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Asymptotic stability in the energy space for dark solitons of the

Gross-Pitaevskii equation

Fabrice Béthuel 1, Philippe Gravejat 2, Didier Smets 3

December 20, 2012

Abstract

We pursue our work [4] on the dynamical stability of dark solitons for the one-dimensional
Gross-Pitaevskii equation. In this paper, we prove their asymptotic stability under small
perturbations in the energy space. In particular, our results do not require smallness in some
weighted spaces or a priori spectral assumptions. Our strategy is reminiscent of the one used
by Martel and Merle in various works regarding generalized Korteweg-de Vries equations.
The important feature of our contribution is related to the fact that while Korteweg-de Vries
equations possess unidirectional dispersion, Schrödinger equations do not.

1 Introduction

We consider the one-dimensional Gross-Pitaevskii equation

i∂tΨ+ ∂xxΨ+Ψ
(
1− |Ψ|2

)
= 0, (GP)

for a function Ψ : R× R → C, supplemented with the boundary condition at infinity

|Ψ(x, t)| → 1, as |x| → +∞.

The Gross-Pitaevskii equation is a Hamiltonian equation, its Hamiltonian being given by the
Ginzburg-Landau energy

E(Ψ) :=
1

2

∫

R

|∂xΨ|2 + 1

4

∫

R

(1− |Ψ|2)2.

A soliton with speed c is a travelling-wave solution of (GP) of the form

Ψ(x, t) := Uc(x− ct),

and its profile Uc is a solution to the ordinary differential equation

−ic∂xUc + ∂xxUc + Uc

(
1− |Uc|2

)
= 0. (1)

The solutions to (1) with finite Ginzburg-Landau energy are explicitly known. For |c| ≥
√
2,

they are the constant functions of unitary modulus, while for |c| <
√
2, up to the invariances of
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the problem, i.e. multiplication by a constant of modulus one and translation, they are uniquely
given by the expression

Uc(x) :=

√
2− c2

2
th
(√2− c2x

2

)
+ i

c√
2
. (2)

Notice that solitons Uc with speed c 6= 0 do not vanish on R. These are called dark solitons, with
reference to nonlinear optics where |Ψ|2 refers to the intensity of light. Instead, since it vanishes
at one point, U0 is called the black soliton.

The energy space for (GP) is given by

X (R) :=
{
Ψ ∈ H1

loc(R), Ψ
′ ∈ L2(R) and 1− |Ψ|2 ∈ L2(R)

}
.

Due to the non-vanishing conditions at infinity, it is not a vector space. Yet X (R) can be given
a structure of complete metric space through the distance

d(Ψ1,Ψ2) :=
∥∥Ψ1 −Ψ2

∥∥
L∞(R)

+
∥∥Ψ′

1 −Ψ′
2

∥∥
L2(R)

+
∥∥|Ψ1| − |Ψ2|

∥∥
L2(R)

.

The Cauchy problem for (GP) in space dimension one is known to be solvable in the energy
space. For an initial datum Ψ0 ∈ X (R), the Gross-Pitaevskii equation possesses a unique global
solution Ψ ∈ C0(R, (X (R), d)), and moreover Ψ − Ψ0 ∈ C0(R,H1(R)) (see e.g. [21, 9, 10] and
Appendix A.1).

Orbital stability of dark and black solitons was proved in [13, 2] (see also [1, 11, 4]).

Theorem 1 ([13, 2]). Let c ∈ (−
√
2,
√
2). Given any positive number ε, there exists a positive

number δ such that, if

d
(
Ψ0, Uc

)
≤ δ,

then

sup
t∈R

inf
(a,θ)∈R2

d
(
Ψ(·, t), eiθUc(· − a)

)
≤ ε.

Our main result in this paper concerns asymptotic stability of dark solitons. We have

Theorem 2. Let c ∈ (−
√
2,
√
2) \ {0}. There exists a positive number δc, depending only on c,

such that, if

d
(
Ψ0, Uc

)
≤ δc,

then there exist a number c
∗ ∈ (−

√
2,
√
2)\{0}, and two functions b ∈ C1(R,R) and θ ∈ C1(R,R)

such that

b′(t) → c
∗, and θ′(t) → 0,

as t→ +∞, and for which we have

e−iθ(t)Ψ
(
·+b(t), t

)
→ Uc

∗ in L∞
loc(R), and e−iθ(t)∂xΨ

(
·+b(t), t

)
⇀ ∂xUc

∗ in L2(R),

in the limit t → +∞.

Comments. (i) Complementing Theorem 2 with information from Theorem 1, one also obtains
a control on |c − c

∗| relative to d(Ψ0, Uc), and in particular it directly follows from the two
statements that |c − c

∗| → 0, as d(Ψ0, Uc) → 0. We will actually prove uniform estimates, valid
for all times, stating that

d
(
e−iθ(t)Ψ

(
·+b(t), t), Uc

∗

)
+
∣∣b′(t)− c

∣∣ ≤ Acd
(
Ψ0, Uc

)
,
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where Ac depends only on c (see Theorem 3 below).

(ii) For c 6= 0 as in Theorem 1, if ε is chosen sufficiently small, it follows from the Sobolev
embedding theorem that Ψ does not vanish on R × R. We heavily rely on this property for
proving Theorem 2, in particular in the next subsection where we introduce the hydrodynamical
framework. We have not considered here the case of the black soliton (c = 0) although part of
the analysis remains pertinent in that case.

(iii) The convergence in L∞
loc(R) cannot be improved into a convergence in L∞(R) (due to

slow phase winding at infinity), and the weak convergence of the gradients in L2(R) cannot
be improved into a strong convergence in L2(R) (due to the hamiltonian nature of the equa-
tion). Yet, it is not impossible that the latter could be improved into a strong convergence in
L2
loc(R), but we have no proof of that fact. We also believe that the functions b(t) − c

∗ and
θ(t) need not be bounded, and in particular need not have limits as t → +∞, unless additional
(regularity/localization) assumptions are made on the initial perturbation.

(iv) Finally, we mention that our proofs make no determinant use of the integrability of
the Gross-Pitaevskii equation, nor of the explicit nature of the solitons Uc. In particular, they
could presumably be extended to related nonlinearities (e.g. those studied in [5]) without major
modifications.

In the remaining part of this introduction, we present the main ingredients leading to the
proof of Theorem 2. The strategy is reminiscent to the one used by Martel and Merle for the
generalized Korteweg-de Vries equation, in particular in [18] (see also [15, 16, 17, 6, 14, 19, 12]).

1.1 Hydrodynamical form of the Gross-Pitaevskii equation

As mentioned above, when c 6= 0 the soliton Uc does not vanish and may thus be written under
the form

Uc := ̺ce
iϕc ,

for smooth real functions ̺c and ϕc. In view of formula (2), the maps ηc := 1−̺2c and vc := −∂xϕc

are given by

ηc(x) =
2− c2

2ch
(√

2−c2

2 x
)2 , and vc(x) =

cηc(x)

2
(
1− ηc(x)

) =
c(2− c2)

2
(
2ch
(√

2−c2

2 x
)2 − 2 + c2

) . (3)

In the sequel, we set
Qc,a :=

(
ηc,a, vc,a

)
:=
(
ηc(· − a), vc(· − a)

)
,

for 0 < |c| <
√
2 and a ∈ R. More generally, provided a solution Ψ to (GP) does not vanish, it

may be lifted without loss of regularity as

Ψ := ̺eiϕ,

where ̺ := |Ψ|. The functions η := 1− ̺2 and v := −∂xϕ are solutions, at least formally, to the
so-called hydrodynamical form of (GP), namely





∂tη = ∂x
(
2ηv − 2v

)
,

∂tv = ∂x

(
v2 − η + ∂x

( ∂xη

2(1− η)

)
− (∂xη)

2

4(1 − η)2

)
.

(HGP)

The Ginzburg-Landau energy E(Ψ), rewritten in terms of (η, v), is given by

E(η, v) :=

∫

R

e(η, v) :=
1

8

∫

R

(∂xη)
2

1− η
+

1

2

∫

R

(1− η)v2 +
1

4

∫

R

η2,

3



so that the energy space for (HGP) is the open subset

NV(R) :=
{
(η, v) ∈ X(R), s.t. max

x∈R
η(x) < 1

}
,

where the Hilbert space X(R) := H1(R)× L2(R) is equipped with the norm

‖(η, v)‖2X(R) := ‖η‖2H1(R) + ‖v‖2L2(R).

It is shown in [20] (see also Proposition A.4) that if Ψ ∈ C0(R,X(R)) is a solution to (GP)
with infR×R |Ψ| > 0, then (η, v) ∈ C0(R,NV(R)) is a solution to (HGP) and the energy E(η, v)
is a conserved quantity, as well as the momentum

P (η, v) :=
1

2

∫

R

ηv.

1.2 Orbital stability in the hydrodynamical framework

The following is a quantitative version of Theorem 1 in the hydrodynamical framework (therefore
for c 6= 0).

Theorem 3 ([13, 4]). Let c ∈ (−
√
2,
√
2) \ {0}. There exists a positive number αc, depending

only on c, with the following properties. Given any (η0, v0) ∈ X(R) such that

α0 :=
∥∥(η0, v0)−Qc,a

∥∥
X(R)

≤ αc, (4)

for some a ∈ R, there exist a unique global solution (η, v) ∈ C0(R,NV(R)) to (HGP) with initial

data (η0, v0), and two maps c ∈ C1(R, (−
√
2,
√
2) \ {0}) and a ∈ C1(R,R) such that the function

ε defined by

ε(·, t) :=
(
η(·+ a(t), t), v(· + a(t), t)

)
−Qc(t), (5)

satisfies the orthogonality conditions

〈ε(·, t), ∂xQc(t)〉L2(R)2 = P ′(Qc(t))(ε(·, t)) = 0, (6)

for any t ∈ R. Moreover, there exist two positive numbers σc and Ac, depending only and

continuously on c, such that

max
x∈R

η(x, t) ≤ 1− σc, (7)

∥∥ε(·, t)
∥∥
X(R)

+
∣∣c(t)− c

∣∣ ≤ Acα
0, (8)

and ∣∣c′(t)
∣∣+
∣∣a′(t)− c(t)

∣∣2 ≤ Ac

∥∥ε(·, t)
∥∥2
X(R)

, (9)

for any t ∈ R.

The proof of Theorem 3 is essentially contained in [4]. However, since the statement in [4]
slightly differs from the statement presented here, in particular regarding the quadratic depen-
dence of c′(t), we provide the few additional details in Section B.2 below. The main ingredient
is a spectral estimate which we recall now for future reference (see also Section B for additional
information). The functional E− cP is a conserved quantity of the flow whenever c is fixed, and
it plays a particular role in the analysis since the solitons Qc are solutions of the equation

E′(Qc)− cP ′(Qc) = 0.
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In particular,

[
E − cP

](
Qc + ε

)
=
[
E − cP

](
Qc

)
+

1

2
Hc

(
ε
)
+O

(
‖ε‖3X(R)

)
,

as ε → 0 in X(R). In this formula, Hc denotes the quadratic form on X(R) corresponding to
the unbounded linear operator

Hc := E′′(Qc)− cP ′′(Qc).

The operator Hc is self-adjoint on L2(R)×L2(R), with domain Dom(Hc) := H2(R)×L2(R). It
has a unique negative eigenvalue which is simple, and its kernel is given by

Ker(Hc) = Span(∂xQc). (10)

Moreover, under the orthogonality conditions

〈ε, ∂xQc〉L2(R)2 = P ′(Qc)(ε) = 0, (11)

we have
Hc(ε) ≥ Λc‖ε‖2X(R),

where the positive number Λc depends only and continuously on c ∈ (−
√
2,
√
2) \ {0}. The first

orthogonality relation in (11) is related to the invariance by translation of E and P , which is
reflected in the fact that ∂xQc is in the kernel of Hc. There is probably more freedom regarding
the second orthogonality relation in (11). Our choice was motivated by the possibility to obtain
the quadratic dependence of c′(t) stated in Theorem 3.

The pair ε obtained in Theorem 3 satisfies the equation

∂tε = JHc(t)(ε) + JRc(t)ε+
(
a′(t)− c(t)

)(
∂xε+ ∂xQc(t)

)
− c′(t)∂cQc(t), (12)

where J is the symplectic operator

J = −2S∂x :=

(
0 −2∂x

−2∂x 0

)
, (13)

and the remainder term Rc(t)ε is given by

Rc(t)ε := E′(Qc(t) + ε)− E′(Qc(t))− E′′(Qc(t))(ε).

1.3 Asymptotic stability in the hydrodynamical framework

An important part of the paper is devoted to the following theorem, from which we will eventually
deduce Theorem 2.

Theorem 4. Let c ∈ (−
√
2,
√
2) \ {0}. There exists a positive constant βc ≤ αc, depending only

on c, with the following properties. Given any (η0, v0) ∈ X(R) such that
∥∥(η0, v0)−Qc,a

∥∥
X(R)

≤ βc,

for some a ∈ R, there exist a number c
∗ ∈ (−

√
2,
√
2) \ {0} and a map b ∈ C1(R,R) such that

the unique global solution (η, v) ∈ C0(R,NV(R)) to (HGP) with initial data (η0, v0) satisfies
(
η(·+ b(t), t), v(· + b(t), t)

)
⇀ Qc

∗ in X(R),

and

b′(t) → c
∗,

as t→ +∞.

In order to prove Theorem 4, a main step is to substitute the uniform estimates (8) and (9)
by suitable convergence estimates. We present the main ingredients in the proof of Theorem 4
in the next subsections.
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1.3.1 Construction of a limit profile

Let c ∈ (−
√
2,
√
2) \ {0} be fixed and let (η0, v0) ∈ X(R) be any pair satisfying the assumptions

of Theorem 4. Since βc ≤ αc in the assumptions of Theorem 4, by Theorem 3, we may consider
the unique globally defined solution (η, v) to (HGP) with initial datum (η0, v0).

We fix an arbitrary sequence of times (tn)n∈N tending to +∞. In view of (8) and (9), we may
assume, going to a subsequence if necessary, that there exist ε∗0 ∈ X(R) and c∗0 ∈ [−

√
2,
√
2] such

that
ε(·, tn) =

(
η(·+ a(tn), tn), v(· + a(tn), tn)

)
−Qc(tn) ⇀ ε∗0 in X(R), (14)

and
c(tn) → c∗0, (15)

as n→ +∞. In the next two subsections, we will eventually come to the conclusion (see Corollary
2) that necessarily

ε∗0 ≡ 0,

by establishing smoothness and rigidity properties for the solution of (HGP) with initial datum
given by Qc∗0

+ ε∗0.

More precisely, we first impose the constant βc to be sufficiently small so that, when α0

appearing in Theorem 3 satisfies α0 ≤ βc, then in view of (8) and (9), we have

min
{
c(t)2, a′(t)2

}
≥ c

2

2
, max

{
c(t)2, a′(t)2

}
≤ 1 +

c
2

2
, (16)

and also
∥∥ηc(·)− η(·+ a(t), t)

∥∥
L∞(R)

≤ min
{
c
2

4
,
2− c

2

64

}
, (17)

for any t ∈ R. In particular, we deduce that c∗0 ∈ (−
√
2,
√
2)\{0} and therefore Qc∗0

is well-defined
and different from the black soliton.

It follows from (8) that ∣∣c∗0 − c

∣∣ ≤ Acβc, (18)

and from (8), (14) and the weak lower semi-continuity of the norm that the function

(η∗0 , v
∗
0) := Qc∗0

+ ε∗0,

satisfies ∥∥(η∗0 , v∗0)−Qc

∥∥
X(R)

≤ Acβc +
∥∥Qc −Qc∗0

∥∥
X(R)

. (19)

We next impose a supplementary smallness assumption on βc so that

∥∥(η∗0 , v∗0)−Qc

∥∥
X(R)

≤ αc.

Applying Theorem 3 yields a unique global solution (η∗, v∗) ∈ C0(R,NV(R)) to (HGP) with
initial data (η∗0 , v

∗
0), and two maps c∗ ∈ C1(R, (−

√
2,
√
2) \ {0}) and a∗ ∈ C1(R,R) such that the

function ε∗ defined by

ε∗(·, t) :=
(
η∗(·+ a∗(t), t), v(· + a∗(t), t)

)
−Qc∗(t), (20)

satisfies the orthogonality conditions

〈ε∗(·, t), ∂xQc∗(t)〉L2(R)2 = P ′(Qc∗(t))(ε
∗(·, t)) = 0, (21)

6



as well as the estimates

∥∥ε∗(·, t)
∥∥
X(R)

+
∣∣c∗(t)− c

∣∣ ≤ Ac

∥∥(η∗0 , v∗0)−Qc

∥∥
X(R)

, (22)
∣∣c∗′(t)

∣∣+
∣∣a∗′(t)− c∗(t)

∣∣2 ≤ Ac

∥∥ε∗(·, t)
∥∥2
X(R)

, (23)

for any t ∈ R.

We finally restrict further the definition of βc, if needed, in such a way that (22) and (23),
together with (18) and (19), imply that

min
{
c∗(t)2, (a∗)′(t)2

}
≥ c

2

2
, max

{
c∗(t)2, (a∗)′(t)2

}
≤ 1 +

c
2

2
, (24)

and
∥∥ηc(·)− η∗(·+ a∗(t), t)

∥∥
L∞(R)

≤ min
{
c
2

4
,
2− c

2

64

}
, (25)

for any t ∈ R.

The following proposition, based on the weak continuity of the flow map for the Gross-
Pitaevskii equation, allows to improve the convergence properties of the initial data, as stated in
(14), into convergence properties for the flow under (HGP) and for the modulation parameters.

Proposition 1. Let t ∈ R be fixed. Then,

(
η(·+ a(tn), tn + t), v(· + a(tn), tn + t)

)
⇀
(
η∗(·, t), v∗(·, t)

)
in X(R), (26)

while

a(tn + t)− a(tn) → a∗(t), and c(tn + t) → c∗(t), (27)

as n→ +∞. In particular, we have

ε(·, tn + t)⇀ ε∗(·, t) in X(R), (28)

as n→ +∞.

1.3.2 Localization and smoothness of the limit profile

In order to prove localization of the limit profile, we rely heavily on a monotonicity formula.

