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Abstract. The paper describes the fully parallelized electri-
cal scheme CELLS which is suitable to simulate explicitly
electrified storm systems on parallel computers. Our moti-
vation here is to show that a cloud electricity scheme can be
developed for use on large grids with complex terrain. Large
computational domains are needed to perform real case me-
teorological simulations with many independent convective
cells.

The scheme computes the bulk electric charge attached to
each cloud particle and hydrometeor. Positive and negative
ions are also taken into account. Several parametrizations
of the dominant non-inductive charging process are included
and an inductive charging process as well. The electric field
is obtained by inverting the Gauss equation with an extension
to terrain-following coordinates. The new feature concerns
the lightning flash scheme which is a simplified version of
an older detailed sequential scheme. Flashes are composed
of a bidirectional leader phase (vertical extension from the
triggering point) and a phase obeying a fractal law (with hor-
izontal extension on electrically charged zones). The origi-
nality of the scheme lies in the way the branching phase is
treated to get a parallel code.

The complete electrification scheme is tested for the
10 July 1996 STERAO case and for the 21 July 1998 EU-
LINOX case. Flash characteristics are analysed in detail
and additional sensitivity experiments are performed for the
STERAO case. Although the simulations were run for flat
terrain conditions, they show that the model behaves well on
multiprocessor computers. This opens a wide area of appli-
cation for this electrical scheme with the next objective of
running real meterological case on large domains.

1 Introduction

The ground detection of the electrical activity inside con-
vective systems revealed the strong links with the dynamics
(Goodman et al., 1988; Wiens et al., 2005), the cloud mi-
crophysics and even the atmospheric chemistry through the
formation of nitrogen monoxide, an ozone precursor (Schu-
mann and Huntrieser, 2007). As a result, cloud discharges
were related to the presence of precipitating ice in deep
clouds (Blyth et al., 2001; Petersen et al., 2005; Prigent et al.,
2005; Deierling et al., 2008; Barthe et al., 2010), to the in-
tensification of tropical cyclones (Cecil and Zipser, 1999;
Squires and Businger, 2008; Price et al., 2009) and to use-
ful nowcasting index of severe hail-bearing storms (Darden
et al., 2010; Emersic et al., 2011).

In contrast, modeling the electrical activity of a storm is
still a very difficult task owing to the large number of physi-
cal mechanisms to represent and to the poor knowledge and
parameterization of basic processes. To reproduce the elec-
tric charge cycle in a thunderstorm, the following issues must
be considered: a micro-scale charge separation mechanism,
the transfer and the transport of the electric charges accord-
ing to the evolution of the hydrometeors at cloud-scale, the
computation of the electric field, the propagation of the light-
ning flashes and a partial neutralization of the charges.

Most of the modeling studies in cloud electricity have con-
centrated on the microphysical aspects of the charge cycle or
attempted to reproduce the bulk effect of lightning flashes.
Altaratz et al.(2005) introduced an electrification scheme
in the Regional Atmospheric Modeling System (RAMS)
model, but in absence of lightning scheme, they restricted
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their study to the charging processes until the first lightning
flash. In the same way,Hou et al.(2009) limited the study
of the charge structure during the pre-lightning stage of five
thunderstorms since their model solely integrated an electri-
fication scheme.Rawlins(1982) was the first to introduce a
lightning parameterization in a numerical cloud model. This
simple scheme reduced arbitrarily the net charge density at
each grid point when the electric field exceeded a threshold.
Takahashi(1987) andZiegler and MacGorman(1994) also
treated the bulk effect of lightning flashes in a 2-D axisym-
metric model, and in a 3-D model, respectively.Solomon and
Baker (1996) developed a complete electrical scheme with
individual lightning flash treatment, but in a simplified 1.5-
dimension kinematic cloud model which prevented real case
studies. On the other side,Mazur and Ruhnke(1998) and
Riousset et al.(2007) discussed on the propagation of cloud
discharges, but with an idealized charge distribution, and did
not integrate their lightning scheme in a cloud model.

Today, only a few models attempt to simulate the structure
and the evolution of the electric charges in a thunderstorm.
The Storm Electrification Model with an electrification and
lightning flash scheme was pioneered byHelsdon and Far-
ley (1987) andHelsdon et al.(1992). It was used to inves-
tigate the charge structure and the Maxwell currents in an
idealized storm (Helsdon et al., 2001) and then to study the
lightning-produced NOx (Zhang et al., 2003a,b). Sun et al.
(2002) adopted the electrical scheme ofHelsdon et al.(1992)
to simulate the feedbacks of cloud electricity on convection.
This was done by adding the three components of the elec-
tric force acting on all the charges to the momentum equation
of their host model. NeverthelessSun et al.(2002) found
a strenghening of the convection in their thunderstorm case
study but the validity of this result is also questionable since
the flash scheme they used was too much simplified.

The first complete electrification scheme coupled to a
realistic but expensive lightning flash scheme, with leader
and branches, was developed byMansell et al. (2002).
It was widely used to study the sensitivity of the light-
ning activity to the non-inductive parameterization (Mansell
et al., 2005), and to analyze the lightning activity in a
idealized tropical cyclone (Fierro et al., 2007) and in the
29 June 2000 Severe Thunderstorm Electrification and Pre-
cipitation Study (STEPS) storm case (Kuhlman et al., 2006).
Independently but in the same vein,Barthe et al.(2005) de-
veloped another electrical scheme. They introduced an origi-
nal fractal approach in their lightning scheme which was de-
velopped in the framework of the french mesoscale model
Meso-NH. The fractal law was introduced to estimate the
degree of branching of the discharge when expanding from
the bidirectional leader. This leads to a complex code with
a probabilistic search of new lightning segments to add to
the growing lightning structure. The model was used to in-
vestigate the sensitivity of the charge structure to the non-
inductive parameterizations and to the sensitivity of light-
ning flash parameters non amenable to direct observations

(Barthe and Pinty, 2007a). The robustness of the full elec-
trical scheme was then demonstrated byPinty and Barthe
(2008). Besides, a first direct modeling of the production
of nitrogen oxides by lightning flashes was realized for the
10 July 1996 STERAO storm case (Barthe et al., 2007; Barth
et al., 2007).

