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Asymptotic stability in the energy space for dark solitons of the
Gross-Pitaevskii equation

Fabrice Béthuel ! Philippe Gravejat ? Didier Smets 3

December 20, 2012

Abstract

We pursue our work [4] on the dynamical stability of dark solitons for the one-dimensional
Gross-Pitaevskii equation. In this paper, we prove their asymptotic stability under small
perturbations in the energy space. In particular, our results do not require smallness in some
weighted spaces or a priori spectral assumptions. Our strategy is reminiscent of the one used
by Martel and Merle in various works regarding generalized Korteweg-de Vries equations.
The important feature of our contribution is related to the fact that while Korteweg-de Vries
equations possess unidirectional dispersion, Schrédinger equations do not.

1 Introduction

We consider the one-dimensional Gross-Pitaevskii equation

10V + 0y ¥ + U (1 — [U]?) =0, (GP)
for a function ¥ : R x R — C, supplemented with the boundary condition at infinity

|U(x,t)| =1, as |z| = +o0.

The Gross-Pitaevskii equation is a Hamiltonian equation, its Hamiltonian being given by the
Ginzburg-Landau energy

e =3 [ 0P +5 [0 wpp,
A soliton with speed c is a travelling-wave solution of (GP) of the form
U(z,t) := Uz — ct),
and its profile U, is a solution to the ordinary differential equation
—ic0yUe + 03U + Ue(1 — |Ue|*) = 0. (1)

The solutions to (1) with finite Ginzburg-Landau energy are explicitly known. For |¢| > v/2,
they are the constant functions of unitary modulus, while for |c| < v/2, up to the invariances of
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the problem, i.e. multiplication by a constant of modulus one and translation, they are uniquely

given by the expression
[2—¢c2 /12— cx c
() = th( > —. 2

Notice that solitons U, with speed ¢ # 0 do not vanish on R. These are called dark solitons, with
reference to nonlinear optics where |¥|? refers to the intensity of light. Instead, since it vanishes
at one point, Uy is called the black soliton.

The energy space for (GP) is given by
X(R) := {¥ € HL (R), ¥ € L*R) and 1 — [¥* € L*(R)}.

Due to the non-vanishing conditions at infinity, it is not a vector space. Yet X'(R) can be given
a structure of complete metric space through the distance

d(T1, U2) := || W1 = o ooy + ([ 91 = 5| 2y + [[1P2] = [Pa[] 2

The Cauchy problem for (GP) in space dimension one is known to be solvable in the energy
space. For an initial datum ¥° € X(R), the Gross-Pitaevskii equation possesses a unique global
solution ¥ € CO(R, (X(R),d)), and moreover ¥ — W0 € CO(R, H'(R)) (see e.g. [21, 9, 10] and
Appendix A.1).

Orbital stability of dark and black solitons was proved in [13, 2| (see also [1, 11, 4]).
Theorem 1 ([13, 2]). Let ¢ € (—v/2,v/2). Given any positive number ¢, there exists a positive

number & such that, if
d(\lloa Uc) S 55
then

sup inf d(U(-,t),e?U( —a)) <e.
sup It ((,1), e Ue(- — a))

Our main result in this paper concerns asymptotic stability of dark solitons. We have

Theorem 2. Let ¢ € (—/2,v2) \ {0}. There exists a positive number J., depending only on c,
such that, if
d(v°,U;) <6,

then there exist a number ¢* € (—v/2,v/2)\ {0}, and two functions b € C*(R,R) and § € C*(R,R)
such that
V() — ¢, and 6'(t) =0,

as t — 400, and for which we have
e DT (- 4b(t),t) — U in LS(R), and e P9, (- +b(t),t) — .U in L*(R),
in the limit t — +o0.

Comments. (i) Complementing Theorem 2 with information from Theorem 1, one also obtains
a control on |¢ — ¢*| relative to d(¥°, U,), and in particular it directly follows from the two
statements that |c — ¢*| — 0, as d(¥°,U,) — 0. We will actually prove uniform estimates, valid
for all times, stating that

d(e™ D (- +b(t),t),Ue) + [V () — ¢| < Acd(9°,U,),



where A, depends only on ¢ (see Theorem 3 below).

(73) For ¢ # 0 as in Theorem 1, if € is chosen sufficiently small, it follows from the Sobolev
embedding theorem that ¥ does not vanish on R x R. We heavily rely on this property for
proving Theorem 2, in particular in the next subsection where we introduce the hydrodynamical
framework. We have not considered here the case of the black soliton (¢ = 0) although part of
the analysis remains pertinent in that case.

(iti) The convergence in L{¥ (R) cannot be improved into a convergence in L*°(R) (due to
slow phase winding at infinity), and the weak convergence of the gradients in L?(R) cannot
be improved into a strong convergence in L?(R) (due to the hamiltonian nature of the equa-
tion). Yet, it is not impossible that the latter could be improved into a strong convergence in
L% (R), but we have no proof of that fact. We also believe that the functions b(t) — ¢* and
0(t) need not be bounded, and in particular need not have limits as ¢ — +o0, unless additional

(regularity /localization) assumptions are made on the initial perturbation.

(7v) Finally, we mention that our proofs make no determinant use of the integrability of
the Gross-Pitaevskii equation, nor of the explicit nature of the solitons U.. In particular, they
could presumably be extended to related nonlinearities (e.g. those studied in [5]) without major
modifications.

In the remaining part of this introduction, we present the main ingredients leading to the
proof of Theorem 2. The strategy is reminiscent to the one used by Martel and Merle for the
generalized Korteweg-de Vries equation, in particular in [18] (see also [15, 16, 17, 6, 14, 19, 12]).

1.1 Hydrodynamical form of the Gross-Pitaevskii equation

As mentioned above, when ¢ # 0 the soliton U, does not vanish and may thus be written under
the form

Ue 1= oce™,
for smooth real functions g. and ¢.. In view of formula (2), the maps 7. := 1— 02 and v, := —,,
are given by
2 —c? ene() c(2 —c?)
ne(w) = ———C and ve(z) = - S ®)
T 2ch (Y22 g)” T2l ne(@) 2200 (L)’ - 24 2)

In the sequel, we set
Qc,a = (nc,aavc,a) = (nc( - a),vc(- - a)),

for 0 < |¢| < v/2 and a € R. More generally, provided a solution ¥ to (GP) does not vanish, it
may be lifted without loss of regularity as

T = ge'?,

where o := |¥|. The functions 1 := 1 — ¢? and v := —3d,¢ are solutions, at least formally, to the
so-called hydrodynamical form of (GP), namely

O = 0, (2nv — 2v),

Du1y (9am)? (HGP)
(1 —n)> A - 77)2>

The Ginzburg-Landau energy £(¥), rewritten in terms of (n,v), is given by

By = [ ey =3 [ L4 L faome e [

3

Opv = Oy v2—n+am(2




so that the energy space for (HGP) is the open subset

NVR) := {(77,1)) € X(R), s.t. maxn(z) < 1},

z€R

where the Hilbert space X (R) := H(R) x L?(R) is equipped with the norm
11, ) ey = I3y + 10122

It is shown in [20] (see also Proposition A.4) that if ¥ € C°(R, X(R)) is a solution to (GP)
with infgug [¥| > 0, then (n,v) € C°(R,NV(R)) is a solution to (HGP) and the energy E(n,v)
is a conserved quantity, as well as the momentum

1
meziém-

1.2 Orbital stability in the hydrodynamical framework

The following is a quantitative version of Theorem 1 in the hydrodynamical framework (therefore
for ¢ #0).

Theorem 3 ([13, 4]). Let ¢ € (—v/2,v/2)\ {0}. There exists a positive number o, depending
only on ¢, with the following properties. Given any (no,vo) € X(R) such that
ol = “(77077)0) - chaHX(]R) <, (4)

for some a € R, there exist a unique global solution (n,v) € C°(R,NV(R)) to (HGP) with initial
data (n0,v0), and two maps c € C1(R, (—v/2,v/2) \ {0}) and a € C'(R,R) such that the function
e defined by

6('5 t) = (77( + a’(t)’ t)’ U(' + (Z(t), t)) - Qc(t)? (5)
satisfies the orthogonality conditions
<€('7t)7ach(t)>L2(]R)2 = Pl(Qc(t))(a('7t)) =0, (6)

for any t € R. Moreover, there exist two positive numbers o, and A, depending only and
continuously on ¢, such that

max7(z,t) <1 -0, (7)
et 8)gey + 1ot = €] < A, ®)
and
0]+ |a'(t) = e < Al D)3y (9)
for any t € R.

The proof of Theorem 3 is essentially contained in [4]. However, since the statement in [4]
slightly differs from the statement presented here, in particular regarding the quadratic depen-
dence of ¢/(t), we provide the few additional details in Section B.2 below. The main ingredient
is a spectral estimate which we recall now for future reference (see also Section B for additional
information). The functional E — c¢P is a conserved quantity of the flow whenever c is fixed, and
it plays a particular role in the analysis since the solitons Q. are solutions of the equation

E'(Q.) — cP'(Q.) = 0.



In particular,

(B~ cP](Qe ) = [B— cP](Qc) + 3He(&) + Ol m).

as € — 0 in X(R). In this formula, H. denotes the quadratic form on X (R) corresponding to
the unbounded linear operator

He = E”(QC) - CP”(QC)-

The operator H,. is self-adjoint on L?(R) x L?(R), with domain Dom(#H,.) := H?(R) x L*(R). It
has a unique negative eigenvalue which is simple, and its kernel is given by

Ker(H.) = Span(9,Q.). (10)
Moreover, under the orthogonality conditions
<€7 8$QC>L2(R)2 = P/(Qc)(g) =0, (11)

we have
Hc(e) = AC‘|5||§((R),

where the positive number A, depends only and continuously on ¢ € (—v/2,v/2)\ {0}. The first
orthogonality relation in (11) is related to the invariance by translation of F and P, which is
reflected in the fact that 9,Q. is in the kernel of H.. There is probably more freedom regarding
the second orthogonality relation in (11). Our choice was motivated by the possibility to obtain
the quadratic dependence of ¢(t) stated in Theorem 3.

The pair € obtained in Theorem 3 satisfies the equation

O = JHc(t) (8) + JRc(t)5 + (a'(t) — C(t)) (3x€ + 835@6(,5)) — C,(t)ach(t), (12)
where J is the symplectic operator
0 —20,;
J=-250, := <_26m 0 > ) (13)

and the remainder term R.e is given by

Rewe = E'(Qery +€) — E'(Qery) — E"(Qer)) (e)-

1.3 Asymptotic stability in the hydrodynamical framework

An important part of the paper is devoted to the following theorem, from which we will eventually
deduce Theorem 2.

Theorem 4. Let ¢ € (—v/2,v/2) \ {0}. There exists a positive constant . < o, depending only
on ¢, with the following properties. Given any (no,vo) € X(R) such that
H(nO7UO) - Qt,a|lx(R) S /8t7

for some a € R, there exist a number ¢* € (—v/2,v/2) \ {0} and a map b € C1(R,R) such that
the unique global solution (n,v) € C°(R,NV(R)) to (HGP) with initial data (no,vo) satisfies
and
V(t) — ¢,
as t — +oo0.
In order to prove Theorem 4, a main step is to substitute the uniform estimates (8) and (9)

by suitable convergence estimates. We present the main ingredients in the proof of Theorem 4
in the next subsections.



1.3.1 Construction of a limit profile

Let ¢ € (—v/2,v/2) \ {0} be fixed and let (19,v9) € X (R) be any pair satisfying the assumptions
of Theorem 4. Since 5. < a, in the assumptions of Theorem 4, by Theorem 3, we may consider
the unique globally defined solution (n,v) to (HGP) with initial datum (79, vo).

We fix an arbitrary sequence of times (¢, )nen tending to +oo. In view of (8) and (9), we may
assume, going to a subsequence if necessary, that there exist ¢ € X (R) and ¢ € [—v/2,/2] such
that

e tn) = (N + altn), tn),v(- + a(tn), tn)) — Q) — €5 in X (R), (14)

and
c(tn) — co, (15)

as n — +o00. In the next two subsections, we will eventually come to the conclusion (see Corollary
2) that necessarily
gy =0,

by establishing smoothness and rigidity properties for the solution of (HGP) with initial datum
given by Qs + ;.
More precisely, we first impose the constant 3. to be sufficiently small so that, when o’

appearing in Theorem 3 satisfies a® < 3, then in view of (8) and (9), we have

min {c(t)2, a/(t)Q} > ;, max {c(t)Q,a/(t)2} <1+ ;, (16)
and also 2 oy _ 2
1) = (- + a(t). )| o gy < min { S, ===, (17)

for any ¢ € R. In particular, we deduce that ¢ € (—v/2,/2)\{0} and therefore Qc; is well-defined
and different from the black soliton.

It follows from (8) that
b —¢| < A, (18)

and from (8), (14) and the weak lower semi-continuity of the norm that the function
(77677}6) = Qc?} + 567

satisfies

H(US,US) - QCHX(R) S Acﬁc + HQC - Q66

We next impose a supplementary smallness assumption on (5, so that

X(R)’

H(’r}s’vé) - QCHX(]R) S Q.

Applying Theorem 3 yields a unique global solution (n*,v*) € C°(R,NV(R)) to (HGP) with
initial data (ng,vg), and two maps ¢* € CH(R, (—v/2,v/2) \ {0}) and a* € C}(R,R) such that the
function €* defined by

(1) = (" (- +a” (1), 1), v(- + a™(t), 1)) — Qe (v), (20)

satisfies the orthogonality conditions

(€ (1), 02Qex (1)) r2my2 = P'(Qer (1)) (€7 (-, 1)) = 0, (21)



as well as the estimates

HE*('vt)HX(R) + ‘C*(t) - C| S AcH(%kaUék) - Q‘HX(R)’ (22)

()] + |a*'(t) - C*(t){Q < ACHE*('vt)Hi((R)’

for any t € R.

We finally restrict further the definition of f, if needed, in such a way that (22) and (23),
together with (18) and (19), imply that

min {c*(t)2, (a*)'(t)?} > % max {¢*(t)2, (") ()2} <1+ % (24)
and 2 2
) =70 1), )] ey < mim { . =7 |- (25)
for any t € R.