Let (η, v) be as in Theorem 3 and assume that (16) and (17) hold. Given real numbers R and
t, we define the quantity

IR(t) ≡ I
(η,v)
R (t) :=

1

2

∫

R

[
ηv
]
(x+ a(t), t)Φ(x −R) dx,

where Φ is the function defined on R by

Φ(x) :=
1

2

(
1 + th

(
νcx
))
, (29)

with νc :=
√
2− c

2/8. The function IR(t) represents the amount of momentum of (η(·, t), v(·, t))
located from a (signed) distance R to the right of the soliton.

We have

7



Proposition 2. Let R ∈ R, t ∈ R, and σ ∈ [−σc, σc], with σc := (2 − c
2)/(4

√
2). Under the

above assumptions, we have

d

dt

[
IR+σt(t)

]
≥(2− c

2)2

211

∫

R

[
(∂xη)

2 + η2 + v2
]
(x+ a(t), t)Φ′(x−R− σt) dx

− 24
(2 − c

2)2

c
4

e−2νc|R+σt|.

(30)

As a consequence, we obtain

IR(t1) ≥ IR(t0)− 768

√
2− c

2

c
4

e−2νc|R|, (31)

for any real numbers t0 ≤ t1.

Specifying for the limit profile (η∗, v∗), we set I∗R(t) := I
(η∗,v∗)
R (t) for any R ∈ R and any

t ∈ R. We claim

Proposition 3. Given any positive number δ, there exists a positive number Rδ, depending only

on δ, such that we have
∣∣I∗R(t)

∣∣ ≤ δ, ∀R ≥ Rδ,∣∣I∗R(t)− P (η∗, v∗)
∣∣ ≤ δ, ∀R ≤ −Rδ,

for any t ∈ R.

The proof of Proposition 3 relies on a contradiction argument. The rough idea is that if some
positive quantity δ of momentum for (η∗, v∗) were transferred from time t = 0 to time t = T and
from the interval (−∞, R+ a∗(0)) towards the interval (R+ a∗(T ),+∞), then a similar transfer
would hold for the function (η, v) from time t = tn to time t = tn + T and from the interval
(−∞, R+ a(tn)) towards the interval (R + a(tn + T ),+∞), for any sufficiently large n. On the
other hand, assuming that tn+1 ≥ tn+T , the monotonicity formula implies that the momentum
for (η, v) at time tn+1 and inside the interval (R+ a(tn+1),+∞) is greater (up to exponentials)
than the momentum for (η, v) at time tn + T and inside the interval (R+ a(tn + T ),+∞). The
combination of those two information would yield that the momentum for (η, v) at time tn and
inside (R + a(tn),+ ∞) tends to +∞ as n → +∞, which is forbidden by the finiteness of the
energy of (η, v).

From Proposition 3, and using once more Proposition 2, we obtain

Proposition 4. Let t ∈ R. We have

∫ t+1

t

∫

R

[
(∂xη

∗)2 + (η∗)2 + (v∗)2
]
(x+ a∗(s), s)e2νc|x| dx ds ≤ 221

c
4(2− c

2)
.

In order to prove the smoothness of the limit profile, we rely on the following smoothing type
estimate for localized solutions of the inhomogeneous linear Schrödinger equation.

Proposition 5. Let λ ∈ R and consider a solution u ∈ C0(R, L2(R)) to the linear Schrödinger

equation

i∂tu+ ∂xxu = F, (LS)

with F ∈ L2(R, L2(R)). Then, there exists a positive constant Kλ, depending only on λ, such

that

λ2
∫ T

−T

∫

R

|∂xu(x, t)|2eλx dx dt ≤ Kλ

∫ T+1

−T−1

∫

R

(
|u(x, t)|2 + |F (x, t)|2

)
eλx dx dt, (32)

for any positive number T .

8



Applying Proposition 5 to the derivatives of Ψ∗, the solution to (GP) associated to the solution
(η∗, v∗) of (HGP), and then expressing the information in terms of (η∗, v∗), we obtain

Proposition 6. The pair (η∗, v∗) is indefinitely smooth and exponentially decaying on R × R.

Moreover, given any k ∈ N, there exists a positive constant Ak,c, depending only on k and c, such

that ∫

R

[
(∂k+1

x η∗)2 + (∂kxη
∗)2 + (∂kxv

∗)2
]
(x+ a∗(t), t)e2νc|x| dx ≤ Ak,c, (33)

for any t ∈ R.

The proof of Proposition 5 and Proposition 6, as well as additional remarks concerning smooth-
ing properties for localized solutions are gathered in Appendix A.2.

1.3.3 Rigidity for the limit profile

Our main task is now to show that the limit profile constructed above is exactly a soliton, which
amounts to prove that ε∗0 ≡ 0.

Recall from (12) that ε∗ satisfies the equation

∂tε
∗ = JHc∗(t)(ε

∗) + JRc∗(t)ε
∗ +

(
a∗′(t)− c∗(t)

)(
∂xQc∗(t) + ∂xε

∗)− c∗′(t)∂cQc∗(t). (34)

Our strategy is to derive suitable integral estimates on ε∗. Since the linear operator Hc has a
kernel given by ∂xQc, it turns out that it is more convenient to derive first integral estimates for
the quantity Hc∗(ε

∗) (so that the component along the kernel is eliminated) rather than directly
on ε∗. This idea was already successfully used by Martel and Merle in [18] (see also [14]) for the
generalized Korteweg-de Vries equation. The smoothness and decay obtained in the previous
subsection allow us to perform as many differentiations as we wish.

More precisely, we define the pair

u∗(·, t) := SHc∗(t)(ε
∗(·, t)). (35)

Since SHc∗(t)(∂xQc∗(t)) = 0, we deduce from (34) that

∂tu
∗ = SHc∗(t)

(
JSu∗

)
+ SHc∗(t)

(
JRc∗(t)ε

∗)− (c∗)′(t)SHc∗(t)(∂cQc∗(t))

+
(
(a∗)′(t)− c∗(t)

)
SHc∗(t)(∂xε

∗).
(36)

At spatial infinity, the operator Hc is asymptotically of constant coefficients, and therefore
almost commutes with J . Therefore the linear operator in (36), namely Hc∗J , coincides in
that limit with the linear operator JHc∗ appearing in (34). It is thus not surprising that a
monotonicity formula similar in spirit to the monotonicity of the localized momentum for ε∗ (see
Proposition 2) also holds for u∗. More precisely, decreasing further the value of βc if necessary,
we obtain

Proposition 7. There exist two positive numbers A∗ and R∗, depending only on c, such that we

have 1

d

dt

(∫

R

xu∗1(x, t)u
∗
2(x, t) dx

)
≥ 2− c

2

64

∥∥u∗(·, t)
∥∥2
X(R)

−A∗‖u∗(·, t)‖2X(B(0,R∗))
, (37)

for any t ∈ R.

1In (37), we have use the notation

∥

∥(f, g)
∥

∥

2

X(Ω)
:=

∫

Ω

(

(∂xf)
2 + f

2 + g
2
)

,

in which Ω denotes a measurable subset of R.
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In order to get rid of the non-positive local term ‖u∗(·, t)‖2
X(B(0,R∗))

in the right-hand side of

(37), we invoke a second monotonicity type formula. If M is a smooth, bounded, two-by-two
symmetric matrix-valued function, then

d

dt

〈
Mu∗, u∗

〉
L2(R)2

= 2
〈
SMu∗,Hc∗(JSu

∗)
〉
L2(R)2

+ “super-quadratic terms”. (38)

For c ∈ (−
√
2,
√
2) \ {0}, let Mc be given by

Mc :=

(
− c∂xηc

2(1−ηc)2
−∂xηc

ηc

−∂xηc
ηc

0

)
. (39)

The choice of Mc is motivated by the following key observation.

Lemma 1. Let c ∈ (−
√
2,
√
2) \ {0} and u ∈ X3(R). Then,

Gc(u) :=2
〈
SMcu,Hc(JSu)

〉
L2(R)2

=2

∫

R

(
ηc + ∂xxηc

)(
u2 −

cηc
2(ηc + ∂xxηc)

u1 −
c∂xηc

2(1 − ηc)(ηc + ∂xxηc)
∂xu1

)2

+
3

2

∫

R

η2c
ηc + ∂xxηc

(
∂xu1 −

∂xηc
ηc

u1

)2
.

(40)

Notice that the quadratic form Gc(u) in (40) is pointwise non-negative (and non-singular)
since

ηc + ∂2xxηc = ηc
(
3− c2 − 3ηc

)
≥ c2

2
ηc > 0.

It also follows from (40) that
Ker(Gc) = Span(Qc).

In our situation, u∗ = SHc∗(ε
∗) is not proportional to Qc∗. By the orthogonality relation (21),

we indeed have P ′(Qc∗(t))(ε
∗) = 0. Since one has Hc(∂cQc) = P ′(Qc), it follows that

0 = 〈Hc∗(∂cQc∗), ε
∗〉L2(R)2 = 〈Hc∗(ε

∗), ∂cQc∗〉L2(R)2 = 〈u∗, S∂cQc∗〉L2(R)2 . (41)

On the other hand,

〈
Qc∗, S∂cQc∗

〉
=

1

2

d

dc

〈
Qc, SQc

〉
|c=c∗

= 2
d

dc

(
P (Qc)

)
|c=c∗

= −2
(
2− c2∗

) 1
2 6= 0, (42)

which prevents u∗ from being proportional to Qc∗. This leads to

Proposition 8. Let c ∈ (−
√
2,
√
2) \ {0}. There exists a positive number Λc, depending only

and continuously on c, such that

Gc(u) ≥ Λc

∫

R

[
(∂xu1)

2 + (u1)
2 + (u2)

2
]
(x)e−

√
2|x| dx, (43)

for any pair u ∈ X1(R) verifying

〈u, S∂cQc〉L2(R)2 = 0. (44)

Coming back to (38), we can prove

10



Proposition 9. There exists a positive number B∗, depending only on c, such that

d

dt

(〈
Mc∗(t)u

∗(·, t), u∗(·, t)
〉
L2(R)2

)
≥ 1

B∗

∫

R

[
(∂xu

∗
1)

2 + (u∗1)
2 + (u∗2)

2
]
(x, t)e−

√
2|x| dx

−B∗
∥∥ε∗(., t)

∥∥ 1
2

X(R)

∥∥u∗(·, t)
∥∥2
X(R)

,

(45)

for any t ∈ R.

Combining Proposition 7 and Proposition 9 yields

Corollary 1. Set

N(t) :=
1

2

(
0 x
x 0

)
+A∗B∗e

√
2R∗Mc∗(t).

We have
d

dt

(
〈N(t)u∗(·, t), u∗(·, t)〉L2(R)2

)
≥ 2− c

2

128

∥∥u∗(·, t)
∥∥2
X(R)

, (46)

for any t ∈ R. In particular,

∫ +∞

−∞

∥∥u∗(·, t)
∥∥2
X(R)

dt < +∞. (47)

Therefore, there exists a sequence (t∗k)k∈N such that

lim
k→+∞

∥∥u∗(·, t∗k)
∥∥2
X(R)

= 0. (48)

Combining (48) with the inequality

∥∥ε∗(·, t)‖X(R) ≤ Ac

∥∥u∗(·, t)
∥∥
X(R)

,

(see (3.17)), we obtain

lim
k→+∞

∥∥ε∗(·, t∗k)
∥∥2
X(R)

= 0. (49)

Combining (49) with the orbital stability in Theorem 3, we are finally led to

Corollary 2. We have

ε∗0 ≡ 0.

1.3.4 Proof of Theorem 4 completed

Let c ∈ (−
√
2,
√
2)\{0} and let (η0, v0) be as in the statement of Theorem 4. It follows from the

analysis in the previous three subsections that, given any sequence of times (tn)n∈N converging
to +∞, there exists a subsequence (tnk

)k∈N and a number c∗0 (sufficiently close to c as expressed
e.g. in (18)) such that

(
η(·+ a(tnk

), tnk
), v(· + a(tnk

), tnk
)
)
⇀ Qc∗0

in X(R),

as n→ +∞. By a classical argument for sequences, if we manage to prove that c∗0 is independent
of the sequence (tn)n∈N, then it will follow that

(
η(·+ a(t), t), v(· + a(t), t)

)
⇀ Qc∗0

in X(R), (50)

as t→ +∞.

11



We argue by contradiction. Assume that for two different sequences (tn)n∈N and (sn)n∈N,
both tending to +∞, we have

(
η(·+ a(tn), tn), v(· + a(tn), tn)

)
⇀ Qc∗1

in X(R), (51)

and (
η(·+ a(sn), sn), v(· + a(sn), sn)

)
⇀ Qc∗2

in X(R), (52)

as n→ +∞, with c∗1 6= c∗2 satisfying (18). Without loss of generality, we may assume that c∗1 < c∗2
and that the sequences (tn)n∈N and (sn)n∈N are strictly increasing and nested such that

tn + 1 ≤ sn ≤ tn+1 − 1, (53)

for any n ∈ N. The contradiction will follow essentially in the same way as for Proposition 3.

We set δ := P (Qc∗1
) − P (Qc∗2

) > 0. In order to be able to use (31), we choose a positive
number R sufficiently large so that

768

√
2− c

2

c
4

e−2νc|R| ≤ δ

10
.

In particular, we have from Proposition 2 and (53),

I±R(sn) ≥ I±R(tn)−
δ

10
and I±R(tn+1) ≥ I±R(sn)−

δ

10
, (54)

for any n ∈ N. Increasing the value of R if necessary, we may also assume that
∣∣∣∣
1

2

∫

R

(
Φ(x+R)− Φ(x−R)

)
ηc∗i vc∗i (x) dx − P (Qc∗i

)

∣∣∣∣ ≤
δ

10
,

for i = 1, 2 (and with Φ as in (29)). In particular, in view of the convergences (51) and (52),
there exists an integer n0 such that

∣∣I−R(tn)− IR(tn)− P (Qc∗1
)
∣∣ ≤ δ

5
, (55)

and ∣∣I−R(sn)− IR(sn)− P (Qc∗2
)
∣∣ ≤ δ

5
, (56)

for any n ≥ n0. Combining (54), (55) and (56), we obtain

IR(sn) ≥ IR(tn) +
δ

2
,

for any n ≥ n0, from which it follows again by (54) that

IR(tn+1) ≥ IR(tn) +
2δ

5
,

for any n ≥ n0. Therefore, the sequence (IR(tn))n∈N is unbounded, which is the desired contra-
diction.

At this stage, we have proved that (50) holds, and therefore, in view of the statement of
Theorem 4, we set c

∗ := c∗0. It is tempting to set also b(t) := a(t), but we have not proved that
a′(t) → c

∗ as t → +∞. We will actually not try to prove such a statement but rely instead on
the weaker form given by (27) which, once we now know that a∗(t) = c

∗t since (η∗, v∗) = Qc
∗ ,

reads
a(tn + t)− a(tn) → c

∗t,

for any fixed t ∈ R and any sequence (tn)n∈N tending to +∞. The opportunity to replace
the function a by a function b satisfying the required assumptions then follows from the next
elementary real analysis lemma. The proof of Theorem 4 is here completed.
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Lemma 2. Let c ∈ R and let f : R → R be a locally bounded function such that

lim
x→+∞

f(x+ y)− f(x) = cy,

for any y ∈ R. Then there exists a function g ∈ C1(R,R) such that

lim
x→+∞

g′(x) = c, and lim
x→+∞

|f(x)− g(x)| = 0.

Proof. Replacing f(x) by f(x)− cx, we may assume that c = 0. It then suffices to replace f by
its convolution by any fixed mollifier and the conclusion follows from the Lebesgue dominated
convergence theorem.

1.4 Asymptotic stability in the original framework: Proof of Theorem 2

We first define δc in such a way that ‖(η0, v0)−Qc‖X(R) ≤ βc, whenever d(Ψ0, Uc) ≤ δc. We next
apply Theorem 4 to the solution (η, v) ∈ C0(R,NV(R)) to (HGP) corresponding to the solution
Ψ to (GP). This provides us with a speed c

∗ and a position function b. We now construct the
phase function θ, and then derive the convergences in the statement of Theorem 2.

We fix a function χ ∈ C∞
c (R, [0, 1]) such that χ is real, even, and satisfies

∫
R
χ(x) dx = 1. In

view of the expression of Uc
∗ in (2), we have

∫

R

Uc
∗(x)χ(x) dx = i

c
∗

√
2
6= 0.

Decreasing the value of βc if needed, we deduce from orbital stability that
∣∣∣∣
∫

R

Ψ(x+ b(t), t)χ(x) dx

∣∣∣∣ ≥
|c∗|
2
√
2
> 0,

for any t ∈ R. In particular, there exists a unique ϑ : R → R/(2πZ) such that

e−iϑ(t)

∫

R

Ψ(x+ b(t), t)χ(x) dx ∈ i
c
∗

√
2
R
+,

for any t ∈ R. Since b ∈ C1
b (R,R), and since both ∂xΨ and ∂tΨ belong to C0

b (R,H
−1
loc (R)), it

follows by the chain rule and transversality that ϑ ∈ C1
b (R,R/(2πZ)). From Theorem 4 and the

definition of ϑ, we also infer that

e−iϑ(t)∂xΨ(·+ b(t), t) ⇀ ∂xUc
∗ in L2(R),

1−
∣∣e−iϑ(t)Ψ(·+ b(t), t)

∣∣2 ⇀ 1−
∣∣Uc

∗

∣∣2 in L2(R),

e−iϑ(t)Ψ(·+ b(t), t) → Uc
∗ in L∞

loc(R),

(57)

as t→ +∞. Invoking the weak continuity of the Gross-Pitaevskii flow, as stated in Proposition
A.3, as well as its equivariance with respect to a constant phase shift and the fact that Uc

∗ is an
exact soliton of speed c

∗, it follows that for any fixed T ∈ R,

e−iϑ(t)∂xΨ(·+ b(t), t+ T ) ⇀ ∂xUc
∗(· − c

∗T ) in L2(R),

1−
∣∣e−iϑ(t)Ψ(·+ b(t), t+ T )

∣∣2 ⇀ 1−
∣∣Uc

∗(· − c
∗T )
∣∣2 in L2(R),

e−iϑ(t)Ψ(·+ b(t), t+ T ) → Uc
∗(· − c

∗T ) in L∞
loc(R),

(58)

as t→ +∞. On the other hand, rewriting (57) at time t+ T , we have

e−iϑ(t+T )∂xΨ(·+ b(t+ T ), t+ T ) ⇀ ∂xUc
∗ in L2(R),

1−
∣∣e−iϑ(t+T )Ψ(·+ b(t+ T ), t+ T )

∣∣2 ⇀ 1−
∣∣Uc

∗

∣∣2 in L2(R),

e−iϑ(t+T )Ψ(·+ b(t+ T ), t+ T ) → Uc
∗ in L∞

loc(R),

(59)
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as t→ +∞. Since we already know by Theorem 4 that

b(t+ T )− b(t) → c
∗T, (60)

as t→ +∞, we deduce from (58), (59) and (60) that

(
ei(ϑ(t)−ϑ(t+T )) − 1

)
Uc

∗ → 0 in L∞
loc(R),

as t→ +∞. Therefore, we first have

lim
t→+∞

ϑ(t+ T )− ϑ(t) = 0 in R/(2πZ),

but then also in R for any lifting of ϑ, since we have a global bound on the derivative of ϑ.

