, we only consider the case where k = p = m = 0. In conclusion, the function V 0
0 (r, γ) is given

with good accuracy by:

V 0
0 (r, γ) ≃ exp(iγ/2)j0(γ/2)

J1(r)

r
. (12)

Note that this result is true if the object is far from the beam waist. The amplitude A2 then becomes

A2 =
πD2

2λz
β0
0(δ) exp [Φ(ξ0, η0)] exp

(
icz

[
(x− ξ0)

2 + (y − η0)
2
])

· V 0
0 (r, γ). (13)
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2.A. Intensity distribution of the diffraction pattern

The intensity distribution of the diffraction pattern in the quadratic sensor plane, denoted I, is

evaluated from the Eqs. (5), (13) and (36) in the following way:

I = AA = [A1 −A2]
[
A1 −A2

]
=

[
|A1|2 + |A2|2

]
− 2ℜ

{
A1A2

}
, (14)

where the overhead bar denotes the complex conjugate, ℜ denotes the real part. Thus, the intensity

distribution recorded by the CCD sensor is described by the Eq. (14). As one sees from the form of

I, the first and second terms, i.e., |A1|2 and |A2|2, do not generate interference fringes with a linear

instantaneous frequency, denoted fi(x), in the CCD plane, i.e. [18]:

fi(x) =
1

2π

∂ϕ(x)

∂x
=

1

2π

∂ arg(|A1,2|)
∂x

= 0. (15)

But the third term exhibits a phase which is composed of a constant and a linear instantaneous

frequency. This fact is important because the fractional Fourier transform is an effective operator

for analyzing a signal containing a linear instantaneous frequency (linear chirp functions). From Eq.

(14) we write

A1A2 = |A1A2| exp
[
i arg

(
A1A2

)]
, (16)

where arg
(
A1A2

)
= φ− φ0 with

φ = cz
(
x2(Mξ − 1) + y2(Mη − 1)

)
+ 2cz (xξ0 + yη0)− arg

(
J1(r)

r

)

, (17)

and

φ0 =
ℜ(γ)
2

+ ℑ(Φ(ξ0, η0)) + arg
(

j0

(γ

2

))

+ arg
(
β0
0(δ)

)
− arg (KξKη) , (18)

where ℑ represent the imaginary part of a complex number. The first term in (17) yields a quadratic

phase and the second term yields a linear phase. Remember that the aim of the reconstruction by

means of FRFT is precisely to analyze a linear chirp.

To give two different examples, it is necessary to fix the values of the parameters (ωξ, ωη), (Rξ, Rη)

and (D,λ, z).
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In the first case, the values are defined by (7mm, 1.75mm) for the beam waists, (−∞,−50mm)

for the wave’s curvatures and the diameter D of the particle is equal to 150m and located at

120mm from the CCD sensor. The wavelength of the laser beam is 632.8nm. The distance between

the cylindrical lens and the particle is δ = 250mm. The particle is shifted from the origin by

(ξ0, η0) = (0.5mm, 0.2mm). Figure (2) illustrates the diffraction pattern which is recorded by the

camera. Note that the shift of the diffraction pattern (x0, y0) observed in the camera plane is not

equal to the object shift (ξ0, η0). If the particle is considered far from the beam waist then we have

the formula:

y0 =
| ∆ | ±z

| ∆ | η0. (19)

The sign of z depends on the position of the particle compared with the position of the waist. If the

particle is after the waist, the sign is positive. If it is in front of the waist, the sign is negative. Along

x-axis, the parameter ∆ is infinite so that in the plane of the camera x0 = ξ0 = 0.5mm and along

y-axis, ∆ = 50mm thus y0 = 0.68mm.

Now, in the second case, the values are defined by (7mm, 1.75mm) for the beam waists,

(−∞, 50mm) for the wave’s curvatures and the diameter D of the particle is equal to 150m and

located at z = 120mm from the CCD sensor. The distance between the cylindrical lens and the

particle is δ = 150mm. The particle is shifted from the origin by (ξ0, η0) = (0.5mm, 0.2mm). Figure

(3) illustrates the diffraction pattern which is recorded by the camera. In the plane of the camera,

x0 = ξ0 = 0.5mm, ∆ = 50mm thus, from Eq. (19), it leads to y0 = −0.28mm. The diffraction

pattern changes from elliptical fringes to hyperbolic fringes. These diffraction patterns will be used

to reconstruct the image of the particle by FRFT.
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3. Fractional Fourier transformation analysis of in-line holograms

