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Boundary-Layer Effect in Composite 
Beams with Interlayer Slip
Noël Challamel1 and Ulf Arne Girhammar2

Abstract: An apparent analytical peculiarity or paradox in the bending behavior of elastic-composite beams with interlayer slip, sandwich 
beams, or other similar problems subjected to boundary moments exists. For a fully composite beam subjected to such end moments, the 
partial composite model will render a nonvanishing uniform value for the normal force in the individual subelement. This is from a formal 
mathematical point of view in apparent contradiction with the boundary conditions, in which the normal force in the individual subelement 
usually is assumed to vanish at the extremity of the beam. This mathematical paradox can be explained with the concept of boundary layer. 
The bending of the partially composite beam expressed in dimensionless form depends only on one structural parameter related to the 
stiffness of the connection between the two subelements. An asymptotic method is used to characterize the normal force and the bending 
moment in the individual subelement to this dimensionless connection parameter. The outer expansion that is valid away from the boundary 
and the inner expansion valid within the layer adjacent to the boundary (beam extremity) are analytically given. The inner and outer ex-
pansions are matched by using Prandtl’s matching condition over a region located at the edge of the boundary layer. The thickness of the 
boundary layer is the inverse of the dimensionless connection parameter. Finite-element results confirm the analytical results and the sensi-
tivity of the bending solution to the mesh density, especially in the edge zone with stress gradient. Finally, composite beams with interlayer 
slip can be treated in the same manner as nonlocal elastic beams. The fundamental differential equation appearing in the constitutive law 
associated with the partial-composite action in a nonlocal elasticity framework is discussed. Such an integral formulation of the constitutive 
equation encompassing the behavior of the whole of the beam allows the investigation of the mechanical problem with the boundary-element 
method.

Keywords: Composite beams; Sandwich beams; Partial interaction; Interlayer slip; Boundary layer; Asymptotic method; Nonlocal 
mechanics; Green operator.

Introduction

Composite structures of different materials have important applica-
tions in civil and mechanical engineering. The composite beams
with interlayer slip studied in this paper represent a number of dif-
ferent classes of structures with the same type of basic behavior and
governing equations, such as layered beams (i.e., those that are me-
chanically jointed), shear connections (i.e., those with lap joints
mechanically or adhesively jointed), and sandwich constructions
(i.e., those with weak shear cores). Also, there exist different types
of buildings in which part or the whole of the structure is modeled
as a partially composite or sandwich-type of structure.

Layered structural elements with interlayer slip are typically en-
countered in wood design in which wooden beams are composed of
layers assembled by means of nailing, bolting, or gluing with a soft

shear modulus. Partially composite structures built up by subele-
ments of different materials and connected by shear connectors
to form an interacting unit, such as timber-concrete or steel-
concrete elements, are widely used in building engineering. In
the case of a flexible connection, the analysis procedure requires
the consideration of the interlayer slip among the subelements,
leading to the partial interaction concept. For a detailed back-
ground in the literature about the partial-composite theory, refer
to Girhammar and Gopu (1993), Girhammar and Pan (2007), or
Girhammar (2008). Details about the original developments of
the fundamental differential equations are found in the work
of Granholm (1949) and Newmark et al. (1951) (see also Stüssi
1947 and Pleshkov 1952). A central work summarizing these early
theories is that of Goodman and Popov (1968). The dynamics of
partially composite beams have been recently investigated by Gir-
hammar et al. (2009) for the in-plane behavior and Challamel
(2009) or Challamel et al. (2010a) for the out-of-plane behavior.

Sandwich beams are usually composed of three layers, two thin
faces and a thick, weak, shear core (Norris et al. 1952; Plantema
1966; Allen 1969). The static in-plane behavior of sandwich beams
was well established by Hoff (1956). Another application in build-
ing engineering was found for high-rise buildings, which can be
modeled as equivalent sandwich beams (Potzta and Kollár
2003). The in-plane buckling problem of a three-layer sandwich
beam was studied by Hoff and Mautner (1948) (see also Hoff
1956; Bauld 1967; Kollár 1986). A sixth-order differential equation
is obtained for the deflection, and the similarity between this gov-
erning equation and that for composite beams with partial interac-
tion was demonstrated by Heuer (2004). However, the equivalence
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between the slip modulus of shear connectors and the shear modu-
lus of glue lines of finite thickness or the sandwich-type of cores
was first demonstrated by McCutcheon (1977). The buckling of
sandwich beams has been recently reconsidered by Bažant
(2003) or Kardomateas (2010). Berdichevsky (2010) rigorously de-
rived sandwich plate or beam models from an asymptotic theory
that are also valid for hard-skin plates.

In this paper, we will discuss an interesting paradox present in
the bending behavior of composite beams with interlayer slip (or
sandwich beams or other kinds of similar problems) subjected to
boundary moments. For a very stiff connection or very thin sand-
wich layer, the normal forces in each individual subelement tend
toward a nonvanishing value in apparent contradiction with the
boundary conditions, in which the normal force in the individual
subelement usually is assumed to vanish at the extremity of the
beam. In reality, a moment is defined as a force couple and is
the formal mathematical representation of the resulting moment ef-
fect of forces of some origin that are applied on or transferred to the
beam at the end of the beam, in this case.