As for the proof of Theorem 4, the conclusion then follows from Lemma 2 applied to (any
lifting of) ϑ. This yields a function θ such that θ′(t) → 0, and ϑ(t) − θ(t) → 0 as t → +∞. In
particular, we may substitute ϑ(t) by θ(t) in (57), and obtain the desired conclusions.

2 Proofs of localization and smoothness of the limit profile

2.1 Proof of Proposition 2

First, we deduce from (HGP) the identity

d

dt

[
IR+σt(t)

]
=− 1

2
(a′(t) + σ)

∫

R

[
ηv
]
(x+ a(t), t)Φ′(x−R− σt) dx

+
1

2

∫

R

[
(1− 2η)v2 +

η2

2
+

(3− 2η)(∂xη)
2

4(1− η)2

]
(x+ a(t), t)Φ′(x−R− σt) dx

+
1

4

∫

R

[
η + ln(1− η)

]
(x+ a(t), t)Φ′′′(x−R− σt) dx.

(2.1)

Our goal is to provide a lower bound for the integrand in the right-hand side of (2.1). We
will decompose the domain of integration into two parts, [−R0, R0] and its complement, where
R0 is to be defined below. On [−R0, R0], we will bound the integrand pointwise from below by
a positive quadratic form in (η, v). Exponentially small error terms will arise from integration
on R \ [−R0, R0].

First notice that

ηc ≤ ν2
c

if ch2
(√2− c

2

2
x
)
≥ 32,

i.e., if

|x| ≥ R0 :=
2√

2− c
2
ch−1(4

√
2).

In particular, we infer from (17) that

∣∣η(x+ a(t), t)
∣∣ ≤ 2ν2

c
, (2.2)

for any x ∈ [−R0, R0]. Elementary real analysis and (2.2) then imply that

∣∣[η + ln(1− η)
]
(x+ a(t), t)

∣∣ ≤ η2(x+ a(t), t), (2.3)

for any x ∈ [−R0, R0]. Next, notice that the function Φ satisfies the inequality

|Φ′′′| ≤ 4ν2
c
Φ′. (2.4)
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Finally, in view of the bound (16) on a′(t) and the definition of σc, we obtain that

∣∣a′(t) + σ
∣∣2 ≤ 3

2
+

c
2

4
. (2.5)

Taking into account (2.2), (2.3), (2.4) and (2.5), we may bound the integrand of (2.1) on [−R0, R0]
from below by

[(1
2
− 2ν2

c

)
v2 +

(1
4
− ν2

c

)
η2 −

√
3

8
+

c
2

16
|ηv| + 1

4
(∂xη)

2

]
(x+ a(t), t)Φ′(x−R− σt).

Set a := 1/4− ν2
c
= 7/32 + c

2/64 and b :=
√

3/8 + c
2/16. In the above quadratic form, we may

write

aη2 − b|ηv| + 2av2 =
b

2
√
2

(
|η| −

√
2|v|
)2

+
(
a− b

2
√
2

)(
η2 + 2v2

)
≥
(
a− b

2
√
2

)(
η2 + 2v2

)
,

and compute

a− b

2
√
2
=
a2 − b2

8

a+ b

2
√
2

≥ 2a2 − b2

4
=

(2− c
2)2

211
.

We next consider the case x /∈ [−R0, R0]. In that region, we simply bound the positive
function Φ′(x−R− σt) by a constant,

Φ′(x−R− σt) ≤ 2νce
−2νc|R+σt−R0| ≤ 8νce

−2νc|R+σt|,

and control the remaining integral using the energy. More precisely, notice that for those x,
ηc ≥ ν2

c
and therefore by (17), we also have η ≥ 0 (in the remaining part of the proof when we

refer to η or v we mean the value at the point (x + a(t), t)). Next, we have 1 − ηc ≥ c
2/2, and

therefore by (17) also, 1 − η ≥ c
2/4. Finally, recall that |a′(t) + σ|/2 ≤

√
2/2, and that (2.4)

holds, so that combining the previous estimates and elementary real analysis, we may bound the
integrand in the right-hand side of (2.1) by

[(
4 + (2− c

2) ln
(
c
2

4

))
η2 + 8v2 +

48

c
4
(∂xη)

2

]
νce

−2νc|R+σt|.

Conclusion (30) follows from integration and a comparison with the energy of (η, v), together

with the explicit value E(Qc) = (2− c
2)

3
2/3 (see e.g. [4]).

It remains to prove (31). For that purpose, we distinguish two cases, depending on the sign
of R. If R ≥ 0, we integrate (30) from t = t0 to t = (t0 + t1)/2 with the choice σ = σc and
R = R−σct0, and then from t = (t0+ t1)/2 to t = t1 with the choice σ = −σc and R = R+σct1.
In total, we hence integrate on a broken line starting and ending at a distance R from the soliton.
If R ≤ 0, we argue similarly, choosing first σ = −σc, and next σ = σc. This yields (31), and
completes the proof of Proposition 2.

2.2 Proof of Proposition 3

We argue by contradiction and assume that there exists a positive number δ0 such that, for any
positive number Rδ0 , there exist two numbers R ≥ Rδ0 and t ∈ R such that either |I∗R(t)| ≥ δ0
or |I∗R(t) − P (η∗, v∗)| ≥ δ0. Since at time t = 0, we have limR→+∞ I∗R(0) = limR→−∞ I∗R(0) −
P (η∗, v∗) = 0, we first fix Rδ0 > 0 such that

|I∗R(0)| + |I∗−R(0) − P (η∗, v∗)| ≤ δ0
4

and 768

√
2− c

2

c
4

e−2νcR ≤ δ0
32
, (2.6)
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for any R ≥ Rδ0 . We next fix R > 0 and t ∈ R obtained from the contradiction assumption
for that choice of Rδ0 , so that either |I∗R(t)| ≥ δ0 or |I∗R(t) − P (η∗, v∗)| ≥ δ0. In the sequel, we
assume that I∗R(t) ≥ δ0 holds, the three other cases would follow in a very similar manner. In
particular, we infer from (2.6) that

I∗R(t) ≥ δ0 ≥
δ0
4

+
δ0
16

≥ I∗R(0) + 1536

√
2− c

2

c
4

e−2νcR,

and therefore it follows from the monotonicity formula in Proposition 2, applied to (η∗, v∗), that
t > 0. Finally, we fix R′ ≥ R such that

∣∣I∗−R′(t)− P (η∗, v∗)
∣∣ ≤ δ0

4
. (2.7)

Since R′ ≥ R, we also deduce from (2.6) that

∣∣I∗−R′(0)− P (η∗, v∗)
∣∣ ≤ δ0

4
and 768

√
2− c

2

c
4

e−2νcR′ ≤ δ0
32
. (2.8)

Combining the inequality |I∗R(t)| ≥ δ0 with (2.6), (2.7) and (2.8), we obtain

∣∣I∗−R′(t)− I∗R(t)− P (η∗, v∗)
∣∣ ≥ 3δ0

4
and

∣∣I∗−R′(0)− I∗R(0)− P (η∗, v∗)
∣∣ ≤ δ0

2
,

and therefore ∣∣∣
(
I∗−R′(0) − I∗R(0)

)
−
(
I∗−R′(t)− I∗R(t)

)∣∣∣ ≥ δ0
4
.

Since the integrands of the expressions between parenthesis are localized in space, we deduce
from Proposition 1 that there exists an integer n0 such that

∣∣∣
(
I−R′(tn)− IR(tn)

)
−
(
I−R′(tn + t)− IR(tn + t)

)∣∣∣ ≥ δ0
8
,

for any n ≥ n0. Rearranging the terms in the previous inequality yields

max
{∣∣I−R′(tn)− I−R′(tn + t)

∣∣,
∣∣IR(tn)− IR(tn + t)

∣∣
}
≥ δ0

16
. (2.9)

On the other hand, since t ≥ 0, by the monotonicity formula in Proposition 2, (2.6) and (2.8),
we have

I−R′(tn)− I−R′(tn + t) ≤ δ0
32

and IR(tn)− IR(tn + t) ≤ δ0
32
,

and therefore we deduce from (2.9) that, given any n ≥ n0,

either I−R′(tn + t)− I−R′(tn) ≥
δ0
16
, or IR(tn + t)− IR(tn) ≥

δ0
16
.

In particular, there exists an increasing sequence (nk)k∈N such that tnk+1
≥ tnk

+ t for any k ∈ N,
and either

IR(tnk
+ t)− IR(tnk

) ≥ δ0
16
, (2.10)

for any k ∈ N, or

I−R′(tnk
+ t)− I−R′(tnk

) ≥ δ0
16
,

for any k ∈ N. In the sequel, we assume that (2.10) holds, here also the other case would follow
in a very similar manner. Since tnk+1

≥ tnk
+ t, we obtain by the monotonicity formula of

Proposition 2, (2.6) and (2.10), that

IR(tnk+1
) ≥ IR(tnk+t)−

δ0
32

≥ IR(tnk
) +

δ0
32
, (2.11)

16



for any k ∈ N. On the other hand, we have

∣∣IR(tnk
)
∣∣ ≤ 1

2

∫

R

∣∣η(x, tnk
)
∣∣∣∣v(x, tnk

)
∣∣ dx ≤ 1

4

∫

R

(
|η(x, tnk

)|2 + |v(x, tnk
)|2
)
dx ≤ 2

c
2
E(η, v),

where the last term does not depend on k by conservation of energy. This yields a contradiction
with (2.11).

2.3 Proof of Proposition 4

Let s ∈ R and R ≥ 0 be arbitrary. Integrating (30) of Proposition 2, and choosing successively
σ = σc and σ = −σc, we infer that we have both

I∗R(s) ≤ I∗R+σcτ (s+ τ) + 768

√
2− c

2

c
4

e−2νcR,

and

I∗R(s) ≥ I∗R+σcτ (s− τ)− 768

√
2− c

2

c
4

e−2νcR,

for each positive number τ . Taking the limit as τ → +∞ in the previous two inequalities, we
deduce from Proposition 3 that

∣∣I∗R(s)
∣∣ ≤ 768

√
2− c

2

c
4

e−2νcR,

for any s ∈ R and R ≥ 0. Similarly, we obtain

∣∣I∗R(s)− P (η∗, v∗)
∣∣ ≤ 768

√
2− c

2

c
4

e−2νc|R|,

for any s ∈ R and R ≤ 0. Therefore, integrating (30) from t to t+1 with the choice σ = 0 yields

∫ t+1

t

∫

R

[
(∂xη

∗)2 + (η∗)2 + (v∗)2
]
(x+ a∗(s), s)Φ′(x−R) dx ds ≤ 3

214

c
4

(
1 +

64

(2− c
2)

3
2

)
e−2νc|R|,

for any R ∈ R. Since we have

lim
R→±∞

e2νc|R|Φ′(x−R) = 2νce
±2νcx,

for any x ∈ R, the conclusion follows from the Fatou lemma, the inequality

e2νc|x| ≤ e−2νcx + e2νcx,

and elementary real estimates.

3 Proofs of the rigidity properties for the limit profile

3.1 Proof of Proposition 7

In order to establish inequality (37), we first check that we are allowed to differentiate the
quantity

I∗(t) :=
∫

R

xu∗1(x, t)u
∗
2(x, t) dx,

17



in the right-hand side of (37). This essentially follows from Proposition 6. Combining (33) with
the explicit formulae for ηc and vc in (3), we indeed derive the existence of a positive number
Ak,c such that ∫

R

((
∂kxε

∗
η(x, t)

)2
+
(
∂kxε

∗
v(x, t)

)2)
e2νc|x| dx ≤ Ak,c, (3.1)

for any k ∈ N and any t ∈ R. In view of the formulae for u∗ in (35) and for Hc in (B.1), a similar
estimate holds for u∗, for a further choice of the constant Ak,c. In view of (36), this is enough to
define properly the quantity I∗ and establish its differentiability with respect to time. Moreover,
we can compute

d

dt

(
I∗
)
=− 2

∫

R

µ
〈
Hc∗(∂xu

∗), u∗
〉
R2 +

∫

R

µ
〈
Hc∗

(
JRc∗ε

∗), u∗
〉
R2

−
(
c∗
)′
∫

R

µ
〈
Hc∗(∂cQc∗), u

∗〉
R2 +

(
(a∗)′ − c∗

) ∫

R

µ
〈
Hc∗(∂xε

∗), u∗
〉
R2 ,

(3.2)

where we have set µ(x) = x for any x ∈ R. In particular, the proof of Proposition 7 reduces to
estimate each of the four integrals in the right-hand side of (3.2).

We split the proof into four steps. Concerning the first integral, we have

Step 1. There exist two positive numbers A1 and R1, depending only on c, such that

I∗
1 (t) := −2

∫

R

µ
〈
Hc∗(∂xu

∗), u∗
〉
R2 ≥ 2− c

2

16

∥∥u∗(·, t)
∥∥2
X(R)

−A1

∥∥u∗(·, t)
∥∥2
X(B(0,R1))

, (3.3)

for any t ∈ R.

In order to prove inequality (3.3), we replace the operator Hc∗ in the definition of I∗
1 (t) by

its explicit formula (see (B.1)), and we integrate by parts to obtain

I∗
1(t) =

∫

R

ι∗1(x, t) dx,

with

ι∗1 =
1

4

( 3∂xµ

1− ηc∗
− µ∂xηc∗

(1− ηc∗)2

)
(∂xu

∗
1)

2 − c∗∂x
( µ

1− ηc∗

)
u∗1u

∗
2 + ∂x

(
µ(1− ηc∗)

)
(u∗2)

2

+
1

4
∂x

(
µ
(
2− ∂xxηc∗

(1− ηc∗)2
− (∂xηc∗)

2

(1− ηc∗)3

)
− ∂x

( ∂xµ

1− ηc∗

))
(u∗1)

2.

Here, we have used the identity
c∗

2
+ vc∗ =

c∗

2(1 − ηc∗)
,

so as to simplify the factor in front of u∗1u
∗
2. Since µ(x) = x, the integrand ι∗1 may also be written

as

ι∗1 =
1

4

( 3

1− ηc∗
− x∂xηc∗

(1− ηc∗)2

)
(∂xu

∗
1)

2 − c∗
(1− ηc∗ + x∂xηc∗

(1− ηc∗)2

)
u∗1u

∗
2 +

(
1− ηc∗ − x∂xηc∗

)
(u∗2)

2

+
1

4

(
2− 2∂xxηc∗

(1− ηc∗)2
− 3(∂xηc∗)

2

(1− ηc∗)3
− x
( ∂xxxηc∗

(1− ηc∗)2
+

4(∂xηc∗)(∂xxηc∗)

(1− ηc∗)3
+

3(∂xηc∗)
3

(1− ηc∗)4

))
(u∗1)

2.

Given a small positive number δ, we next rely on the exponential decay of the function ηc and
its derivatives to guarantee the existence of a radius R, depending only on c and δ (in view of

18



the bound on c∗ − c in (22)), such that

ι∗1(x, t) ≥
3

4

(
∂xu

∗
1(x, t)

)2
+

1

2
u∗1(x, t)

2 − c∗(t)u1(x, t)u2(x, t) + u∗2(x, t)
2

− δ
(
(∂xu

∗
1(x, t))

2 + u∗1(x, t)
2 + u∗2(x, t)

2
)

≥
(3
4
− δ
)(
∂xu

∗
1(x, t)

)2
+
(1
2
− |c∗(t)|

2
√
2

− δ
)
u∗1(x, t)

2 +
(
1− |c∗(t)|√

2
− δ
)
u∗2(x, t)

2,

when |x| ≥ R. In this case, it is enough to choose δ = (2 − c
2)/32 and fix the number R1

according to the value of the corresponding R, to obtain

∫

|x|≥R1

ι∗1(x, t) dx ≥ 2− c
2

16

∫

|x|≥R1

(
(∂xu

∗
1(x, t))

2 + u∗1(x, t)
2 + u∗2(x, t)

2
)
dx. (3.4)

On the other hand, it follows from (3), and again (22), that

∫

|x|≤R1

ι∗1(x, t) dx ≥
(2− c

2

16
−A1

) ∫

|x|≤R1

(
(∂xu

∗
1(x, t))

2 + u∗1(x, t)
2 + u∗2(x, t)

2
)
dx,

for a positive number A1 depending only on c. Combining with (3.4), we obtain (3.3).

We next turn to the second integral in the right-hand side of (3.2).

Step 2. There exist two positive numbers A2 and R2, depending only on c, such that

∣∣I∗
2 (t)

∣∣ :=
∣∣∣∣
∫

R

µ
〈
Hc∗

(
JRc∗ε

∗), u∗
〉
R2

∣∣∣∣ ≤
2− c

2

64

∥∥u∗(·, t)
∥∥2
X(R)

+A2

∥∥u∗(·, t)
∥∥2
X(B(0,R2))

, (3.5)

for any t ∈ R.