The following proposition, based on the weak continuity of the flow map for the Gross-
Pitaevskii equation, allows to improve the convergence properties of the initial data, as stated in
(14), into convergence properties for the flow under (HGP) and for the modulation parameters.

Proposition 1. Let t € R be fived. Then,
(n(- + a(tn), tn +1),0( +altn), tn +1)) = (1°(t),0" (1)) in X(R), (26)

while
a(t, +t) —a(t,) = a*(t), and c(t, +1t) — c*(t), (27)

as n — +oo. In particular, we have
e(-ytn +1t) —e"(-,t) in X(R), (28)

as n — +o00.

1.3.2 Localization and smoothness of the limit profile

In order to prove localization of the limit profile, we rely heavily on a monotonicity formula.

Let (n,v) be as in Theorem 3 and assume that (16) and (17) hold. Given real numbers R and
t, we define the quantity

v 1
Ip(t) = I}?’ )(t) = 5/ [nv] (@ + a(t), t)®(x — R) dz,
R
where @ is the function defined on R by
1
(@) =5 (1 n th(wx)), (29)

with v, := v/2 — ¢2/8. The function I(t) represents the amount of momentum of (7(-,t),v(-,t))
located from a (signed) distance R to the right of the soliton.

We have



Proposition 2. Let R € R, t € R, and 0 € [~0,, 0], with o := (2 — ¢2)/(4/2). Under the
above assumptions, we have

d 2 —¢%)?
pn riot(t)] 2(27) / [((9177)2 + 0?2+ 1)2] (x+a(t),t)®' (z — R — ot) dx
) P (30)
_ 24( _4c ) 6—2V5|R+O't‘ .
¢
As a consequence, we obtain
/92— 2
Tn(t) > Tn(to) — 768X —e2vIAl, (31)

¢

for any real numbers ty < ty.

Specifying for the limit profile (n*,v*), we set Ij(t) := Ig]*’v*)(t) for any R € R and any
t € R. We claim

Proposition 3. Given any positive number 8, there exists a positive number Rg, depending only
on 6§, such that we have

|I%(t)| <6, VR> Rs,
|I3(t) — P(y",v*)| <68, VR < —Rs,

for any t € R.

The proof of Proposition 3 relies on a contradiction argument. The rough idea is that if some
positive quantity J of momentum for (n*,v*) were transferred from time ¢t = 0 to time ¢ = 7" and
from the interval (—oo, R+ a*(0)) towards the interval (R + a*(T'), +00), then a similar transfer
would hold for the function (n,v) from time ¢ = ¢,, to time t = ¢, + T and from the interval
(—o0, R+ a(t,)) towards the interval (R + a(t, + T'), +00), for any sufficiently large n. On the
other hand, assuming that ¢,,41 > t, + 7, the monotonicity formula implies that the momentum
for (n,v) at time ¢,4+1 and inside the interval (R + a(t,+1),+00) is greater (up to exponentials)
than the momentum for (n,v) at time ¢,, + 7" and inside the interval (R + a(t, + 1), +00). The
combination of those two information would yield that the momentum for (n,v) at time ¢, and
inside (R + a(ty),+ o0) tends to +00 as n — +oo, which is forbidden by the finiteness of the
energy of (n,v).

From Proposition 3, and using once more Proposition 2, we obtain

Proposition 4. Let t € R. We have

o *\2 *\2 *\2 * 2u¢|z| 221
/t /Rmm) )+ ()] @+ a7 (s), s)e F dads < gy

In order to prove the smoothness of the limit profile, we rely on the following smoothing type
estimate for localized solutions of the inhomogeneous linear Schréodinger equation.

Proposition 5. Let A € R and consider a solution u € CO(R, L?(R)) to the linear Schridinger
equation
10yu + Ogeu = F, (LS)
with F € L*(R, L?(R)). Then, there exists a positive constant Ky, depending only on X, such
that
T T+1
>\2/ /|8xu(x,t)|26>‘x dz dt gKA/ / (|u(x,t)|2+|F(x,t)|2)eM dedt,  (32)
T JR -T-1JR
for any positive number T'.



Applying Proposition 5 to the derivatives of ¥*, the solution to (GP) associated to the solution
(n*,v*) of (HGP), and then expressing the information in terms of (n*,v*), we obtain

Proposition 6. The pair (n*,v*) is indefinitely smooth and exponentially decaying on R x R.
Moreover, given any k € N, there exists a positive constant Ay ., depending only on k and ¢, such
that

/ (@510 + (95n")? + (050" ] (w + (), )™ ™ dar < A, (33)
R
for any t € R.

The proof of Proposition 5 and Proposition 6, as well as additional remarks concerning smooth-
ing properties for localized solutions are gathered in Appendix A.2.

1.3.3 Rigidity for the limit profile

Our main task is now to show that the limit profile constructed above is exactly a soliton, which
amounts to prove that e = 0.

Recall from (12) that £* satisfies the equation
atf':* = JHC*(t) (8*) + JRC*(t)cf* + (a*l(t) — C*(t)) (8;,3626*(25) + (91-6*) — C*/(t)ach*(t). (34)

Our strategy is to derive suitable integral estimates on €*. Since the linear operator H. has a
kernel given by 0,@Q., it turns out that it is more convenient to derive first integral estimates for
the quantity H.«(¢*) (so that the component along the kernel is eliminated) rather than directly
on €*. This idea was already successfully used by Martel and Merle in [18] (see also [14]) for the
generalized Korteweg-de Vries equation. The smoothness and decay obtained in the previous
subsection allow us to perform as many differentiations as we wish.

More precisely, we define the pair
Since SHx(1)(0xQcx(r)) = 0, we deduce from (34) that

ot = S’Hc*(t) (JSU*) + S’Hc*(t)(JRc*(t)e*) — (c*)l(t)S%c*(t) (&:Qc*(t))

(36)
+ ((a*)'(t) — c*(t))SHC*(t)(agga*).
At spatial infinity, the operator H. is asymptotically of constant coefficients, and therefore
almost commutes with J. Therefore the linear operator in (36), namely #.-.J, coincides in
that limit with the linear operator JH.~ appearing in (34). It is thus not surprising that a
monotonicity formula similar in spirit to the monotonicity of the localized momentum for €* (see
Proposition 2) also holds for u*. More precisely, decreasing further the value of B if necessary,
we obtain

Proposition 7. There exist two positive numbers Ay and Ry, depending only on ¢, such that we
have !

d * * 2-¢ * 2 * 2
%</qu1(x,t)u2(x,t) dﬂ:) > 6 Hu (-,t)HX(R) — Ay||lu (-,t)||X(B(O7R*)), (37)

for any t € R.

n (37), we have use the notation

1Dy = [ (@7 + 1 44%).

in which  denotes a measurable subset of R.



In order to get rid of the non-positive local term |lu*(, t>”§((3(0 R.) in the right-hand side of
(37), we invoke a second monotonicity type formula. If M is a smooth, bounded, two-by-two
symmetric matrix-valued function, then

d

£<Mu*, u*>L2(R)2 = 2<SMu*, %c*(JSu*)>L2(R)2 + “super-quadratic terms”. (38)
For ¢ € (—v/2,v/2) \ {0}, let M. be given by
__COslle Ot
M, := ( e )® g ) : (39)
Tle

The choice of M, is motivated by the following key observation.

Lemma 1. Let ¢ € (—v/2,v/2) \ {0} and u € X3(R). Then,
Ge(u) ::2<:S'Mcu,7—[C(J:S'u)>L2(R)2
CNe Ca:vnc 2
=2 e+ axx c - - aa:
/R (77 7 ) (UZ 2("70 + 8;1::1:770) " 2(1 - 770)(770 + amm"?c) U1) (40)

3 2 0 2
+ —/ 7770<3xu1 — xncul) .
2 R e + axxnc Tle

Notice that the quadratic form G.(u) in (40) is pointwise non-negative (and non-singular)
since

2
C
Ne + 8§mnc = 770(3 — - 377c) > 5?75 > 0.

It also follows from (40) that
Ker(G.) = Span(Q.).

In our situation, u* = SH«(*) is not proportional to Q.. By the orthogonality relation (21),
we indeed have P'(Q.))(e*) = 0. Since one has H.(9.Q.) = P'(Q.), it follows that

0= (Her (0cQe ), €5 ) r2my2 = (Her (€7), 0cQer) L2(m)2 = (U, S0:Qe) L2 (m)2- (41)

On the other hand,

d d 1
<Qc*7sach*> = %%<QC75QC>‘CZC* = 2%<P(QC)> - _2(2 - Ci) ? 7& 0, (42)

|e=c*
which prevents u* from being proportional to () .+. This leads to

Proposition 8. Let ¢ € (—v/2,v/2) \ {0}. There exists a positive number A., depending only
and continuously on c, such that

Ge(u) > A /]R [(9pu1)? + (w1)? + (u2)?] (x)e V2! da, (43)

for any pair u € X'(R) verifying
<U, S@cQC>L2(R)2 =0. (44)

Coming back to (38), we can prove

10



Proposition 9. There exists a positive number By, depending only on ¢, such that

%<<Mc*(t)u*(-,t)7U*(',t)>L2(R)2) ZB%/R [(0pu})? + (u})? + (u3)?] (z,t)e~ V21l gy 45)
=Bl O Ol ey
for any t € R.
Combining Proposition 7 and Proposition 9 yields
Corollary 1. Set
N(t) = % (g ”5) + ABoeV M.
We have p o2
= (VO (8,0 (D) gy ) = T (D) ey (46)
for any t € R. In particular,
[:ﬂ@%¢w;mm<+m. (47)
Therefore, there exists a sequence (t})ken such that
Jim [l ()] gy = 0 (48)
Combining (48) with the inequality
&G Bllxeey < Al (1) ey
(see (3.17)), we obtain
Jim [l ) [y = 0 (49)

Combining (49) with the orbital stability in Theorem 3, we are finally led to

Corollary 2. We have

1.3.4 Proof of Theorem 4 completed

Let ¢ € (—v/2,v/2)\ {0} and let (19, v0) be as in the statement of Theorem 4. It follows from the
analysis in the previous three subsections that, given any sequence of times (t,)nen converging
to 400, there exists a subsequence (t,, )xen and a number ¢, (sufficiently close to ¢ as expressed
e.g. in (18)) such that

(77(' + a(tnk)atnk)av(' + a(tnk)atnk)) - Q06 in X(R),

as n — +00. By a classical argument for sequences, if we manage to prove that ¢ is independent
of the sequence (¢, )nen, then it will follow that

(n(- +a(t),t),v(- +a(t),t)) = Qe in X(R), (50)

as t — +oo0.
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We argue by contradiction. Assume that for two different sequences (¢,)nen and (Sp)nen,
both tending to +o0, we have

(n(- +a(ty), tn),v(- + a(tn),tn)) — Qg in X (R), (51)
and
(1 + a(sn), 5n),v(- + a(sn), sn)) = Qe in X(R), (52)
as n — 400, with ¢} # ¢ satisfying (18). Without loss of generality, we may assume that ¢} < ¢}
and that the sequences (t,)nen and (sp,)nen are strictly increasing and nested such that
tn +1< sy, <tpg1—1, (53)
for any n € N. The contradiction will follow essentially in the same way as for Proposition 3.

We set 6 := P(Qc;) — P(Q¢;) > 0. In order to be able to use (31), we choose a positive
number R sufficiently large so that

768

O _ 2
2 C 6_2VC‘R| < (5 ‘
¢t — 10

In particular, we have from Proposition 2 and (53),

) )
Lep(sn) 2 Lep(tn) = 35 and - Lep(ton) = Ler(sn) = 755 (54)
for any n € N. Increasing the value of R if necessary, we may also assume that
1 )
3 / (®(z+ R) — ®(z — R))nczvc;f(x) dr — P(Qcz)| < 10’
R

for i = 1,2 (and with ® as in (29)). In particular, in view of the convergences (51) and (52),
there exists an integer ng such that

IN
ol >,

|- r(tn) = Ir(tn) — P(Qc)

(55)

and

ol >

‘I—R(Sn) — Ir(sn) — P(Qc;)
for any n > ng. Combining (54), (55) and (56), we obtain

6
IR(Sn) > IR(tn) + 57

< -, (56)

for any n > ng, from which it follows again by (54) that

26

5 )

for any n > ng. Therefore, the sequence (Igr(t,))nen is unbounded, which is the desired contra-
diction.

Ir(tny1) > Ir(tn) +

At this stage, we have proved that (50) holds, and therefore, in view of the statement of
Theorem 4, we set ¢* := ¢{. It is tempting to set also b(t) := a(t), but we have not proved that
a'(t) — ¢* as t — 4o00. We will actually not try to prove such a statement but rely instead on
the weaker form given by (27) which, once we now know that a*(t) = ¢*¢ since (7*,v*) = Q.~,
reads

a(t, +t) — a(ty) — c't,

for any fixed ¢ € R and any sequence (t,)nen tending to +oo. The opportunity to replace
the function a by a function b satisfying the required assumptions then follows from the next
elementary real analysis lemma. The proof of Theorem 4 is here completed. U

12



Lemma 2. Let c € R and let f: R — R be a locally bounded function such that

lim (e +y)— fx) = cy,

T—+00
for any y € R. Then there exists a function g € C1(R,R) such that
lim ¢'(z)=¢, and lim |f(z)—g(z)| =0.

T—r+400 T—r+400

Proof. Replacing f(x) by f(z) — cx, we may assume that ¢ = 0. It then suffices to replace f by
its convolution by any fixed mollifier and the conclusion follows from the Lebesgue dominated
convergence theorem. O

1.4 Asymptotic stability in the original framework: Proof of Theorem 2

We first define 6. in such a way that ||(m0,v0) — Qcl x(®) < B¢, whenever d(¥°,U,) < 6. We next
apply Theorem 4 to the solution (n,v) € CO(R, NV(R)) to (HGP) corresponding to the solution
¥ to (GP). This provides us with a speed ¢* and a position function b. We now construct the
phase function 6, and then derive the convergences in the statement of Theorem 2.