Until now and despite their success to simulate isolated
electrified storms, a number of difficulties prevented the last
two models (Mansell et al., 2005; Barthe et al., 2005) from
being used over large computational domains or for real me-
teorological applications. There are several reasons for that.
First, the commonly shared view of sequential and stepwise
propagation of the flashes makes the lightning path algorithm
not well adapted to massively parallel computing. It is a dif-
ficult task to parallelize and to check a lightning flash algo-
rithm in the context of domain decomposition but even so,
an acceptable multiprocessor computing efficiency cannot be
achieved as long as the spatial growth of a branched structure
is based on an iterative process. Second, several isolated cells
can trigger flashes in convective systems during a single time
step. Consequently, the lightning flash scheme must apply to
all cells at once or needs to be repeated in a determined order
to explore carefully each of the electrified convective cells
present in the domain of simulation. Finally, one can expect
numerical difficulties linked to the distortion of the curvilin-
ear vertical coordinate due to orography in real case studies.
This problem arises when computing the electric field but
solutions exist to invert the key elliptical equation with extra
metric terms (see below). In addition, one can expect also
serious complications due to terrain-following coordinates in
the description of the filamentary structure of the flashes in
case of uneven locations of the grid points.

However and in the context of the next Hydrological
cycle in Mediterranean Experiment (HyMeX) (http://www.
hymex.org/) during which several lightning sensors will be
deployed, it is intended to perform Meso-NH simulations
of three-dimensional (3-D) electrified cloud systems on a
very large computational domain at kilometer scale resolu-
tion with the grid-nesting technique to downscale the me-
teorological analyses. To this aim, the Meso-NH lightning
scheme must be revised while keeping as realistic as possi-
ble the electrical behavior of the flashes, mostly the horizon-
tal and vertical extensions of the intra-cloud (IC) discharges,
and the quantity of neutralized charge per flash.

This paper describes the new lightning flash scheme devel-
oped in the cloud-resolving model Meso-NH with the per-
spective of running real case electrified storms over com-
plex terrain at high resolution on multiprocessor computers.
The electrical scheme labelled CELLS for “Cloud ELectri-
fication and Lightning Scheme” is detailed in Sect.2 with
a focus on the lightning flash scheme. Section3 is dedi-
cated to a first evaluation of the new lightning scheme on
the 10 July 1996 STERAO (Stratospheric-Tropospheric Ex-
periment: Radiation, Aerosols and Ozone) storm with a sen-
sitivity study of the lightning flash parameters. Finally, the
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EULINOX (European Lightning Nitrogen Oxides Project)
golden case of the 21 July 1998 in Germany is investigated
and simulated flash statistics are provided in Sect.4. The pa-
per concludes on the improvements brought to the electrical
scheme of Meso-NH and gives the perspective of accurate
calibration when used in real case simulations.

2 Description of the electrical scheme

2.1 The cloud electrification scheme in Meso-NH model

2.1.1 Generalities

The Meso-NH model (Lafore et al., 1998) is able to sim-
ulate idealized precipitating systems at high resolution and
real meteorological events on large domains with complex
terrain. In the later case, Meso-NH needs meteorological
analyses for the initialization and the open boundary condi-
tions while high resolution, typically the kilometer scale, is
achieved automatically via the grid nesting facility. Since the
code is fully vectorized and efficiently parallelized (Jabouille
et al., 1999), the 3-D evolution of any cloud system is cur-
rently simulated on large grids with hundreds of points in
each horizontal direction.

The cloud electrification scheme of Meso-NH has been al-
ready described inBarthe et al.(2005) andBarthe and Pinty
(2007b). However, due to the sequential algorithm of the
flash scheme and to the numerical cost induced by the fre-
quent communications between processors, simulations of
electrified storms in Meso-NH were mostly performed on a
single processor.

In the scheme, the mass charge densities (qx in C kg−1 of
dry air) are the bulk prognostic electrical state variables to fit
with the conservation law of the scalar fields in Meso-NH.
They are closely related to the mixing ratio (rx in kg kg−1)
of the microphysical speciesx (cloud droplets, rain, pristine
ice crystals, snow/aggregates, graupel and hail). For instance
and similarly to the mass of individual particles, a charge-
particle size power law relationship is assumed as explained
in Barthe et al.(2005). The bulk chargesqx are evolving
according to:

∂

∂t
(ρdref qx)+∇ · (ρdref qxU) = ρdref (S

q
x + T

q
x ) (1)

whereU is the 3-D air velocity andρdref a fixed, dry air
density reference state (Meso-NH integrates an anelastic sys-
tem of equation). The source termsS

q
x include the turbu-

lent diffusion, the charging mechanism rates, the charge sed-
imentation by gravity and the charge neutralization by the
lightning flashes. The transfer rates due to the microphysi-
cal evolution of the particles are collected inT

q
x . Each mi-

crophysical processT r
x is associated to an electrical tranfer

rate in proportion of the mixing ratio and electric charge, i.e.
T

q
x = (qx/rx)×T r

x whereT r
x is provided by the microphysi-

cal scheme.

2.1.2 Charge separation mechanisms

Even if the physical explanations are still unclear, labora-
tory studies (Takahashi, 1978; Jayaratne et al., 1983; Saun-
ders et al., 1991; Avila et al., 1995; Saunders and Peck, 1998,
among others) show indeed that the non-inductive (NI)
charging mechanism after rebounding collisions between
small unrimed and big rimed ice particles is likely to be the
dominant process for charge separation which must be con-
sidered at first. Four different parameterizations of the non-
inductive mechanism are available in Meso-NH. They result
from the published work ofTakahashi(1978), Gardiner et al.
(1985), Saunders et al.(1991) andSaunders and Peck(1998).
For each colliding event, the polarity and the quantity of
separated charge is given as a function of the temperature
and the liquid water content or riming rate. This concerns
only three types of collision: pristine ice-snow, pristine ice-
graupel and snow-graupel. Hail is not efficient to generate
electric charges in Meso-NH because these particles are sup-
posedly wrapped by a film of water (Saunders and Brooks,
1992). The analytical expressions of the charging rates relies
heavily on the microphysical scheme:

∂qxy

∂t
=

∫
+∞

0

∫
+∞

0

π

4
δq(1−Exy)(Dx +Dy)

2
|Vx−

Vy |nx(Dx)ny(Dy)dDxdDy (2)

with Dx andDy the diameter for speciesx andy, respec-
tively. |Vx −Vy | is the relative fall speed,nx andny are the
number concentrations of speciesx andy, respectively, and
Exy is the collection efficiency. The collection efficiency de-
pends on the temperature and followsKajikawa and Heyms-
field (1989) for ice-snow and snow-graupel collisions, and
Mansell et al.(2005) for ice-graupel collisions.