Given a small positive number δ, there exists a radius R, depending only on δ and c, such
that

|x| ≤ δe
νc|x|

2 , (3.6)

for any |x| ≥ R. As a consequence, we can estimate the integral I∗
2 (t) as

∣∣I∗
2 (t)

∣∣ ≤R
∫

|x|≤R

∣∣Hc∗(t)

(
JRc∗(t)ε

∗)(x, t)
∣∣∣∣u∗(x, t)

∣∣ dx

+ δ

∫

|x|≥R

∣∣Hc∗(t)

(
JRc∗(t)ε

∗)(x, t)
∣∣∣∣u∗(x, t)

∣∣e
νc|x|

2 dx.

(3.7)

In order to estimate the two integrals in the right-hand side of (3.7), we first deduce from (B.1)
the existence of a positive number Ac, depending only on c, again by (22), such that, given any
pair ε ∈ H2(R)× L2(R), we have

∣∣Hc∗(ε)
∣∣ ≤ Ac

(∣∣∂xxεη
∣∣+
∣∣∂xεη

∣∣+
∣∣εη
∣∣+
∣∣εv
∣∣
)
.

In view of (13), it follows that

∣∣Hc∗(Jε)
∣∣ ≤ 2Ac

(∣∣∂xxxεv
∣∣+
∣∣∂xxεv

∣∣+
∣∣∂xεv

∣∣+
∣∣∂xεη

∣∣
)
, (3.8)

when ε ∈ H1(R)×H3(R).
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On the other hand, given an integer ℓ, we can apply the Leibniz rule to the second identity
in (B.12) to compute

∣∣∂ℓx[Rc∗ε
∗]v
∣∣ ≤

ℓ∑

k=0

(
ℓ

k

)∣∣∂kxε∗η
∣∣∣∣∂ℓ−k

x ε∗v
∣∣ ≤ Kℓ

ℓ∑

k=0

∣∣∂kxε∗
∣∣2, (3.9)

where Kℓ refers to some constant depending only on ℓ. Similarly, we can combine the Leibniz
rule with (3), (22) and (25) to obtain

∣∣∂x[Rc∗ε
∗]η
∣∣ ≤ Ac

( 1∑

k=0

∣∣∂kxε∗v
∣∣2 +

3∑

k=0

∣∣∂kxε∗η
∣∣2 +

∣∣∂xε∗η
∣∣3
)
. (3.10)

Here, we have also applied the Sobolev embedding theorem to bound the norm ‖ε∗η(·, t)‖L∞(R)

by Acα0 according to (22). Combining with (3.8), we are led to

∥∥Hc∗(t)

(
JRc∗(t)ε

∗)(·, t)
∥∥2
L2(R)2

≤ Ac

(∥∥∂xε∗η(·, t)
∥∥6
L6(R)

+

3∑

k=0

∥∥∂kxε∗(·, t)
∥∥4
L4(R)2

)
.

At this stage, we invoke again the Sobolev embedding theorem to write
∫

R

(
∂ℓxf

)2p
= (−1)ℓ

∫

R

f ∂ℓx

((
∂ℓxf

)2p−1
)
≤ K

∥∥f
∥∥
L2(R)

∥∥f
∥∥2p−1

H2ℓ+1(R)
, (3.11)

for any ℓ ∈ N, any p ≥ 1, and any f ∈ H2ℓ+1(R). Combining with (22), it follows that

∥∥Hc∗(t)

(
JRc∗(t)ε

∗)(·, t)
∥∥2
L2(R)2

≤K
∥∥ε∗(·, t)

∥∥
L2(R)2

(∥∥ε∗η(·, t)
∥∥5
H3(R)

+
∥∥ε∗(·, t)

∥∥3
H7(R)2

)

≤Ac

∥∥ε∗(·, t)
∥∥2
L2(R)2

(∥∥ε∗η(·, t)
∥∥ 5

2

H7(R)
+
∥∥ε∗(·, t)

∥∥ 3
2

H15(R)2

)
.

(3.12)

Since ∥∥∂ℓxε∗(·, t)
∥∥2
L2(R)2

≤
∫

R

e2νc|x|
(
∂ℓxε

∗(x, t)
)2
dx, (3.13)

we can invoke (3.1) to conclude that

∥∥Hc∗(t)

(
JRc∗(t)ε

∗)(·, t)
∥∥
L2(R)

≤ Ac

∥∥ε∗(·, t)
∥∥
L2(R)2

. (3.14)

On the other hand, we deduce from (3.8), (3.9) and (3.10) as before that

∥∥∥Hc∗(t)

(
JRc∗(t)ε

∗)(·, t)e
νc|·|
2

∥∥∥
2

L2(R)
≤ Ac

(∫

R

(
∂xε

∗
η(x, t)

)6
eνc|x| dx+

3∑

k=0

∫

R

∣∣∂xε∗(x, t)
∣∣4eνc|x| dx

)
.

We also invoke the Sobolev embedding theorem to write
∫

R

(
∂ℓxf(x)

)2p
eνcx dx =(−1)ℓ

∫

R

f(x)∂ℓx

((
∂ℓxf(x)

)2p−1
eνcx

)
dx

≤Ac

∥∥f
∥∥
L2(R)

∥∥f
∥∥2p−2

H2ℓ+1(R)

∥∥feνc·
∥∥
H2ℓ+1(R)

≤Ac

∥∥f
∥∥p−1

L2(R)

∥∥f
∥∥p−1

H4ℓ+3(R)

∥∥feνc·
∥∥
H2ℓ+1(R)

,

for any ℓ ∈ N, any p ≥ 2, and any f ∈ H4ℓ+3(R), with feνc|·| ∈ H2ℓ+1(R). Since

eνc|x| ≤ eνcx + e−νcx ≤ 2eνc|x|, (3.15)
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for any x ∈ R, the same estimate holds with eνc|x| replacing eνcx. As a consequence, we deduce
as before from (22), (3.1) and (3.13) that

∥∥∥Hc∗(t)

(
JRc∗(t)ε

∗)(·, t)e
νc|·|
2

∥∥∥
L2(R)

≤ Ac

∥∥ε∗(·, t)
∥∥
L2(R)2

.

Combining the previous inequality with (3.7) and (3.14), we derive the estimate

∣∣I∗
2(t)

∣∣ ≤ Ac

(
R
∥∥u∗(·, t)

∥∥
X(B(0,R))

+ δ
∥∥u∗(·, t)

∥∥
X(R)

)∥∥ε∗(·, t)
∥∥
L2(R)2

, (3.16)

We finally recall that
Su∗(·, t) = Hc∗(t)(ε

∗)(·, t),
with 〈ε∗(·, t), ∂xQc∗(t)〉L2(R)2 for any t ∈ R by (21). In view of (B.2), we infer that

∥∥ε∗(·, t)
∥∥
X(R)

≤ Ac

∥∥Su∗(·, t)
∥∥
L2(R)2

≤ Ac

∥∥u∗(·, t)
∥∥
X(R)

, (3.17)

so that (3.16) may be written as

∣∣I∗
2(t)

∣∣ ≤ Ac

(R2

δ

∥∥u∗(·, t)
∥∥2
X(B(0,R))

+ 2δ
∥∥u∗(·, t)

∥∥2
X(R)

)
.

Fixing the number δ so that 2Acδ ≤ (2−c
2)/64, and letting R2 denote the corresponding number

R, we obtain (3.5), with A2 = AcR
2
2/δ.

Concerning the third term in the right-hand side of (3.2), we have

Step 3. There exists a positive number A3, depending only on c, such that

∣∣I∗
3 (t)

∣∣ :=
∣∣∣∣(c

∗)′
∫

R

µ
〈
Hc∗(∂cQc∗), u

∗〉
R2

∣∣∣∣ ≤ A3α0

∥∥u∗(·, t)
∥∥2
X(R)

, (3.18)

for any t ∈ R.

Coming back to (22) and (23), we have

∣∣(c∗)′(t)
∣∣ ≤ Acα0

∥∥ε∗(·, t)
∥∥
X(R)

.

Since the function ∂cQc∗ and its derivatives have exponential decay by (3), we deduce from the
expression of Hc∗ in (B.1) that

∣∣I∗
3(t)

∣∣ ≤ Acα0

∥∥ε∗(·, t)
∥∥
X(R)

∥∥u∗(·, t)
∥∥
X(R)

.

Combining with (3.17), we obtain (3.18).

Finally, we show

Step 4. There exist two positive numbers A4 and R4, depending only on c, such that

∣∣I∗
4 (t)

∣∣ :=
∣∣∣∣
(
(a∗)′ − c∗

) ∫

R

µ
〈
Hc∗(∂xε

∗), u∗
〉
R2

∣∣∣∣ ≤
2− c

2

64

∥∥u∗(·, t)
∥∥2
X(R)

+A4

∥∥u∗(·, t)
∥∥2
X(B(0,R4))

,

(3.19)
for any t ∈ R.
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The proof is similar to the one of Step 2. Given a small positive number δ, we can use (3.6)
to find a radius R such that
∣∣∣∣
∫

R

µ
〈
Hc∗(∂xε

∗), u∗
〉
R2

∣∣∣∣ ≤
∥∥eνc|·|Hc∗(t)(∂xε

∗)(·, t)
∥∥
L2(R)

(
R
∥∥u∗(·, t)

∥∥
X(B(0,R))

+ δ
∥∥u∗(·, t)

∥∥
X(R)

)
.

In view of (23) and (3.8), this gives

∣∣I∗
4 (t)

∣∣ ≤ Ac

∥∥ε∗(·, t)
∥∥
X(R)

∥∥eνc|·|ε∗(·, t)
∥∥
H4(R)

(
R
∥∥u∗(·, t)

∥∥
X(B(0,R))

+ δ
∥∥u∗(·, t)

∥∥
X(R)

)
,

so that by (3.1) and (3.17),

∣∣I∗
4 (t)

∣∣ ≤ Ac

∥∥u∗(·, t)
∥∥
X(R)

(
R
∥∥u∗(·, t)

∥∥
X(B(0,R))

+ δ
∥∥u∗(·, t)

∥∥
X(R)

)
.

Estimate (3.19) follows arguing as in the proof of (3.5).

We are now in position to conclude the proof of Proposition 7.

End of the proof of Proposition 7. Applying the estimates in Steps 1 to 4 to the identity (3.2),
we have

d

dt

(
I∗(t)

)
≥
(2− c

2

32
−A3α0

)∥∥u∗(·, t)
∥∥2
X(R)

−
(
A1 +A2 +A4

)∥∥u∗(·, t)
∥∥2
X(B(0,R∗))

,

with R∗ = max{R1, R2, R3}. Choosing α0 small enough, we are led to (37) with A∗ = A1+A2+
A4.

3.2 Proof of Lemma 1

Identity (40) derives from a somewhat tedious, but direct computation. For sake of completeness,
we provide the following details.

When u ∈ X3(R), the function JSu = −2∂xu lies in the domain H2(R) × L2(R) of Hc. In
view of (39), the quantity in the right-hand side of (40) is well-defined. Moreover, we can invoke
(B.1) to write it as

2
〈
SMcu,Hc(JSu)

〉
L2(R)2

=

∫

R

(
∂xηc
ηc

(
2− ∂xxηc

(1− ηc)2
− (∂xηc)

2

(1− ηc)3

)
− c2

∂xηc
(1− ηc)3

)
u1∂xu1

−
∫

R

∂xηc
ηc

∂x

( ∂xxu1
1− ηc

)
+ 4

∫

R

∂xηc(1− ηc)

ηc
u2∂xu2

+ 2c

∫

R

(
∂xηc
1− ηc

u1∂xu2 −
∂xηc

ηc(1− ηc)
∂x
(
u1u2

))
.

(3.20)

In order to simplify the integrations by parts of the integrals in the right-hand side of (3.20)
which lead to (40), we recall that ηc solves the equation

∂xxηc = (2− c2)ηc − 3η2c , (3.21)

so that we have

(∂xηc)
2 = (2− c2)η2c − 2η3c , and ∂x

(∂xηc
ηc

)
= −ηc. (3.22)

As a consequence, the third integral in the right-hand side of (3.20) can be expressed as

4

∫

R

∂xηc(1− ηc)

ηc
u2∂xu2 = 2

∫

R

µcu
2
2, (3.23)

22



with µc := ηc + ∂xxηc. The last integral is similarly given by

∫

R

(
∂xηc
1− ηc

u1∂xu2 −
∂xηc

ηc(1− ηc)
∂x
(
u1u2

))
= −

∫

R

(
ηcu1u2 +

∂xηc
1− ηc

u2∂xu1

)
. (3.24)

Introducing (3.23) and (3.24) into (3.20), we obtain the identity

2
〈
SMcu,Hc(JSu)

〉
L2(R)2

= I + 2

∫

R

µc

(
u2 −

cηc
2µc

u1 −
c∂xηc

2µc(1− ηc)
∂xu1

)2
,

where

I =

∫

R

(
∂xηc
ηc

(
2− ∂xxηc

(1− ηc)2
− (∂xηc)

2

(1− ηc)3

)
− c2

∂xηc
(1− ηc)3

− c2
ηc∂xηc

µc(1− ηc)

)
u1∂xu1

−
∫

R

∂xηc
ηc

∂x

( ∂xxu1
1− ηc

)
− c2

2

∫

R

η2c
µc
u21 −

c2

2

∫

R

(∂xηc)
2

µc(1− ηc)2
(∂xu1)

2.

Relying again on (3.21) and (3.22), we finally check that

I =
3

2

∫

R

η2c
µc

(
∂xu1 −

∂xηc
ηc

u1

)2
,

which is enough to complete the proof of identity (40).

3.3 Proof of Proposition 8

In view of (3) and (40), the quadratic form Gc is well-defined and continuous on X1(R). More-
over, setting v = (

√
ηcu1,

√
ηcu2) and using (3.22), we can write it as

Gc(u) =
3

2

∫

R

ηc
µc

(
∂xv1 −

3∂xηc
2ηc

v1

)2
+ 2

∫

R

µc
ηc

(
v2 −

c3ηc
4µc(1− ηc)

v1 −
c∂xηc

2µc(1− ηc)
∂xv1

)2
, (3.25)

where we have set, as above, µc := ηc + ∂xxηc. Introducing the pair

w =
(
v1, v2 −

c∂xηc
2µc(1− ηc)

∂xv1

)
=
(√

ηcu1,
√
ηc

(
u2 −

c(∂xηc)
2

4µcηc(1− ηc)
u1 −

c∂xηc
2µc(1− ηc)

∂xu1

))
,

(3.26)
we obtain

Gc(u) =
〈
Tc(w), w

〉
L2(R)2

, (3.27)

with

Tc(w) =


−∂x

(
3ηc
2µc

∂xw1

)
+
(
27(∂xηc)2

8µcηc
+ c6ηc

8µc(1−ηc)2
+ ∂x

(
9∂xηc
4µc

))
w1 − c3

2(1−ηc)
w2

− c3

2(1−ηc)
w1 +

2µc

ηc
w2


 . (3.28)

The operator Tc in (3.28) is self-adjoint on L2(R)2, with domain Dom(Tc) = H2(R) × L2(R).
Moreover, it follows from (3.25) and (3.27) that Tc is non-negative, with a kernel equal to

Ker(Tc) = Span
(
η

3
2
c ,

c3η
5
2
c

4µc(1− ηc)

)
.

In order to establish (43), we now prove
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Step 1. Let c ∈ (−
√
2,
√
2) \ {0}. There exists a positive number Λ1, depending continuously on

c, such that

〈Tc(w), w〉L2(R)2 ≥ Λ1

∫

R

(
w2
1 + w2

2

)
, (3.29)

for any pair w ∈ X1(R) such that

〈
w,
(
η

3
2
c ,

c3η
5
2
c

4µc(1− ηc)

)〉
L2(R)2

= 0. (3.30)

In order to prove Step 1, we show that the essential spectrum of Tc is given by

σess(Tc) =
[
τc,+∞

)
, (3.31)

with

τc =
(3− c2)(22 + c2)

16
− 1

2

( (3− c2)2(22 + c2)2

64
− 27(2 − c2)

) 1
2
> 0. (3.32)

In this case, 0 is an isolated eigenvalue in the spectrum of Tc. Inequality (3.29) follows with
Λ1 either equal to τc, or to the smallest positive eigenvalue of Tc. In each case, Λ1 depends
continuously on c due to the analytic dependence on c of the operator Tc.

The proof of (3.31) relies as usual on the Weyl criterion. We deduce from (3.21) and (3.22)
that

µc(x)

ηc(x)
→ 3− c2, and

∂xηc(x)

ηc(x)
→ ±

√
2− c2,

as x→ ±∞. Coming back to (3.28), we introduce the operator T∞ given by

T∞(w) =

(
− 3

2(3−c2)∂xxw1 +
(3−c2)(6+c2)

8 w1 − c3

2 w2

− c3

2 w1 + 2(3− c2)w2

)
.

By the Weyl criterion, the essential spectrum of Tc is equal to the spectrum of T∞.

We next apply again the Weyl criterion to establish that a real number λ belongs to the
spectrum of T∞ if and only if there exists a complex number ξ such that

λ2 −
( 3

2(3 − c2)
|ξ|2 + (3− c2)(22 + c2)

8

)
λ+ 3|ξ|2 + 27

4

(
2− c2

)
= 0.

This is the case if and only if

λ =
3|ξ|2

4(3− c2)
+
(3− c2)(22 + c2)

16
±1

4

( 9|ξ|4
3− c2

+
3(c2 − 10)

2
|ξ|2+225

4
−195

4
c2+

229

16
c4+

19

8
c6+

c8

16

) 1
2
.

Notice that the quantity in the square root of this expression is positive since its discriminant
with respect to |ξ|2 is −9c2/(3 − c2)2. As a consequence, we obtain that

σess(Tc) = σ(T∞) =
[
τc,+∞

)
,

with τc as in (3.32). This completes the proof of Step 1.

Step 2. There exists a positive number Λ2, depending continuously on c, such that

Gc(u) ≥ Λ2

∫

R

ηc
(
(∂xu1)

2 + u21 + u22
)
,

for any pair u ∈ X1(R) such that

〈u,Qc〉L2(R)2 = 0. (3.33)
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We start by improving the estimate in (3.29). Given a pair w ∈ X1(R), we check that

∣∣∣∣〈Tc(w), w〉L2(R)2 −
3τ

2

∫

R

ηc
µc

(∂xw1)
2

∣∣∣∣ ≤ Ac

∫

R

(w2
1 + w2

2).