We will discuss the behavior of the composite beam subjected to
end moments when the origin of these end moments is not known;
that is, from a formal mathematical perspective. In an ordinary
beam, the analysis of the effect of these resulting end moments will
render mathematically unique and consistent results. However, in a
composite beam with interlayer slip, the distribution of the end mo-
ments among the individual subelements needs to be known for the
analysis to be unique and consistent. In consistency with the way
the theory for composite beams with interlayer slip is set up, no
unique way to distribute a total resulting end moment applied at
the boundary of the beam to the individual subelements exists.
The problem is of a hyperstatic nature, and the distribution cannot
be determined without knowing the conditions and the behavior of
the whole composite beam, which in turn, will depend on the boun-
dary loadings. So from a formal mathematical point of view, this
problem cannot be solved in a unique and consistent way. In a real
situation, the origin and the conditions for the forces that cause
these end moments are known and the correct boundary loading
conditions for the individual subelements can be stated. The
partial-composite action theory is formulated according to the
internal normal force for the individual subelement and the total
moment for the whole cross section of the composite beam. To
be consistent, the boundary loads need to be separated in a corre-
sponding way. Not knowing the background for the resulting end
moment, the natural choice for the value of the boundary condition
for the normal force of the individual subelement is zero when the
boundary is subjected to this total end moment. However, the fact
that the boundary of the whole beam is subjected to a total end
moment only means that the resulting normal force is zero at
the boundary, not that the normal forces of the individual parts
of the beam is zero. For example, in a two-component composite
beam, the normal forces in the individual components are equal but
of opposite sign.

Special cases exist in which both the real conditions and the
formal analyses are such that the boundary conditions on the
composite beam with interlayer slip are represented by a resulting
end moment for the whole cross section and a zero normal force of
one of the individual subelements. For example, this is the case
when only one of the subelements is subjected to an axial load,
which produces an eccentric end moment with respect to the cent-
roid of the fully composite beam (Girhammar and Copu 1991).
However, to be consistent with the partial-composite action theory,
these boundary loadings need to be interpreted as an axial load ap-
plied at the centroid of the fully composite beam on the whole area
of the cross section of the beam and as an end moment, also applied

on the whole cross section of the beam. An analysis with those
formal boundary conditions will not render the actual stress con-
ditions at the end of the beam. The real local load or stress distri-
butions at the boundary of the partially composite beam need to be
evaluated separately as the difference between the results of the
formal analysis of the load distribution at the end and the real dis-
tribution of the applied loads at the boundary.

Thus, the paradox as observed from a formal mathematical point
of view can be explained by using the concept of boundary layer,
which is very instructive in the field of fluid mechanics (Schlichting
and Gersten 2000). Boundary layer theory is also used in solid me-
chanics, especially at the interface modeling between two solids by
using the plasticity theory (Fleck and Hutchinson 1993; Shu et al.
2001). Boundary layers are also typically observed for elastic prob-
lems constituted of dissimilar materials (e.g., a soft one associated
with a stiff one), for three-dimensional media, or for very thin plate
problems (Sanchez-Hubert and Sanchez-Palencia 1992). Everstine
and Pipkin (1971) also studied the plane strain of ideal fiber-
reinforced composites exhibiting boundary layer phenomenon
for a large stiffness ratio between the extensional modulus and
the shear modulus. The use of the boundary layer theory for the
lateral-torsional buckling of composite elastic beams with small
warping terms is also mentioned in Hodges and Peters (2001). This
phenomenon may also be observed for two-dimensional elastic
beam models in the vicinity of the applied boundary conditions
(Gao et al. 2007). Boundary layers can also appear for very thin
interfaces (Lebon and Rizzoni 2010).

The boundary layer typically arises in gradient elastic beams in
which the small characteristic length term is multiplying the highest
derivative of the problem (Challamel and Wang 2008). We will
show in this paper that composite beams with interlayer slip belong
to the class of nonlocal elasticity beams and that they also exhibit
this specific boundary layer phenomenon, for example, when sub-
jected to boundary moments. More specifically, the boundary layer
appearing at the extremity of the composite beam for the normal
force distribution in the individual subelement along the beam will
be analyzed with the elastic connection parameter between the two
connected subelements of the beam.

Basic Assumptions and Notations

The geometric parameters defining a typical composite beam with
two subelements of different geometry and materials are shown in
Fig. 1(a). The subscripts “1” and “2” refer to the top and bottom
elements of the cross section, respectively. The x-axis of the coor-
dinate system is located in the center of gravity (i.e., in the centroid)
of the fully composite section. The displacements in the x-, y-, and
z-direction are denoted u, v, and w, respectively.

A free-body diagram of an element in the composite beam is
shown in Fig. 1(b), for which moments Mz, Mz1, and Mz2; shear
forces Vy, Vy1, and Vy2; normal forces N1 and N2; and slip force
per unit length Vs;x are defined. The influence of shear forces will
be neglected in this study. The effect of shear deformation can be
formally considered for shear composite beams as considered by
Qiao and Wang (2004), Wang and Qiao (2006), Hamey (2007),
or Wang and Zhang (2009). The centroid of the fully composite
section is given by ycg;∞ ¼ E2A2h0=EA0) where E2A2 is the axial
stiffness of Subelement 2 and EA0 ¼ E1A1 þ E2A2 is the total axial
stiffness of the composite member.

The subelements are connected together by means of some kind
of discrete shear connectors or a weak shear layer, which is as-
sumed to produce uniformly distributed slip forces or interlayer
shear stresses. The shear connector or shear layer force per unit
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length versus the slip or shear displacement behavior is linear elas-
tic with a constant slip modulus, KT ½N=m2�, with respect to bend-
ing in the transverse direction. Frictional effects and uplift at the
shear interface are neglected. Full composite action (i.e., infinite
slip modulus, KT → ∞) and noncomposite action (i.e., zero slip
modulus, KT → 0) represent the upper and lower boundaries for
the partial-composite action, respectively. Cohesive zone modeling
can be potentially implemented for the delamination process
(Wang 2007).