As in Mansell et al.(2005), the charge exchanged per
rebounding collisionδq is limited to prevent unreasonable
charging rate. Based onKeith and Saunders(1990), it is as-
sumed that the charging rate of the pristine ice crystal with
Dmax ∼ 100 µm is the most limiting one, that is 30(10) fC
per collision with graupel (aggregate) particles. We take a
larger value (100 fC) for the graupel-snow collisions because
it corresponds roughly to an average of the saturation levels
when the particle sizes reach∼1 mm (seeKeith and Saun-
ders, 1990or Fig. 3.13 inMacGorman and Rust, 1998). This
limitation is introduced in the computation of the bulk charg-
ing rates which result from an integration over the size spec-
trum of the ice particles.

The inductive charging that results from graupel-droplets
collisions in a preexisting electric field is also taken into ac-
count followingZiegler et al.(1991).
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2.1.3 Small ions

In order to close carefully the electric charge budget when the
cloud particles and hydrometeors (the main electric charge
carriers) evaporate and to simulate the screen charges, it is
necessary to integrate two conservation equations for the
positive (n+) and for the negative (n−) ion concentrations
(Helsdon and Farley, 1987). Assuming that all the ions have
an elementary charge, the condensed form of the ion govern-
ing equation writes:

∂ρdref n±

∂t
= −∇ ·(ρdref n±U ±ρdref n±µ±E−K∇ρdref n±)

+ρdref (G−αn+n− −S±
att+S±

evap+S±

light +S±

pd) (3)

whereSatt, Sevap, Slight, andSpd are source/sink terms corre-
sponding to ion attachment to charged hydrometeors (sink),
release of ion when hydrometeors evaporate (source), pro-
duction by lightning flash and by point discharge current
from the surface, respectively. The termG is the ion genera-
tion rate by cosmic rays, andα is the ion-ion recombination
coefficient. The first three terms are given in this order: ion
transport by the mean flow, electrostatic drift motion with
parameterized mobilitiesµ± and turbulent mixing withK
the eddy diffusivity. The ion attachment is a complex term
with a combination of free ion diffusion to the particle sur-
face (an electrical attraction due to the presence of a net par-
ticle charge) and ion conduction (due to ion motion in the
presence of an electric field). The analytical case-dependent
expressions of the ion attachement were first given byChiu
(1978) and then were adopted byHelsdon et al.(2002) and
Mansell et al.(2005).

Fair weather conditions for the mean current density and
for the vertical decrease of the electric field profile, are used
to initialize the positive and negative free ion concentrations
as proposed byHelsdon and Farley(1987). Then assuming
steady state conditions, the intensity of the constant cosmic
ray source,G, can be estimated from a balance involving the
ion drift and ion recombinaison (see alsoMacGorman and
Rust, 1998). The fair weather ion concentrations are used to
treat inflow conditions on the lateral boundaries during the
model integration. Furthermore, because the downward drift
motion enables the ions to cross the top of the domain, it is
necessary to relax the ion concentrations to their fair weather
value in upper levels to avoid their accumulation.

The ion generation sourceG is height dependent as in the
previous studies, but it should reflect the changes in ioniza-
tion intensity along the solar cycle. In the following two
case studies, the same profile is used since the events oc-
curred at the late afternoon (in local time) over a short period.
However, it is probably more consistent to use time-variable
height profiles if the convective systems have a longer life-
time.

2.1.4 Electric field computation

The electric field (E) is diagnosed each time step and after
the charge rearrangement following a flash.E is solution of
the Gauss equation forced by the total charge volume density
q̃tot = ρdref[

∑
x qx +|e|(n+ −n−)] in C m−3:

εa∇ ·E = q̃tot (4)

with εa = 8.85 pF m−1, the permittivity of air and|e| =

1.602× 10−19 C, the elementary electric charge. In order
to computeE, it is useful to introduce a pseudo electric po-
tentialV ′ such asρ̃∇V ′

= −E so that a diagnostic “pressure
equation” analog in Meso-NH (Lafore et al., 1998) is recov-
ered:

εaGDIV(ρ̃∇V ′) = q̃tot (5)

GDIV is the generalized divergence operator in the non-
orthogonal curvilinear coordinates system, andρ̃ = ρdref×J

is the mass of dry air (J , the Jacobian of the coordinate trans-
form, corresponds to the local gridbox volume). As a result,
the optimized elliptic standard pressure solver of Meso-NH
can be employed to getV ′ with Neumann boundary condi-
tions in Eq. (5). Finally the electric fieldE is derived by
applying a gradient operator on theV ′ field.

2.2 Lightning flash scheme

The objective of the new lightning flash scheme is to re-
produce some morphological characteristics of the lightning
flashes as inBarthe and Pinty(2007b), but for electrified
storms growing over large grids and complex terrain. This is
achieved by simplifying the original algorithm to get a paral-
lel code as explained below.

Details about the parallelization of Meso-NH are avail-
able fromhttp://mesonh.aero.obs-mip.fr/mesonh/. Good ef-
ficiency of the parallelization is provided by a library of high
level functions which greatly helps the coding for scientific
end users. Because the nature of most of the calculations in-
volves only a local knowledge of the global 3-D fields (with
storage on distributed memory), each processor can easily
work independently on its side. In our case however, building
the filamentary structure of a lightning flash path is leading
ineluctably to frequent communications between processors
which must be optimized.

In the following, the variables suffixed byll refer to
global variables with a single updated value available to all
processors. It is hypothesized that the domain is divided into
Nproc subdomains, withNproc being the number of working
processors.

The different steps of the lightning flash scheme are
sketched in Fig.1 and described in this section.