Here and in the sequel, Ac refers to a positive number, depending continuously on c. For
0 < τ < 1, we deduce that

〈Tc(w), w〉L2(R)2 ≥
(
1− τ

)
〈Tc(w), w〉L2(R)2 +

3τ

2

∫

R

ηc
µc

(∂xw1)
2 −Acτ

∫

R

(w2
1 + w2

2).

Since ηc/µc ≥ 1/(3 − c2), we are led to

〈Tc(w), w〉L2(R)2 ≥
((

1− τ
)
Λ1 −Acτ

)∫

R

(w2
1 + w2

2) +
3τ

2(3− c2)

∫

R

(∂xw1)
2,

under condition (3.30). For τ small enough, this provides the lower bound

〈Tc(w), w〉L2(R)2 ≥ Ac

∫

R

(
(∂xw1)

2 + w2
1 + w2

2

)
, (3.34)

when w satisfies condition (3.30).

When the pair w depends on the pair u as in (3.26), we can express (3.34) in terms of u. The
left-hand side of (3.34) is exactly equal to Gc(u) by (3.27), whereas for the left-hand side, we
have ∫

R

(
(∂xw1)

2 + w2
1

)
=

∫

R

ηc

(
(∂xu1)

2 +
(
1 +

(∂xηc)
2

4ηc
− ∂xxηc

2ηc

)
u21

)
.

Since

1 +
(∂xηc)

2

4ηc
− ∂xxηc

2ηc
=

2 + c2

4
+ ηc ≥

1

2
,

by (3.21) and (3.22), we deduce that (3.34) may be written as

Gc(u) ≥ Ac

∫

R

ηc

(
(∂xu1)

2 +
1

2
u21

)
+Ac

∫

R

ηc

(
u2 −

c∂xηc
2µc(1− ηc)

∂xu1 −
c(∂xηc)

2

4mucηc(1− ηc)
u1

)2
.

At this stage, recall that, given two vectors a and b in an Hilbert space H, we have

∥∥a− b
∥∥2
H

≥ τ
∥∥a
∥∥2
H
− τ

1− τ

∥∥b
∥∥2
H
,

for any 0 < τ < 1. In particular, this gives

Gc(u) ≥ Ac

∫

R

ηc

(
(∂xu1)

2 +
1

2
u21 + τu22

)
− τAc

1− τ

∫

R

ηc

( c∂xηc
2µc(1− ηc)

∂xu1 −
c(∂xηc)

2

4mucηc(1− ηc)
u1

)2
.

It then remains to choose τ small enough so that we can deduce from (3) that

Gc(u) ≥ Ac

∫

R

ηc
(
(∂xu1)

2 + u21 + u22
)
, (3.35)

when w satisfies condition (3.30), i.e. when u is orthogonal to the pair

uc =
(
η2c −

c4η2c (∂xηc)
2

16µ2c(1− ηc)2
+ ∂x

( c4η3c (∂xηc)

8µ2c(1− ηc)2

)
,

c3η3c
4µc(1− ηc)

)
. (3.36)
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The last point to verify is that (3.35) remains true, decreasing possibly the value of Ac, when
we replace this orthogonality condition by condition (3.33). With this goal in mind, we remark
that

〈uc, Qc〉L2(R)2 6= 0.

Otherwise, we would deduce from (3.35) that

0 = Gc(Qc) ≥ Ac

∫

R

ηc
(
(∂xηc)

2 + η2c + v2c
)
> 0,

which is impossible. Moreover, the quantity 〈uc, Qc〉L2(R)2 depends continuously on c in view of
(3.36). We next consider a pair u which satisfies (3.33), and we denote λ the real number such
that u = λQc + u is orthogonal to uc. Since Qc belongs to the kernel of Gc, we deduce from
(3.35) that

Gc(u) = Gc(u) ≥ Ac

∫

R

ηc
(
(∂xu1)

2 + u
2
1 + u

2
2

)
. (3.37)

On the other hand, since u satisfies (3.33), we have

λ =
〈u, Qc〉L2(R)2

‖Qc‖2L2(R)2
,

Using the Cauchy-Schwarz inequality, this leads to

λ2 ≤ Ac

(∫

R

(
ηc +

v2c
ηc

))(∫

R

ηc
(
u
2
1 + u

2
2

))
,

so that, by (3) and (3.37),
λ2 ≤ AcGc(u) = AcGc(u).

Combining again with (3.37), we are led to

∫

R

ηc
(
(∂xu1)

2 + u21 + u22
)
≤2

(
λ2
∫

R

ηc
(
(∂xηc)

2 + η2c + v2c
)
+

∫

R

ηc
(
(∂xu1)

2 + u
2
1 + u

2
2

))

≤AcGc(u),

which completes the proof of Step 2.

Step 3. End of the proof.

We conclude the proof applying again the last argument in the proof of Step 2. We decompose
a pair u ∈ X(R), which satisfies the orthogonality condition in (44), as u = λQc + u, with
〈u, Qc〉L2(R)2 = 0. Since Qc belongs to the kernel of Gc, we deduce from Step 2 that

Gc(u) = Gc(u) ≥ Λ2

∫

R

ηc
(
(∂xu1)

2 + u
2
1 + u

2
2

)
. (3.38)

Relying on the orthogonality condition in (44), we next compute

λ = −
〈u, S∂cQc〉L2(R)2

〈Qc, S∂cQc〉L2(R)2
.

Using the Cauchy-Schwarz inequality and invoking (42), we obtain

λ2 ≤ 1

4(2 − c2)

(∫

R

1

ηc

(
(∂cηc)

2 + (∂cvc)
2
))(∫

R

ηc
(
u
2
1 + u

2
2

))
.
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In view of (3), we can check that

∂cηc(x) =
c√

2− c2
ηc(x)

(
x sh

(√
2−c2x
2

)

ch
(√

2−c2x
2

) − 2√
2− c2

)
,

while

∂cvc =
ηc

2(1 − ηc)
+

c∂cηc
2(1− ηc)2

,

so that ∫

R

1

ηc

(
(∂cηc)

2 + (∂cvc)
2
)
≤ Ac.

As a consequence, we can derive from (3.38) that

λ2 ≤ AcGc(u) = AcGc(u).

Combining again with (3.38), we are led to
∫

R

ηc
(
(∂xu1)

2 + u21 + u22
)
≤2

(
λ2
∫

R

ηc
(
(∂xηc)

2 + η2c + v2c
)
+

∫

R

ηc
(
(∂xu1)

2 + u
2
1 + u

2
2

))

≤AcGc(u).

It remains to recall that
ηc(x) ≥ Ace

−
√
2|x|,

by (3), to obtain (43). This completes the proof of Proposition 8.

3.4 Proof of Proposition 9

Combining inequality (3.1) with the definitions for u∗ in (35), and for Hc in (B.1), we know that
there exists a positive number Ak,c such that

∫

R

((
∂kxu

∗
1(x, t)

)2
+
(
∂kxu

∗
2(x, t)

)2)
e2νc|x| dx ≤ Ak,c, (3.39)

for any k ∈ N and any t ∈ R. In view of (36) and (39), this is enough to guarantee the
differentiability with respect to time of the quantity

J ∗(t) :=
〈
Mc∗(t)u

∗(·, t), u∗(·, t)
〉
L2(R)2

,

and to check that

d

dt

(
J ∗) =2

〈
SMc∗u

∗,Hc∗(JSu
∗)
〉
L2(R)2

+ 2
〈
SMc∗u

∗,Hc∗(JRc∗ε
∗)
〉
L2(R)2

+ 2
(
(a∗)′ − c∗

)〈
SMc∗u

∗,Hc∗(∂xε
∗)
〉
L2(R)2

− 2
(
c∗
)′〈
SMc∗u

∗,Hc∗(∂cQc∗)
〉
L2(R)2

+
(
c∗
)′〈
∂cMc∗u

∗, u∗
〉
L2(R)2

.

(3.40)

In particular, the proof of (45) reduces to estimate the five terms in the right-hand side of (3.40).
Concerning the first one, we derive from Proposition 8 the following estimate.

Step 1. There exists a positive number B1, depending only on c, such that

J ∗
1 (t) := 2

〈
SMc∗u

∗,Hc∗(JSu
∗)
〉
L2(R)2

≥ B1

∫

R

[
(∂xu

∗
1)

2 + (u∗1)
2 + (u∗2)

2
]
(x, t)e−

√
2|x| dx, (3.41)

for any t ∈ R.
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Since the pair u∗ satisfies the orthogonality condition in (44) by (41), inequality (3.41) is
exactly (43), setting B1 = Λc.

For the second term, we can prove

Step 2. There exists a positive number B2, depending only on c, such that

∣∣J ∗
2 (t)

∣∣ := 2
∣∣∣
〈
SMc∗u

∗,Hc∗(JRc∗ε
∗)
〉
L2(R)2

∣∣∣ ≤ B2

∥∥ε∗(·, t)
∥∥ 1

2

X(R)

∥∥u∗(·, t)
∥∥2
X(R)

, (3.42)

for any t ∈ R.

In view of (3), (22) and (39), we first notice that there exists a positive number Ac, depending
only on c, such that ∥∥Mc∗(t)

∥∥
L∞(R)

≤ Ac, (3.43)

for any t ∈ R. As a consequence, we can write

∣∣J ∗
2 (t)

∣∣ ≤ Ac

∥∥u∗(·, t)
∥∥
L2(R)2

∥∥Hc∗(JRc∗ε
∗)(·, t)

∥∥
L2(R)2

. (3.44)

Applying (3.11) to the last inequality in (3.12), we next check that

∥∥Hc∗(t)

(
JRc∗(t)ε

∗)(·, t)
∥∥
L2(R)2

≤Ac

∥∥ε∗(·, t)
∥∥
L2(R)2

(∥∥ε∗η(·, t)
∥∥ 5

8

L2(R)

∥∥ε∗η(·, t)
∥∥ 5

8

H15(R)
+
∥∥ε∗(·, t)

∥∥ 9
16

L2(R)2

∥∥ε∗(·, t)
∥∥ 3

16

H63(R)2

)
,

so that by (22), (3.1) and (3.17), we have

∥∥Hc∗(t)

(
JRc∗(t)ε

∗)(·, t)
∥∥
L2(R)2

≤ Ac

∥∥ε∗(·, t)
∥∥ 1

2

L2(R)2

∥∥u∗(·, t)
∥∥
X(R)

.

Estimate (3.42) follows combining with (3.44).

We now turn to the third term in the right-hand side of (3.40).

Step 3. There exists a positive number B3, depending only on c, such that

∣∣J ∗
3 (t)

∣∣ := 2
∣∣(a∗)′ − c∗

∣∣
∣∣∣
〈
SMc∗u

∗,Hc∗(∂xε
∗)
〉
L2(R)2

∣∣∣ ≤ B3

∥∥ε∗(·, t)
∥∥ 1

2

X(R)

∥∥u∗(·, t)
∥∥2
X(R)

, (3.45)

for any t ∈ R.

In view of (23) and (3.43), we have

∣∣J ∗
3 (t)

∣∣ ≤ Ac

∥∥ε∗(·, t)
∥∥
X(R)

∥∥u∗(·, t)
∥∥
L2(R)2

∥∥Hc∗(t)(∂xε
∗)(·, t)

∥∥
L2(R)2

, (3.46)

for any t ∈ R. Coming back to the definition for Hc in (B.1), we can write

∥∥Hc∗(t)(∂xε
∗)(·, t)

∥∥
L2(R)2

≤ Ac

(∥∥ε∗η(·, t)
∥∥
H3(R)

+
∥∥ε∗v(·, t)

∥∥
H1(R)

)
.

Hence, by (3.11) again,

∥∥Hc∗(t)(∂xε
∗)(·, t)

∥∥
L2(R)2

≤ Ac

∥∥ε∗η
∥∥ 1

2

L2(R)2

(∥∥ε∗η(·, t)
∥∥ 1

2

H7(R)
+
∥∥ε∗v(·, t)

∥∥ 1
2

H3(R)

)
.

Combining the latter inequality with (3.1), (3.17) and (3.46) yields estimate (3.45).

For the fourth term, we have
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Step 4. There exists a positive number B4, depending only on c, such that

∣∣J ∗
4 (t)

∣∣ := 2
∣∣(c∗)′

∣∣
∣∣∣
〈
SMc∗u

∗,Hc∗(∂cQc∗)
〉
L2(R)2

∣∣∣ ≤ B4

∥∥ε∗(·, t)
∥∥ 1

2

X(R)

∥∥u∗(·, t)
∥∥2
X(R)

, (3.47)

for any t ∈ R.

Similarly, we deduce from (23) and (3.43) that

∣∣J ∗
4 (t)

∣∣ ≤ Ac

∥∥ε∗(·, t)
∥∥2
X(R)

∥∥u∗(·, t)
∥∥
L2(R)2

.

Estimate (3.47) then appears as a consequence of (22) and (3.17).

The fifth term is estimated in a similar way.

Step 5. There exists a positive number B5, depending only on c, such that

∣∣J ∗
5 (t)

∣∣ :=
∣∣(c∗)′

∣∣
∣∣∣
〈
∂cMc∗u

∗, u∗
〉
L2(R)2

∣∣∣ ≤ B5

∥∥ε∗(·, t)
∥∥ 1

2

X(R)

∥∥u∗(·, t)
∥∥2
X(R)

, (3.48)

for any t ∈ R.

We derive again from (3) and (39) the existence of a positive number Ac, depending only on
c, such that ∥∥∂cMc∗(t)

∥∥
L∞(R)

≤ Ac,

for any t ∈ R. As a consequence of (23), we infer that

∣∣J ∗
5 (t)

∣∣ ≤ Ac

∥∥ε∗(·, t)
∥∥2
X(R)

∥∥u∗(·, t)
∥∥2
L2(R)2

.

This provides (3.48), relying again on (22).

In order to conclude the proof of Proposition 9, it remains to combine the five previous steps
to obtain (45), with B∗ := max

{
1/B1, B2 +B3 +B4 +B5}.

3.5 Proof of Corollary 1

Corollary 1 is a consequence of Propositions 7 and 9. As a matter of fact, combining the two
estimates (37) and (45) with the definition of N(t), we obtain

d

dt

(
〈N(t)u∗(·, t), u∗(·, t)〉L2(R)2

)
≥
(2− c

2

64
−A∗B∗e

√
2R∗
∥∥ε∗(·, t)

∥∥ 1
2

X(R)

)∥∥u∗(·, t)
∥∥2
X(R)

,

for any t ∈ R. Invoking (22), it remains to fix the parameter βc such that

∥∥ε∗(·, t)
∥∥ 1

2

X(R) ≤
2− c

2

128A∗B∗e
√
2R∗

,

for any t ∈ R, in order to obtain (46). Since the map t 7→ 〈N(t)u∗(·, t), u∗(·, t)〉L2(R)2 is uniformly
bounded by (3.39) and (3.43), estimate (47) follows by integrating (46) from t = −∞ to t = +∞.
Finally, statement (48) is a direct consequence of (47).

29



A On the regularity and smoothness of the Gross-Pitaevskii flow

A.1 Continuity with respect to weak convergence in the energy space

It is shown in [21] (see also [8, 10, 3]) that the Gross-Pitaevskii equation is globally well-posed
in the spaces

X k(R) :=
{
ψ ∈ L∞(R), s.t. η := 1− |Ψ|2 ∈ L2(R) and ∂xψ ∈ Hk(R)

}
,

equipped with the metric structure provided by the distance

dk(ψ1, ψ2) :=
∥∥ψ1 − ψ2

∥∥
L∞(R)

+
∥∥∂xψ1 − ∂xψ2

∥∥
Hk(R)

+
∥∥η1 − η2

∥∥
L2(R)

,

where we have set, as above, η1 := 1− |Ψ1|2 and η2 := 1− |Ψ2|2.
Proposition A.1 ([21]). Let k ∈ N and Ψ0 ∈ X k(R). There exists a unique solution Ψ in

C0(R,X k(R)) to (GP) with initial data Ψ0. Moreover, the flow map Ψ0 → Ψ(·, T ) is continuous

on X k(R) for any fixed T ∈ R, and the map t→ Ψ(·, t) belongs to C1(R,X k(R)) when Ψ0 belongs

to X k+2(R). Finally, the Ginzburg-Landau energy is conserved along the flow, i.e.

E(Ψ(·, t)) = E(Ψ0), (A.1)

for any t ∈ R.

In order to establish the continuity of the Gross-Pitaevskii flow with respect to some suitable
notion of weak convergence, it is helpful to enlarge slightly the range of function spaces in which
it is possible to solve the Cauchy problem for (GP). For 1/2 < s < 1, we define the Zhidkov
spaces Zs(R) as

Zs(R) :=
{
ψ ∈ L∞(R), s.t. ∂xψ ∈ Hs−1(R)

}
,

and we endow them with the norm
∥∥ψ
∥∥
Zs(R)

:=
∥∥ψ
∥∥
L∞(R)

+
∥∥∂xψ

∥∥
Hs−1(R)

.

We then prove

Proposition A.2. Let 1/2 < s < 1 and Ψ0 ∈ Zs(R). There exists a unique maximal solution

Ψ ∈ C0((Tmin, Tmax),Zs(R)) to (GP) with initial datum Ψ0.

Proof. Proposition A.2 is essentially due to Gallo who has proved it in [8] when s ∈ N
∗. Due to

the Sobolev embedding theorem of Hs(R) into L∞(R) for s > 1/2, the proof in [8] extends to
the case s > 1/2. As a consequence, we refer to [8] for a detailed proof.

In the framework provided by Proposition A.1, we can introduce a notion of weak convergence
for which the Gross-Pitaevskii flow is continuous. We consider a sequence of initial conditions
Ψn,0 ∈ X (R) such that the energies E(Ψn,0) are uniformly bounded with respect to n. Invoking
the Rellich-Kondrachov theorem, there exists a function Ψ0 ∈ X (R) such that, going possibly to
a subsequence,

∂xΨn,0 ⇀ ∂xΨ0 in L2(R), 1− |Ψn,0|2 ⇀ 1− |Ψ0|2 in L2(R), (A.2)

and, for any compact subset K of R,

Ψn,0 → Ψ0 in L∞(K), (A.3)

as n → +∞. We claim that the convergences provided by (A.2) and (A.3) are conserved along
the Gross-Pitaevskii flow.
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Proposition A.3. We consider a sequence (Ψn,0)n∈N ∈ X (R)N, and a function Ψ0 ∈ X (R) such

that assumptions (A.2) and (A.3) are satisfied, and we denote Ψn, respectively Ψ, the unique

global solutions to (GP) with initial datum Ψn,0, respectively Ψ0, given by Proposition A.1. For

any fixed t ∈ R and any compact subset K of R, we have

Ψn(·, t) → Ψ(·, t) in L∞(K), (A.4)

when n→ +∞, as well as

∂xΨn(·, t)⇀ ∂xΨ(·, t) in L2(R), and 1− |Ψn(·, t)|2 ⇀ 1− |Ψ(·, t)|2 in L2(R). (A.5)

Proof. The proof is standard. For sake of completeness, we recall some details.