We fix a function x € C2°(R, [0,1]) such that x is real, even, and satisfies [ x(z)dz = 1. In
view of the expression of U in (2), we have

"
/RUC* (x)x(x)dx = zﬁ # 0.

Decreasing the value of 3. if needed, we deduce from orbital stability that
‘/R\If(x +b(t),t)x(z) dx| > % > 0,

for any ¢ € R. In particular, there exists a unique ¥ : R — R/(27Z) such that

o

V2

for any ¢ € R. Since b € C}(R,R), and since both 9,¥ and 9;¥ belong to CJ(R, H. ! (R)), it

loc

follows by the chain rule and transversality that ¢ € C}(R,R/(27Z)). From Theorem 4 and the
definition of ¥, we also infer that

o~ 0(t) / U(x+b(t),t)x(x)dx € i R+,
R

e DY, W(- + b(t), 1) — 0 U in L*(R),
1 e P00+ b(0),6)F —~ 1-|Ue]® in I2(R), (57)
e POW(- 4 b(t), ¢) — Ue in L5, (R),

as t — +o00. Invoking the weak continuity of the Gross-Pitaevskii flow, as stated in Proposition
A.3, as well as its equivariance with respect to a constant phase shift and the fact that U+ is an
exact soliton of speed ¢*, it follows that for any fixed T' € R,

DY W(-+b(t),t+T)  — OUs(-—cT)  in LA(R),
L= e PO b0, t+ T = 1= Ve (=T i L(R), (58)
e VOW(- £ b(t),t +T) — U (- —¢'T) in L5 (R),
as t = +o0o. On the other hand, rewriting (57) at time ¢ + T, we have
e_w(t"'T)am\If(- +b(t+T),t+T) — O U in LQ(R),
1= e DY 4 b(t+T),t+T)]F = 1—|Ue|’ in LA(R), (59)
e~ DG (. 4 b(t + T),t +T) = Uk in L7 (R),

13



as t — +00. Since we already know by Theorem 4 that
bt +T)—b(t) — T, (60)
as t — +oo, we deduce from (58), (59) and (60) that
(PO _ 1)U — 0 in L (R),
as t — +o00. Therefore, we first have

lim 9(t+T)—9(t) =0 inR/(27Z),

t——+o0

but then also in R for any lifting of ¥, since we have a global bound on the derivative of ¢.

As for the proof of Theorem 4, the conclusion then follows from Lemma 2 applied to (any
lifting of ) ¥. This yields a function 6 such that 6'(t) — 0, and ¥(t) — 0(t) — 0 as t — +oo. In
particular, we may substitute ¥(¢) by 0(¢) in (57), and obtain the desired conclusions. O

2 Proofs of localization and smoothness of the limit profile

2.1 Proof of Proposition 2

First, we deduce from (HGP) the identity

% [IR+O—t(t):| =— %(a'(t) + o) /]R (0] (z + a(t),t)®' (z — R — ot) dx

2 _ 2
+%/R [(1—277)1)2—{—%—|—%](x_{_a(ﬂ’t)@/(x_R_o_t)dx (2.1)

+ i /R [n+1In(1 —n)](z + a(t),t)®"” (z — R — ot) dx.

Our goal is to provide a lower bound for the integrand in the right-hand side of (2.1). We
will decompose the domain of integration into two parts, [— Ry, Ro| and its complement, where
Ry is to be defined below. On [—Ry, Ry, we will bound the integrand pointwise from below by
a positive quadratic form in (n,v). Exponentially small error terms will arise from integration

on R\ [—Ry, Ry].
First notice that

V2 —¢?

N < I/c2 if ch2( 5 x) > 32,
ie., if
| > Ro = \/22__c2ch—1(4\/§).
In particular, we infer from (17) that
‘n(x + a(t),t)| < 21/?, (2.2)

for any x € [—Ry, Ry]. Elementary real analysis and (2.2) then imply that

|[n+ (1 = )] (@ + a(t),t)| < n*(z + alt),t), (2:3)
for any x € [—Ry, Rg]. Next, notice that the function ® satisfies the inequality

|D"| < 42 (2.4)
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Finally, in view of the bound (16) on a’(¢) and the definition of o, we obtain that
¢

T

Taking into account (2.2), (2.3), (2.4) and (2.5), we may bound the integrand of (2.1) on [— Ry, Ro]
from below by

_l’_

N W

|d'(t) + o|” < (2.5)

1_ 2 2 1_ 2 2 § C_2 1 2 / _ .
[(2 2yc)v +(4 yc)n =+ el + £ (0en)?| (@ + alt), ) (& — R— ot).

Set a:=1/4—v2 ="7/32+¢*/64 and b := /3/8 + ¢2/16. In the above quadratic form, we may

write

an?® — blnv| + 2av? = L(\n[ - \/5]1)])2 + (a — 2—) (n* + 20%) > (a — 2—> (n* + 2v?),

2v/2

and compute

2 _ v 2 _2)2
a— b :CL b8 220’2_%:(22%)
V2 atgzn

We next consider the case x ¢ [—Ry, Rp]. In that region, we simply bound the positive
function ®'(x — R — ot) by a constant,

@/(x _ R _ Ut) S 2yc672l/c|R+Ut7R0‘ S 8yc672l/c|R+o't"

and control the remaining integral using the energy. More precisely, notice that for those =z,
ne > v2 and therefore by (17), we also have 7 > 0 (in the remaining part of the proof when we
refer to 1 or v we mean the value at the point (x + a(t),t)). Next, we have 1 —n, > ¢?/2, and
therefore by (17) also, 1 —n > ¢2/4. Finally, recall that |a'(t) + o|/2 < v/2/2, and that (2.4)
holds, so that combining the previous estimates and elementary real analysis, we may bound the
integrand in the right-hand side of (2.1) by

2
4
[(4 +(2—c*)In (%))772 + 8v% + c—f(&m)Q vee 2velfitot],

Conclusion (30) follows from integration and a comparison with the energy of (n,v), together
with the explicit value E(Q.) = (2 — c2)%/3 (see e.g. [4]).

It remains to prove (31). For that purpose, we distinguish two cases, depending on the sign
of R. If R > 0, we integrate (30) from t = ¢y to t = (top + t1)/2 with the choice o = o, and
R = R—otg, and then from t = (tp+t1)/2 to t = t; with the choice 0 = —o. and R = R+ ot;.
In total, we hence integrate on a broken line starting and ending at a distance R from the soliton.
If R <0, we argue similarly, choosing first 0 = —o,, and next ¢ = o.. This yields (31), and
completes the proof of Proposition 2. O

2.2 Proof of Proposition 3

We argue by contradiction and assume that there exists a positive number §y such that, for any
positive number Rj,, there exist two numbers R > Rs, and t € R such that either [Ij(t)] > do
or |I5(t) — P(n*,v*)| > do. Since at time ¢ = 0, we have imp_, o [5(0) = limp o I5(0) —
P(n*,v*) =0, we first fix R5, > 0 such that

V2 —¢? d

0
[I%(0)] + |[IZR(0) — P(n*,v")| < ZO and 768Y° Y 2R o 90

2.
ct - 327 (2:6)
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for any R > Rs,. We next fix R > 0 and ¢t € R obtained from the contradiction assumption
for that choice of Rs,, so that either |Ij(t)| > dg or [I(t) — P(n*,v*)| > dp. In the sequel, we
assume that I5(t) > dp holds, the three other cases would follow in a very similar manner. In
particular, we infer from (2.6) that

% , % V2-¢ our

I5(t) > 09> — + — > I5(0) + 1536

and therefore it follows from the monotonicity formula in Proposition 2, applied to (n*,v*), that
t > 0. Finally, we fix R' > R such that

* * * 5
[ g (1) = P(",v")| < ZO. (2.7)
Since R’ > R, we also deduce from (2.6) that

5 Nop=r:
|12 (0) = POi*yv7)| < 3 and 768 c4c

e—ZVCR/ < @
- 32
Combining the inequality |I5(t)| > dp with (2.6), (2.7) and (2.8), we obtain

(2.8)

* * * % 350 * * * % 60
(2 p (t) = Tp(t) = P(n",0")| = == and |12 (0) = Ir(0) = P(n",0")| < =,

and therefore
do

(I (0) = I3(0)) = (I (1) = I(0) | = .

Since the integrands of the expressions between parenthesis are localized in space, we deduce
from Proposition 1 that there exists an integer ng such that

(- re(t) = Tn(tn) = (L-etn 1) = Tinlta +))| 2 2,

for any n > ng. Rearranging the terms in the previous inequality yields

]
In(ts) = Ir(ta + )|} = T5. (2.9)
On the other hand, since ¢ > 0, by the monotonicity formula in Proposition 2, (2.6) and (2.8),
we have

maX{‘I—R’(tn) — L g(tn+1)|,

0 1
I r(ty) = I_p(ty+1) < 3—% and  Ip(ty) — Ip(ty +1) < 3—‘;
and therefore we deduce from (2.9) that, given any n > ny,
: do do
either I_p(t,+t)—I_p(tn) > o Ig(t, +t) — Ig(ty) > 6

In particular, there exists an increasing sequence (n)ren such that t,, > t,, +t for any k € N,
and either 5

IR(tny, + 1) — IR(tn,) > 1—% (2.10)
for any k € N, or

do

Ity +0) = I (tn,) = 32,

for any k € N. In the sequel, we assume that (2.10) holds, here also the other case would follow

in a very similar manner. Since i, , > t,, +t, we obtain by the monotonicity formula of
Proposition 2, (2.6) and (2.10), that

o o

IR(tnk+1) > IR(tnkth) - — > IR(tnk) + ﬁ’

2 > (2.11)
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for any k£ € N. On the other hand, we have

Taltan)] < 5 [ ot o) do < 5 [ (Getu )P+ o)) de < SE0)

where the last term does not depend on k by conservation of energy. This yields a contradiction
with (2.11). O

2.3 Proof of Proposition 4

Let s € R and R > 0 be arbitrary. Integrating (30) of Proposition 2, and choosing successively
o = o, and 0 = —o, we infer that we have both

92— 2
I(s) < Thyo (s +7) + 768Tce’2”‘R,

and
V2 —¢?
I5(8) > Thygr (s —7) — 76876*2%1%,
for each positive number 7. Taking the limit as 7 — 400 in the previous two inequalities, we
deduce from Proposition 3 that

V2 — ¢ e—QVcR

[I5(s)| < 768 7 ,

for any s € R and R > 0. Similarly, we obtain

2
V2 oun
1 € ’

|T5(s) — P(n*,v*)| < 768 -

for any s € R and R < 0. Therefore, integrating (30) from ¢ to ¢t + 1 with the choice o = 0 yields

t+1 . . . . , 914 64 o
/t /R[@w )2+ (%)% + (v )2](90+a(S),S)Q(x—R)dmds§3c—4<1+m>e 2uc|R),

for any R € R. Since we have

lim e*F®/ (2 — R) = 21e*2%,
R—+o0

for any x € R, the conclusion follows from the Fatou lemma, the inequality

621/c|a:| < 6—21/ca: +62V¢1‘,

and elementary real estimates. O

3 Proofs of the rigidity properties for the limit profile

3.1 Proof of Proposition 7

In order to establish inequality (37), we first check that we are allowed to differentiate the
quantity

Z*(t) ::/Rﬂ:u’f(x,t)uz(x,t) dx,
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in the right-hand side of (37). This essentially follows from Proposition 6. Combining (33) with
the explicit formulae for 7. and v, in (3), we indeed derive the existence of a positive number
Ay, ¢ such that

/R ((k=ye.))* + (Dhes(r. 1)) dr < Ay . (3.1)

for any k € N and any ¢ € R. In view of the formulae for «* in (35) and for H,. in (B.1), a similar
estimate holds for u*, for a further choice of the constant A .. In view of (36), this is enough to
define properly the quantity Z* and establish its differentiability with respect to time. Moreover,
we can compute

d * * * * *
E(I ) = —Q/R,u<7‘[c*(axu ), u >R2 +/R,u<’HC* (JRc*e ),u >R2

(3.2)
@) [0+ (@) ) [ a0

where we have set pu(x) = x for any x € R. In particular, the proof of Proposition 7 reduces to
estimate each of the four integrals in the right-hand side of (3.2).

We split the proof into four steps. Concerning the first integral, we have
Step 1. There exist two positive numbers A1 and R1, depending only on ¢, such that

2 _ 2
Iik(t) = —Q/R,u<7-lc*(8xu*),u*>R2 > 1—6cHu*(7t)H§((R) - AlHU’*(.’t)H?X(B(O,Rl))’ (33)

for any t € R.

In order to prove inequality (3.3), we replace the operator H.~ in the definition of Zj(¢) by
its explicit formula (see (B.1)), and we integrate by parts to obtain

70 = | iat)da,

with

i =3 (T~ T o) 0ot = €02 i + Ot = o) 0

* zT]c* 2 T *
Ao~ i ) ()

Here, we have used the identity

>k >k

C
2 T A gy

so as to simplify the factor in front of ujus. Since p(x) = z, the integrand ¢ may also be written
as

* _1 3 ﬂfaxﬁc* *\2 * 1- T)c* + ﬁﬂamnc* * %k %\ 2

h =y <1 e - 1- 77c*)2>(8xu1) —c < T RE >u1u2 + (1 — Ner — x@xnc*)(u2)
1 202 Mer 3((91776*)2 OpzaNer 4(02nex ) (OpzNer) 3(83:77@*)3 e
*4(2 TR el T Lt (v A ey el v ) [ L2

Given a small positive number 9§, we next rely on the exponential decay of the function 7. and
its derivatives to guarantee the existence of a radius R, depending only on ¢ and ¢ (in view of
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the bound on ¢* — ¢ in (22)), such that
* 3 * 2 1 * 2 * * 2
i (z,t) Zz(aggul(x,t)) + iul(x,t) - (t)ur(x, t)ua(z, t) + us(x,t)

2(% ~8) (Buut(e. 1)+ (% - |62*\(/t§)| —6)ui(e, 0+ (1~ |ci/(;)| —6)us(a, 17,

when |z| > R. In this case, it is enough to choose § = (2 — ¢?)/32 and fix the number Ry
according to the value of the corresponding R, to obtain

/ U (z,t)de >
|z|> Ry

On the other hand, it follows from (3), and again (22), that

/ 1 (z,t) de > (
|z[<R1

for a positive number A; depending only on ¢. Combining with (3.4), we obtain (3.3).