Consider the simply fork supported composite beam of length L
subjected to end moments M0 shown in Fig. 2. For each subele-
ment, the Euler-Bernoulli beam theory, neglecting the effect of
shear deformation, was assumed to be applicable. The curvature
of the two subelements was assumed to be equal for the case of
transverse bending. The differential equation expressed in the nor-
mal force N1ðxÞ in Subelement 1 (with regard to equilibrium, the
normal force in Subelement 2 is N2ðxÞ ¼ �N1ðxÞ) is given by
Girhammar and Gopu 1993 (see also the appendix).

N 00
1 � α2

TN1 ¼ βTM0 with N1ð0Þ ¼ N1ðLÞ ¼ 0 ð1Þ

The parameters of the differential equation are given by

α2
T ¼ KT

�
1

E1A1
þ 1
E2A2

þ h20
EIz;0

�
βT ¼ KT

h0
EIz;0

EA0 ¼ E1A1 þ E2A2 EAp ¼ E1A1 · E2A2

EIz;0 ¼ E1Iz1 þ E2Iz2 EIz;∞ ¼ EIz;0 þ
EAph20
EA0

βTh0
α2
T

¼ 1� EIz;0
EIz;∞

ð2Þ

It is easy to obtain the exact solution of this differential equation

N1ðxÞ ¼
�
1� EIz;0

EIz;∞

�
M0

h0

�
coshαTx� tanh

αTL
2

sinhαTx� 1

�

¼ �N2ðxÞ
ð3Þ

The normal force associated with the full composite beam can be
introduced as

N1;∞ ¼ �
�
1� EIz;0

EIz;∞

�
M0

h0
; N2;∞ ¼

�
1� EIz;0

EIz;∞

�
M0

h0
ð4Þ

Therefore, the normal force can be normalized as
N1ðxÞ
N1;∞

¼ N2ðxÞ
N2;∞

¼ 1� coshαTxþ tanh
αTL
2

sinhαTx ð5Þ

The dimensionless parameters can be introduced as

α̂ ¼ αTL; x̂ ¼ x
L
; n ¼ N1

N1;∞
¼ N2

N2;∞
ð6Þ

The dimensionless normal force is then written as

nðx̂Þ ¼ 1� cosh α̂x̂þ tanh
α̂
2
sinh α̂x̂ ð7Þ

It is easy to verify the boundary conditions
nð0Þ ¼ nð1Þ ¼ 0 ð8Þ

Furthermore, the normal force vanishes for the noncomposite beam
α̂ → 0 ⇒ nðx̂Þ → 0 ð9Þ

The normal force may also be expressed as

nðx̂Þ ¼ 1� cosh½α̂2 ð2x̂� 1Þ�
cosh α̂

2

ð10Þ

Eq. (10) clearly shows that the normal force is symmetrical about
the median axis. This symmetrical portrait can be proven from the
symmetrical properties of the differential equation coupled with
symmetrical properties of the boundary conditions given by
Eq. (1). Figs. 3 and 4 show the variation of the dimensionless nor-
mal force nðx̂Þ parameterized by the dimensionless connection
parameter α̂.

Analysis of the Boundary-Layer Effect with Respect
to Normal Forces

The differential equation Eq. (1) can be expressed in the dimension-
less form as

Fig. 1. (a) Geometric parameters of partial-composite beam where x, y, and z = coordinates; u, v, and w = displacements; cg;1, cg;2 and cg;∞ =
centroid (center of gravity) of Subelements 1, 2 and of a fully composite section, respectively; ycg;∞ ¼ E2A2h0=EA0 = distance of the centroid of the
fully composite section to the centroid of Subelement 1; (b) element in the partial-composite column where internal forces and moments are defined
positive, as shown

Fig. 2. Partially composite beam subjected to bending end moments
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� ε2n00 þ n ¼ 1 with nð0Þ ¼ nð1Þ ¼ 0 and ε ¼ 1
α̂

ð11Þ

where the prime now denotes the derivative with respect to the di-
mensionless variable x̂. It appears that the fully composite beam
ðα̂ → ∞Þ is associated with a boundary layer phenomenon that
we will study in more detail

α̂ → ∞ ⇒ ε → 0 ⇒ nðx̂Þ → 1 even if nð0Þ ¼ nð1Þ ¼ 0 ð12Þ

Boundary layers are regions in which a rapid change occurs in the
value of a variable; in this case, the normal force in the individual
subelement at the beam extremity for the fully composite beam.
Classical physical examples of situations in which the boundary
layer may occur are the fluid velocity near a solid wall. Ludwig
Prandtl pioneered the subject of the boundary layer theory in his
explanation of how a quantity as small as the viscosity of common
fluids could nevertheless play a crucial role in determining their
flow (Bush 1992; Nayfeh 2000). Mathematically, the occurrence
of a boundary layer is associated with the presence of a small
parameter ε multiplying the highest derivative [i.e., the second
derivative in Eq. (11)] in the governing equation of the process.