3.A. Two-dimensional Fractional Fourier transformation

FRFT is an integral operator that has various application in signal and image processing. Its math-

ematical definition is given in Ref. [19–21]. The two-dimensional fractional Fourier transformation

of order ax for x-cross-section and ay for y-cross-section with 0 ≤ |αx| ≤ π/2 and 0 ≤ |αy| ≤ π/2,

respectively, of a 2D-function I(x, y) is defined as (with αp =
apπ
2 )

Fαx,αy
[I(x, y)](xa, ya) =

∫

R2

Nαx
(x, xa)Nαy

(y, ya)I(x, y) dx dy, (20)

where the kernel of the fractional operator is defined by

Nαp
(x, xa) = C(αp) exp

(

iπ
x2 + x2

a

s2p tanαp

)

exp

(

− i2πxax

s2p sinαp

)

, (21)

and

C(αp) =
exp(−i(π4 sign(sinαp)− αp

2 ))

|s2p sinαp|1/2
. (22)

Here p = x, y. Generally, the parameter sp is considered as a normalization constant. It can take

any value. In our case, its value is defined from the experimental set-up according to [22]

s2p = Np · δ2p. (23)

This definition is presented in the Appendix C. Np is the number of samples along the x and y axes

in both spatial I(x, y) and fractional domains. The constant δp is the sampling period along the two

previous axes of the image. In our case the number of samples and the sampling period are the same

along both axes, so that the parameters sp are equal to s. The energy-conservation law is ensured by

the coefficient C(αp) which is a function of the fractional order. One of the most important FRFT

feature is its ability to transform a linear chirp into a Dirac impulse. Let g(x) = exp
(
iπχx2

)
the

chirp function to be analyzed. If we consider 1
χ = − tanα, and using the fact that:

lim
ε→0

1√
iπε

exp

(

−x2

iε

)

= δ(x), (24)
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then the FRFT of optimal order α of g(x) can be written as:

Fα [g(x)] = δ(xa). (25)

Finally, by choosing the adequate value of the fractional order, a pure linear chirp function can be

transformed into a delta Dirac distribution.

3.B. Reconstruction: optimal fractional orders

To reconstruct the image of the particle, the FRFT of the diffraction pattern (Eq.(14)) must be

calculated:

Fαx,αy
[I] = Fαx,αy

[
|A1|2

]
− Fαx,αy

[
2|A1A2| cos(φ− φ0)

]
+ Fαx,αy

[
|A2|2

]
(26)

The terms |A1|2 and |A2|2 do not contain a linear chirp, so they do not have any effect on the

optimal fractional order to be determined. But the second term, denoted St contains a linear chirp.

It will be considered for the image reconstruction of the particle. By noting that 2 cos(φ − φ0) =

exp(−i(φ− φ0)) + exp(i(φ− φ0)), the second term of Eq. (26) becomes :

Fαx,αy

[
2|A1A2| cos(φ − φ0)

]
= exp

(

iπ
x2
a

s2 tanαx

)

exp

(

iπ
y2a

s2 tanαy

)

{I− + I+} (27)

with

I± = C(αx)C(αy)

∫∫

R2

∣
∣A1A2

∣
∣ exp [i (φa ± (φ− φ0))] exp

[

−2iπ

s2

(
xax

sinαx
+

yay

sinαy

)]

dxdy (28)

The quadratic phase term of the FRFT is denoted by φa = π
s2

(
x2 cotαx + y2 cotαy

)
. Let us recall

that the FRFT allows us to analyze a linear chirp. Thus, if the fractional orders check the following

conditions

π cotαopt
x

s2
= cz(Mx − 1),

π cotαopt
y

s2
= cz(My − 1), (29)

then, the FRFT of I− is no more than a classical Fourier transformation according to

I− = χ · F
[
J1(r)

r
· exp

(

− π

λz
ρTNρ

)]

(u, v), (30)
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with χ = πD2

2λz C(αx)C(αy)KξKη exp [Φ(ξ0, η0)]β
0
0(δ) exp

(
iγ2

)
j0
(
γ
2

)
. The operator F is the 2D-

Fourier transformation. The spatial frequencies u and v are equal to:

u =
xa

s2 sin(αopt
x )