2 —¢2

/ o ((Bpui (2, 1)) + uf (@, t)* + ud(z, t)?) da. (3.4)

2 —¢2

) /xsm (O (,1)* + wi(w,1)” + up(a, 1)) do,

We next turn to the second integral in the right-hand side of (3.2).
Step 2. There exist two positive numbers As and Rs, depending only on ¢, such that

2 —¢? . i
< [l GOl + Alle GO oy (B

7500 = | [ (e (IRee) )

for any t € R.

Given a small positive number §, there exists a radius R, depending only on § and ¢, such
that

vel|z|

|z] < de 2, (3.6)

for any |x| > R. As a consequence, we can estimate the integral Z5(¢) as

|Z5(t)| <R e [ Her () (TRex(ye®) (2, 1) | |u* (2, 1) | d

(3.7)

velz|

+0 ‘Hc*(t) (JRC*(t)E*)(x, t)! ‘u*(w, t)le 2 dx.

lz|>R

In order to estimate the two integrals in the right-hand side of (3.7), we first deduce from (B.1)
the existence of a positive number A, depending only on ¢, again by (22), such that, given any
pair € € H2(R) x L?(R), we have

[Her (0] < Ac([Ouaal + [0u2n] + 0] + 2] )

In view of (13), it follows that

[Her (J2)] < 24c(|Oraaso] + [Ounso| + [Dazu] + [0y

), (3.8)

when ¢ € H'(R) x H3(R).
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On the other hand, given an integer £, we can apply the Leibniz rule to the second identity
in (B.12) to compute

£ ‘
Rere'] Z() Ol 05 =] < K 3 |ore (3.9)
k=0

k=0

where K refers to some constant depending only on ¢. Similarly, we can combine the Leibniz
rule with (3), (22) and (25) to obtain

EX;RN gAc(Z et ? +Z| el + o)) (3.10)
k=0

Here, we have also applied the Sobolev embedding theorem to bound the norm |[[g}(-, )|l oo (r)
by Ac.ap according to (22). Combining with (3.8), we are led to

3
[Her 0y (TRer27) (D aggye < Ac (10O Sy + D2 1950 e )
k=0

At this stage, we invoke again the Sobolev embedding theorem to write

2 2p—1 2p—1
[ @y =1t [ 10 (00)) < K1 3 ey (311)
for any £ € N, any p > 1, and any f € H**(R). Combining with (22), it follows that
2 5 « 3
[ He ) (TR (") ( "t)HL2(R)2 <Klle*(, HLQ(R <H5 HHS(R) +le ("t)Hfﬂ(R)?) (3.12)
5 3 :
<A (-t HL2(R)2<H577 "t)HIQW(]R) + “8*('7’5)“12115(11@)2)-
Since
H@ﬁa*(-,t)HiQ(R)2 < /ReQWm(Bﬁa*(x,t)fdx, (3.13)
we can invoke (3.1) to conclude that
[Her ) (TRex ") (- HL2 < AtHe*("t)HH(R)?' (3.14)

On the other hand, we deduce from (3.8), (3.9) and (3.10) as before that

2

3
< A, Ot (z,1)) el do + /am* t 4”f|f|d>.
L® </R( 6n($ )) e T kzo R‘ e*(x )‘ e T

We also invoke the Sobolev embedding theorem to write

[ @hrta)?er de =(-1) [ f@oh((@ks)™ e ) da

<4, HfHLz Hinfz_efl(R)er”“HHW(R)

<Al 7117

vl

[Pt (TR (- 1)e ™2

H-ﬂ H4e+3(R [ £e" || praesr gy
for any £ € N, any p > 2, and any f € H¥**+3(R), with fe*<ll € H2*1(R). Since

el/c‘l“ S el/c$ + e_ch S 26115‘:1:" (315)
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for any = € R, the same estimate holds with e” elz] replacing e”**. As a consequence, we deduce
as before from (22), (3.1) and (3.13) that

vl

HHC*(t) (JRC*(t)E*) (,t)e 2

@ = Al 2

Combining the previous inequality with (3.7) and (3.14), we derive the estimate

Z50)] < 4B (-0l oy + 5106l ) D 316)
We finally recall that
Su*(+,t) = Hee 1) (€7) (-, 1),

with (e(+,1), 0z Qc(1)) 2(r)2 for any t € R by (21). In view of (B.2), we infer that
2 < AcHU*(

Hg*(.,t)HX(R) < Acl[Su*(- (3.17)

Ol 2 ey Dl x@):

so that (3.16) may be written as

) R, . ,
1Z5(t)| < AC<7H“ ("t)|’§((B(O,R)) +20|u ("t)H;(R)>'

Fixing the number 6 so that 24,5 < (2—¢?)/64, and letting Ry denote the corresponding number
R, we obtain (3.5), with Ay = A R2/J.

Concerning the third term in the right-hand side of (3.2), we have

Step 3. There exists a positive number Az, depending only on ¢, such that

‘Ig(t){ =

(C*)//R/J'<Hc*(ach*)=U*>R2 < A3040HU*('7t)H§((R)7 (3.18)
for any t € R.

Coming back to (22) and (23), we have

() (®)] < Acoolle” (5 8)| x @)

Since the function 9.Q.~ and its derivatives have exponential decay by (3), we deduce from the
expression of H.+ in (B.1) that

[Z50)] < Acaolle”C )|y 1w G D) -

Combining with (3.17), we obtain (3.18).
Finally, we show

Step 4. There exist two positive numbers Ay and Ry, depending only on ¢, such that

* * * * * 2— Cz * *
O] = (@) =) [ e 005050 < 2 10Oy + Al D

(3.19)
for any t € R.
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The proof is similar to the one of Step 2. Given a small positive number §, we can use (3.6)
to find a radius R such that

L4Mm«mmwmzswwmmM@mmwMWKMWuwmwwm+wmmmu®)
In view of (23) and (3.8), this gives

|Zi(1)] < AcHe*(-,t)HX(R)He’“"‘e ("t)HH‘l(R) <RHU*("t)HX(B(O,R)) +6||u*("t)HX(R))’
so that by (3.1) and (3.17),

|Zi ()] < A‘Hu*("t)HX(]R) (RHU*("t)HX(B(O,R)) + 5Hu*("t)HX(]R))'

Estimate (3.19) follows arguing as in the proof of (3.5).

We are now in position to conclude the proof of Proposition 7.

End of the proof of Proposition 7. Applying the estimates in Steps 1 to 4 to the identity (3.2),
we have

d/, 2 —¢? . 2 . 2
(T®) = (55 = Asa0) w0 ey = (Ar+ A2+ A) [0 GO e o

with R, = max{R1, Rs, R3}. Choosing ag small enough, we are led to (37) with A, = A; + A2+
Ay. O

3.2 Proof of Lemma 1

Identity (40) derives from a somewhat tedious, but direct computation. For sake of completeness,
we provide the following details.

When u € X3(R), the function JSu = —20,u lies in the domain H?(R) x L*(R) of H.. In
view of (39), the quantity in the right-hand side of (40) is well-defined. Moreover, we can invoke
(B.1) to write it as

[ Oane Drae (82c)? 5 Oule
2<SZ\ICu,”;’-Lc(JSu)>L2(R)2 —/]R <—77c (2 — e — = Uc)3> —c 7(1 0P w101

1—
_/ 3x77cax(3mm) +4/ Oz ( nc)u2(9mu2
R Tl 1= R Ne

a:r"f]c 8:1:77(:
2 - .
* C/R (1 - ncqjdaxuz 770(1 - 770) Or (U1UQ)>

(3.20)

In order to simplify the integrations by parts of the integrals in the right-hand side of (3.20)
which lead to (40), we recall that 7. solves the equation

Oralle = (2 — 02)770 - 3772, (3.21)
so that we have 5
(Oeme)? = (2= P2 = 20, and 0, ;”) S (3.22)
C
As a consequence, the third integral in the right-hand side of (3.20) can be expressed as
Ozme(1 —
4/ MUQ&EUQ = 2/ ,ucug, (3.23)
R Te R
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with pe := ne 4+ Ozane- The last integral is similarly given by

a'r'r]c am’l’]c B a:r'r]c
/]R <1 — nculamuz — el — nc)(%: (U1UZ)> = _/]R (Ucu1u2 + 7 ncuz&vul). (3.24)

Introducing (3.23) and (3.24) into (3.20), we obtain the identity

ene CcOzNe
U — ————————
2pte 2/1'0(1 - 770)

2
2<SMcu,7-LC(JSu)>L2(R)2 =1+ 2/ uc<u2 — 8xu1> ,
R

where

a:vnc a:m:nc (amnc)Q 2 a:vnc 2 77061770 >
1 :/ < 2 — — —c —c U110, U
R\ T ( (1—=n% (1- 770)3> (1 —ne)3 pre(1 = ne) ' !

_ 8357706 Ozg U1 . ﬁ ﬁlﬂ _ ﬁ (axnc)2 (a w )2
"\1— 2 L) 1—p)2
R T Tlc R HMc R ,U'c( 770)

Relying again on (3.21) and (3.22), we finally check that

3 2 ) 2
I= —/ n_c(axul - wcul) )
2 Jr pe e

which is enough to complete the proof of identity (40). O

3.3 Proof of Proposition 8

In view of (3) and (40), the quadratic form G, is well-defined and continuous on X*!(R). More-
over, setting v = (y/7cu1, /Ncu2) and using (3.22), we can write it as

2 3 2
Go(u) = §/ @@vl _ M@ + 2/ &<v2 e, Ol val) , (3.25)
2 Jr e 21 R Tle 4pie(1 —ne) 2pc(1 —nc)

where we have set, as above, . := 1. + OzzNe. Introducing the pair

_ c@mnc _ 0(8213770)2 Camnc
w= (e g ten) = (Vi v (e - g 5 - g m&“iz);@
we obtain
GC(U’) = <7-C(UJ),?U>L2(R)2, (327)
with
_am 3&61 + 27(81776)2 + CGnc _{_61 90z7Mc _ 3
Te(w) = <2uc ““) < Bucne CBS“C(HC);LC ( Ay >>w1 2(1—7.) 2 (3.28)
_2(1_770)?1}1 + Ne w2

The operator 7. in (3.28) is self-adjoint on L?*(R)?, with domain Dom(7.) = H?(R) x L*(R).
Moreover, it follows from (3.25) and (3.27) that 7. is non-negative, with a kernel equal to

3
Ker(7;) = Span <77¢2,

In order to establish (43), we now prove
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Step 1. Let ¢ € (—v/2,v/2)\ {0}. There exists a positive number Ay, depending continuously on
¢, such that

<7'c(w),w>Lz(R)z > Al/ <w% + w%), (3.29)
R
for any pair w € X' (R) such that
3,5
3 cone
2 _— pu—
<w’ <nc “Ape(1 — nc))>L2(R)2 0 (3:30)

In order to prove Step 1, we show that the essential spectrum of 7, is given by

Uess(’];) = [TCa +OO), (331)
with (B—cH)(22+ %) 1/(3—c?)?(22 + ?)? 3
T = T - 5( - —27(2 - c2)> > 0. (3.32)

In this case, 0 is an isolated eigenvalue in the spectrum of 7.. Inequality (3.29) follows with
A1 either equal to 7., or to the smallest positive eigenvalue of 7.. In each case, A; depends
continuously on ¢ due to the analytic dependence on ¢ of the operator 7.

The proof of (3.31) relies as usual on the Weyl criterion. We deduce from (3.21) and (3.22)

that
He(@) —3—¢?, and ene(w) — V2 — 2,
Ne(x) Ne()

as ¢ — +oo. Coming back to (3.28), we introduce the operator 7o, given by

axxwl + (3762)8(6+C2)w1 - %U&)

—%wl +2(3 — 2wy

__ 3
Too(w) = ( #0)

By the Weyl criterion, the essential spectrum of 7. is equal to the spectrum of 7.

We next apply again the Weyl criterion to establish that a real number A belongs to the
spectrum of 7, if and only if there exists a complex number £ such that

>)\+3|£|2+§<2—02> —0.

2 3 2
A _<2(3—02)|£| *

(3—c?)(22+¢)
8

This is the case if and only if

3/€)2 (3—c2)(22 + c2)i}< 91E[* 3(c? —10)
2

A:
13— 2) 16 1\3-at

T R

’{‘QJFQQE)_@C2 229 , 19 4 ﬁ)é.

Notice that the quantity in the square root of this expression is positive since its discriminant
with respect to |£]? is —9¢2/(3 — ¢2)%. As a consequence, we obtain that

Uess(’];) = U(Too) = [Tc, +OO),
with 7. as in (3.32). This completes the proof of Step 1.

Step 2. There exists a positive number Ao, depending continuously on ¢, such that

Gc(u) > Ao / nc((amul)Q + U% + u%),
R

for any pair u € X*(R) such that
<U,, QC>L2(R)2 =0. (333)
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We start by improving the estimate in (3.29). Given a pair w € X*(R), we check that

3T Ne
<7-c(’l,U), w>L2(R)2 — 7 = E(axw1)2

< Ac/(w%+w%)-
R

Here and in the sequel, A. refers to a positive number, depending continuously on ¢. For
0 <7 <1, we deduce that

37 [ e
(Tefw).w)saqape = (1= ) (Tolw).w) pagee + 5 [ 2 (0p00)? = Aer /R (w? + u}).

C

Since ne/pe > 1/(3 — ¢2), we are led to

Tt w)sagae = (1= )0 = Ar) [ (@d+0d)+ s [ @on)®

under condition (3.30). For 7 small enough, this provides the lower bound
(Ta(w), w) 2y > A, / (Ogwn)? + w? + wd), (3.34)
R

when w satisfies condition (3.30).