A straightforward perturbation expansion by using an asymp-
totic sequence in the small parameter ε leads to differential equa-
tions of a lower order than the original governing equation. As a
consequence, not all the boundary conditions can be satisfied by the
perturbation expansion

noutðx̂; εÞ ¼ n0ðx̂Þ þ εn1ðx̂Þ þ ε2n2ðx̂Þ þ � � � ð13Þ
Introducing Eq. (13) into Eq. (11) leads to the asymptotic
derivation

n0ðx̂Þ ¼ 1; n1ðx̂Þ ¼ 0; �n000 þ n2 ¼ 0 ⇒ n2 ¼ 0 ð14Þ
This straightforward expansion is referred to as the outer expan-
sion, which is valid away from the boundary. Therefore, the outer
expansion is simply written as

noutðx̂; εÞ ¼ n0ðx̂Þ ¼ 1 ð15Þ
The counterpart, the inner expansion, is valid within the layer

adjacent to the boundary (i.e., the beam extremity). The inner
expansion associated with the boundary layer region is expressed
as a stretched variable

s ¼ x̂
ε

ð16Þ
This choice of a stretched variable is associated with the asymptotic
property x̂ ¼ OðεÞ in the boundary layer. The new differential
equation is written as

� d2n
ds2

þ n ¼ 1 ð17Þ

whose solution is given by
ninðs; εÞ ¼ A cosh sþ B sinh sþ 1 ð18Þ

An asymptotic solution is presented for the layer adjacent to the
boundary of the left part of the beam. For symmetrical reasons, only
half of the beam will be treated. The left boundary condition is
written as

ninðs ¼ 0Þ ¼ 0 ⇒ A ¼ �1 ð19Þ
The inner and outer expansions are matched over a region located at
the edge of the boundary layer. The technique is called the method
of matched asymptotic expansion. Prandtl’s matching condition is
simply written as

lim
s→∞ninðsÞ ¼ lim

x̂→0
n0ðx̂Þ ¼ 1 ð20Þ

Prandtl’s matching condition necessarily shows that
B ¼ 1 ð21Þ

Therefore, the following result is obtained for the asymptotic ex-
pansion in both regions

Outer region: noutðx̂Þ ¼ 1 for x̂ ¼ Oð1Þ;

Inner region: ninðx̂Þ ¼ 1þ sinh
x̂
ε
� cosh

x̂
ε

for x̂ ¼ OðεÞ
ð22Þ

Analysis of the Boundary-Layer Effect with Respect
to Bending Moments

The equilibrium equations are simply written as [Fig. 1(b)]

M0 ¼ Mz1 þMz2 � N1h0; N1 þ N2 ¼ 0 ð23Þ
The in-plane kinematics is derived from the curvature equality
principle

Fig. 3. Influence of the dimensionless connection parameter α̂ on the
parameterized normal force nðx̂; α̂Þ and α̂ ∈ f0:5; 1; 2; 4; 8; 16; 32g

Fig. 4. Influence of the dimensionless connection parameter α̂ on
the parameterized normal force nðx̂; α̂Þ; symmetrical portrait; and
α̂ ∈ f10; 12:5; 16:67; 25; 33:33; 50; 100g
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� v00 ¼ χ ¼ Mz1

E1Iz1
¼ Mz2

E2Iz2
ð24Þ

Introducing Eq. (24) into Eq. (23) leads to the bending moment
identity

Mz1 ¼
E1Iz1
EIz;0

½M0 þ N1ðxÞh0� ¼
E1Iz1
E2Iz2

Mz2 ð25Þ

where the normal force is given by Eq. (3).
It is convenient to introduce the asymptotic parameters

Mz1;∞ ¼ E1Iz1
EIz;∞

M0 Mz2;∞ ¼ E2Iz2
EIz;∞

M0

Mz1;0 ¼
E1Iz1
EIz;0

M0 Mz2;0 ¼
E2Iz2
EIz;0

M0

ð26Þ

where the different expressions for the bending stiffness are given
by Eq. (2).

According to Eq. (24), the dimensionless bending moment can
also be introduced as

mz ¼
Mz1

Mz1;∞
¼ Mz2

Mz2;∞
ð27Þ

According to Eqs. (4), (25), and (27), the dimensionless bending
moment is related to the dimensionless normal force by

mz ¼
EIz;∞
EIz;0

þ
�
1� EIz;∞

EIz;0

�
n

with
Mz1;∞
Mz1;0

¼ Mz2;∞
Mz2;0

¼ EIz;0
EIz;∞

< 1

ð28Þ

The case of the noncomposite beam is obtained from

α̂ → 0 ⇒ nðx̂Þ → 0 ⇒ mzðx̂Þ →
EIz;∞
EIz;0

> 1 ð29Þ

The fully composite beam is derived from the asymptotic behavior

α̂ → ∞ ⇒ nðx̂Þ → 1 ⇒ mzðx̂Þ → 1

even if mzð0Þ ¼ mzð1Þ ¼
EIz;∞
EIz;0

ð30Þ

according to Eqs. (12) and (28).
The dimensionless bending moment mzðx̂Þ is shown in

Figs. 5 and 6.

Partially Composite Beam Considered as a Nonlocal
Beam

In this section, we treat the partially composite beam as a nonlocal
beam. The theory of nonlocal elasticity states that the stress at a
reference point in the body depends not only on the strains at this
reference point but also on the strains at all other points of the body.
Eringen (1983) used a differential equation to express the stress as a
spatial weight average of the strain by an integral operator. The
same concept can be applied to nonlocal beam mechanics in which
the bending moment at a given section depends not only on the
curvature at this reference section but also on the curvature in
the whole beam. For instance, Peddieson et al. (2003) investigated
Eringen’s model at the beam scale to obtain some specific scale
effects inherent in small-scale structures.