2.2.1 Electrified cells identification

Previous simulations of storm lightning activity were per-
formed in an idealized framework, over a limited domain
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Fig. 1. Different steps of the lightning flash scheme illustrated on a two-dimensional cross section of the total charge density (colored
area; nC m−3). The black line represents the cloud contour.(a) Cell definition: the star locates the grid point where||E|| is maximum
(Emax). The dashed area delineates the electrified cell.(b) Flash triggering: the grey contours represent||E|| with 10, 30, 50 and 70 kV m−1

contours. The crosses show the grid points where||E|| > Etrig. The black cross locates the origin of the flash.(c) Bidirectional leader: the
gray contour shows locations whereEz > Eprop. The cross and the + show the grid points where the flash is initiated and where the leader
propagates, respectively.(d) Regions of possible branching: the blue (red) contours limit the regions with negative (positive) total charge
density where the negative (positive) branches can propagate.(e) Choice of the branches: the grey points represent the grid points with
possible branching between two successive circles (or spheres in 3-D).N ll(r) is the maximum number of branches between two circles
of radiusr andr +dr (see Eq.7). Here, the maximum number of branches is given for a 2-D framework and a mean grid size of 1450 m.
(f) Lightning flash: the resulting lightning flash path made up with the triggering point (black cross), the bidirectional leader (black +) and
the branches (grey +).

area and for a rather short duration time. Therefore, only
a few electrified cells were present in the simulation domain
at the same time, but the goal now is to treat the individual
flashes of several cells simultaneously.

An iterative algorithm is first developed to identify all the
electrified cells in the domain of simulation. In the follow-
ing, a cell is termed “electrified” if conditions to trigger
and to propagate a flash inside it are fulfilled. The elec-
tric field module is first multiplied by a factor to get free
of the height effect. It is notedE0 and corresponds to the
electric field module reduced to the ground level. The peak
value of E0, Emax, is sought in each subdomain. Then,
the global value of the maximum electric fieldEmax ll =

MAX (Emax) is determined and the processor number (IPcell)
whereEmax ll = Emax is identified. IfEmax ll is higher than
200 kV m−1, the electric field threshold for flash trigger-
ing at the ground level (see Sect.2.2.2), a first electrified
cell is detected. The maximum electric field is a natural
marker of lightning-triggering cells since a flash is triggered
only if Emax > 200 kV m−1. The point whereEmax ll >

200 kV m−1 is hereafter called the cell center. The local co-
ordinates of the cell center and IPcell are then broadcast to all
processors.

The next step explores the vertical and horizontal exten-
sions of the selected cell (Fig.1a). The domain volume
is scanned from the bottom to the top. The cell center is
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projected onto the horizontal plane of the running level and
contiguous grid points are tagged if they meet the following
conditions:

– rtot > 1×10−5 kg kg−1 to restrict a flash propagation to
a single cloud,

– at least one hydrometeor category has|q̃x | > q̃cell where
q̃cell is a given threshold to isolate individual storm cells.
q̃x is the volume charge density (C m−3) for speciesx.

The process is repeated along the horizontal until no more
grid points can be added to the cell volume. Updates in the
halo zones (in a parallel architecture, a “halo” zone contains
the overlapping grid-points which are exchanged with the
neighbor processors) are necessary because electrified cells
may span over several neighboring subdomains. Then the
algorithm loops to analyse the electric field out of the electri-
fied cell to find out if another disjuncted electrified cell exists
in the whole domain.

2.2.2 Flash triggering

The local electric field condition which initiates a flash, fol-
lowsMacGorman et al.(2001) andBarthe and Pinty(2007b).
The triggering electric field,Etrig decreases with altitude as
observed byMarshall et al.(1995):

Etrig = ±167×1.208exp

(
−z

8.4

)
(6)

wherez is the altitude (km) andEtrig is given in kV m−1. To
account crudely for grid scale uncertainty, a flash is triggered
where the electric field exceeds a slightly smaller value than
Etrig (such ask×Etrig, with k = 0.9). If more than one grid
point per convective cell meets the conditionE > 0.9×Etrig,
then the triggering point is chosen at random (Fig.1b).

The processor IPtrig containing this point is identified. The
value of the triggering electric field, the coordinates of the
flash origin and the sign of the vertical component of the
electric field at this point are broadcast from IPtrig to all pro-
cessors. This procedure is repeated for each cell. Then, if
several cells exist in the domain several flashes can be treated
simultaneously since there is a mask that discriminate the dif-
ferent cells in the domain.

Once the characteristics (center and extension) of all elec-
trified cells are available, the lightning flash stage follows.
The treatment of the flashes is broken down into two parts
with a “leader” phase that precedes a phase that generates
the branches.

2.2.3 Bidirectional leader

The approach followsHelsdon et al.(1992) that relies on the
bidirectional leader theory ofKasemir(1960). Kasemiras-
sumes that the flash leader propagates bi-directionally from
the triggering point, in the parallel and anti-parallel direc-
tions of the ambient electric field. The propagation is stopped

once the electric field drops below a threshold value. As
previously done byHelsdon et al.(1992), Barthe and Pinty
(2007b) simplified this concept since they used the ambient
electric field to control the leader propagation instead of the
total electric field. They acknowledged that it was a short-
coming, but argued that computing the local electric field at
the tip of each segment added to the leader was computation-
ally expensive. In the present scheme, a new simplification
is considered, still for a sake of reducing the computational
cost. The bidirectional leader is allowed to propagate along
the vertical axis only and not slantwise alongE as in the pre-
vious scheme, to avoid communication between the proces-
sors each time a new segment is added at the tip of the leader.
The two branches of the leader propagate until the ambient
vertical electric field (Ez) at the tips of the last segments falls
below∼15 kV m−1 or when the sign of the vertical compo-
nent of the electric field reverses (Fig.1c).

As in other studies (MacGorman et al., 2001; Mansell
et al., 2002; Barthe et al., 2005; Mansell et al., 2005, 2010),
a flash is categorized as “cloud-to-ground” (CG) when the
lower end of the leader reaches the bottom of the cell which
altitude is below 2 km above ground level (AGL). CG flashes
are artificially prolonged to the ground.

Only processor IPcell is in charge of the bidirectional
leader. The coordinates of the leader channel and the flash
type are broadcast to all processors.

2.2.4 Horizontal extension of the flash

VHF mapping systems have highlighted the extensive hor-
izontal structure of lightning flashes in two distinct layers
(Shao and Krehbiel, 1996; Rison et al., 1999; Thomas et al.,
2001; Wiens et al., 2005; Bruning et al., 2007), with a sin-
gle vertical channel connecting the two layers. Therefore,
in this context, the new lightning flash scheme must repro-
duce this feature but in an economical way, since a phys-
ically consistent representation of the discharges is too ex-
pensive and would be technically impraticable on powerful
massively parallel computers.