When the pair w depends on the pair u as in (3.26), we can express (3.34) in terms of u. The
left-hand side of (3.34) is exactly equal to G.(u) by (3.27), whereas for the left-hand side, we

have @ )2 5
2 2\ _ 2 xTlc _ zxTlc 2
/R((amwl) tun) = /Rnc<(amu1) - <1 My 21e )u1>

(0unc)?  Opame 242 1
- - + Tle Z a
4an, 21, 4 2

by (3.21) and (3.22), we deduce that (3.34) may be written as

Since

1+

2 2
Dptt] — 0(85’3—770))m> )

1 €O,
G.(u ZAC/ o (Opur)? + =u? —i—Ac/ e ug — re
(u) Rn <( ) 2 1) RW ( 279 4puene(1 —ne

fe(1 = 1c)

At this stage, recall that, given two vectors a and b in an Hilbert space H, we have
T
o= b2, > rllall% ~ =[]

for any 0 < 7 < 1. In particular, this gives

1 TA €OzMec c(0xme)? 2
> o Lo o) T4 _ COae oo COaTe)” NP
Ge(u) > AC/RUC(((?mul) + 2u1 + Tu2> T, /Rnc<2ﬂc(1 — ) Oy Tl — nc)ul)

It then remains to choose 7 small enough so that we can deduce from (3) that
Golu) > A, / ne(@s1)? + 2 + ), (3.35)
R

when w satisfies condition (3.30), i.e. when u is orthogonal to the pair

4,2 2 4,3 3,3
" — ( 2 © 1 (Oc) x( ) o ) (3.36)

Ne — >7
1642 (1 — nc)? 8uZ(1 —nc)?/" 4pe(l —ne)
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The last point to verify is that (3.35) remains true, decreasing possibly the value of A., when
we replace this orthogonality condition by condition (3.33). With this goal in mind, we remark
that

(ue, Qc)2(r)y2 # 0.
Otherwise, we would deduce from (3.35) that

0=G(Qc) > AC/ 776((3967%)2 + 773 + Ug) >0,
R

which is impossible. Moreover, the quantity (u., Q) r2(r)? depends continuously on ¢ in view of
(3.36). We next consider a pair u which satisfies (3.33), and we denote A the real number such
that u = AQ. + u is orthogonal to u.. Since Q. belongs to the kernel of G., we deduce from
(3.35) that

Ge(u) = Go(u) > AC/ Ne((Opw1)? + uf 4+ u3). (3.37)
R
On the other hand, since u satisfies (3.33), we have

5= (W, Qc) r2(m)2
||Qc||%z(R)2

Using the Cauchy-Schwarz inequality, this leads to

N < Ac</R (e + 2—2)> (/Rnc(u%u%)),

so that, by (3) and (3.37),
M < AG (1) = AGe(u).

Combining again with (3.37), we are led to
/ 776((8:1:“1)2 + u% + u%) §2<>‘2/ 770((8:1:770)2 + 772 + UZ) + / 770((61”1)2 + u% + u%))
R R R
SAch(u)a

which completes the proof of Step 2.

Step 3. End of the proof.
We conclude the proof applying again the last argument in the proof of Step 2. We decompose

a pair u € X(R), which satisfies the orthogonality condition in (44), as u = AQ. + u, with
(u, QC>L2(R)2 = 0. Since Q. belongs to the kernel of G., we deduce from Step 2 that

Golu) = Go(w) > Ay / ne((Bgu1)? + 163 + ). (3.38)
R

Relying on the orthogonality condition in (44), we next compute

<ua Sach>L2(R)2
<Q0a Sach>L2(]R)2 ‘

Using the Cauchy-Schwarz inequality and invoking (42), we obtain

A< ﬁ(/ﬂ{ i((@cm)z + (801)@)2>> </Rnc(u% - u%))
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In view of (3), we can check that

2
while
90, = — COete
2(1 - 770) 2(1 - nc)Q,
so that

[ o (@ + 0u0?) < 4.

Ne
As a consequence, we can derive from (3.38) that

A2 < AGo(u) = AcGe(u).

Combining again with (3.38), we are led to

/ Ne((Opur)? + uf + u3) §2<,\2/ Ne((0zne)® +m2 +v2) + / Ne((Opw1)? + uf + u%))
R R R
<A.Gc(u).

It remains to recall that

o) = Ace™ V20,
by (3), to obtain (43). This completes the proof of Proposition 8. O

3.4 Proof of Proposition 9

Combining inequality (3.1) with the definitions for v* in (35), and for H. in (B.1), we know that
there exists a positive number Ay, . such that

/]R ((Bﬁu’{(aﬂ,t))z + (8§u§(x,t))2)62”“x‘ de < Ap ., (3.39)

for any k£ € N and any ¢ € R. In view of (36) and (39), this is enough to guarantee the
differentiability with respect to time of the quantity

j*(t) = <MC*(t)u*(';t)’U*(',t)>L2(R)2’

and to check that

d
%(j*) =2(SMu*, He (JSu™)) r2@pe T 2(SMpu*, Her (JRe=€¥)) L2 (R)?

+ 2((&*)' — C*)<SMC*U*, 7‘[0* (85’36*)>L2(R)2 - 2(6*)/<SMC*U*5 /Hc* (aCQC*»LQ(R)?

+ (C*)/<(9¢Mc*u*,u*>L2(R)2.

(3.40)

In particular, the proof of (45) reduces to estimate the five terms in the right-hand side of (3.40).
Concerning the first one, we derive from Proposition 8 the following estimate.

Step 1. There exists a positive number By, depending only on ¢, such that
kﬁ@p:z@wbuﬁﬁﬁusmnﬂwyzzh/[@mp?+mp?+mpﬂ@¢k~ﬁxda(3m>
R

for any t € R.
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Since the pair u* satisfies the orthogonality condition in (44) by (41), inequality (3.41) is
exactly (43), setting By = A..

For the second term, we can prove

Step 2. There exists a positive number By, depending only on ¢, such that

[T (0] = 2 (SMet”, Her (TRer)) oy | < Bolle o) ey [ ) gy (342)

L2 (R)Q

for any t € R.

In view of (3), (22) and (39), we first notice that there exists a positive number A., depending
only on ¢, such that

HMC*(t)HLoo(R) < A, (3.43)
for any t € R. As a consequence, we can write
‘j;(t)‘ < ACHU*(? t) HLQ(R)Q HHC* (JRc*e*)('a t)HLQ(R)Q . (3'44)

Applying (3.11) to the last inequality in (3.12), we next check that
[Her ) (TRex ") ()| 12 g2
* * s * s * 2 * 2
<A ('7’5)HL2(R)2 (H"En("t)HE(R)Hgn("t)ufzw(ﬂza) +|le ('7’5)Hi%(m)2H€ ('7’5)“1?63(11@)2)7

so that by (22), (3.1) and (3.17), we have

1
#er @) (TR ") ()| 2y < Aclle™C D B [l (D) | -

Estimate (3.42) follows combining with (3.44).
We now turn to the third term in the right-hand side of (3.40).

Step 3. There exists a positive number Bz, depending only on ¢, such that

75 (0] = 2|(@) — ] < Bl (0l 10”0 [y (3:49)

<SMC* u®, Her (Bxa*)>

L2 (R)2

for any t € R.
In view of (23) and (3.43), we have
‘j?:k(t)‘ S Acug*(7t)HX(]R)Hu*(7t)HL2(R)2 HHC*(t)(8$€*)(7t)HL2(]R)27 (346)
for any ¢ € R. Coming back to the definition for H,. in (B.1), we can write
HHC*(t)(axE*)('7t)HL2(R)2 < AC<H€:7('7t)HH3(R) + ng(.7t)HH1(R))'
Hence, by (3.11) again,
1 1 1
H%c*(t)(awg*)("t)HL2(R)2 = A‘H(?:IHEQ(R)Q (H’f:z("t)ufiﬂ(ﬂza) + Hez("t)HIQJB(R)>'

Combining the latter inequality with (3.1), (3.17) and (3.46) yields estimate (3.45).

For the fourth term, we have
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Step 4. There exists a positive number By, depending only on ¢, such that

|75 ()] = 2|(c")'| < Blle" ()l (O e gye (347)

<SMC* U*7 Hc* (8CQC*)>L2 (R)2

for any t € R.
Similarly, we deduce from (23) and (3.43) that
72 O] < Adle”C Ol I Ol zgaye

Estimate (3.47) then appears as a consequence of (22) and (3.17).

The fifth term is estimated in a similar way.

Step 5. There exists a positive number Bs, depending only on ¢, such that

|75 (0] = ("]

for any t € R.

1
(OcMeu”,u") S B5H€*("t)H)2((R)Hu*("t)Hi((R)’ (3.48)

L2(R)2

We derive again from (3) and (39) the existence of a positive number A, depending only on
¢, such that

(| 0cM,- < A,

() ‘ ‘ L>®(R)

for any ¢t € R. As a consequence of (23), we infer that

|72 ()| < AcHa*(-,t)H;(R)HU*('J)H;(R)T

This provides (3.48), relying again on (22).

In order to conclude the proof of Proposition 9, it remains to combine the five previous steps
to obtain (45), with B, := max {1/B1, Bs + B3+ By + B5} O

3.5 Proof of Corollary 1

Corollary 1 is a consequence of Propositions 7 and 9. As a matter of fact, combining the two
estimates (37) and (45) with the definition of N(t), we obtain

a
dt

(VO ot () ) = (2 — ABLeVPRe

6 =0 ) 7 GOl ey

for any t € R. Invoking (22), it remains to fix the parameter 3. such that

. 1 2 —¢?
H€ (,t)HX(R) S 128A*B*6\/§R*’

for any ¢ € R, in order to obtain (46). Since the map t — (N (t)u*(:,t),u*(-,t)) L2(r)2 is uniformly
bounded by (3.39) and (3.43), estimate (47) follows by integrating (46) from t = —oo to t = +o0.
Finally, statement (48) is a direct consequence of (47). O
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A On the regularity and smoothness of the Gross-Pitaevskii flow

A.1 Continuity with respect to weak convergence in the energy space

It is shown in [21] (see also [8, 10, 3]) that the Gross-Pitaevskii equation is globally well-posed
in the spaces

XPR) == {¢ € L®(R), s.t. n:=1—[¥]> € L*(R) and 9,9 € H*[R)},
equipped with the metric structure provided by the distance

d* (41, 92) == [ = ¢2HLOO(R) + [|0ntpn — 85’31’[)2HH’€(]R) +lm = 772HL2(1R)’
where we have set, as above, 7y := 1 — [U{|? and g := 1 — |¥,|2.

Proposition A.1 ([21]). Let k € N and ¥y € X*(R). There exists a unique solution ¥ in
CO(R, X*(R)) to (GP) with initial data ¥y. Moreover, the flow map ¥o — U(-,T) is continuous
on X*(R) for any fized T € R, and the map t — W(-,t) belongs to C* (R, X*(R)) when ¥y belongs
to X*T2(R). Finally, the Ginzburg-Landau energy is conserved along the flow, i.e.

E(W(-1)) = E(y), (A1)

for any t € R.
In order to establish the continuity of the Gross-Pitaevskii low with respect to some suitable
notion of weak convergence, it is helpful to enlarge slightly the range of function spaces in which
it is possible to solve the Cauchy problem for (GP). For 1/2 < s < 1, we define the Zhidkov

spaces Z°(R) as
Z5(R) := {¢ € L®(R), s.t. v € H*1(R)},

and we endow them with the norm

(K

Z5(R) T HM‘L%(R) + HamleHs—l(R)’

We then prove

Proposition A.2. Let 1/2 < s < 1 and ¥y € Z°(R). There ezists a unique mazimal solution
U € CO((Tinins Tmax), Z°(R)) to (GP) with initial datum WO.

Proof. Proposition A.2 is essentially due to Gallo who has proved it in [8] when s € N*. Due to
the Sobolev embedding theorem of H*(R) into L>°(R) for s > 1/2, the proof in [8] extends to
the case s > 1/2. As a consequence, we refer to [8] for a detailed proof. O

In the framework provided by Proposition A.1, we can introduce a notion of weak convergence
for which the Gross-Pitaevskii flow is continuous. We consider a sequence of initial conditions
U, 0 € X(R) such that the energies £(V,, o) are uniformly bounded with respect to n. Invoking
the Rellich-Kondrachov theorem, there exists a function ¥y € X'(R) such that, going possibly to
a subsequence,

0: U0 — 0, ¥y in L*(R), 1— T, 0% =1—|¥e)* in L*(R), (A.2)

and, for any compact subset K of R,
U,0— ¥y in L>(K), (A.3)
as n — +o0o0. We claim that the convergences provided by (A.2) and (A.3) are conserved along

the Gross-Pitaevskii flow.
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Proposition A.3. We consider a sequence (W, 0)nen € X (R)Y, and a function ¥y € X(R) such
that assumptions (A.2) and (A.3) are satisfied, and we denote V,,, respectively ¥, the unique
global solutions to (GP) with initial datum ¥y, o, respectively Wy, given by Proposition A.1. For
any fired t € R and any compact subset K of R, we have

U, (-,t) = ¥(-,t) in L*(K), (A4)
when n — 400, as well as

0y U, (1) = 0,U(-,t) in L*(R), and 1—|U,(-t)> =1—|¥(,t)> in L*[R). (A.5)

Proof. The proof is standard. For sake of completeness, we recall some details.

