P-positive definite matrices and stability of non conservative systems - Archive ouverte HAL
Article Dans Une Revue Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik Année : 2012

P-positive definite matrices and stability of non conservative systems

Résumé

The bifurcation problem of constrained non-conservative systems with non symmetric stiffness matrices is investigated. It leads to study the subset $D_{p,n}$ of $ℳn(ℝ)$ of the so called $p$-positive definite matrices ($1 ≤ p ≤ n$). The main result ($D_{1,n} ⊂ D_{p,n}$) is proved, the reciprocal result is investigated and the consequences on the stability of elastic nonconservative systems are highlighted.
Fichier principal
Vignette du fichier
zamm.201100055.pdf (313.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00767592 , version 1 (04-02-2019)

Identifiants

Citer

Jean Lerbet, Marwa Aldowaji, Noël Challamel, François Nicot, Florent Prunier, et al.. P-positive definite matrices and stability of non conservative systems. Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2012, 92 (5), pp.409-422. ⟨10.1002/zamm.201100055⟩. ⟨hal-00767592⟩
109 Consultations
191 Téléchargements

Altmetric

Partager

More