According to VHF observations, a positively and a neg-
atively charged region must be delineated (propagation is
not allowed in a third region in case of a tripole structure
of charges). The positively and negatively charged regions
where the flash can propagate are explored separately. From
the positive part of the leader, the region with negative to-
tal charge density where the positive branches can propagate
is explored. First, a 3-D maskM(:,:,:) is initialized with
value equal to 1 where grid points are reached by the positive
leader. Then the neighboring grid points matching the fol-
lowing conditions are selected as part of the negative charge
pocket:

– the grid point belongs to the electrified cell of the leader

– the total charge density must be negative
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– |q̃tot| > q̃cell

The fields in the halo zones are updated to allow a contin-
uous extension of the pocket of negative charge to nearby
subdomains. This step is resumed until no more point can
be added. The positive charge pocket is build the same way
around the negative leader, leading to two regions of oppo-
site charge embedded in the electrified cell contour (blue and
red contours in Fig.1d).

2.2.5 Distribution of the branches

Williams et al. (1985) initiated discharges through plastic
slabs with regions of stronger and weaker negative charge
density. They observed that the discharges tend to propa-
gate toward regions of high charge density, which underlined
the importance of the charge density in discharge propaga-
tion. Niemeyer et al.(1984) showed that a stochastic dielec-
tric breakdown model naturally leads to a fractal structure
of the discharge.Tsonis and Elsner(1987) analyzed a set
of lightning pictures and deduced an average fractal dimen-
sion of the lightning projection. The dielectric breakdown
model has been widely used in the past to simulate different
types of lightning discharges (Wiesmann and Zeller, 1986;
Wiesmann, 1988; Petrov and Petrova, 1993; Sãnudo et al.,
1995; Kawasaki and Matsuura, 2000, among others). How-
ever, none of these studies simulated lightning discharges in
a real storm context.Mansell et al.(2002) first introduced
the dielectric breakdown concept to simulate the lightning
flashes in a cloud model. ThenBarthe and Pinty(2007b) de-
veloped a probabilistic branching algorithm adapted from the
dielectric breakdown concept to mimic the horizontal exten-
sion of the flash toward regions of high charge density. The
present scheme keeps the idea of charge density criterion to
build a 3-D branched discharge (Williams et al., 1985) and to
monitor the fractal nature of the flash (Niemeyer et al., 1984)
as previously highlighted.

The electrified cell domain is divided into concentric
spheres with radiusr centered on the triggering point
(Fig. 1e). The global number of branchesN ll at a distance
r from the triggering point is assumed to follow a fractal law
(Niemeyer et al., 1984):

N ll(i) =
Lχ

Lmean
iχ−1 (7)

with Lmean, the mean mesh size (m),Lχ , a characteristic
length scale (m), andχ , the fractal dimension (2< χ < 3 ac-
cording toPetrov and Petrova(1993)). The running integer
i, computed asi = NINT(r/Lmean), varies fromimin = 0 to
imax whereimax corresponds to the maximum distance where
branching is possible, i.e. for gridpoints belonging to mask
M . NINT is a function returning the nearest integer of a real
number.

So a local arrayA that contains all the nearest integer dis-
tancesi between the triggering point and each grid point
passing maskM(:,:,:) = 1 is filled in each subdomain. The

minimum (imin) and maximum (imax) distances are checked
so that the next steps are iterated forimin ≤ i ≤ imax.

On each processor, the number of grid points belonging
to maskM and located at distancei (Nposs(i)) is computed
and summed over all processors to get the global number of
possible locationsNposs ll(i). ThenNposs ll(i) is compared
to N ll(i) of Eq. (7):

– if Nposs ll(i) ≤ N ll(i): all the possible grid points at
distancei from the triggering point are selected,

– if Nposs ll(i) >N ll(i): too much grid points are found
so a subset must be selected at random.

In order to randomize properly the selection of the grid
points which are dispersed on several subdomains, two 1-D
working arraysV(:) andV′(:) of sizeNposs ll(i) are allocated
to each subdomain. Each processor packs the 3-D arrayA
into a 1-D arrayV under a running mask control defined by
A(:,:,:) = i. V′ is initially set to 0.

The number of grid points,Nposs(i), at a given distancei
is gathered by each processor and the result is broadcast to
all processors. Consequently, each of the IPflash processor
knows the proportion of grid points which is granted in its
physical subdomain since the total lightning flash path should
contain at mostN ll(i) grid points. A random integern is
then taken in the interval 0 andNposs ll(i). The grid point
numberV(n) is extracted and elementV′(V(n)) is turned to
1. This step is repeated untilN ll(i) points are chosen. Fi-
nally, the elements ofV ′ are scattered (equivalent to an un-
pack operation) in a 3-D arrayS(:,:,:) under the same mask
conditionA(:,:,:) = i. As a result, the sparse arrayS(:,:,:)

obtained at the last iterationi = imax, marks the full path of
the lightning flash (Fig.1f). The branches coordinates are
then broadcast to all processors.

Compared to the original scheme ofBarthe et al.(2005),
the new lightning scheme ignores deliberately any rules of
connectivity that should apply to the grid points tracing the
flash path. The higher randomization and consequently the
lack of structuration of the branching phase is the price to
pay to get a parallel source code even if it is done essentially
for technical reasons. We believe however that running sim-
ulations of electrified storms on large grid systems, and so
accessing to parallel computing, is very promising for real
meteorological applications of cloud electricity.

2.2.6 Neutralization

The total charge in excess ofq̃neutalong the lightning channel
is neutralized in the lightning flash. It is distributed to the
ions of opposite sign at each grid point of the flash. For intra-
cloud flashes, a charge correction is applied to all grid points
of the flash to ensure the total charge neutrality (MacGorman
et al., 2001) before the redistribution of net charge at grid
points. For cloud-to-ground discharges, the charge neutrality
constraint does not apply.
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Fig. 2. STERAO storm: Simulated composite radar reflectivity (Zmax, in dBZ) at(a) 20 min,(b) 70 min,(c) 120 min and(d) 170 min. The
+ symbols indicate the origin of the lightning flashes in a 10-min interval from the time of the cross section. The black line segment [AB]
corresponds to the location of the vertical cross sections of Fig.3.

Once the charge is neutralized, the electric field is updated.
If at least one new triggering point is found in the domain, the
procedure (from Sect.2.2.3to Sect.2.2.6) is repeated. Thus,
in a single time step, each cell can generate several flashes.