As usual, we first bound suitably the functions Ψn and ηn := 1− |Ψn|2. In view of the weak
convergences in assumption (A.2), there exists a positive constant M such that

E(Ψn,0) ≤M2,

for any n ∈ N. Since the energy E is conserved along the (GP) flow by (A.1), we deduce that

‖∂xΨn(·, t)‖L2(R) ≤
√
2M, and ‖ηn(·, t)‖L2(R) ≤ 2M, (A.6)

for any n ∈ N and any t ∈ R. Invoking the Sobolev embedding theorem, we next write

‖Ψn(·, t)‖2L∞(R) ≤ 1 + ‖ηn(·, t)‖L∞(R) ≤ 1 + ‖ηn(·, t)‖
1
2

L2(R)
‖∂xηn(·, t)‖

1
2

L2(R)
.

Since
‖∂xηn(·, t)‖L2(R) ≤ 2‖Ψn(·, t)‖L∞(R)‖∂xΨn(·, t)‖L2(R),

we obtain the uniform bounds

‖Ψn(·, t)‖L∞(R) ≤ KM , and ‖∂xηn(·, t)‖L2(R) ≤ KM , (A.7)

where KM is a positive number depending only on M . In particular, given a fixed positive
number T , we deduce that

∫ T

0

∫

R

|∂xΨn(x, t)|2 dx dt ≤M2T, and

∫ T

0

∫

R

ηn(x, t)
2 dx dt ≤M2T. (A.8)

With bounds (A.7) and (A.8) at hand, we are in position to construct weak limits for the
functions Ψn and ηn. In view of (A.8), there exist two functions Φ1 ∈ L2(R × [0, T ]) and
N ∈ L2(R× [0, T ]) such that, up to a further subsequence,

∂xΨn ⇀ Φ1 in L2(R× [0, T ]), and ηn ⇀ N in L2(R× [0, T ]), (A.9)

when n→ ∞. Similarly, we can invoke (A.7) to exhibit a function Φ ∈ L∞(R× [0, T ]) such that,
up to a further subsequence,

Ψn
∗
⇀ Φ in L∞(R× [0, T ]), (A.10)

when n→ +∞. Combining with (A.9), we remark that Φ1 = ∂xΦ in the sense of distributions.

Our goal is now to check that the function Φ is solution to (GP). This requires to improve
the convergences in (A.9) and (A.10). With this goal in mind, we introduce a cut-off function
χ ∈ C∞

c (R) such that χ ≡ 1 on [−1, 1] and χ ≡ 0 on (−∞, 2]∪ [2,+∞), and we set χp(·) := χ(·/p)
for any integer p ∈ N

∗. In view of (A.6) and (A.8), the sequence (χpΨn)n∈N is bounded in
C0([0, T ],H1(R)). By the Rellich-Kondrachov theorem, the sets {χpΨn(·, t), n ∈ N} are relatively
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compact in H−1(R) for any fixed t ∈ [0, T ]. On the other hand, the function Ψn is solution to
(GP), so that its time derivative ∂tΨn belongs to C0([0, T ],H−1(R)) and satisfies

‖∂tΨn(·, t)‖H−1(R) ≤ ‖∂xΨn(·, t)‖L2(R) + ‖Ψn(·, t)‖L∞(R)‖ηn(·, t)‖L2(R) ≤ KM .

As a consequence, the functions χpΨn are equicontinuous in C0([0, T ],H−1(R)). Applying the
Arzela-Ascoli theorem and using the Cantor diagonal argument, we can find a further subsequence
(independent of p), such that, for each p ∈ N

∗,

χpΨn → χpΦ in C0([0, T ],H−1(R)), (A.11)

as n→ +∞. Recalling that the functions χpΨn are uniformly bounded in C0([0, T ],H1(R)), we
deduce that the convergence in (A.11) also holds in the spaces C0([0, T ],Hs(R)) for any s < 1.
In particular, by the Sobolev embedding theorem, we obtain

χpΨn → χpΦ in C0([0, T ], C0(R)), (A.12)

as n→ +∞.

Such convergences are enough to establish that Φ is solution to (GP). Let h be a function in
C∞
c (R). Since the functions χpΨn are uniformly bounded in C0([0, T ], C0(R)), we check (for an

integer p such that supp(h) ⊂ [−p, p]) that

hηn(·, t) = h
(
1− χ2

p|Ψn(·, t)|2
)
→ h

(
1− χ2

p|Φ(·, t)|2
)
= h

(
1− |Φ(·, t)|2

)
in C0(R), (A.13)

as n → +∞, the convergence being uniform with respect to t ∈ [0, T ]. In view of (A.9), we
deduce that N = 1− |Φ|2. Similarly, we compute

hΨn(·, t) = hχpΨn(·, t) → hχpΦ(·, t) = hΦ(·, t) in C0(R), (A.14)

as n→ +∞. In view of (A.9), we infer that

hηnΨn → h(1 − |Φ|2)Φ in L2(R× [0, T ]).

Going back to (A.9) and (A.10), we recall that

i∂tΨn → i∂tΦ in D′(R× [0, T ]), and ∂2xxΨn → ∂2xxΦ in D′(R× [0, T ]),

as n→ +∞, so that it remains to take the limit n→ +∞ in the expression

∫ T

0

∫

R

(
i∂tΨn + ∂2xxΨn + ηnΨn

)
h = 0,

where h ∈ C∞
c (R × [0, T ]), in order to establish that Φ is solution to (GP) in the sense of

distributions. Moreover, we infer from (A.3) and (A.14) that Φ(·, 0) = Ψ0.

In order to prove that the function Φ coincides with the solution Ψ in Proposition A.3, it is
sufficient, in view of the uniqueness result in Proposition A.2, to establish the

Claim. The function Φ belongs to C0([0, T ],Zs(R)) for any 1/2 < s < 1.

Proof of the claim. Let t ∈ [0, T ] be fixed. We deduce from (A.6), (A.11) and (A.13) that, up to
a subsequence (depending on t),

∂xΨn(·, t) ⇀ ∂xΦ(·, t) in L2(R), and ηn(·, t) ⇀ 1− |Φ(·, t)|2 in L2(R), (A.15)
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as n→ +∞. We also know that
∫

R

|∂xΦ(·, t)|2 ≤ 2M2, and

∫

R

(
1− |Φ(·, t)|2

)2 ≤ 4M2. (A.16)

In particular, the maps ∂xΦ and 1 − |Φ|2 belong to L∞([0, T ], L2(R)), respectively L∞([0, T ],
H1(R)). Since

i∂t
(
∂xΦ

)
= −∂3xxxΦ− ∂x(ηΦ),

the derivative ∂xΦ actually belongs to W 1,∞([0, T ],H−2(R)). Hence, it is continuous with values
into H−2(R). By (A.16), it remains continuous with values into Hs(R) for any −2 ≤ s < 0.
Similarly, the functions ηn solve the equations

∂tηn = 2∂x
(
〈i∂xΨn,Ψn〉C

)
. (A.17)

Invoking (A.9) and (A.14), we know that

h〈i∂xΨn,Ψn〉C → h〈i∂xΦ,Φ〉C in L2(R× [0, T ]),

for any h ∈ C∞
c (R). Using (A.13) to take the limit n→ +∞ into (A.17), we are led to

∂t
(
1− |Φ|2

)
= 2∂x

(
〈i∂xΦ,Φ〉C

)
,

in the sense of distributions. We deduce as above that the map 1− |Φ|2 belongs to W 1,∞([0, T ],
H−1(R)), therefore that it is continuous with values into H−1(R), and finally with values into
Hs(R) for any −1 ≤ s < 1. At this stage, it suffices to apply the Sobolev embedding theorem
to guarantee that Φ is also in C0([0, T ], L∞(R)), and, as a consequence, in C0([0, T ],Zs(R)) for
any 1/2 < s < 1, which proves the claim.

By Proposition A.2, the maps Φ and Ψ are therefore two identical solutions to (GP) in
C0([0, T ],Zs(R)) for 1/2 < s < 1. Arguing as in (A.15), we conclude that, given any fixed
number t ∈ [0, T ], we have, up to a subsequence (depending on t),

∂xΨn ⇀ ∂xΨ(·, t) in L2(R), and ηn ⇀ 1− |Ψ(·, t)|2 in L2(R). (A.18)

Given any compact subset K of R, we also deduce from (A.12) that

Ψn(·, t) → Ψ(·, t) in L∞(K),

as n→ +∞.

In order to complete the proof of Proposition A.3, we now argue by contradiction assuming
the existence of a positive number T , a function h ∈ L2(R) and a positive number δ such that
we have ∣∣∣∣

∫

R

(
∂xΨϕ(n)(x, T )− ∂xΨ(x, T )

)
h(x) dx

∣∣∣∣ > δ,

for a subsequence (Ψϕ(n))n∈N. Up to the choice of a further subsequence (possibly depending
on T ), this in contradiction with (A.18). Here, we have made the choice to deny one of the
weak convergences in (A.5), but a contradiction identically appears when (A.4) or the other
convergence in (A.5) is alternatively denied. Since the proof extends with no change to the case
where T is negative, this concludes the proof of Proposition A.3.
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A natural framework for solving the hydrodynamical form of the Gross-Pitaevskii equation is
provided by the functions spaces

NVk(R) :=
{
(η, v) ∈ Xk(R), s.t. max

x∈R
η(x) < 1

}
,

where we have set
Xk(R) := Hk+1(R)×Hk(R).

A counter-part of Proposition A.1 in terms of (HGP) is stated as follows.

Proposition A.4 ([20]). Let k ∈ N and (η0, v0) ∈ NVk(R). There exists a maximal time

Tmax > 0 and a unique solution (η, v) ∈ C0([0, Tmax),NVk(R)) to (HGP) with initial datum

(η0, v0). The maximal time Tmax is continuous with respect to the initial datum (η0, v0), and is

characterized by

lim
t→Tmax

max
x∈R

η(x, t) = 1 if Tmax < +∞.

Moreover, the energy E and the momentum P are constant along the flow.

In this setting, it is possible to establish the following version of the weak continuity of the
hydrodynamical flow.

Proposition A.5. We consider a sequence (ηn,0, vn,0)n∈N ∈ NV(R)N, and a pair (η0, v0) ∈
NV(R) such that

ηn,0 ⇀ η0 in H1(R), and vn,0 ⇀ v0 in L2(R), (A.19)

as n → +∞. We denote by (ηn, vn) the unique solutions to (HGP) with initial data (ηn,0, vn,0)
given by Proposition A.4, and we assume that there exists a positive number T such that the

solutions (ηn, vn) are defined on [−T, T ], and satisfy the condition

sup
n∈N

sup
t∈[−T,T ]

max
x∈R

ηn(x, t) ≤ 1− σ, (A.20)

for a given positive number σ. Then, the unique solution (η, v) to (HGP) with initial data (η0, v0)
is also defined on [−T, T ], and for any t ∈ [−T, T ], we have

ηn(t)⇀ η(t) in H1(R), and vn(t)⇀ v(t) in L2(R), (A.21)

as n→ +∞.

Proof. The proof relies on applying Proposition A.3 to the solutions Ψn and Ψ to (GP) with
initial data

Ψn,0 :=
√

1− ηn,0e
iϕn,0 , and Ψ0 :=

√
1− η0e

iϕ0 ,

where we have set

ϕn,0(x) :=

∫ x

0
vn,0(y) dy, and ϕ0(x) :=

∫ x

0
v0(y) dy. (A.22)

The weak convergences in (A.21) then follow from the convergences in (A.4) and (A.5).

With this goal in mind, we first remark that the map ϕ0 in (A.22) defines a continuous function
with derivative v0 in L2(R), while

√
1− η0 defines a function in H1(R). As a consequence, the

function Ψ0, and similarly the functions Ψn,0, are well-defined on R and belong to X (R), with
derivatives

∂xΨ0 =
(
− ∂xη0

2
√
1− η0

+ i
√

1− η0v0

)
eiϕ0 , ∂xΨn,0 =

(
− ∂xηn,0

2
√

1− ηn,0
+ i
√

1− ηn,0vn,0

)
eiϕn,0 .

(A.23)
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We now check the first assumption in (A.2), as well as (A.3). The second assumption in (A.2)
is already included in (A.19). In view of (A.22), we write

ϕn,0(x)− ϕ0(x) = 〈vn,0 − v0, 1[0,x]〉L2(R),

for any x ∈ R, so that, by (A.19),
ϕn,0(x) → ϕ0(x),

as n→ +∞. On the other hand, it again follows from (A.22) that

∣∣ϕn,0(x)− ϕn,0(y)
∣∣ ≤ |x− y| 12 ‖vn,0‖L2(R),

for any (x, y) ∈ R
2. Given a compact subset K of R, we deduce from the Ascoli-Arzela theorem

and the Cantor diagonal argument that, passing to a subsequence independent of K, we have

ϕn,0 → ϕ0 in L∞(K),

as n→ +∞. In particular,
eiϕn,0 → eiϕ0 in L∞(K), (A.24)

as n→ +∞. Similarly, if follows from (A.19) and the Rellich-Kondrachov theorem that, up to a
further subsequence, √

1− ηn,0 →
√

1− η0 in L∞(K), (A.25)

as n→ +∞. Since the maps eiϕn,0 are uniformly bounded by 1, we conclude that

Ψn,0 → Ψ0 in L∞(K),

as n→ +∞.

The proof of the first assumption in (A.2) is similar. We deduce from (A.20) and (A.25) that

√
1− ηn,0 ≥

√
σ, and

√
1− η0 ≥

√
σ on R.

Combining (A.23) with the convergences in (A.19), (A.24) and (A.25), we are led to

∂xΨn,0 ⇀ ∂xΨ0 in L2(R),

as n→ +∞.

As a consequence, we can apply Proposition A.3 to the solutions Ψn and Ψ to (GP) with
initial data Ψn,0, respectively Ψ0. Given any number t ∈ R, we obtain in the limit n→ +∞,

Ψn(·, t) → Ψ(·, t) in L∞(K), (A.26)

for any compact subset K of R, as well as

∂xΨn(·, t) ⇀ ∂xΨ(·, t) in L2(R), and 1− |Ψn(·, t)|2 ⇀ 1− |Ψ(·, t)|2 in L2(R). (A.27)

Setting
η̃n := 1− |Ψn|2, and η̃ := 1− |Ψ|2,

we infer similarly from (A.26), (A.27) and the identities ∂xη̃(n) = −2〈Ψ(n), ∂xΨ(n)〉C that

η̃n(·, t) ⇀ η̃(·, t) in H1(R), (A.28)

as n → +∞. In order to derive the first convergence in (A.21), it remains to check that the
functions η̃n and η̃ are equal to ηn, respectively η. This can be done by invoking the uniqueness
result in Proposition A.4 for the solutions to (HGP).
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With this goal in mind, we first derive from the Sobolev embedding theorem that

1− |ψp|2 → 1− |ψ|2 in L∞(R),

when ψp → ψ in X (R) as p → +∞. Since ηn,0 satisfies (A.20), and Ψn is continuous from R to
X (R), we can exhibit a number τn ∈ (0, T ), depending possibly on n, such that

sup
t∈[−τn,τn]

max
x∈R

η̃n(x, t) ≤ 1− σ

2
. (A.29)

As a consequence, we can define a function ṽn : R× [−τn, τn] → R according to the expression

ṽn =
〈iΨn, ∂xΨn〉C
1− |Ψn|2

.

Since Ψn is in C0([−τn, τn], L∞(R)), the function ṽn is continuous on [−τn, τn] with values into
L2(R). Similarly, η̃n is continuous on [−τn, τn] with values in H1(R). In view of (A.29), we
conclude that the pair (η̃n, ṽn) belongs to C0([−τn, τn],NV(R)). Moreover, the map Ψn being a
solution to (GP), the pair (η̃n, ṽn) solves (HGP) in the sense of distributions for an initial data
equal to (ηn,0, vn,0). As a conclusion, this pair coincides with the solution (ηn, vn) on [−τn, τn].
Using a standard connectedness argument, we derive that the function vn is well-defined in
C0([−T, T ], L∞(R)), and that

(η̃n(x, t), ṽn(x, t)) = (ηn(x, t), vn(x, t)),

for any x ∈ R and t ∈ [−T, T ].
Due to (A.25), one can rely on the same approach to establish that the function

ṽ =
〈iΨ, ∂xΨ〉C
1− |Ψ|2 ,

is well-defined in C0([−T, T ], L∞(R)), and that

(η̃(x, t), ṽ(x, t)) = (η(x, t), v(x, t)),

for any x ∈ R and any t ∈ [−T, T ]. The first convergence in (A.21) is then exactly (A.28).
Concerning the second one, we deduce from (A.20), (A.26) and (A.27) that

〈iΨn, ∂xΨn〉C
1− |Ψn|2

⇀
〈iΨ, ∂xΨ〉C
1− |Ψ|2 in L2(R),

as n→ +∞. This is exactly the desired convergence.

However, the two convergences are only available for a subsequence, so that we have to argue
by contradiction as in the proof of Proposition A.3 to conclude the proof of Proposition A.5.

A.1.1 Proof of Proposition 1

In order to establish (26), we apply Proposition A.5. Relying on assumption (15) and the explicit
formula for Qc(tn) in (3), we check that

Qc(tn) → Qc∗0
in X(R),

as n→ +∞. Combining with (14), we are led to

(
η(·+ a(tn), tn), v(· + a(tn), tn)

)
⇀ ε∗0 +Qc∗0

in X(R),
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as n → +∞. The weak convergence in (26) then appears as a direct consequence of (A.21)
since t 7→ (η(· + a(tn), tn + t), v(· + a(tn), tn + t)) and (η∗, v∗) are the solutions to (HGP) with
initial data (η(·+ a(tn), tn), v(·+ a(tn), tn)), respectively ε∗0 +Qc∗0

, and since assumption (A.20)
is satisfied in view of (7).