The moment-curvature relationship of partially composite
beams can written as (Girhammar and Gopu 1993 and the
appendix)

α2
T

EIz;∞
M � 1

EIz;0
M00 ¼ α2

Tχ� χ00 ð31Þ

where χ = curvature of both subelements. In Eq. (31), the nonlocal
constitutive relationship is recognized as considered by Challamel
and Wang (2008) to model scale effects in elastic beams (see also
Zhang et al. 2010)

M � l2cM00 ¼ EIz;∞ðχ� a2χ00Þ with lc ¼
1
αT

ffiffiffiffiffiffiffiffiffiffiffi
EIz;∞
EIz;0

s
and

a ¼ 1
αT

ð32Þ

Challamel and Wang (2008) showed that this model for ordinary
beams can be considered as a nonlocal integral model on the basis
of the combination of Eringen’s nonlocal constitutive model with a
local model. This can be shown from a strain-based approach on the
basis of the nonlocal curvature �χ defined from

Fig. 5. Influence of the dimensionless connection parameter α̂ on
the parameterized bending moment mzðx̂; α̂Þ; EIz;∞=EIz;0 ¼ 1:4; and
α̂ ∈ f0:5; 1; 2; 4; 8; 16; 32g

Fig. 6. Influence of the dimensionless connection parameter α̂ on the
parameterized bending moment mzðx̂; α̂Þ; EIz;∞=EIz;0 ¼ 1:4; symme-
trical portrait; and α̂ ∈ f10; 12:5; 16:67; 25; 33:33; 50; 100g
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�χ� l2c �χ00 ¼ χ ⇒ �χðxÞ ¼
Z

L

0
Gðx; tÞχðtÞdt ð33Þ

where the weighting function Gðx; tÞ = Green’s function of the
differential system associated with the associated curvature boun-
dary conditions of the problem. The nonlocal curvature �χðxÞ can be
understood as a spatial average of the local curvature along
the beam.

In a partially composite beam, the interlayer slip, and hence, the
force or stress distribution in the beam, cannot be determined with-
out knowing the complete behavior and all conditions of the whole
beam. This indicates that one cannot solve a partially composite
beam problem only knowing the local constitutive equation; one
needs to know the global equation. Thus, in such composite beams,
a kind of nonlocal beam behavior exists. The distribution of the
stresses is of a hyperstatic type.

By anology with Eq. (33), Eq. (32) can also be reformulated as

M ¼ EIz;∞
��

1�
�
a
lc

�
2
�
�χþ

�
a
lc

�
2
χ
�

¼ EIz;∞
��

1� EIz;0
EIz;∞

�
�χþ EIz;0

EIz;∞
χ
�

¼ EIz;0

��
EIz;∞
EIz;0

� 1

�
�χþ χ

�
ð34Þ

A similar approach can be presented by using a stress-based
approach on the basis of the nonlocal bending moment ~M defined
from

~M � a2 ~M00 ¼ M ⇒ ~MðxÞ ¼
Z

L

0
Hðx; tÞMðtÞdt ð35Þ

where the weighting function Hðx; tÞ = Green’s function of the
differential system associated with the associated bending moment
boundary conditions of the problem. The nonlocal constitutive law
can then be written by using a combination of the local and non-
local bending moment variables

χ ¼ 1
EIz;∞

��
1�

�
lc
a

�
2
�
~M þ

�
lc
a

�
2
M

�

¼ 1
EIz;∞

��
1� EIz;∞

EIz;0

�
~M þ EIz;∞

EIz;0
M

�

¼ 1
EIz;0

��
EIz;0
EIz;∞

� 1

�
~M þM

�
ð36Þ

In the absence of distributed forces, the nonlocal law is simplified
as

M00ðxÞ ¼ 0 ⇒ χ ¼ 1
EIz;∞

~M ð37Þ

In the present case studied in the paper, the bending moment is
uniform. Eq. (32) then leads to the simplified nonlocal constitutive
law

MðxÞ ¼ M0 ⇒ M ¼ EIz;∞ðχ� a2χ00Þ ð38Þ

Such a constitutive relationship is typically encountered in the case
of gradient elastic beams (Challamel and Wang 2008). The boun-
dary layer typically arises for gradient elastic beams in which the
small length term is multiplied into the highest derivative of the
problem. However, for a partially composite beam, the boundary
conditions are different from the ones of usual gradient elasticity
models. Under the conditions for the bending case studied in this
paper, the boundary conditions are assumed to be

N1ð0Þ ¼ N2ð0Þ ¼ N1ðLÞ ¼ N2ðLÞ ¼ 0 ð39Þ
Introducing Eq. (39) into the equilibrium equation Eq. (23) leads to
the following boundary conditions for the moments at the beam
extremity:

M0 ¼ Mz1 þMz2 ð40Þ
According to Eq. (24), (χ ¼ �v00), the boundary conditions can
then be expressed for the curvature as

χð0Þ ¼ χðLÞ ¼ M0

EIz;0
ð41Þ

Finally, the static problem of a partially composite beam under uni-
form bending moment is reduced to the following second-order dif-
ferential equation of the curvature:

χ� 1
α2
T
χ00 ¼ M0

EIz;∞
ð42Þ

with the pertaining boundary conditions according to Eq. (41).
The dimensionless curvature χ̂ can be introduced as

χ̂ ¼ χ
M0
EIz;∞

ð43Þ

Solving Eq. (42) and noting the expression for the normal force
according to Eq. (7), the dimensionless curvature is found to be
equivalent to Eq. (28)

χ̂ ¼ EIz;∞
EIz;0

þ
�
1� EIz;∞

EIz;0

�
n ¼ mz ð44Þ

Hence, Figs. 5 and 6 also include the curvature evolution along
the beam and the specific boundary-layer effect obtained for large
values of the connection parameter. A partially composite beam
model as discussed in this paper can be considered to correspond
to a nonlocal beam model. The existence of a boundary layer in
gradient elasticity beams has already been demonstrated in
Challamel and Wang (2008) in the case of an ordinary cantilever
beam.