2.3 Technical aspects

The whole scheme is embedded in the cloud-resolving meso-
cale model Meso-NH in which the resolved-scale and turbu-
lent transport terms (Eqs.1 and3) are computed. The code
is written in Fortran 90 and parallelization is obtained by
using MPI functions. The bulk electrical charge scheme is
developped in the framework of the single moment micro-
physical scheme of Meso-NH to take advantage of calculat-
ing the mass microphysical rates (to get the transfer ratesT

q
x

in Eq. 1). The inversion of Eq. (5) to extractV ′ is done by
direct and inverse FFT on the horizontal and by resolving a
tridiagonal system along the vertical. The computation ofE

is exact in absence of orography. In the other case (orogra-
phy is present), a conjugate gradient method or equivalent
which implies an iterative loop, is necessary to include cross
derivative terms. The lightning flash scheme excepted, the
computation of the charges and of the electric field are not
easily adaptable to other models.

CELLS v1.0 is then available in the release of Meso-NH
v4.9. The use of the Meso-NH model by groups other than
the developers is subject to a licence agreement. Additional
details on the Meso-NH model appear inhttp://mesonh.aero.
obs-mip.fr/mesonh/with technical and scientific documenta-
tion.

3 Simulation of the lightning activity during the
10 July 1996 STERAO storm

A first evaluation of the new flash algorithm is un-
dertaken for the well-known idealized test case of the
10 July 1996 STERAO-A storm that occurred along the
Wyoming-Nebraska-Colorado border (Dye et al., 2000). The
storm started to develop as a multicell and then moves to a
supercell∼90 min later. In addition to the dynamical aspects
with a multi- to supercell transition to capture, this storm case
is interesting for two reasons at least. The presence of several
convective cells in the domain of simulation allows testing of
the cell identification algorithm and a unique set of data (De-
fer et al., 2001, 2003), including IC and CG flash character-
istics, is an opportunity to tune and to evaluate the sensitivity
of some critical flash parameters.
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Fig. 3. STERAO storm: Vertical cross sections of the total charge density (colors; in nC m−3) along the [AB] segment defined in Fig.2 at
(a) 20 min,(b) 70 min,(c) 120 min and (d) 170 min. The black solid line corresponds to the cloud contour. Dashed gray contours show the
electric field module (10 and 50 kV m−1 contours).

3.1 Numerical set-up

The numerical simulation was performed with the non-
hydrostatic mesoscale model Meso-NH version 4.8.4. The
environment was assumed to be homogeneous, then a single
profile was used for initialization (Skamarock et al., 2000).
As in previous numerical studies of this storm (Skamarock
et al., 2000, 2003; Barth et al., 2001, 2007; Barthe et al.,
2007; Barthe and Barth, 2008), three warm bubbles (+3◦C)
were oriented in a north-west to south-east line (Fig.2a). A
160× 160 km2 horizontal domain was used with a 1-km res-
olution. The vertical grid had 51 levels up to 23 km with a
level spacing of 50 m close to the surface stretching to 700 m
at the top of the domain. The time step was 2.5 s, and the
simulation lasted 3 h.

The physics of the model included a mixed-phase micro-
physics scheme (Pinty and Jabouille, 1998) and a 3-D tur-
bulence scheme (Cuxart et al., 2000). The parameterization
of Takahashi(1978) is used to describe the NI processes
as in the previous simulation of this storm byBarthe et al.
(2007). To prevent unreasonably large charging and flash
rates, the magnitude of charge separated per rebounding col-
lision is limited to 100 fC, 30 fC and 10 fC for snow-graupel,

ice crystal-graupel and ice crystal-snow collisions, respec-
tively. The branching parametersχ andLχ are set to 2.3 and
1500 m, respectively. The impact of these parameters on the
flash rate and lightning characteristics will be investigated in
Sect.3.4.

3.2 Dynamics, microphysics and charge structure

As observed (Dye et al., 2000; Skamarock et al., 2000),
the 10 July 1996 STERAO storm simulated with Meso-NH
evolved from a multicell to a supercell. Figure2 shows the
composite reflectivity (maximum radar reflectivity in a grid
cell column,Zmax, in dBZ) at different stages of the storm.
At 20 min (Fig.2a) and 70 min (Fig.2b), the storm was in a
growing stage with remanent individual cells oriented along
a NW-SE axis. At 120 min (Fig.2c), the simulated storm
started to move from a multicell to a supercell. The supercell
stage is represented in Fig.2d, with maximum radar reflec-
tivity reaching 50 dBZ in the convective core. From radar
and lightning data observations, the periods during which
the storm was in a multicell stage, in transition to a su-
percell, and expanded as a supercell were evaluated to be
23:00–00:30 UTC, 00:30–01:15 UTC and 01:15–02:30 UTC,
respectively (Skamarock et al., 2000; Barthe et al., 2010).
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The transition occurred after 150 min of simulation while
Skamarock et al.(2000) estimated the real system transi-
tionned after 3 h of active convection so the model is fairly
successful in reproducing the evolution of the storm.

Vertical cross sections of the total charge density along the
wind axis at 5 km altitude were performed at different stages
of the storm to analyze the charge structure and its evolu-
tion. At 20 min (Fig.3a), the south-eastern cell was the first
one to become electrified. Charges were separated by the
non-inductive mechanism at∼7.5 km altitude, generating a
negative dipole (negative charge layer above positive charge
layer) centered at 7.5 km altitude above sea level (ASL). As
a result, the electric field increased above 10 kV m−1 at the
interface of the two layers of opposite charge. 50 min later
(Fig. 3b), the total charge density exhibited a more complex
structure, alternating between tripoles in the convective cores
and positive dipoles in the cloud anvils. A negative screen-
ing layer due to negative ions was visible at the top of the
cloud. At 120 min (Fig.3c), during the transition stage, the
charge structure looked like a tripole. Positively charged ice
crystals were responsible for the upper positive charge layer,
while snow and graupel particles were involved in the main
negative layer. The positive charge layer above the ground
was made up with positive graupel which fell below the 0◦C
isotherm and melted into positive raindrops. During the su-
percell stage (170 min; Fig.3d), the charge structure evolved
between a dipole and a tripole, depending on the location in
the storm. Negative ice crystals were advected in the anvil
(not shown).