Concerning (27), we rely on (8) to claim that the map t 7→ c(t) is bounded on R. We next
combine (8) and (9) to show that a′ is a bounded function on R. As a consequence, the sequences
(a(tn+t)−a(tn))n∈N and (c(tn+t))n∈N are bounded, so that the proof of (27) reduces to establish
that the unique possible accumulation points for these sequences are a∗(t), respectively c∗(t).

In order to derive this further property, we assume that, up to a possible subsequence, we
have

a(tn + t)− a(tn) → α, and c(tn + t) → σ, (A.30)

as n→ +∞. Given a function φ ∈ H1(R), we next write

〈
η(·+ a(tn + t), tn + t), φ

〉
H1(R)

=
〈
η(·+ a(tn), tn + t), φ(· − a(tn + t) + a(tn))− φ(· − α)

〉
H1(R)

+
〈
η(·+ a(tn), tn + t), φ(· − α)

〉
H1(R)

.

Combining (26) and (A.30) with the well-known fact that

φ(·+ h) → φ in H1(R),

when h→ 0, we deduce that

η(·+ a(tn + t), tn + t)⇀ η∗(·+ α, t) in H1(R),

as n→ +∞. Similarly, we have

v(·+ a(tn + t), tn + t)⇀ v∗(·+ α, t) in L2(R).

Since
Qc(tn+t) → Qσ in X(R),

as n→ +∞ by (A.30), we also obtain

ε(·, tn + t)⇀
(
η∗(·+ α, t), v∗(·+ α, t)

)
−Qσ in X(R), (A.31)

as n→ +∞.

At this stage, we again rely on the second convergence in (A.30) to prove that

∂xQc(tn+t) → ∂xQσ in L2(R)2,

as n → +∞, and the similar convergence for P ′(Qc(tn+t)). With (A.31) at hand, this is enough
to take the limit n→ +∞ in the two orthogonality conditions in (6) in order to get the identities

〈
(η∗(·+ α, t), v∗(·+ α, t)) −Qσ, ∂xQσ

〉
L2(R)2

= P ′(Qσ)
(
(η∗(·+ α, t), v ∗ (·+ α, t))−Qσ

)
= 0.

Using the uniqueness of the parameters α∗(t) and c∗(t) in (20), we deduce that

α = a∗(t), and σ = c∗(t), (A.32)

which is enough to complete the proof of (27). Convergence (28) follows combining (20) with
(A.31) and (A.32).
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A.2 Smoothing properties for space localized solutions

We consider a solution u ∈ C0(R, L2(R)) to the inhomogeneous linear Schrödinger equation (LS),
with F ∈ L2(R, L2(R)), and we assume that

∫ T

−T

∫

R

(
|u(x, t)|2 + |F (x, t)|2

)
eλx dx dt < +∞, (A.33)

for any positive number T . Our goal is to establish that the exponential decay for u and F
in (A.33) induces a smoothing effect on u in such a way that ∂xu belongs to L2

loc(R × R). In
order to derive this effect, we rely on the following virial type identity. We refer to the work by
Escauriaza, Kenig, Ponce and Vega [7] for useful extensions in related contexts.

Lemma A.1. Let u be a solution in C0(R,H1(R)) to (LS), with F ∈ L2(R,H1(R)). We consider

two real numbers a < b, a function χ ∈ C2(R) such that χ(a) = χ(b) = 0, and a bounded function

Φ ∈ C4(R), with bounded derivatives. Then, we have

4

∫ b

a

∫

R

|∂xu(x, t)|2Φ′′(x)χ(t) dx dt =
∫

R

(
|u(x, a)|2χ′(a)− |u(x, b)|2χ′(b)

)
Φ(x) dx

+

∫ b

a

∫

R

|u(x, t)|2
(
Φ(x)χ′′(t) + Φ(4)(x)χ(t)

)
dx dt+ 2

∫ b

a

∫

R

〈F (x, t), i u(x, t)〉CΦ(x)χ′(t) dx dt

− 2

∫ b

a

∫

R

〈F (x, t), u(x, t)〉CΦ′′(x)χ(t) dx dt − 4

∫ b

a

∫

R

〈F (x, t), ∂xu(x, t)〉CΦ′(x)χ(t) dx dt.

(A.34)

Proof. We introduce the map Ξ given by

Ξ(t) =

∫

R

|u(x, t)|2Φ(x) dx,

for any t ∈ R. When u is a smooth solution to (LS), we are allowed to compute

Ξ′(t) = 2

∫

R

〈F (x, t), iu(x, t)〉CΦ(x) dx+ 2

∫

R

〈∂xu(x, t), iu(x, t)〉CΦ′(x) dx,

as well as

Ξ′′(t) = 2∂t

(∫

R

〈F (x, t), iu(x, t)〉CΦ(x) dx
)
+ 4

∫

R

〈F (x, t), ∂xu(x, t)〉CΦ′(x) dx

+ 2

∫

R

〈F (x, t), u(x, t)〉CΦ′′(x) dx + 4

∫

R

|∂xu(x, t)|2Φ′′(x) dx−
∫

R

|u(x, t)|2Φ(4)(x) dx.

(A.35)

Formula (A.34) follows by writing the identity

∫ b

a

Ξ′′(t)χ(t) dt = −Ξ(b)χ′(b) + Ξ(a)χ′(a) +
∫ b

a

Ξ(t)χ′′(t) dt,

and integrating by parts (with respect to t) the first integral in the right-hand side of (A.35).

When u is only in C0(R,H1(R)), we introduce a sequence of smooth functions (um,a)m∈N and
(Fm)m∈N such that

um,a → u(·, a) in H1(R), and Fm → F in L2(R,H1(R)), (A.36)
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as m→ +∞. We denote by um the unique solution to (LS), in which F is replaced by Fm, with
um(·, a) = um,a. Since um is a smooth solution to (LS), identity (A.34) holds for the functions
um and Fm. On the other hand, we can deduce from the convergences in (A.36) applying an
energy method to (LS) that

um → u in C0(R,H1(R)),

when m → +∞. Combining with (A.36) and taking the limit m → +∞, we obtain identity
(A.34) for the functions u and F .

A.2.1 Proof of Proposition 5

We apply Lemma A.1 with a = −T − 1 and b = T + 1, and for a function χ ∈ C2
c (R, [0, 1]), with

compact support in [−T − 1, T + 1], and such that χ = 1 on [−T, T ].
Concerning the choice of the function Φ, we would like to set Φ(x) = eλx for any x ∈ R.

However, this function is not bounded, as well as its derivatives. In order to by-pass this difficulty,
we introduce a function φ ∈ C∞(R, [0, 1]) with compact support in [−2, 2] and such that φ = 1
on [−1, 1], and we set

φn(x) = φ
(x
n

)
,

for any n ∈ N
∗ and any x ∈ R. We then apply Lemma A.1 to the function

Φn(x) = φn(x)e
λx,

which is bounded, with bounded derivatives.

At this stage, we have to face a second difficulty. Lemma A.1 is available for functions u and
F in C0(R,H1(R)), respectively L2(R,H1(R)), but we would like to apply it when u and F are
only in C0(R, L2(R)), respectively L2(R, L2(R)). As a consequence, we first mollify the functions
u and F by introducing a smooth function µ ∈ C∞

c (R × R), with compact support in [−1, 1]2

and such that
∫
R2 µ = 1, and by setting

um = u ⋆ µm, and Fm = F ⋆ µm, (A.37)

with µm(x, t) = m2µ(mx,mt) for any m ∈ N and any (x, t) ∈ R
2. In a second step, we will

complete the proof by taking the limit m→ +∞.

Since F is in L2(R, L2(R)), we first deduce from (A.37) and the Young inequality that Fm

belongs to L2(R,H1(R)), with the bounds

‖∂ℓxFm‖L2(R,L2(R)) ≤ mℓ‖F‖L2(R,L2(R))‖∂ℓxµ‖L1(R2),

for ℓ ∈ {0, 1}. Similarly, we compute

∫

R

∣∣∂ℓxum(x, t)− ∂ℓxum(x, t0)
∣∣2dx

≤ m2ℓ‖∂ℓxµ‖L1(R2)

∫ 1

−1

∫ 1

−1

∥∥∥u
(
·, t− τ

m

)
− u
(
·, t0 −

τ

m

)∥∥∥
2

L2(R)
|∂ℓxµ(τ)| dτ,

so that um belongs to C0(R,H1(R)), with the bound

‖∂ℓxum‖C0([−T−1,T+1],L2(R)) ≤ mℓ‖u‖C0([−T−1,T+1],L2(R))‖∂ℓxµ‖L1(R2),
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which can be derived using the same arguments. As a consequence, we are in position to apply
Lemma A.1 to obtain the identity

4

∫

R

∫

R

|∂xum(x, t)|2
(
φn(x)e

λx
)′′
χ(t) dx dt

=2

∫

R

∫

R

〈Fm(x, t), i um(x, t)〉C φn(x)eλxχ′(t) dx dt

− 2

∫

R

∫

R

〈Fm(x, t), um(x, t)〉C
(
φn(x)e

λx
)′′
χ(t) dx dt

− 4

∫

R

∫

R

〈Fm(x, t), ∂xum(x, t)〉C
(
φn(x)e

λx
)′
χ(t) dx dt

+

∫

R

∫

R

|um(x, t)|2
(
φn(x)e

λxχ′′(t) +
(
φn(x)e

λx
)(4)

χ(t)
)
dx dt.

(A.38)

In order to take the limit n→ +∞, we first combine (A.33) with (A.37) to obtain the bound

∫ T+1

−T−1

∫

R

(
|∂ℓxum(x, t)|2 + |∂ℓxFm(x, t)|2

)
eλx dx dt

≤ m2ℓ

(∫

R

∫

R

|∂ℓxµ(x, t)|e
λx
2 dx dt

)2

×
∫ T+2

−T−2

∫

R

(
|u(x, t)|2 + |F (x, t)|2

)
eλx dx dt < +∞,

for ℓ ∈ {0, 1}. It follows that all the integrals in (A.38) can be written under the form

In(k,G) =

∫ T+1

−T−1

∫

R

G(x, t)φ(k)n (x) dx dt,

with G ∈ L1([−T − 1, T + 1], L1(R)) and 0 ≤ k ≤ 4. Since

In(k,G) → δk,0

∫ T+1

−T−1

∫

R

G(x, t) dx dt,

as n→ +∞ by the dominated convergence theorem, we obtain in the limit n→ +∞,

4λ2
∫ T+1

−T−1

∫

R

|∂xum(x, t)|2 eλxχ(t) dx dt =2

∫ T+1

−T−1

∫

R

〈Fm(x, t), i um(x, t)〉C eλxχ′(t) dx dt

− 2λ2
∫ T+1

−T−1

∫

R

〈Fm(x, t), um(x, t)〉C eλxχ(t) dx dt

− 4λ

∫ T+1

−T−1

∫

R

〈Fm(x, t), ∂xum(x, t)〉C eλxχ(t) dx dt

+

∫ T+1

−T−1

∫

R

|um(x, t)|2 eλx
(
χ′′(t) + λ4χ(t)

)
dx dt.

(A.39)

We now use the inequality 2αβ ≤ α2 + β2 to write

∣∣∣∣2
∫ T+1

−T−1

∫

R

〈Fm(x, t), i um(x, t)〉C eλxχ′(t) dx dt

∣∣∣∣

≤ K1

(∫ T+1

−T−1

∫

R

|um(x, t)|2 eλx dx dt+
∫ T+1

−T−1

∫

R

|Fm(x, t)|2 eλx dx dt
)
,

(A.40)
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with K1 := ‖χ′‖L∞(R). Similarly, we have

∣∣∣∣2
∫ T+1

−T−1

∫

R

(
2λ〈Fm(x, t), ∂xum(x, t)〉C + λ2〈Fm(x, t), um(x, t)〉C

)
eλxχ(t) dx dt

∣∣∣∣

≤λ2
∫ T+1

−T−1

∫

R

|um(x, t)|2 eλx dx dt+ 2λ2
∫ T+1

−T−1

∫

R

|∂xum(x, t)|2 eλxχ(t) dx dt

+
(
2 + λ2

) ∫ T+1

−T−1

∫

R

|Fm(x, t)|2 eλx dx dt.

Combining with (A.39) and (A.40), we obtain the inequality

2λ2
∫ T+1

−T−1

∫

R

|∂xum(x, t)|2 eλxχ(t) dx dt ≤
(
K1 +K2 + λ2 + λ4

) ∫ T+1

−T−1

∫

R

|um(x, t)|2eλx dx dt

+
(
K1 + λ2 + 2

) ∫ T+1

−T−1

∫

R

|Fm(x, t)|2 eλx dx dt,

with K2 := ‖χ′′‖L∞(R). At this stage, we rely on the properties of the function χ to obtain the
inequality 2

2λ2
∫ T

−T

∫

R

|∂xum(x, t)|2eλx dx dt ≤ Kλ

∫ T+1

−T−1

∫

R

(
|um(x, t)|2 + |Fm(x, t)|2

)
eλx dx dt, (A.41)

for some positive constant Kλ, depending only on λ.

In order to conclude the proof, we finally consider the limit m→ +∞. Using the linearity of
(LS), we can transform (A.41) into

2λ2
∫ T

−T

∫

R

|∂xum(x, t)− ∂xup(x, t)|2 eλx dx dt

≤ Kλ

∫ T+1

−T−1

∫

R

(
|um(x, t)− up(x, t)|2 + |Fm(x, t)− Fp(x, t)|2

)
eλx dx dt,

(A.42)

for any (m, p) ∈ (N∗)2. On the other hand, we can check that

∫ T+1

−T−1

∫

R

|um(x, t) − u(x, t)|2 eλx dx dt

≤ 4‖µ‖2L1(R2) sup
|s|≤1,|y|≤1

∫ T+1

−T−1

∫

R

∣∣∣u
(
x− y

m
, t− s

m

)
− u(x, t)

∣∣∣
2
eλx dx dt.

Setting v(x, t) = u(x, t)e
λx
2 , we observe that

∫ T+1

−T−1

∫

R

∣∣∣u
(
x− y

m
, t− s

m

)
− u(x, t)

∣∣∣
2
eλx dx dt

≤
∫ T+1

−T−1

∫

R

(
|v(x, t)|2

∣∣∣e
λy
2m − 1

∣∣∣
2
+
∣∣∣v
(
x− y

m
, t− s

m

)
− v(x, t)

∣∣∣
2
e

λy
m

)
dx dt.

Since v ∈ L2([−T − 2, T + 2], L2(R)) by (A.33), we obtain the convergence

∫ T+1

−T−1

∫

R

|um(x, t)− u(x, t)|2 eλx dx dt → 0,

2The choice of χ can indeed be made so that K1 and K2 are independent of T .
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as m→ +∞. Due to (A.33) again, similar convergence holds for the functions Fm and F .

In particular, we infer from (A.42) that the functions (x, t) 7→ ∂xum(x, t)e
λx
2 form a Cauchy

sequence in L2([−T, T ], L2(R)). In view of (A.37), their limit in the sense of distributions is the

map (x, t) 7→ ∂xu(x, t)e
λx
2 . As a consequence, this map belongs to L2([−T, T ], L2(R)), with

∫ T

−T

∫

R

|∂xum(x, t)− ∂xu(x, t)|2 eλx dx dt → 0,

as m→ +∞. It is then enough to take the limit m→ +∞ into (A.41) to obtain inequality (32).
This completes the proof of Proposition 5.

Remark. Inequalities similar in spirit to (32) can be obtained with similar proofs replacing the
weight function eλx by eφ where φ : R → R is a smooth function with bounded derivatives and
such that φ′′ + (φ′)2 is bounded from below on R. In those cases, we obtain inequalities of the
form

∫ T

−T

∫

R

|∂xu(x, t)|2eφ(x) dx dt ≤ Kφ

∫ T+1

−T−1

∫

R

(
|u(x, t)|2 + |F (x, t)|2

)
eφ(x) dx dt,

where Kφ is a positive constant depending only on φ.

A.2.2 Proof of Proposition 6

We denote by Ψ∗ ∈ C(R,X (R)) a solution (uniquely determined up to a constant phase shift)
to (GP) corresponding to the solution (η∗, v∗) to (HGP). Formally, we may differentiate (GP) k
times with respect to the space variable and write the resulting equation as

i∂t
(
∂kxΨ

∗)+ ∂xx
(
∂kxΨ

∗) = Rk(Ψ
∗), (A.43)

where, in view of the cubic nature of (GP),

∣∣Rk(Ψ
∗)
∣∣ ≤ |∂kxΨ∗|+

∑

α≤β≤γ
α+β+γ=k

Kα,β,γ |∂αxΨ∗| |∂βxΨ∗| |∂γxΨ∗|. (A.44)

In particular, our strategy to establish Proposition 6 consists in applying inductively Proposition
5 to the derivatives ∂kxΨ

∗ in order to improve their smoothness properties, and then translate
the resulting properties in terms of the pair (η∗, v∗). As a consequence, we split the proof into
four steps.

Step 1. Let k ≥ 1. There exists a positive number Ak,c, depending only on k and c, such that

∫ t+1

t

∫

R

∣∣∂kxΨ∗(x+ a∗(t), s)
∣∣2e2νc|x| dx ds ≤ Ak,c, (A.45)

for any t ∈ R.

The proof is by induction on k ≥ 1. More precisely, we are going to prove by induction that
(A.45) and ∫ t+1

t

∫

R

∣∣Rk(Ψ
∗)(x+ a∗(t), s)

∣∣2e2νc|x| dx ds ≤ Ak,c, (A.46)

hold simultaneously for any t ∈ R. Notice that (A.45) implies that ∂kxΨ
∗ ∈ L2

loc(R, L
2(R)), while

(A.46) implies that Rk(Ψ
∗) ∈ L2

loc(R, L
2(R)). Therefore, if (A.45) and (A.46) are established for
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some k ≥ 1, then (A.43) can be justified by a standard approximation procedure, so that we are
in position to apply Proposition 5 to (suitable translates of) ∂kxΨ

∗.