The stress-approach would, in the case of a uniform moment,
lead to

MðxÞ ¼ M0 ⇒ χ ¼ 1
EIz;∞

~M0 ¼
M0

EIz;∞

Z
L

0
Hðx; tÞdt ≠ M0

EIz;∞
ð45Þ

This result is attributable to the fact that the boundary conditions of
the nonlocal bending moments may differ from the ones of the uni-
form bending values M0. The Green operator of the stress-based
approach is deduced from the boundary conditions

~Mð0Þ
EIz;∞

¼
~MðLÞ
EIz;∞

¼ M0

EIz;0
ð46Þ

The stress-based approach is interesting from an engineering
point of view and allows the calculation of the curvature field
directly from the bending stress variation by using the integral
operator.

Calculations for the integral operator are derived with the fol-
lowing differential equation:

~M � a2 ~M00 ¼ M with ~Mð0Þ ¼ ~MðLÞ ¼ EIz;∞
EIz;0

M0 ð47Þ

It can be useful to introduce the change of variable to impose homo-
geneous boundary conditions
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M� ¼ ~M � EIz;∞
EIz;0

M0 ð48Þ

Therefore, the differential problem is converted into the equivalent
one

M� � a2M�00 ¼ M � EIz;∞
EIz;0

M0 with M�ð0Þ ¼ M�ðLÞ ¼ 0 ð49Þ

leading to the integral formulation

M� ¼
Z

L

0
H�ðx; tÞ

�
MðtÞ � EIz;∞

EIz;0
M0

�
dt ð50Þ

where the Green’s function, associated with the differential oper-
ator with the specific associated homogeneous boundary conditions
according to Eq. (49), is given by (Polyanin and Manzhirov 2007)

H�ðx; tÞ ¼ 1
a

sinhðL�t
a Þ

sinhðLaÞ
sinh

x
a

if x < t and

H�ðx; tÞ ¼ 1
a

sinhðL�x
a Þ

sinhðLaÞ
sinh

t
a

if x > t ð51Þ

This integral operator can be understood as an interacting
weight function that tends toward a Dirac distribution for the full
composite action (i.e., ε ¼ 1=α̂ → 0)—see Fig. 7 or Fig. 8. This
indicates that the two interacting beams behave like a single beam
with nonlocal interacting effects strongly dependent on the connec-
tion parameter.

The curvature is finally computed from the Green’s operator
considering Eqs. (37) and (48)

χ ¼ 1
EIz;∞

Z
L

0
H�ðx; tÞ

�
MðtÞ � EIz;∞

EIz;0
M0

�
dt þ M0

EIz;0
ð52Þ

Such a formulation is typically compatible with the boundary-
element method. In the particular case of a uniform bending
moment, Eq. (52) is reduced to

χ ¼ �
�
EIz;∞
EIz;0

� 1

�
M0

EIz;∞

Z
L

0
H�ðx; tÞdt þ M0

EIz;0

¼ �
��

1� EIz;0
EIz;∞

�Z
L

0
H�ðx; tÞdt � 1

�
M0

EIz;0
ð53Þ

It is easily checked thatZ
L

0
H�ðx; tÞdt ¼ 1� cosh

x
a
þ�1þ cosh L

a

sinh L
a

sinh
x
a

ð54Þ

Introducing Eq. (54) into Eq. (53) leads to the curvature equa-
tion Eq. (44) with the dimensionless normal forces given by Eq. (7).
Such an integral representation is strictly equivalent to the direct
approach first investigated in the paper.

Finally, we would like to discuss the structure of the differential
equation appearing in the constitutive law of the nonlocal beam (or
partially composite beam, or sandwich beam) from the uniaxial
stress-strain relationship deduced from Eq. (32)

σ � l2cσ00 ¼ Eðe� a2e00Þ ð55Þ
where σ and e = uniaxial stress and the uniaxial strain, respectively.
This model comprises the nonlocal integral model of Eringen
(1983) when the parameter a is vanishing (i.e., when a ¼ 0) and
the gradient elasticity model when the parameter lc is vanishing
(i.e., when lc ¼ 0). The behavior of such nonlocal constitutive
law was recently discussed by Challamel et al. (2009b) with respect
to elastic dynamics wave properties. Aifantis (2003) postulated
such a model, generalized to three-dimensional media, to preclude
the strain and the stress singularities in dislocation and crack
problems. Challamel et al. (2008) also used a similar model at
the beam scale for plastic softening problems in the nonlocal
softening constitutive law (see also Challamel et al. 2009a for
the nonlocal damage problem or Challamel et al. 2010b for the non-
local hardening constitutive law). As recently shown by di Paola
et al. (2009), models of elastic foundation can also involve nonlo-
cality. In fact, the model of Reissner is derived from the following
differential equation (Reissner 1958; Kerr 1964; Karnovsky and
Lebed 2001):

p� l2cp00 ¼ k0ðy� a2y00Þ ð56Þ
where p and y = foundation reaction and deflection, respectively.
The Reissner model typically belongs to the class of nonlocal
models studied in this paper. The model of Pasternak (1954) is rec-
ognized when the parameter lc is vanishing (i.e., when lc ¼ 0),
which is analogous to a gradient elasticity model. Recently,
Challamel et al. (2010c) studied the buckling of elastic columns
on a Reissner nonlocal foundation. Therefore, it seems that the fun-
damental constitutive differential equation of Eq. (32), has been

Fig. 7. Influence of the dimensionless connection parameter α̂ on
the dimensionless weight function H�ðx̂; t̂Þ=H�ðx̂; x̂Þ; x̂ ¼ 1=2; and
α̂ ∈ f1; 2; 4; 8; 16; 64g

Fig. 8. Influence of the dimensionless connection parameter α̂ on
the dimensionless weight function H�ðx̂; t̂Þ=H�ðx̂; x̂Þ; x̂ ¼ 1=4; and
α̂ ∈ f1; 2; 4; 8; 16; 64g
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widely studied, even if the treatment in a nonlocal framework is
certainly more recent.