As usual, we first bound suitably the functions ¥,, and 7, := 1 — |¥,|?. In view of the weak
convergences in assumption (A.2), there exists a positive constant M such that

E(Wn ) < M?,
for any n € N. Since the energy & is conserved along the (GP) flow by (A.1), we deduce that
102 W (- )l 2wy < V2M,  and [l (-, )| L2(m) < 2M, (A.6)

for any n € N and any ¢t € R. Invoking the Sobolev embedding theorem, we next write

1 1
1O (s )1 2o ) < T+ (o)l Loo @y < 1+ 170 (5 O 72y 192700 (5 1| 2 ()
Since
1021 (s )l L2 my < 2[1Wn (5 )| oo () 102 Yn (5 )| L2 ()

we obtain the uniform bounds
[0 ) Loy < Knry and | 0umn (5 0)| 2wy < K, (A7)

where K); is a positive number depending only on M. In particular, given a fixed positive
number T', we deduce that

T T
/ / 10, W, (z,t) > dedt < M*T, and / / N (2, 1) do dt < M>T. (A.8)
0 R 0 R

With bounds (A.7) and (A.8) at hand, we are in position to construct weak limits for the
functions ¥,, and 7,. In view of (A.8), there exist two functions ®; € L?(R x [0,T]) and
N € L%*(R x [0,7]) such that, up to a further subsequence,

Oy U, = & in L*(Rx[0,T]), and 7, =N in L*R x [0,7)), (A.9)

when n — oo. Similarly, we can invoke (A.7) to exhibit a function ® € L*°(R x [0,T]) such that,
up to a further subsequence,
U, 2@ in L®(R x [0,T]), (A.10)
when n — 4o00. Combining with (A.9), we remark that ®; = 9,® in the sense of distributions.
Our goal is now to check that the function ® is solution to (GP). This requires to improve
the convergences in (A.9) and (A.10). With this goal in mind, we introduce a cut-off function
X € CX(R) such that x = 1 on [—1,1] and x = 0 on (—o00,2]U[2,4+00), and we set x,(-) := x(-/p)
for any integer p € N*. In view of (A.6) and (A.8), the sequence (xp¥p)nen is bounded in
C°([0, 7], H'(R)). By the Rellich-Kondrachov theorem, the sets {x, ¥y (-, t),n € N} are relatively
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compact in H~1(R) for any fixed ¢ € [0,7]. On the other hand, the function ¥, is solution to
(GP), so that its time derivative 9;¥,, belongs to C°([0,7], H~1(R)) and satisfies

10:Wn (s )l -1 @) < N0¥n ()l L2@) + 1Wnl Ol oe @yl (5 D)l 2Ry < K-

As a consequence, the functions x, ¥, are equicontinuous in C°([0, 7], H~*(R)). Applying the
Arzela-Ascoli theorem and using the Cantor diagonal argument, we can find a further subsequence
(independent of p), such that, for each p € N*,

Xp¥n — xp® in CO([0,T], H}(R)), (A.11)

as n — +o00. Recalling that the functions x,V,, are uniformly bounded in C°([0,T], H!(R)), we
deduce that the convergence in (A.11) also holds in the spaces C°([0, 7], H*(R)) for any s < 1.
In particular, by the Sobolev embedding theorem, we obtain

Xp¥n = xp® in C°([0,T],C°(R)), (A.12)

as n — +00.

Such convergences are enough to establish that & is solution to (GP). Let h be a function in
C2°(R). Since the functions x,V,, are uniformly bounded in C°([0,7],C°(R)), we check (for an
integer p such that supp(h) C [—p,p]) that

Mg (-, t) = h(1 = X2 W (-, 8)]?) = h(1 = x3|®(-,1)]*) = h(1 = [®(-,1)]*) inC'(R), (A.13)

as n — +o0o, the convergence being uniform with respect to ¢t € [0,7]. In view of (A.9), we
deduce that N =1 — |®|2. Similarly, we compute

R, () = hxpUn (-, t) = hxp®(,t) = h®(-,t) in C°(R), (A.14)
as n — +o00. In view of (A.9), we infer that
U, — h(1 — @)@ in L*(R x [0,T)).
Going back to (A.9) and (A.10), we recall that
10, — i0;® in D'(Rx[0,T]), and 02,¥, — d2,® inD'(R x[0,T)),

as n — 400, so that it remains to take the limit n — 400 in the expression

T
/ / (104, + 92,V + 0, Uy )h = 0,
0 R

where h € C°(R x [0,7]), in order to establish that ® is solution to (GP) in the sense of
distributions. Moreover, we infer from (A.3) and (A.14) that ®(-,0) = .

In order to prove that the function ® coincides with the solution W in Proposition A.3, it is
sufficient, in view of the uniqueness result in Proposition A.2, to establish the

Claim. The function ® belongs to C°([0,T], Z*(R)) for any 1/2 < s < 1.

Proof of the claim. Let t € [0,T] be fixed. We deduce from (A.6), (A.11) and (A.13) that, up to
a subsequence (depending on t),

0:V, (-, t) = 0, ®(-,t) in L*(R), and 7,(,t) =1 —|®(-,t)* in L*(R), (A.15)
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as n — +oo. We also know that
/|8x<1>(-,t)|2 <2M?,  and / (1—|o(,1)%)* < aM>. (A.16)
R R

In particular, the maps 9,® and 1 — |®|? belong to L*°([0,T], L?(R)), respectively L>([0,T],
H!(R)). Since
0y (0,®) = 02

rxrxr

O — 0, (nd),

the derivative 9,® actually belongs to W1°([0,T], H~2(R)). Hence, it is continuous with values
into H2(R). By (A.16), it remains continuous with values into H*(R) for any —2 < s < 0.
Similarly, the functions n, solve the equations

Oinn = 20, ((10,¥p, Up)c). (A.17)
Invoking (A.9) and (A.14), we know that
h(i0, W, W) e — h{(id,®, ®)c  in L*(R x [0,T]),
for any h € C°(R). Using (A.13) to take the limit n — +o0o into (A.17), we are led to
0,(1~ [92) = 20, (10,9, ®)c).

in the sense of distributions. We deduce as above that the map 1 — |®|? belongs to W1°°([0, T7,
H~Y(R)), therefore that it is continuous with values into H~!(R), and finally with values into
H5(R) for any —1 < s < 1. At this stage, it suffices to apply the Sobolev embedding theorem
to guarantee that ® is also in C°([0, 7], L>°(R)), and, as a consequence, in C°([0,T], Z*(R)) for
any 1/2 < s < 1, which proves the claim. O

By Proposition A.2, the maps ® and ¥ are therefore two identical solutions to (GP) in
C°([0,T7], Z*(R)) for 1/2 < s < 1. Arguing as in (A.15), we conclude that, given any fixed
number ¢ € [0,7], we have, up to a subsequence (depending on ¢),

0,V, — 9,¥(-,t) in L*(R), and 7, —1—|¥(-t)|*> in L*(R). (A.18)
Given any compact subset K of R, we also deduce from (A.12) that
U,(,t) = ¥(-,t) in LP(K),

as n — +00.

In order to complete the proof of Proposition A.3, we now argue by contradiction assuming
the existence of a positive number T, a function h € L?(R) and a positive number § such that
we have

'/R(Bx\llw(n)(x,T)—Bx\Il(x,T))de > 9,

for a subsequence (‘I’go(n))neN Up to the choice of a further subsequence (possibly depending
on T, this in contradiction with (A.18). Here, we have made the choice to deny one of the
weak convergences in (A.5), but a contradiction identically appears when (A.4) or the other
convergence in (A.5) is alternatively denied. Since the proof extends with no change to the case
where T' is negative, this concludes the proof of Proposition A.3. U
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A natural framework for solving the hydrodynamical form of the Gross-Pitaevskii equation is
provided by the functions spaces

NVER) = {(n,v) € X*(R), s.t. maxn(z) < 1},

TSI
where we have set
X*(R) := HFL(R) x H¥(R).
A counter-part of Proposition A.1 in terms of (HGP) is stated as follows.

Proposition A.4 ([20]). Let k € N and (n°,2°) € NV¥(R). There exists a mazimal time
Twax > 0 and a unique solution (n,v) € CO([0, Tmax), NV¥(R)) to (HGP) with initial datum
(n°,0Y). The mazimal time Tyayx is continuous with respect to the initial datum (n°,v°), and is
characterized by

li t)=1 if Thax < .
i () =1 T < o

Moreover, the energy E and the momentum P are constant along the flow.

In this setting, it is possible to establish the following version of the weak continuity of the
hydrodynamical flow.

Proposition A.5. We consider a sequence (1n.0,Vn0)neny € NV(R)Y, and a pair (no,vo) €
NV (R) such that
Nno — 10 in H'(R), and w,o— vy in L*(R), (A.19)

as n — +oo. We denote by (nn,vy) the unique solutions to (HGP) with initial data (1,0, vn,0)
given by Proposition A.4, and we assume that there exists a positive number T such that the
solutions (ny,,vy) are defined on [=T,T], and satisfy the condition

sup sup maxn,(z,t) <1-—o, (A.20)
neN te[-T,T] TER

for a given positive number o. Then, the unique solution (n,v) to (HGP) with initial data (no,vo)
is also defined on [=T,T)|, and for any t € [-T,T], we have

m(t) = n(t) in H'(R), and wv,(t) —v(t) in L*(R), (A.21)

as n — +o00.

Proof. The proof relies on applying Proposition A.3 to the solutions ¥, and ¥ to (GP) with

initial data
V0= Mew"vo, and Wg:= /1 —npe'¥°,

where we have set
onol@)i= [ unow)dy, and go(w) = [ uoly)dy. (A.22)
0 0

The weak convergences in (A.21) then follow from the convergences in (A.4) and (A.5).

With this goal in mind, we first remark that the map ¢ in (A.22) defines a continuous function
with derivative vg in L?(R), while /T — 19 defines a function in H'(R). As a consequence, the
function ¥¢, and similarly the functions ¥, o, are well-defined on R and belong to X'(R), with
derivatives

0, . < 0 , .
9xWo = <_ 2\/11U771L770 +iy/1 = 770”0) e, a:z:\I’n,O = ( _ 9l +i4y/1 — 77m0”n,0> erPno,

2 /T o
(A.23)
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We now check the first assumption in (A.2), as well as (A.3). The second assumption in (A.2)
is already included in (A.19). In view of (A.22), we write

©n,0(7) — @o(z) = (V0 — v0, Ljo.4]) L2(R)5
for any x € R, so that, by (A.19),
en0(x) = po(),
as n — +o00. On the other hand, it again follows from (A.22) that
1
lon0(x) — eno®)| <z —yl2[[onollL2m),

for any (z,y) € R?. Given a compact subset K of R, we deduce from the Ascoli-Arzela theorem
and the Cantor diagonal argument that, passing to a subsequence independent of K, we have

‘Pn,o — Yo in LOO(K)7

as n — 4o00. In particular, ' ‘
e'¥m0 — %0 in L*(K), (A.24)

as n — +oo. Similarly, if follows from (A.19) and the Rellich-Kondrachov theorem that, up to a
further subsequence,
V31=1mo—=1—=m inL>(K), (A.25)
as n — 400. Since the maps €0 are uniformly bounded by 1, we conclude that
\I}n,O — \I/O in LOO(K),

as n — +00.
The proof of the first assumption in (A.2) is similar. We deduce from (A.20) and (A.25) that

V1—10>+0o, and +/1—mny>+oonR.
Combining (A.23) with the convergences in (A.19), (A.24) and (A.25), we are led to
0: Vo — 0,9y in L*(R),

as n — +oo.

As a consequence, we can apply Proposition A.3 to the solutions ¥,, and ¥ to (GP) with
initial data W,, o, respectively Wy. Given any number ¢ € R, we obtain in the limit n — +o0,

U, (- t) = ¥(-,t) in L7(K), (A.26)
for any compact subset K of R, as well as
0y, (1) = 0,0 (-,t) in LA(R), and 1—|¥,(t)* —=1—|¥(,t)> in L*(R). (A.27)

Setting
M i=1— |\I’n|2, and 7:=1-— |\I’|2,

we infer similarly from (A.26), (A.27) and the identities 0,7(,) = —2(¥(5,), 02 ¥ (n))c that
(- t) = 7( 1) in H'(R), (A.28)

as n — +oo. In order to derive the first convergence in (A.21), it remains to check that the
functions 7,, and 7 are equal to 7, respectively 1. This can be done by invoking the uniqueness
result in Proposition A.4 for the solutions to (HGP).
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With this goal in mind, we first derive from the Sobolev embedding theorem that
L=[gp* > 1= [9f* in L®(R),
when 1, — ¢ in X'(R) as p — +o00. Since 1, o satisfies (A.20), and ¥,, is continuous from R to
X (R), we can exhibit a number 7,, € (0,7"), depending possibly on n, such that
o

sup  max 7, (z,t) <1——. (A.29)
te[—Tn,7n] z€R 2

As a consequence, we can define a function vy, : R X [—7,, 7] — R according to the expression

~ <i\I’na 8:1:\1]n><c

T, P

Since ¥, is in C°([~7y,, 7], L (R)), the function @, is continuous on [—7,,7,] with values into
L?(R). Similarly, 7, is continuous on [—7,,7,] with values in H!(R). In view of (A.29), we
conclude that the pair (7j,,,) belongs to C([~7p, 7], NV(R)). Moreover, the map ¥,, being a
solution to (GP), the pair (7,,v,) solves (HGP) in the sense of distributions for an initial data
equal to (7,,0,vn,0). As a conclusion, this pair coincides with the solution (7,,vy) on [—7,, Ty].
Using a standard connectedness argument, we derive that the function v, is well-defined in
CO([~T,T), L>(R)), and that

(ﬁn(m7 t)7 671('%'7 t)) = (77n(% t)7 Un(xv t))7

for any x € R and t € [T, T].

Due to (A.25), one can rely on the same approach to establish that the function

5 (10,0, V)¢
RS

is well-defined in CO([~T,T], L= (R)), and that

(ﬁ(x’ t)’ 5($, t)) = (77(56’ t)’ v(x’ t))’

for any © € R and any t € [-T,T]. The first convergence in (A.21) is then exactly (A.28).
Concerning the second one, we deduce from (A.20), (A.26) and (A.27) that

<Z\Iln7axan>(c R <2\I’73x\1’><c
1— [, 1—[w)?

as n — 4o00. This is exactly the desired convergence.

However, the two convergences are only available for a subsequence, so that we have to argue
by contradiction as in the proof of Proposition A.3 to conclude the proof of Proposition A.5. [

A.1.1 Proof of Proposition 1

In order to establish (26), we apply Proposition A.5. Relying on assumption (15) and the explicit
formula for Q.,) in (3), we check that

Qett,) = Qe in X(R),

as n — +o0o0. Combining with (14), we are led to

(77(' +a(ty), tn), v(- + a(tn)atn)) —ept+ Q¢ In X(R),
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as n — +o0o. The weak convergence in (26) then appears as a direct consequence of (A.21)
since t — (n(- + a(ty),tn, +1t),v(- + a(ty),t, +1t)) and (n*,v*) are the solutions to (HGP) with
initial data (n(- + a(tn),tn), v(- + a(tn), tn)), respectively f + Qcx, and since assumption (A.20)
is satisfied in view of (7).