+
czξ0
π

v =
ya

s2 sin(αopt
y )

+
czη0
π

(31)

As the Fourier transform of the product of two functions is equal to the convolution of their trans-

forms then

I− = χ · F
[
J1(r)

r

]

∗ F
[

exp
(

− π

λz
ρTNρ

)]

, (32)

Remember here that the variables ρ and r pertain to the same coordinates (x, y). With the shift

theorem for the Fourier transform, the Hankel transform and the discontinuous Weber-Schafheitlin

integral in [ [17]], 11.4.42 on p.487, we have:

F
[
J1(r)

r

]

= 2π

(
λz

πD

)2

exp [−i2π(uX0 + vY0)]×







1, 0 <
√
u2 + v2 < D/2

λz ,

1/2, 0 <
√
u2 + v2 = D/2

λz ,

0,
√
u2 + v2 ¿ D/2

λz > 0,

(33)

with X0 = ξ0 (1− icξ/cz) and Y0 = η0 (1− icη/cz). The function defined by the right-hand side of

Eq. (33), with spatial coordinates (xa, ya), has the aperture of the pinhole with diameter equal to

the diameter D of the opaque particle. We have thus demonstrated our result: reconstruction with

a FRFT leads exactly to the object. In addition, shifting the object does not modify the fractional

order. This point is important because in the case of a particle field, a single fractional order couple

along the x− axis and y− axis is necessary to reconstruct the particle image. If one wishes to

determine the shift of the diffraction patterns in the (xa, ya)-plane, the coordinates that should be

considered are:
(

s2(u− czξ0
π

) tanαopt
x , s2(v − czη0

π
) tanαopt

y

)

(34)

This correction is necessary because the fractional Fourier transformation is not invariant by trans-

lation: a space-shift in the spatial domain will lead to both frequency-shift and phase-shift in the
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FRFT domain. The shift rule of the FRFT is expressed as:

Fα[f(x− b)](u) = exp
(
iπb2 sinα cosα

)
exp (−i2πbu sinα)Fα[f(x)](u − b cosα) (35)

Note that the nature of the Gaussian beam implies that the reconstructed image of the object is

convolved by a 2D Gaussian function. The sign of the object function (opaque object with a luminous

background) is retrieved by applying an inversion of I− that is realized by the minus in front of the

second term of Eq. (26).

3.C. Numerical experiments

The simulations of the particle image reconstruction are realized from the diffraction patterns illus-

trated by the Figs. (2) and (3). The diffraction patterns consist of a 512× 512 array of 11m× 11m

size pixels. Consider the diffraction pattern presented in Fig. (2) and produced by a particle of

D = 150m in diameter located at z = 120mm. The optimal fractional orders obtained from Eq. (29)

are aoptx = −0.564 and aopty = −0.850. The image of the reconstructed image is shown in Fig. (4). In

this representation, the squared modulus of the FRFT, i.e. |Fαx,αy
[I]|2, is taken. The shape of the

particle image is not modified: the width of the Gaussian function in the Eq.(32) is greater than the

diameter D of the particle (typically 679m along x-cross axis and 490m along y-cross axis). Now, the

reconstruction of the particle image from the diffraction pattern illustrated by Fig. (3), is realized

by a fractional Fourier transformation of optimal orders aoptx = −0.564 and aopty = 0.664. Figure

(5) illustrates the result of the reconstruction. In both cases (Fig.(4) and Fig.(5)) reconstruction by

FRFT is successful. Note that we have checked that the apertures resulting from Eq. (32) and the

image of the reconstructed particle give the same diameter D.

3.D. Experimental results

As the reconstruction process is successful whatever the transversal position of the particle in the

field of the beam, for the same fractional orders we can now carry out a reconstruction for a wide-field
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object.