Finite-Element Results

Even if the exact solution of this theoretical problem is easily ob-
tained analytically, the computation of the curvature by using the
finite-element method can be instructive to characterize the sensi-
tivity of the boundary layer to the mesh density, especially for stiff
connection. The exact finite-element model of the in-plane partially
composite problem was studied by Faella et al. (2002), including
the axial displacements and the deflection. In this section, we focus
on the curvature distribution and present a simple variational for-
mulation leading to the finite-element resolution of the bending
problem. The differential equation Eq. (42) dealing with the cur-
vature with the boundary conditions obtained for this problem
can be reformulated by the energy functional

U½χ� ¼
Z

L

0

1
2
EIz;∞ðχ2 þ a2χ02Þ �M0χdx � λ1

�
χð0Þ � M0

EIz;0

�

� λ2
�
χðLÞ � M0

EIz;0

�
ð57Þ

where λ1 and λ2 = two additional Lagrange multipliers associated
with the boundary conditions of Eq. (41). The stationarity of U½χ�
with respect to the curvature function is written as

δU½χ� ¼
Z

L

0
EIz;∞ðχδχþ a2χ0δχ0Þ �M0δχdx� λ1δχð0Þ

� λ2δχðLÞ ¼ 0 ð58Þ
The gradient elasticity solution of Eq. (42) is found again by inte-
grating Eq. (58) by part (see also Challamel and Wang 2008 for a
similar discussion). A two-degrees-of-freedom element is pre-
sented for the resolution of the discretized bending problem.
The linear interpolation for the bending curvature is expressed by

χðxÞ ¼ PTðxÞX with PðxÞ ¼ 1� x=l
x=l

� �
and X ¼ X1

X2

� �
ð59Þ

where l = length of the finite element. This interpolation field leads
to the usual third-order polynomial interpolation for the deflection.
Introducing the approximated solution Eq. (59) into the first varia-
tion of the energy functional leads to the expression of the local
matrix and local nodal forces

Ki ¼ EIz;∞
Z

l

0
PTPdxþ a2EIz;∞

Z
l

0
P0TP0dx

¼ EIz;∞l
1=3 1=6

1=6 1=3

!
þ EIz;∞

a2

l

1 �1

�1 1

!
and

Fi ¼ M0

Z
l

0
Pdx ¼ M0l

2

1

1

 !
ð60Þ

The curvature approximation along the beam, denoted by X, is
then computed from the global linear system K:X ¼ F where the
curvatures at the beam extremity are imposed. K is the global stiff-
ness matrix and F is the global force vector. Fig. 9 shows the sen-
sitivity of the numerical solution to the number of finite elements. It
is expected that the boundary layer is well described with a suffi-
cient number of finite elements within this small zone. Such accu-
racy is computationally not efficient if the size of the finite elements

is fixed as in the case considered in this study. In the simulation,
the dimensionless connection parameter ε was chosen equal to
0.01, which is also equal to a=L. This is clearly a stiff connection
associated with the boundary layer phenomenon. At least 100 finite
elements are needed for a good description of the boundary-layer
zone in this case. For such a stiff connection (i.e., α̂ ¼ αTL ¼ 100),
a number p of 200 finite elements has been chosen for the reference
solution (Note: the difference between the theoretical solution and
the numerical one never exceeds 0.2% for such a discretization).
Generally speaking, the rate of convergence of the numerical
method is lower for a stiffer connection, as explained previously,
with the boundary zone with a meaningful stress gradient. An
optimization of the numerical process could be envisaged as an
extension of this study, with finite elements of variable sizes
along the beam or with enriched finite elements in the high gradient
zone.

Summary and Conclusions

The bending of an elastic-composite beam with interlayer slip has
been theoretically and numerically investigated. These beams
represent a number of different classes of structures with the same
type of basic behavior and governing equations, such as layered
beams (i.e., mechanically jointed), shear connections (i.e., lap
joints mechanically or adhesively jointed) and sandwich construc-
tions (i.e., with weak shear cores). The specific case of the elastic
beam subjected to end moments was considered. It was shown that
a boundary layer prevails at the beam extremity for a very stiff con-
nection. This boundary-layer phenomenon was analytically charac-
terized from an asymptotic point of view. The outer expansion,
which was valid away from the boundary, and the inner expansion,
which was valid within the layer adjacent to the boundary
(i.e., beam extremity), were analytically given. The inner and outer
expansions were matched over a region located at the edge of the
boundary layer by using Prandtl’s matching condition. We showed
that the thickness of the boundary layer was of order ε, the inverse
of the dimensionless connection parameter. The thickness of
the boundary layer was decreasing with an increasing value of the
connection parameter α̂. This specific phenomenon has to be
numerically considered for the case of a stiff connection with a
discretization process in concordance with the thickness of the

Fig. 9. Influence of the number p of finite elements on the numerical
solution of the curvature; EIz;∞=EIz;0 ¼ 1:4; and α̂ ¼ 100

8



boundary layer. (see the section “Finite-Element Results”). The
boundary layer phenomenon was extremely sensitive to the boun-
dary conditions imposed at the boundary of the elastic beam, a
phenomenon well accepted for two-dimensional beam theory
(Gao et al. 2007).