3.3 Lightning characteristics

The flash rate is displayed in Fig.4a for the 3 h of simula-
tion. During the multicell stage, the flash rate does not ex-
ceed 20 fl. min−1 which is significantly lower than the obser-
vations. Defer et al.(2001) reported indeed a maximum of
50 fl. min−1 at ∼23:45 UTC from the ONERA (Office Na-
tional d’Etudes et Recherches Aérospatiales) VHF interfer-
ometric mapper (ITF). However, during the multicell stage,
a large portion of the flashes detected by the ITF were iden-
tified as “short-duration” flashes. At 23:30 UTC, the “short-
duration” flash ratio per 5-min period raised up to 0.46 (as
estimated from Fig. 10 ofDefer et al., 2001). The simulated
flash rate decreases at 110 min, and reaches a plateau (∼5–
10 fl. min−1) until 150 min. The flash rate detected by the
ITF (∼10–35 fl. min−1) is still larger than the simulated one.
During this stage of the storm, the “short-duration” flash ratio
reaches 0.2. Then, the flash rate increases up to 44 fl. min−1

during the supercell stage, while in the observations, it peaks
at 45 fl. min−1.

Figure 4b–d shows the 1-min averaged number of seg-
ments, triggering altitude, triggering electric field and pos-
itive and negative charge neutralized. One can note that the
average number of segments is less than 400 segments per
flash except a peak of 700 segments per flash during the

Fig. 4. STERAO storm: Time evolution of(a) the flash rate
(fl. min−1), (b) the average number of segments per flash,(c) the
average triggering electric field (black curve; kV m−1) and trigger-
ing altitude (gray curve ; km), and(d) the average positive (black
curve) and negative (gray curve) charge neutralized per flash (C).
The number of segments, the triggering electric field, the trigger-
ing altitude and the charge neutralized are averaged over a 1-min
interval.

multicell stage (Fig.4b). The histogram showing the num-
ber of segments per flash confirms that 91 % of the flashes
have less than 400 segments (Fig.5a).

In the first part of the multicell stage (30–60 min), the av-
erage triggering altitude is 10 km a.s.l., then it decreases to
6–8 km altitude (Fig.4c). Figure5b confirms that two differ-
ent layers exist for flash triggering. Most of the flashes are
triggered between 5.5 and 7 km a.s.l., between the main neg-
ative charge and the lower positive charge (Fig.3). Note that
the triggering altitude and the triggering electric field have an
opposite evolution (Fig.4c) as expected from Eq. (6).

The total electric charge neutralized per flash lays between
0.4 and 20.23 C. The temporal evolution of the 1-min aver-
aged neutralized charge shows that a peak occurs between
45 and 60 min which is associated with the larger number
of segments. More than 60 % of the flashes neutralize be-
tween 1 and 4 C. These results are in agreement with data
reported in the literature. Indeed, from modeling studies, the
charge transfer during intra-cloud discharges was estimated
to be between∼2.7 C and∼52.4 C (MacGorman et al., 2001;
Mansell et al., 2002; Riousset et al., 2007). Similar values
were found from observational studies (Krehbiel, 1981; Shao
and Krehbiel, 1996; Rakov and Uman, 2003).

This simulation was performed on the University de
la Réunion cluster (hereafter referred to as CCUR;
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Fig. 5. STERAO storm: Histograms of(a) the number of segments
per flash,(b) the triggering altitude (kV m−1) per flash, and(c) the
charge neutralized (C) per flash. Since all flashes were IC flashes,
the same amount of negative charges was neutralized.

Bull Novascale R422 with 20 compute nodes each with 2× 2
Intel Xeon processors quadcore 2.26 Ghz and 24 GB of mem-
ory). About 30 % of the computing time is attributed to the
electrical scheme for this simulation on 16 processors.

3.4 Sensitivity analysis

Since the electrical scheme results rely on several thresholds
(for charge separation, cell detection, branching and charge
neutralization), it is important to investigate the impact of
varying the value of these thresholds.

3.4.1 Non-inductive parameterization

Several studies (Helsdon et al., 2001; Mansell et al., 2005;
Altaratz et al., 2005; Barthe and Pinty, 2007a) have investi-
gated the sensitivity of the flash rate to the NI parameteriza-
tion which is recognized as the process mainly responsible
for charge separation (Reynolds et al., 1957; Williams and
Lhermitte, 1983; Dye et al., 1989; Latham et al., 2007). To
prevent unreasonably large charging and flash rates, the mag-
nitude of the charge exchanged per rebounding collision (δq)
is generally limited.Mansell(2000) limited δq to 200 fC for
graupel-snow collisions and 2 fC for graupel-crystal interac-
tions. Mansell et al.(2005) revised theseδq values to 50 fC
and 20 fC for rebounding graupel-snow and graupel-crystal
collisions, respectively.

Increasingδq leads to an increase of the number of
flashes as shown in Table1. With the recommended set-
ting of Mansell et al.(2005) (NI1 case), 752 flashes are
triggered, while if the charge exchanged per collision is un-
bounded (NI3 case), 10 times more flashes are produced
(7534 flashes). The NI2 case is intermediate between NI1
and NI3. From NI1 to NI3, the number of segments is in-
creased by a factor 3 leading to a higher quantity of charge
neutralized per flash (2.98 C vs. 4.36 C on average). Conse-
quently, the total charge neutralized during the storm is∼14
times higher in the NI3 test (32813.6 C) than in the NI1 test
(2242.5 C). Note that the first flash in NI3 is triggered 13 min
before the first flash in NI1 as a result of allowing a larger
charging rate. The flash rate evolution keeps the same trend
whatever the peak valueδq is set to.

The structure of the total charge density does not depart
from the tripole (Fig.3) when the limitation of the amount of
neutralized charge per rebounding collision is changed (not
shown). The total charge density never exceeds±3 nC m−3

and ||E|| remains under 110 kV m−1 for the NI1, NI2 and
NI3 cases. If the charge exchanged per collision is unlim-
ited, the maximum charging rate is 288 pC m−3 s−1 for snow-
graupel interactions and never exceeds 130 pC m−3 s−1 for
ice crystal-snow and ice crystal-graupel elastic collisions.

In conclusion, even if the flash rate is sensitive to the set-
ting of δq, the charge structure which depends on the tem-
perature and on the microphysical composition (NI charg-
ing processes) is not impacted. Moreover, the new lightning
scheme is efficient to limit the total charge density and the
electric field module to acceptable values. In the following,
the NI2 setting of the NI charging parameters which leads
to the best flash data comparison withDefer et al.(2001), is
preferred.