Concerning (27), we rely on (8) to claim that the map ¢ — ¢(t) is bounded on R. We next
combine (8) and (9) to show that @’ is a bounded function on R. As a consequence, the sequences
(a(tn+t)—a(ty))nen and (c(tn,+1))nen are bounded, so that the proof of (27) reduces to establish
that the unique possible accumulation points for these sequences are a*(t), respectively ¢*(t).

In order to derive this further property, we assume that, up to a possible subsequence, we
have
a(t, +t) —a(ty) - «, and c(t, +1t) — o, (A.30)

as n — +oo. Given a function ¢ € H'(R), we next write

(- +altn + 1) tn +1),0) ya gy =1+ altn), tn + 1), 6(- = altn +1) + altn) = 6( = @) g
+ (- + altn),tn + 1), 6( = @) 1 gy-

Combining (26) and (A.30) with the well-known fact that
¢(-+h) = ¢ in H'(R),
when h — 0, we deduce that
N +alty +t),ty +t) = n*(- +a,t) in H(R),
as n — 4o00. Similarly, we have
v(- 4 a(ty, +1),t, +1) = v*(- +a,t) in L*(R).

Since
Qe(tntt) = Qo In X(R),
as n — 400 by (A.30), we also obtain

e(itn +1) = (N (- + o, 1), 0" (- + 1)) — Q, in X(R), (A.31)

as n — +00.

At this stage, we again rely on the second convergence in (A.30) to prove that

8ch(tn+t) — 0:Q5 in L2(R)27

as n — +o0, and the similar convergence for P'(Qc(,++)). With (A.31) at hand, this is enough
to take the limit n — 400 in the two orthogonality conditions in (6) in order to get the identities

<(77*( + Oé,t),’l)*(' + Oé,t)) - QO’761‘Q0'>L2(R)2 = P/(QO')((TI*( + Oé,t),’l} * ( + aat)) - QU) =0.
Using the uniqueness of the parameters o*(t) and ¢*(¢) in (20), we deduce that
a=a*(t), and o=c"(t), (A.32)

which is enough to complete the proof of (27). Convergence (28) follows combining (20) with
(A.31) and (A.32). O
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A.2 Smoothing properties for space localized solutions

We consider a solution u € CO(R, L?(R)) to the inhomogeneous linear Schrédinger equation (LS),
with F € L?(R, L?(R)), and we assume that

/T / (Ju(z, t)[* + | F(x,1)|*) e do dt < +oo, (A.33)
-TJR

for any positive number 7. Our goal is to establish that the exponential decay for v and F
in (A.33) induces a smoothing effect on u in such a way that d,u belongs to L2 (R x R). In

loc

order to derive this effect, we rely on the following virial type identity. We refer to the work by
Escauriaza, Kenig, Ponce and Vega 7| for useful extensions in related contexts.

Lemma A.1. Let u be a solution in CO(R, H'(R)) to (LS), with F € L*(R, H(R)). We consider
two real numbers a < b, a function x € C%(R) such that x(a) = x(b) = 0, and a bounded function
® € C*(R), with bounded derivatives. Then, we have

4/ab/R|amu(x,t)|2q)//(x)x(t) dmdt:/R(|u(ﬂf,a)|2x/(a)—IU(x,b)|2X’(b))<1>(x)dx
+/ab/R,u(x,t),2(q>(x)Xu(t)+@(4)(x)x(t)>dmdt+2/;/R<F(x7t)7iu(x’t)>cq)(x)xl(t)dxdt

b b
_z/a /R(F(x,t),u(ﬂc,t)k<1> (z)x(t) dazdt—4/a A(F(m,t),@xu(x,t»(c(l) (z)x(t) dxdt.(A |
.34

Proof. We introduce the map = given by

=)= [ lute.)Pb(a) da,

for any ¢t € R. When u is a smooth solution to (LS), we are allowed to compute

E(t) = 2/R<F(x,t),iu(x,t)><c<1>(x) dx + Q/R(amu(x,t),iu(m,t))CQ)'(x) dx,

as well as
=(t) = 28t(/R(F(x,t),iu(x,t))(CQ)(x) dm) + 4/[R(F(x,t),amu(x,t)>(c<1>'(x) dx

+2/<F(x,t),u(x,t)>(cfl>”(x) dx+4/ |Dpu(z, t)2D" () da —/ lu(z, t)[2®W (z) d.
R R R
(A.35)
Formula (A.34) follows by writing the identity
b

OB+ Z@) (@) + [ SN0 dr

a

@\
o
(11
=
=
=
o8
~
Il
[1]

and integrating by parts (with respect to t) the first integral in the right-hand side of (A.35).

When u is only in CO(R, H!(R)), we introduce a sequence of smooth functions (t, q)men and
(Fin)men such that

Una — u(-,a) in HY(R), and F,, —F in L*R, H'(R)), (A.36)
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as m — +oo. We denote by u,, the unique solution to (LS), in which F' is replaced by F,,, with
U (+, @) = U, q. Since u,, is a smooth solution to (LS), identity (A.34) holds for the functions
Uy, and Fy,. On the other hand, we can deduce from the convergences in (A.36) applying an
energy method to (LS) that

U — u  in CO(R, H'(R)),

when m — +o0o. Combining with (A.36) and taking the limit m — 400, we obtain identity
(A.34) for the functions w and F. O

A.2.1 Proof of Proposition 5

We apply Lemma A.1 with @ = =T — 1 and b= T + 1, and for a function x € C3(R, [0, 1]), with
compact support in [-7 — 1,7 + 1], and such that xy =1 on [T, T].

Concerning the choice of the function ®, we would like to set ®(z) = e for any z € R.
However, this function is not bounded, as well as its derivatives. In order to by-pass this difficulty,

we introduce a function ¢ € C*(R, [0, 1]) with compact support in [—2,2] and such that ¢ =1

n [—1,1], and we set
x

énlw) = 6(%),

n
for any n € N* and any = € R. We then apply Lemma A.1 to the function

(I)n(x) = ¢n(1.)e)\m’

which is bounded, with bounded derivatives.

At this stage, we have to face a second difficulty. Lemma A.1 is available for functions u and
F in CO(R, H'(R)), respectively L?(R, H!(R)), but we would like to apply it when u and F are
only in C°(R, L?(R)), respectively L?(R, L?(R)). As a consequence, we first mollify the functions
u and F by introducing a smooth function p € C3°(R x R), with compact support in [—1,1]2
and such that [, u = 1, and by setting

U = Uk by, and  Fy, = F % iy, (A.37)

with g, (z,t) = m?u(ma, mt) for any m € N and any (z,t) € R% In a second step, we will
complete the proof by taking the limit m — +oo.

Since F is in L?(R, L?(R)), we first deduce from (A.37) and the Young inequality that F},
belongs to L?(R, H'(R)), with the bounds

105 Fll 2. r2 )y < mMENF I L2 e z2 ) 1051l L1 2,
for ¢ € {0,1}. Similarly, we compute

/ ‘Bﬁum(x,t) - 3ﬁum(x,t0)‘2dm
R

T2
< m2 0| 11 Rz/ / t—— ) —u(, to——)‘

L2(R)

yppu(7)| dr,

so that u,, belongs to C°(R, H(R)), with the bound

Haf«umHcO([—T—1,T+1},L2(R)) < mgHuHCO([—T—l,T-f—l],LQ(R))Haﬁﬂ”Ll(R2)7
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which can be derived using the same arguments. As a consequence, we are in position to apply
Lemma A.1 to obtain the identity

4[] 10stnl O (@ala)e) 'x(0) da i
—2// (2,), 0 U (2, 1)) o (2)e Ny (t) da di
-2 / / )yt (2, 1)) (dn(2)e*) X (t) da dt (A.38)
—4// (2,1), Dot (2, 1)) (D (2)e®) X (t) da dt
[ e OF (8@ 0+ (@nl@)e) Oxt))do e

In order to take the limit n — +o0, we first combine (A.33) with (A.37) to obtain the bound

T+1
/ /\a/fum(x OF + 104 F (2, £)[2) € da dt

<//| ,uxt|e2d:ndt> /T+2/ |ua:t)|2+|F(l“t)|)’\xdxdt<+oo

for ¢ € {0,1}. It follows that all the integrals in (A.38) can be written under the form

NiNe) /TH/G:cth(k( ) dz dt,

with G € LY([-T — 1,7 + 1], L}(R)) and 0 < k < 4. Since

T+1
(K, G) —>5ko/ /Gxtdxdt

as n — 400 by the dominated convergence theorem, we obtain in the limit n — o0,

T+1 T+1
4)\2/ /|(9 U (2, 1) |? X (t) d dt = / / t), it (2, 1)) X/ (t) da dt
T+1
- 2)\2/ / ), U (2, 1)) XX (t) da dt
T+1
—4)\/ / (1), Oyt (2, 1)) X x(t) da dt

/T+1/|umx £)2 M( () 4+ N (t ())dmdt.
(A.39)

We now use the inequality 2a8 < o? + 52 to write

T+1
' / (z,t), i tum (2, 1))c X (t) da dt'
T+1 T+1
(/ /]um x,t \2 )“dedt—i—/ /]F (z, )% Amdwdt)

40
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with K7 := ||X/||gec(r)- Similarly, we have

T+1
' / / 2)\ m (2, 1), Optm (2, 1)) e + N (P, 1), um(xat»(c)e)‘mx(t) dxdt‘
=% /Tle / |t (2,1)[* € da dt + 2X° /Tle / |0t (, 1) € X (t) dax dit

+ (2—!—)\2) / / |, 1) 2 M da dt.
—-T-1JR
Combining with (A.39) and (A.40), we obtain the inequality
T+1 T+1
2)\2/ /\3 U (2, 1) X (t) daz dt <(K1+K2+)\2+)\4 / /]umx t)[2eM dx dt
T+1
+ (K1 + A +2) / /|F (z,t)|? e dz dt,

with Ko := [[X"| ). At this stage, we rely on the properties of the function x to obtain the
inequality 2

T+1
2)\2/ /|6 U (2, 1) e )‘xdazdt<K)\/ / [t (2, 1) 2 + | Fp (2, 1)) Je AT dxdt,  (A.41)

for some positive constant K, depending only on \.

In order to conclude the proof, we finally consider the limit m — +o0. Using the linearity of
(LS), we can transform (A.41) into

T
2)\2/ / \3xum(x,t) - axup(x,t)‘Q 6)\1 dx dt
T+1 (A.42)
< K,\/ / [t (x, 1) (m,t)‘Q + | Ep (2, 1) —Fp(x,t)IQ) N dy dt,

for any (m,p) € (N*)2. On the other hand, we can check that

T+1
/ /\um (z,t) — u(z,t)|? N da dt
T+1
< 4| p|? sup / /‘ x—ﬁt—— —u(x,t
Iy | sup Lt 2) —ue,n)]
Setting v(z,t) = u(x,t)e %", we observe that
T+1 y
/ /‘ x——t——)—u(wt)‘ e da dt
m m
T+1
/ / lu(z,t))? Y i)—v(m t)‘ em)dwdt.

= t —
m’ m
Since v € L*([-T — 2,T + 2], L*>(R)) by (A.33), we obtain the convergence

T+1
/ /\umxt u(z, t)|? N da dt — 0,

2The choice of x can indeed be made so that K; and K are independent of T

e dx dt.

#af e
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as m — +oo. Due to (A.33) again, similar convergence holds for the functions F},, and F.

In particular, we infer from (A.42) that the functions (x,t) — Oyum(z, t)eé_z form a Cauchy
sequence in L?([-T,T)], L*(R)). In view of (A.37), their limit in the sense of distributions is the

map (x,t) — 8xu(x,t)e%. As a consequence, this map belongs to L?([-T,T), L3(R)), with

T
/ / Ot (, ) — Dpulz, t)|? e dadt — 0,
~-T JR

as m — +o00. It is then enough to take the limit m — 400 into (A.41) to obtain inequality (32).
This completes the proof of Proposition 5. U

Remark. Inequalities similar in spirit to (32) can be obtained with similar proofs replacing the
weight function e by e? where ¢ : R — R is a smooth function with bounded derivatives and
such that ¢” + (¢')? is bounded from below on R. In those cases, we obtain inequalities of the
form

T T+1
/ / Oz ul, ) e d dt < K¢/ / (lu(z, t)* + |F (2, t)[*)e?® dz dt,
-7 JR R

-T-1

where Ky is a positive constant depending only on ¢.

A.2.2 Proof of Proposition 6

We denote by ¥* € C(R, X (R)) a solution (uniquely determined up to a constant phase shift)
to (GP) corresponding to the solution (n*,v*) to (HGP). Formally, we may differentiate (GP) k
times with respect to the space variable and write the resulting equation as

i0y (05 W™) + 0y (O T*) = Ry, (T), (A.43)
where, in view of the cubic nature of (GP),
[Re()| < |050* |+ > Kapy 050|050 |0707|. (A.44)
agf<y
a+pB+y=k

In particular, our strategy to establish Proposition 6 consists in applying inductively Proposition
5 to the derivatives 9¥¥* in order to improve their smoothness properties, and then translate
the resulting properties in terms of the pair (n*,v*). As a consequence, we split the proof into
four steps.

Step 1. Let k > 1. There exists a positive number Ay, depending only on k and ¢, such that

t+1
/ / |8!§\I’*(Cﬂ + a*(t), S)|2€2V“x‘ drds < Ay, (A.45)
t R
for any t € R.