The previous theoretical developments and numerical experiments have been tested by using an

RS-3 standard reticle (Malvern Equipment). This reticle is an optical glass plate with a pattern of the

word ”ELECTRO” photographically deposited on the surface. The word ”ELECTRO” spread over

6.5mm. The reticle is located at δ ≈ 156mm from the cylindrical lens (CL). The distance z between

the CCD camera and the reticle is approximatively equal to 117mm. The opaque word ”ELECTRO”

is in front of the waist of the beam. The intensity distribution of the EAGB diffracted by the word

”ELECTRO” is shown in Fig. (6). The image of the word ”ELECTRO” is reconstructed by the

fractional Fourier transformation. Fractional orders have been adjusted to obtain the best contrast

between the reconstructed ”ELECTRO” word and the background. Thus doing, the approximate

orders are aoptx = 0.505 and aopty = −0.785. The image of Fig. (7) shows that two previous orders

allow all parts of the image of the object to be reconstructed. Note that the word is reversed along

the y−axis. This is due to the Gouy phase shift of a Gaussian beam that propagates from −∞ to

+∞ through the focus point. In this case, the phase shift predicted is π.

4. Conclusion

The effect of a transversal object shift in an elliptical, astigmatic Gaussian beam does not affect

the optimal fractional orders required to reconstruct the image of a particle or any other opaque

object in the field. In this publication an analytical model has been developed to prove this. In

this development, an opaque particle is considered. Experimental result presented by the recording

and reconstruction of the word ”ELECTRO” show that our method works, even when the object is

spread out over the whole image field.
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A. Appendix A : Expression of the terms A1 and A2

A.A. Expression for the amplitude distribution A1

The development of integral A1 has been given in a previous paper by [11] :

A1 = KξKη exp
(

− π

λz
ρTNρ

)

exp
(

i
π

λz
ρTMρ

)

(36)

where ρT represents the vector (x y) and the factors Kq with q = ξ, η in Eq.(36) are defined by

Kq =





πω2

q

λz

1 + i
πω2

q

λz

(
z
Rq

− 1
)





1/2

(37)

and the diagonal matrices N and M by

N =







Nx 0

0 Ny







, M =







Mx 0

0 My







, (38)

with

Nq = π

ω2

q

λz

1 + π2 ω4
q

(λz)2

(
z
Rq

− 1
)2 , Mq = 1 + π2

ω4

q

(λz)2

(
z
Rq

− 1
)

1 + π2 ω4
q

(λz)2

(
z
Rq

− 1
)2 . (39)

A.B. Expression for the amplitude distribution A2

To develop the second integral of A2, involving the product of E(ξ, η) and T (ξ − ξ0, η − η0), i.e.:

A2 =
exp

[
iπ
λz (x

2 + y2)
]

λz

∫

R2

E(ξ, η)T (ξ − ξ0, η − η0) exp

[
iπ

λz
(ξ2 + η2)

]

exp

[

−i
2π

λz
(xξ + yη)

]

dξdη,

(40)

we first replace ξ by ξ + ξ0 and η by η + η0 and get:

A2 =
exp

[
iπ
λz (x

2 + y2)
]

λz

∫

D

E(ξ + ξ0, η + η0) exp

[
iπ

λz
((ξ + ξ0)

2 + (η + η0)
2)

]

×

exp

[

−i
2π

λz
(x(ξ + ξ0) + y(η + η0))

]

dξdη. (41)

The domain D must be defined as the disk with center 0 and diameter D. By considering that

cz = π/(λz) and by restating A2 in cylindrical coordinates as follows: ξ = Dσ cos(ϕ)/2 and η =

13



Dσ sin(ϕ)/2 for the object plane, we obtain:

A2 =
D2

4λz
exp

[
cξξ

2
0 + cηη

2
0 + icz

[
(x− ξ0)

2 + (y − η0)
2
]]
·

∫ 1

0

∫ 2π

0

exp
[
iγσ2

]
exp

[
iδσ2 cos(2ϕ)

]
exp [iaσ cosϕ+ ibσ sinϕ] σdσdϕ (42)

with

γ =
D2

4
cz − i

D2

8
(cξ + cη), δ = i

D2

8
(cη − cξ),

a = Dcz [ξ0 (1− icξ/cz)− x] , b = Dcz [η0 (1− icη/cz)− y] .