Finally, it was shown that partially composite beams can be
treated as nonlocal beams in the sense that the bending moment
at a specific point depends on the overall curvature along the beam.
This integral presentation can be useful to investigate the problem
with the boundary-element method. Some other engineering appli-
cations were given for the nonlocal character of the constitutive law
exhibited in this study.

Appendix. Derivation of the Partially Composite
Model by Using the Variational Method

The fundamental differential equations of the partially composite
beam with interlayer slip or sandwich beam subjected to a
uniform bending moment can be obtained from the total energy
functional

U½u1; u2; v� ¼
Z

L

0

�
1
2
EIz;0ðv00Þ2 þ

1
2
E1A1ðu01Þ2 þ

1
2
E2A2ðu02Þ2

þ 1
2
beGγ2

�
dxþM0½v0ðLÞ � v0ð0Þ� �

Z
L

0
qvdx

ð61Þ
where b = width of the beam; e = thickness of the interlayer or core;
and G = shear modulus of the interlayer or core. Eq. (61) implicitly
assumes that the curvature of the two subelements is equal. It is
postulated that the flexible connection will only be associated with
interface shear interaction without any normal interaction among
the subelements. This last assumption can be relaxed, as shown
by Adekola (1968) (see more recently Gara et al. 2006; Ranzi et al.
2006; Ranzi and Bradford 2007; Kroflik et al. 2010a). A consid-
erable number of experimental verifications in the literature exist
with respect to the applicability of the classical composite action
theory, neglecting the effect of the vertical separation between each
subelement and assuming equal curvatures for the two subele-
ments. In addition, for example, in Kroflik et al. (2010b), nailed
shear connections in composite timber structures were tested with
respect to both slip and uplift, and no significant effect of including
the transverse relationship was found. If transverse partial interac-
tion can be neglected, the difference between the curvatures of the
two subcomponents can be neglected. It will not affect the results
obtained in this paper.

The shear strain γ in the soft interlayer or core is given by

γ ¼ u2 � u1
e

þ h0
e
v0 ð62Þ

The following equations also include the case of a distributed load q
acting along the partially composite beam or the sandwich beam.
The stationarity of the energy functional leads to the principle of
virtual work

δU ¼
Z

L

0
ðEIz;0v00δv00 þ N1δu01 þ N2δu02 þ beτδγÞdx

þM0½δv0ðLÞ � δv0ð0Þ� �
Z

L

0
qδvdx ¼ 0 ð63Þ

where the constitutive equations are

N1 ¼ E1A1u01 N2 ¼ E2A2u02 τ ¼ Gγ ð64Þ

where γ is given by Eq. (62). The correspondence between the par-
tially composite beam-columns with slip modulus KT and the
present sandwich beam with parameters b, G, and e, is immediate
from the following identity:

bG
e

¼ KT ð65Þ

The equivalence between the slip modulus of shear connectors
and the shear modulus of glue lines of finite thickness or the
sandwich-type of cores was first demonstrated by McCutcheon
(1977). The equivalence was also discussed for the in-plane
dynamics problem by Girhammar et al. (2009), or for the out-
of-plane behavior by Challamel (2009) (see also Challamel et al.
2010a). It is not surprising that boundary layers are present for a
very stiff connection that is with the sandwich analogy for very
thin layers.

An integration by part leads to the following system of differ-
ential equations:8<

:
EIz;0vð4Þ � bh0ðτÞ0 � q ¼ 0
ðN1Þ0 þ bτ ¼ 0
ðN2Þ0 � bτ ¼ 0

ð66Þ

with the following boundary conditions:

½ð�EIz;0v000 þ bh0τÞ δv� L0 ¼ 0 ð67a Þ

½ðEIz;0v00 þM0Þδv0� L0 ¼ 0 ð67b Þ

½N1δu1� L0 ¼ 0 ð67c Þ

½N2δu2� L0 ¼ 0 ð67d Þ
In the case studied for this paper, these boundary conditions are
simply reduced to

vð0Þ ¼ vðLÞ ¼ 0 EIz;0v00ð0Þ ¼ EIz;0v00ðLÞ ¼ �M0

N1ð0Þ ¼ N2ð0Þ ¼ 0 N1ðLÞ ¼ N2ðLÞ ¼ 0 ð68Þ

The second and the third differential equations of Eq. (66) with the
last boundary conditions lead to the simplification

ðN1 þ N2Þ0 ¼ 0 ⇒ N1 þ N2 ¼ N1ðLÞ þ N2ðLÞ
¼ N1ð0Þ þ N2ð0Þ ¼ 0 ð69Þ

After some manipulations, the differential equation for the deflec-
tion is obtained

vð6Þ � α2
Tv

ð4Þ þ α2
T

q
EIz;∞

� q00

EIz;0
¼ 0 ð70Þ

where the different parameters are given by Eq. (2). This differen-
tial equation can be also expressed for the bending moment and the
curvature as

χð4Þ � α2
Tχ00 þ α2

T
M00

EIz;∞
� Mð4Þ

EIz;0
¼ 0

with χ ¼ �v00 and M00 ¼ �q ð71Þ

Integrating twice, this differential equation leads to the nonlocal
bending curvature relationship

α2
T

EIz;∞
M � 1

EIz;0
M00 ¼ α2

Tχ� χ00 ð72Þ
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Eq. (31) is clearly recognized in this constitutive relationship.
By differentiating the second equation of Eq. (66) and by using

the Eqs. (24), (25), and (64), the differential equation for the normal
force N1 can be expressed as

N 00
1 � α2

TN1 ¼ βTM0 ð73Þ
where the different parameters are given by Eq. (2). This equation is
exactly Eq. (1) of the problem.
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