The proof is by induction on k£ > 1. More precisely, we are going to prove by induction that

(A.45) and
t+1 )
/ / |Re (") (2 + a*(t), )| el dr ds < Ay, (A.46)
t R

hold simultaneously for any ¢ € R. Notice that (A.45) implies that 05¥* € L2 (R, L?(R)), while

loc

(A.46) implies that Ry (¥*) € L2 (R, L?>(R)). Therefore, if (A.45) and (A.46) are established for

loc
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some k > 1, then (A.43) can be justified by a standard approximation procedure, so that we are
in position to apply Proposition 5 to (suitable translates of) 9% W¥*.

For k =1, recall that
dyn*)?
8 \I/* 2 — ( X 1— * * 2.
0.0 = g + (L= 1))

it follows that

1 %2 *)\2 *)2 *|2

10 < (@) + () < Ao, U,

C

where the constant A, here as in the sequel, depends only on c¢. It then follows from Proposition
4 that (A.45) and (A.46) are satisfied. Indeed, since

[Ry(W7)] < A|0, 7| (1 + [W7[?),

we have
‘R1(\I’*)(ﬂ? +a*(t), (9)‘2621“'”[”| < A28, 0" (z + a*(s), s)|?e2vella” (t)=a” ()l +lzl) (1+ ||\I’*||%oo(R))2,

and we may rely on Proposition 4, and the fact that |a*(t) — a*(s)| is bounded independently of
t for s € [t,t +1].

Assume next that (A.45) and (A.46) are satisfied for any integer £ < ko and any ¢ € R.
We apply Proposition 5 with u := 050W*(- + a*(t),- — (t +1/2)), T := 1/2 and successively
A = £2u.. In view of (A.43), (A.45), (A.46), and the fact that |a*(t) — a*(s)| is uniformly
bounded for s € [t — 1,¢ + 2], this yields

ACAk‘() ,CK2IJC

A47
o (A7)

t+1
/ / 0K (22 + a* (1), s)|2e® o da ds <
t R

so that (A.45) is satisfied for k = ko + 1, if we set Ay41,c = AcAkO,ch,,c/llucz.

We now turn to (A.46) which we wish to establish for k = kg + 1. First notice that the linear
term in the right-hand side is already bounded by (A.47), so that we only have to handle with
the cubic terms. Notice also that we have by (A.43), (A.45) and (A.46),

dIV* e L} (R,H*(R)), and &VU*c HL.(R,L*(R)),

for any 1 < j < kg, with bounds depending only on kg + 1 and ¢ on any time interval of length
1. By interpolation, we obtain similar bounds for &, ¥* € H (R, H>~25(R)) for any 0 < s < 1.

loc
Taking for instance s = 2/3 and using the Sobolev embedding theorem, we obtain a global bound

for 929* in L>°(R x R). Since the latter also holds for j = 0, we thus have

Hal%\II*HLoo(RX]R) < Ako-i—l,ca (A.48)

for any 0 < j < ko, where the value of Ay ;. possibly needs to be increased with respect to its
prior value, but depending only on kg + 1 and «¢.

In order to estimate the sum in (A.44), we next distinguish two cases according to the possible
values of «, 8 and 7.

Case 1. If 8 < kg, then
t+1
/ / (0202 (0507 2 |97 2] (& + a* (1), )¢?V] dr ds
t R
2 2 t+1 2 2
S Hagq/*HLOO(RXR)Haf\p*HLOO(RXR)/t /R’ag‘l’*(era*(t)’S)’ e dg: ds,

and we may rely on (A.48), as well as (A.45) or (A.47), depending on the value of .
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Case 2. Since a < 8 < v and a++7 = ko+1, the only remaining caseisa =0, § =v = kg = 1.
In that situation, we write

t+1
/ / (1072 0,97 4] (2 + a* (£), 8)e2I7 da s
t R

t+1
< H\I/*Hioo(RxR)< sup /R\ax\ll*(x,s)\2dx>/t HB U*(- +a*(t),s ”“x‘Him(R)dS.

sE[t,t+1]

By conservation of the energy, we have

sup /]8\11 (z,5)> dz < 26(T*(-,0)).

s€[t,t+1]
while, by the Sobolev embedding theorem,
09 (- +a*(®), )" [}
A0 9" (- + a* (1), )€™ M| [Fa gy + (10097 + @ (), )M e )
The conclusion then follows also from (A.45) and (A.47).

At this stage, we have established by induction that (A.45) and (A.46) hold for any k& > 1.
In order to finish the proof of Proposition 6, we now turn these L? _in time estimates into L>
in time estimates, and then in uniform estimates.

loc

Step 2. Let k > 1. There exists a positive number Ay, ., depending only on k and ¢, such that
/ ‘3’;\11*(36 + a*(t),t)|2e2”“x‘ de < A, (A.49)
R
for any t € R. In particular, we have
050" (- + a* (1), )" | oo gy < Ak (A.50)
for any t € R, and a further positive constant Ay, depending only on k and c.

Here also, we first rely on the Sobolev embedding theorem and (A.43). By the Sobolev
embedding theorem, we have

0507+ a(0), e M3y <B (100507 + @09 N a1 20y
+ (| o5 (- + a* (1), S)eyc“Hi2([tfl,t+1]7L2(R)))’
while, by (A.43),
* * Vc * * e ;
|0 (050 (- + a*(t), s ||)HL2(t 1,t4+1],L2(R)) §2(Ha§+2‘1’ (- +a’(t),s)e HHL?([thHlLLQ(R))
+ || Re(TF) (- + a*(t), 3)€V°HHi2([t—1,t+1},L2(R)))’

so that we finally deduce (A.49) from (A.46) and (A.45). Estimate (A.50) follows applying the
Sobolev embedding theorem.

We now translate (A.49) and (A.50) into estimates for n*.
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Step 3. Let k € N. There exists a positive number Ay ., depending only on k and ¢, such that
/ (O™ (z + a*(t),t))2e2”‘|m| de < A, (A.51)
R
and
1057 (- + a* (), )" M| oy < Ak (A.52)
for any t € R.

Concerning (A.51), we first recall that
0s(n"(- + a™(), 5)) = 200" (- + a™(t), 5), Oax ¥ (- + a™(£), 5))c-
Since ¥* is uniformly bounded on R x R in view of (25), we can rely on (A.49) to claim that
105 (" (- + a™ (1), S)BV‘H) HL?([tq,Hu,L?(R)) < All[ 020 U7 (- + 0" (1), S)GVCHHL?([tq,tH},L?(R)) < A
Since
7 (- +a* (1), S)eycHHLQ([t—l,HlLL?(R)) < A

by Proposition 4, and since |a*(t) — a*(s)| is bounded independently of ¢ for s € [t — 1, + 1], we
can invoke again the Sobolev embedding theorem to obtain (A.51) for k = 0.

When k > 1, we recall that
o R ‘
ot =23 () wwraw.,
, J
7=0

by the Leibniz rule, so that (A.51) follows from (A.49), (A.50), and the property that U* is
uniformly bounded on R x R by (25). The uniform bound in (A.52) is then a consequence of the
Sobolev embedding theorem arguing as for (A.50).

Finally, we provide the estimates for the function v*.

Step 4. Let k € N. There exists a positive number Ay ., depending only on k and ¢, such that

/ (8];1)*(1' +a*(t), t))eQ”“x‘ de < A, (A.53)
R
and

10507 ¢+ a*(©). )" M| o gy < Ak (A.54)
for any t € R.

Here, we recall that
1
vt = (1-n") 2(i0, 9", \If*>(c,

so that, by the Leibniz rule, we have

k k—j .
* KN (k—=7)\ . o1\ /. % Akl
=33 () ()0 -t en e
At this stage, we can combine the Faa di Bruno formula with (25) and (A.52) to guarantee that
oL (1 =n)7%) *t,tH < Ay,
[a(a =7 2)cra@n] L, <A
for any j € N and any ¢ € R. In view of (A.49) and (A.50), this leads to (A.53). The uniform

bound in (A.54) follows again from the Sobolev embedding theorem.

In view of (A.52) and (A.54), we conclude that the pair (n*,v*) is smooth on R x R, with
exponential decay. Estimate (33) is a direct consequence of (A.51) and (A.53). This completes
the proof of Proposition 6. O
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B Complements on orbital stability and the operator H,.

B.1 Properties of the operator .

In this subsection, we recall and slightly extend some properties of the operator H. which were
established in [13, 4].

For ¢ € (—v/2,/2) \ {0}, the operator H,. is given in explicit terms by

81 xx'jc BSC c 2
-to(#5) +1(e- 8- @R )er- (50

—(§+uve)ey + (1 =ne)ey

/Hc(e) = (Bl)

It follows from the Weyl theorem and criterion that H, is self-adjoint on L?(R) x L?(R), with
domain H%(R) x L?(R), and that its essential spectrum is equal to

2—¢2
ety = [0,
(He) 3+ V1 +4c2

It was proved in [13, 4] that H. has a unique negative eigenvalue, that its kernel is spanned
by 0,Q., and that there exists a positive constant A., depending only and continuously on c,
such that we have the estimate H.(¢) > A.|le||%, for any pair ¢ € X(R) which satisfies the
orthogonality conditions (e, 9,Qc)r2r)2 = P'(Qc)(€) = 0.

It follows from the characterization of the kernel here above that the operator H. is an
isomorphism from Dom(#.) N Span(d,Q.)* onto Span(d,Q.)-. Moreover, given any k € N,
there exists a positive number A., depending continuously on ¢, such that the inverse mapping
H_ ! satisfies

-1
[, 9)HHk+2(R)ka(R) < Ac||(f, g)HHk(R)27 (B.2)

for any (f,9) € H*(R)? N Span(9,Qc)*
Indeed, the pair ¢ = H_(f,g) is a solution in H?(R) x L?(R) to the equations

Oz 92, ne Oene)?
10u(P5) =7~ (2 e - g )+ (5 4 v

(B.3)
(1_776)61) =g+ %+Uc Eny
which satisfies the bound
lenllrz@) + levllz@) < fe(lf 2@y + 9l 2®)), (B.4)

with )
Ke 1= mm{x, A#0st. Ae J(Hc)}.

In particular, since H. depends analytically on ¢, and its eigenvalue 0 is isolated, the constant
Ke is positive and depends continuously on c¢. Since

2

min {1 - n.(a)} = 5 >0, (B.5)

we can apply standard elliptic theory to the first equation in (B.3) to obtain

lenllz@®y < Ac(lfll2@) + 9l 2m®))
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where A, also depends continuously on ¢. Combining the second equation in (B.3) with (B.4)
and (B.5), it follows that

llewll prmintr.2y ) < Ac(1F ey + gl e ry) -

when (f,g) € H*(R)2. Applying again standard elliptic theory to the first equation in (B.3), we
are led to

llenll rminger.ay gy < Ae(1f ey + 9l are (r)) -

A bootstrap argument then yields (B.2), with a constant A, which depends continuously on c.

B.2 Proof of Theorem 3

As mentioned in the introduction, the proof of Theorem 3 consists in a few adaptations with
respect to the arguments in [13, 4].

The global existence of the solution (n,v) to (HGP) for an initial data (g, vg) which satisfies
the condition (4) is indeed established in [4, Theorem 2].

The existence for a fixed number ¢ € R of the modulation parameters a(t) and ¢(t) in (5) is
shown in [4, Proposition 2|, as well as the two estimates in (8). Combining these estimates with
the Sobolev embedding theorem of H!(R) into C°(R) and the bound (B.5) on 1 — 7., we can
write

c(t)? c2
Ifggn(%t) = an(t)HLOO(]R) - Hgn('7t)HL°°(R) zl-—==- Keap 21— 5 Keo.
For a, small enough, estimate (7) follows with o, := ¢?/2 + K.a..

Concerning the C!'-dependence on t of the numbers a(t) and c(t), it is proved in [4, Proposition
4], as well as the linear estimate

()| + | (t) — c(t)] < AtHE("t)Hx(R)' (B.6)

The only remaining point to verify is that the linear dependence on € of ¢/(t) in (B.6) is actually
quadratic.

In order to prove this further property, we differentiate the second orthogonality relation in
(6) with respect to time. Combining with (12), we obtain

0/% (P(Qe)) = P(Qc) (JHe(e)) + (' — &) P(Q) (8t + 0:Q.)

(B.7)
—|— C,<P”(QC)(BCQC)7 €>L2(R)2 + P,(QC) (JRCE)a
at any time ¢ € R. The first term in the right-hand side of (B.7) vanishes since
P,(Qc)(t]%c(g)) = 2<8$QC7 HC(€)>L2(R)2 = 2<HC(8J1QC)7 €>L2(]R)2 =0, (BS)
by (10). Concerning the second one, we have
PIQ(0:2) = | O (nfe)ue(e) da =0, (B.9)
while we can deduce from (B.6) that
2
o/ = l|P(Q0)0:9) < Al (B.10)
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Similarly, the third term can be estimated as
2
| [[{P"(Qc)(0eQe), ) romyz| < ACH*SHX(R)' (B.11)
For the last term, we recall that

._ (80&7%)282 (3 —me—2n) (0znc)en(0xen) (2 — ne — 1) (Oxe )2 6121
ROl =250 e 7 F T a7 RG22
—835(4( e (0en) (0ene)ey ) (B.12)

1- 770)(1 - 77) 4(1 - 770)2(1 - 77)

[Rc(t)s(-, t)]v = — EpEy,

so that we can compute

, B en(Open) (Qame)es,
P (Qc) (JRm?) = /R(ammnc) (2(1 _77770)({7_ 77) 2(1 _ nc)Q(ln— 77))

(61770)252 (3 =me—2n)
- /R <2(83&Uc)€n5v + (axnc){f%) - /R(axnc)( 4(1 _ :}c)g(l _ 77)2
(axUC)gn(aﬂﬁgn)(Q ) (835877)2 )
2(1 —ne)*(1 —n)? A1 —n)*/

It is then enough to apply again the Sobolev embedding theorem and to use the control on 1 —17
and ¢ provided by (7), respectively (8), to obtain

|P'(Qe)(JRee)| < ACH‘gHi((]R)'

Recalling that
d 1
2 (PQo)) ==(2-¢)7 £0,

we can combine the identity (B.7) with the estimates (B.8), (B.9), (B.10) and (B.11) to prove
the quadratic estimate of ¢/(¢) in (9). This concludes the proof of Theorem 3. O
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