(43)

By writing:

a cosϕ+ b sinϕ = r cos(ϕ− θ) (44)

for which we have the condition

a = r cos θ, b = r sin θ (45)

with complex r and θ. This representation is discussed in some detail in Appendix B. By means of

the following equalities in [ [17]], 9.1.41 - 9.1.45:

exp
[
iδσ2 cos (2ϕ+ 2θ)

]
= J0

(
δσ2

)
+ 2

+∞∑

k=1

ikJk
(
δσ2

)
cos 2k(ϕ+ θ), (46)

and

1

2π

∫ 2π

0

exp(inθ) exp[ix cos θ]dθ = inJn(x), (47)

the expression of A2 becomes:

A2 =
πD2

λz
exp [Φ(ξ0, η0)] · exp

(
icz

[
(x− ξ0)

2 + (y − η0)
2
])

·
∞∑

k=0

(−i)kεk Tk(r, γ) cos(2kθ), (48)

with εk = 1/2 if k = 0 and 1 otherwise. The parameter denoted Φ(ξ0, η0) is equal to
[
cξξ

2
0 + cηη

2
0

]
.

The function Tk(r, 2γ) is defined as:

Tk(r, γ) =

∞∑

p=0

β2k
2k+2p(δ)V

2k
2k+2p(r, γ), (49)

14



where the coefficients β2k
2k+2p are given by the analytical development of Tk in Appendix of [ [11]].

Recall here that the expression of V 2k
2k+2p(r, γ) is:

V 2k
2k+2p(r, γ) = exp(iγ/2)

∞∑

m=0

(2m+ 1)imjm(γ/2) ·

m+p∑

l=max(0,m−2k−p,p−m)

(−1)lωml

J2k+2l+1(r)

r
. (50)

The coefficients ωml is given explicitly in [ [11]] and [ [14]].

B. Appendix B : Elaboration of condition (45)

With u = a+ ib, v = a− ib, we should find τ and ω = exp(iθ) such that

τω = u, τ/ω = v (51)

Assume that u 6= 0, v 6= 0, and write u = r exp(iα), v = s exp(iβ) with r, s > 0 and α, β ∈ R then

we see that ω = exp(iθ) given by

τ = (rs)1/2 exp (i(α+ β)/2) , ω = exp(iθ) =
(r

s

)1/2

exp (i(α− β)/2) (52)

satisfy the relations (51). This does not work in the case that u = 0 or v = 0. Indeed, when a = 1,

b = i we get from (45) and cos2 θ + sin2 θ = 1 that r = a+ ib = 0, i.e., r = 0.

C. Appendix C : Definition of sp

To determine the value of sp, it is necessary to write the definition of the one-dimensional fractional

Fourier transformation in the particular case of α = π/2:

Fπ/2[I(x)](xa) = C(π/2)

∫ +∞

−∞

I(x) exp
(

−i2π
xxa

s2

)

dx. (53)

Its discrete version is

Fπ/2[I(m)](k) = C(π/2)

N/2−1
∑

m=−N/2

I(m) exp

(

−i2π
mδx kδxa

s2

)

δx, (54)

where δx and δxa
are the sampling periods of I(x) and its transform. The sampling periods are equal

to δx, and N is the number of samples of I(x) and its transform. The relation (54) can be written

15



as the discrete Fourier transformation of I(m) according to:

Fπ/2[I(m)](k) = C(π/2)

N/2−1
∑

m=−N/2

I(m) exp

(

−i2π
mk

N

)

δx. (55)

By identification of Eqs. (55) and (54), one obtains:

δxδxa

s2
=

1

N
so s2 = Nδxδxa

= Nδ2x. (56)

In the case of two-dimensional function one finally has s2p = Np · δ2p with p = ξ, η.
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Fig. 1. Numerical and experimental optical set-up.
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Fig. 2. Diffraction pattern with , ωξ = 7mm, ωη = 1.75mm, Rξ = ∞, Rη = −50mm,

D = 150m, λ = 632.8nm, z = 120mm, δ = 250mm, ξ0 = 0.5mm and η0 = 0.2mm.
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Fig. 3. Diffraction pattern with , ωξ = 7mm, ωη = 1.75mm, Rξ = ∞, Rη = −50mm,

D = 150m, λ = 632.8nm, z = 120mm, δ = 150mm, ξ0 = 0.5mm and η0 = 0.2mm.
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Fig. 4. Fractional Fourier transform of the diffraction pattern with aoptx = −0.564 and

aopty = −0.850.
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Fig. 5. Fractional Fourier transform of the diffraction pattern with aoptx = −0.564 and

aopty = 0.664.
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Fig. 6. Diffraction pattern of the word ”ELECTRO”.
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Fig. 7. Fractional Fourier transform of the diffraction pattern with aoptx = 0.505 and aopty =

−0.785.
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