For k = 1, recall that

|∂xΨ∗|2 = (∂xη
∗)2

4(1− η∗)
+ (1− η∗)(v∗)2.

it follows that
1

Ac

|∂xΨ∗|2 ≤ (∂xη
∗)2 + (v∗)2 ≤ Ac|∂xΨ∗|2,

where the constant Ac, here as in the sequel, depends only on c. It then follows from Proposition
4 that (A.45) and (A.46) are satisfied. Indeed, since

|R1(Ψ
∗)| ≤ A|∂xΨ∗|

(
1 + |Ψ∗|2

)
,

we have
∣∣R1(Ψ

∗)(x+ a∗(t), s)
∣∣2e2νc|x| ≤ A2|∂xΨ∗(x+ a∗(s), s)|2e2νc(|a∗(t)−a∗(s)|+|x|)(1 + ‖Ψ∗‖2L∞(R)

)2
,

and we may rely on Proposition 4, and the fact that |a∗(t)− a∗(s)| is bounded independently of
t for s ∈ [t, t+ 1].

Assume next that (A.45) and (A.46) are satisfied for any integer k ≤ k0 and any t ∈ R.
We apply Proposition 5 with u := ∂k0x Ψ∗(· + a∗(t), · − (t + 1/2)), T := 1/2 and successively
λ := ±2νc. In view of (A.43), (A.45), (A.46), and the fact that |a∗(t) − a∗(s)| is uniformly
bounded for s ∈ [t− 1, t+ 2], this yields

∫ t+1

t

∫

R

|∂k0+1
x Ψ∗(x+ a∗(t), s)|2e2νc|x| dx ds ≤ AcAk0,cK2νc

4ν2
c

, (A.47)

so that (A.45) is satisfied for k = k0 + 1, if we set Ak0+1,c = AcAk0,cK2νc/4ν
2
c
.

We now turn to (A.46) which we wish to establish for k = k0 +1. First notice that the linear
term in the right-hand side is already bounded by (A.47), so that we only have to handle with
the cubic terms. Notice also that we have by (A.43), (A.45) and (A.46),

∂jxΨ
∗ ∈ L2

loc(R,H
2(R)), and ∂jxΨ

∗ ∈ H1
loc(R, L

2(R)),

for any 1 ≤ j < k0, with bounds depending only on k0 + 1 and c on any time interval of length
1. By interpolation, we obtain similar bounds for ∂jxΨ∗ ∈ Hs

loc(R,H
2−2s(R)) for any 0 ≤ s ≤ 1.

Taking for instance s = 2/3 and using the Sobolev embedding theorem, we obtain a global bound
for ∂jxΨ∗ in L∞(R× R). Since the latter also holds for j = 0, we thus have

∥∥∂jxΨ∗∥∥
L∞(R×R)

≤ Ak0+1,c, (A.48)

for any 0 ≤ j < k0, where the value of Ak0+1,c possibly needs to be increased with respect to its
prior value, but depending only on k0 + 1 and c.

In order to estimate the sum in (A.44), we next distinguish two cases according to the possible
values of α, β and γ.

Case 1. If β < k0, then

∫ t+1

t

∫

R

[
|∂αxΨ∗|2 |∂βxΨ∗|2 |∂γxΨ∗|2

]
(x+ a∗(t), s)e2νc|x| dx ds

≤
∥∥∂αxΨ∗∥∥2

L∞(R×R)

∥∥∂βxΨ∗∥∥2
L∞(R×R)

∫ t+1

t

∫

R

|∂γxΨ∗(x+ a∗(t), s)|2e2νc|x| dx ds,

and we may rely on (A.48), as well as (A.45) or (A.47), depending on the value of γ.
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Case 2. Since α ≤ β ≤ γ and α+β+γ = k0+1, the only remaining case is α = 0, β = γ = k0 = 1.
In that situation, we write

∫ t+1

t

∫

R

[
|Ψ∗|2 |∂xΨ∗|4

]
(x+ a∗(t), s)e2νc|x| dx ds

≤
∥∥Ψ∗∥∥2

L∞(R×R)

(
sup

s∈[t,t+1]

∫

R

|∂xΨ∗(x, s)|2 dx
)∫ t+1

t

∥∥∂xΨ∗(·+ a∗(t), s)eνc|x|
∥∥2
L∞(R)

ds.

By conservation of the energy, we have

sup
s∈[t,t+1]

∫

R

|∂xΨ∗(x, s)|2 dx ≤ 2E(Ψ∗(·, 0)).

while, by the Sobolev embedding theorem,

∥∥∂xΨ∗(·+ a∗(t), s)eνc|·|
∥∥2
L∞(R)

≤Ac

(∥∥∂xxΨ∗(·+ a∗(t), s)eνc|·|
∥∥2
L2(R)

+
∥∥∂xΨ∗(·+ a∗(t), s)eνc|·|

∥∥2
L2(R)

)
.

The conclusion then follows also from (A.45) and (A.47).

At this stage, we have established by induction that (A.45) and (A.46) hold for any k ≥ 1.
In order to finish the proof of Proposition 6, we now turn these L2

loc in time estimates into L∞

in time estimates, and then in uniform estimates.

Step 2. Let k ≥ 1. There exists a positive number Ak,c, depending only on k and c, such that

∫

R

∣∣∂kxΨ∗(x+ a∗(t), t)
∣∣2e2νc|x| dx ≤ Ak,c, (A.49)

for any t ∈ R. In particular, we have

∥∥∂kxΨ∗(·+ a∗(t), t)eνc|·|
∥∥
L∞(R)

≤ Ak,c, (A.50)

for any t ∈ R, and a further positive constant Ak,c, depending only on k and c.

Here also, we first rely on the Sobolev embedding theorem and (A.43). By the Sobolev
embedding theorem, we have

∥∥∂kxΨ∗(·+ a∗(t), t)eνc|·|
∥∥2
L2(R)

≤K
(∥∥∂s

(
∂kxΨ

∗(·+ a∗(t), s)eνc|·|
)∥∥2

L2([t−1,t+1],L2(R))

+
∥∥∂kxΨ∗(·+ a∗(t), s)eνc|·|

∥∥2
L2([t−1,t+1],L2(R))

)
,

while, by (A.43),

∥∥∂s
(
∂kxΨ

∗(·+ a∗(t), s)eνc|·|
)∥∥2

L2([t−1,t+1],L2(R))
≤2
(∥∥∂k+2

x Ψ∗(·+ a∗(t), s)eνc|·|
∥∥2
L2([t−1,t+1],L2(R))

+
∥∥Rk(Ψ

∗)(·+ a∗(t), s)eνc|·|
∥∥2
L2([t−1,t+1],L2(R))

)
,

so that we finally deduce (A.49) from (A.46) and (A.45). Estimate (A.50) follows applying the
Sobolev embedding theorem.

We now translate (A.49) and (A.50) into estimates for η∗.
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Step 3. Let k ∈ N. There exists a positive number Ak,c, depending only on k and c, such that
∫

R

(
∂kxη

∗(x+ a∗(t), t)
)2
e2νc|x| dx ≤ Ak,c, (A.51)

and ∥∥∂kxη∗(·+ a∗(t), t)eνc|·|
∥∥
L∞(R)

≤ Ak,c, (A.52)

for any t ∈ R.

Concerning (A.51), we first recall that

∂s
(
η∗(·+ a∗(t), s)

)
= 2〈iΨ∗(·+ a∗(t), s), ∂xxΨ

∗(·+ a∗(t), s)〉C.
Since Ψ∗ is uniformly bounded on R× R in view of (25), we can rely on (A.49) to claim that
∥∥∂s
(
η∗(·+ a∗(t), s)eνc|·|

)∥∥
L2([t−1,t+1],L2(R))

≤ Ac

∥∥∂xxΨ∗(·+ a∗(t), s)eνc|·|
∥∥
L2([t−1,t+1],L2(R))

≤ Ac.

Since ∥∥η∗(·+ a∗(t), s)eνc|·|
∥∥
L2([t−1,t+1],L2(R))

≤ Ac,

by Proposition 4, and since |a∗(t)− a∗(s)| is bounded independently of t for s ∈ [t− 1, t+1], we
can invoke again the Sobolev embedding theorem to obtain (A.51) for k = 0.

When k ≥ 1, we recall that

∂kxη
∗ = −2

k−1∑

j=0

(
k − 1

j

)〈
∂jxΨ

∗, ∂k−j
x Ψ∗〉

C
,

by the Leibniz rule, so that (A.51) follows from (A.49), (A.50), and the property that Ψ∗ is
uniformly bounded on R×R by (25). The uniform bound in (A.52) is then a consequence of the
Sobolev embedding theorem arguing as for (A.50).

Finally, we provide the estimates for the function v∗.

Step 4. Let k ∈ N. There exists a positive number Ak,c, depending only on k and c, such that
∫

R

(
∂kxv

∗(x+ a∗(t), t)
)
e2νc|x| dx ≤ Ak,c, (A.53)

and ∥∥∂kxv∗(·+ a∗(t), t)eνc|·|
∥∥
L∞(R)

≤ Ak,c, (A.54)

for any t ∈ R.

Here, we recall that

v∗ =
(
1− η∗

)− 1
2
〈
i∂xΨ

∗,Ψ∗〉
C
,

so that, by the Leibniz rule, we have

∂kxv
∗ =

k∑

j=0

k−j∑

ℓ=0

(
k

j

)(
k − j

ℓ

)
∂jx

(
(1− η∗)−

1
2

)〈
i∂ℓ+1

x Ψ∗, ∂k−j−ℓ
x Ψ∗〉

C
.

At this stage, we can combine the Faa di Bruno formula with (25) and (A.52) to guarantee that
∥∥∥∂jx
(
(1− η∗)−

1
2

)
(·+ a∗(t), t)

∥∥∥
L∞(R)

≤ Aj,c,

for any j ∈ N and any t ∈ R. In view of (A.49) and (A.50), this leads to (A.53). The uniform
bound in (A.54) follows again from the Sobolev embedding theorem.

In view of (A.52) and (A.54), we conclude that the pair (η∗, v∗) is smooth on R × R, with
exponential decay. Estimate (33) is a direct consequence of (A.51) and (A.53). This completes
the proof of Proposition 6.
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B Complements on orbital stability and the operator Hc

B.1 Properties of the operator Hc

In this subsection, we recall and slightly extend some properties of the operator Hc which were
established in [13, 4].

For c ∈ (−
√
2,
√
2) \ {0}, the operator Hc is given in explicit terms by

Hc(ε) =


−1

4∂x

(
∂xεη
1−ηc

)
+ 1

4

(
2− ∂xxηc

(1−ηc)2
− (∂xηc)2

(1−ηc)3

)
εη −

(
c
2 + vc

)
εv

−
(
c
2 + vc

)
εη + (1− ηc)εv


 . (B.1)

It follows from the Weyl theorem and criterion that Hc is self-adjoint on L2(R) × L2(R), with
domain H2(R)× L2(R), and that its essential spectrum is equal to

σess(Hc) =
[ 2− c2

3 +
√
1 + 4c2

,+∞
)
.

It was proved in [13, 4] that Hc has a unique negative eigenvalue, that its kernel is spanned
by ∂xQc, and that there exists a positive constant Λc, depending only and continuously on c,
such that we have the estimate Hc(ε) ≥ Λc‖ε‖2X , for any pair ε ∈ X(R) which satisfies the
orthogonality conditions 〈ε, ∂xQc〉L2(R)2 = P ′(Qc)(ε) = 0.

It follows from the characterization of the kernel here above that the operator Hc is an
isomorphism from Dom(Hc) ∩ Span(∂xQc)

⊥ onto Span(∂xQc)
⊥. Moreover, given any k ∈ N,

there exists a positive number Ac, depending continuously on c, such that the inverse mapping
H−1

c satisfies ∥∥H−1
c (f, g)

∥∥
Hk+2(R)×Hk(R)

≤ Ac

∥∥(f, g)
∥∥
Hk(R)2

, (B.2)

for any (f, g) ∈ Hk(R)2 ∩ Span(∂xQc)
⊥.

Indeed, the pair ε = H−1
c (f, g) is a solution in H2(R)× L2(R) to the equations





−1
4∂x

(
∂xεη
1−ηc

)
= f − 1

4

(
2− ∂2

xxηc
(1−ηc)2

− (∂xηc)2

(1−ηc)3

)
εη +

(
c
2 + vc

)
εv,

(1− ηc)εv = g +
(

c
2 + vc

)
εη,

(B.3)

which satisfies the bound

‖εη‖L2(R) + ‖εv‖L2(R) ≤ κc
(
‖f‖L2(R) + ‖g‖L2(R)

)
, (B.4)

with

κc := min
{1
λ
, λ 6= 0 s.t. λ ∈ σ(Hc)

}
.

In particular, since Hc depends analytically on c, and its eigenvalue 0 is isolated, the constant
κc is positive and depends continuously on c. Since

min
x∈R

{
1− ηc(x)

}
=
c2

2
> 0, (B.5)

we can apply standard elliptic theory to the first equation in (B.3) to obtain

‖εη‖H2(R) ≤ Ac

(
‖f‖L2(R) + ‖g‖L2(R)

)
,
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where Ac also depends continuously on c. Combining the second equation in (B.3) with (B.4)
and (B.5), it follows that

‖εv‖Hmin{k,2}(R) ≤ Ac

(
‖f‖Hk(R) + ‖g‖Hk(R)

)
.

when (f, g) ∈ Hk(R)2. Applying again standard elliptic theory to the first equation in (B.3), we
are led to

‖εη‖Hmin{k+2,4}(R) ≤ Ac

(
‖f‖Hk(R) + ‖g‖Hk(R)

)
.

A bootstrap argument then yields (B.2), with a constant Ac which depends continuously on c.

B.2 Proof of Theorem 3

As mentioned in the introduction, the proof of Theorem 3 consists in a few adaptations with
respect to the arguments in [13, 4].

The global existence of the solution (η, v) to (HGP) for an initial data (η0, v0) which satisfies
the condition (4) is indeed established in [4, Theorem 2].

The existence for a fixed number t ∈ R of the modulation parameters a(t) and c(t) in (5) is
shown in [4, Proposition 2], as well as the two estimates in (8). Combining these estimates with
the Sobolev embedding theorem of H1(R) into C0(R) and the bound (B.5) on 1 − ηc, we can
write

max
x∈R

η(x, t) ≥
∥∥ηc(t)

∥∥
L∞(R)

−
∥∥εη(·, t)

∥∥
L∞(R)

≥ 1− c(t)2

2
−Kcα0 ≥ 1− c

2

2
−Kcαc.

For αc small enough, estimate (7) follows with σc := c
2/2 +Kcαc.

Concerning the C1-dependence on t of the numbers a(t) and c(t), it is proved in [4, Proposition
4], as well as the linear estimate

∣∣c′(t)
∣∣+
∣∣a′(t)− c(t)

∣∣ ≤ Ac

∥∥ε(·, t)
∥∥
X(R)

. (B.6)

The only remaining point to verify is that the linear dependence on ε of c′(t) in (B.6) is actually
quadratic.

In order to prove this further property, we differentiate the second orthogonality relation in
(6) with respect to time. Combining with (12), we obtain

c′
d

dc

(
P (Qc)

)
= P ′(Qc)

(
JHc(ε)

)
+
(
a′ − c

)
P ′(Qc)

(
∂xε+ ∂xQc

)

+ c′
〈
P ′′(Qc)(∂cQc), ε

〉
L2(R)2

+ P ′(Qc)
(
JRcε

)
,

(B.7)

at any time t ∈ R. The first term in the right-hand side of (B.7) vanishes since

P ′(Qc)
(
JHc(ε)

)
= 2〈∂xQc,Hc(ε)〉L2(R)2 = 2〈Hc(∂xQc), ε〉L2(R)2 = 0, (B.8)

by (10). Concerning the second one, we have

P ′(Qc)
(
∂xQc

)
=

∫

R

∂x
(
ηc(x)vc(x)

)
dx = 0, (B.9)

while we can deduce from (B.6) that

∣∣a′ − c
∣∣∣∣P ′(Qc)

(
∂xε
)∣∣ ≤ Ac

∥∥ε
∥∥2
X(R)

. (B.10)
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Similarly, the third term can be estimated as

∣∣c′
∣∣∣∣〈P ′′(Qc)(∂cQc), ε〉L2(R)2

∣∣ ≤ Ac

∥∥ε
∥∥2
X(R)

. (B.11)

For the last term, we recall that

[
Rc(t)ε(·, t)

]
η
:=

(∂xηc)
2ε2η(3− ηc − 2η)

8(1 − ηc)3(1− η)2
+

(∂xηc)εη(∂xεη)(2− ηc − η)

4(1− ηc)2(1− η)2
+

(∂xεη)
2

8(1− η)2
− ε2v

2

− ∂x

( εη(∂xεη)

4(1 − ηc)(1 − η)
+

(∂xηc)ε
2
η

4(1 − ηc)2(1− η)

)
,

[
Rc(t)ε(·, t)

]
v
:=− εηεv,

(B.12)

so that we can compute

P ′(Qc)
(
JRcε

)
=

∫

R

(∂xxηc)
( εη(∂xεη)

2(1− ηc)(1− η)
+

(∂xηc)ε
2
η

2(1− ηc)2(1− η)

)

−
∫

R

(
2(∂xvc)εηεv + (∂xηc)ε

2
v

)
−
∫

R

(∂xηc)
((∂xηc)2ε2η(3− ηc − 2η)

4(1− ηc)3(1− η)2

+
(∂xηc)εη(∂xεη)(2− ηc − η)

2(1 − ηc)2(1− η)2
+

(∂xεη)
2

4(1 − η)2

)
.

It is then enough to apply again the Sobolev embedding theorem and to use the control on 1− η
and c provided by (7), respectively (8), to obtain

∣∣P ′(Qc)
(
JRcε

)∣∣ ≤ Ac

∥∥ε
∥∥2
X(R)

.

Recalling that
d

dc

(
P (Qc)

)
= −

(
2− c2

) 1
2 6= 0,

we can combine the identity (B.7) with the estimates (B.8), (B.9), (B.10) and (B.11) to prove
the quadratic estimate of c′(t) in (9). This concludes the proof of Theorem 3.
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