3.4.2 Lightning scheme parameters

Simulation variants from a reference (REF) case have been
performed for different values of (i) the fractal parameters
χ andLχ , (ii) the cell detection threshold̃qcell and, (iii) the
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Table 1. Summary of the sensitivity tests related to the limitation of the quantity of charge separated per rebounding collision.

δqmax
SG / δqmax

IG / δqmax
IS Number 1st flash Number Triggering Etrig Mean charge Total charge

(fC) of flashes (s) of segments altitude (km) (kV m−1) per flash (C) neutral. (C)

NI1 50/20/2 752 2027.5 111± 62 8.33± 1.82 68.6± 15.1 2.98± 1.11 2242.501
Mansell et al.(2005) [18–317] [5.44–12.40] [41.3–95.2] [0.77–8.21]

NI2 100/30/10 1849 1367.5 212± 122 7.33± 1.65 77.2± 13.6 3.72± 1.57 6880.18
Present Study [6–997] [5.09–13.10] [37.9–98.6] [0.40–15.11]

NI3 all at 1.1015 7534 1220.0 340± 266 6.91± 1.34 81.9± 11.2 4.36± 2.06 32813.61
No Limitation [9–2249] [4.46–14.50] [33.0–109.2] [0.26–20.23]

charge neutralization valuẽqneut. Results are reported in Ta-
ble2.

When the threshold for cell detectioñqcell is decreased in
Q1, the size of the detected cells is larger. At the begining of
the simulation when the three cells are well separated, this re-
sults in few differences. However after 30 min of simulation
when the cells start to merge, the cell detection algorithm
recognizes a single “big cell”. Consequently, the lightning
flashes are allowed to spread horizontally over the artificially
“big cell”, while the three original cells are still distinguish-
able. Decreasing̃qcell leads to slightly less flashes (1727
vs. 1849), but with a significantly wider extension (438 vs.
212 segments) and charge neutralization efficiency (4.32 C
vs. 3.72 C).

If the charge neutralization thresholdq̃neut is increased to
0.2 nC m−3 in Q2, it is expected that the charge neutralized
per flash decreases as well (2.06 C vs. 3.72 C). As a conse-
quence, the number of flashes is increased (3361 vs. 1849)
but a similar total charge amount is neutralized (6933.74 C
vs. 6880.18 C). Note that for all the experiments reported in
Table 2, the mean triggering altitude lies between 7.21 km
and 7.39 km, except for simulation Q2 where it is higher
(8.68 km). This increase of the mean triggering altitude is
due to a larger proportion of flash triggered between the up-
per positive and the middle negative charge layers in Q2 com-
pared to REF. In Q2, more than 50 % of the flashes are trig-
gered between 10 and 12 km altitude, while this proportion
falls down to 20 % in REF (not shown). A possible expla-
nation for this difference can be found in Figs3b and3c.
The total charge density has a higher value in the lower pos-
itive charge layer (0.1–1 nC m−3) than in the upper positive
charge layer (0.1–0.5 nC m−3). Then, if the charge neutral-
ization threshold is increased, the flashes triggered in the up-
per part of the cloud will neutralize less charges than the ones
initiated in the lower part of the cloud. So because they are
less efficient, more flashes are needed to neutralize the same
amount of charge in the 10–12 km layer.

In agreement withBarthe and Pinty(2007b), if χ is in-
creased, the number of flashes decreases while the number
of segments per flash (given by Eq.7) and consequently, the
amount of neutralized charge per flash increases. Keeping

identical the NI parameterization andδq in the C1-C4 sim-
ulations, the total charge neutralized differs by only 13.5 %
between C1 (χ = 2.1) and C4 (χ = 2.9). Whenχ is held con-
stant (χ = 2.3) andLχ is increased from 500 m to 2500 m in
L1–L2, the average number of segments per flash increases
by a factor 3.4. As a consequence, the mean neutralized
charge is higher forLχ = 500 m than forLχ = 2500 m by
a factor 2.5. The L1 simulation is the only one that pro-
duces CG flashes for the STERAO storm. All are negative
CGs. The first CG is produced at 94 min, and the three others
are triggered between 157 and 159 min. The main difference
with the other simulations lies in the relatively low number
of segments per flash in L1 (91.1± 60.5), leading to a lower
average neutralized charge per flash (2.01± 1.11 C).

Some indicators are not significantly influenced by a vari-
ation ofχ , Lχ , q̃cell or q̃neut. In all the sensitivity tests per-
formed here, the first flash still occurs at 1367.5 s because
the triggering time of the first flash is only determined by the
charge structure of the storm (and therefore by the electrifi-
cation processes). Also, the total neutralized charge amount
does not vary too much between all the sensitivity tests re-
lated to the lightning flash parameters. It is simulation L1
where globally the lowest amount of charge is neutralized. In
this case, the highest number of flashes (3156) with the low-
est number of branches (91.1) neutralizes on average the low-
est amount of charge per flash (2.01 C). On the contrary, the
C4 simulation produces the lowest number of flashes (1325)
with the highest number of segments (463) and the highest
amount of neutralized charge per flash (5.75 C). However,
among the tests performed here but strictly for a same storm
dynamics and microphysics (and so for the same electrical
charging rate conditions), the quantity of neutralized charge
by the flashes varies as much as∼18 %. This discrepancy is
mainly attributable to the wide range of explored parameters
which brings to light the thresholds and non-linearities of the
electrification scheme.
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Table 2. Summary of the sensitivity tests related to the flash propagation. In all these simulations, the first flash occurrence is 1367.5 s.

q̃cell q̃neut χ Lχ Number Number Triggering Mean charge Total charge
(nC m−3) (nC m−3) (m) of flashes of segments altitude(km) per flash (C) neutral. (C)

REF 0.2 0.1 2.3 1500 1849 212± 122 7.33± 1.65 3.72± 1.57 6880.18
0 CG [6–997] [5.09–13.10] [0.40–15.11]

C1 0.2 0.1 2.1 1500 2113 156.9± 86.8 7.35± 1.67 3.15± 1.28 6651.77
0 CG [12–738] [5.09–13.10] [0.74–12.17]

C2 0.2 0.1 2.5 1500 1681 281.2± 154.6 7.34± 1.65 4.28± 1.93 7197.87
0 CG [16–1089] [5.44–13.1] [0.94–20.77]

C3 0.2 0.1 2.7 1500 1484 369.5± 204.8 7.30± 1.64 5.01± 2.22 7430.53
0 CG [16–1204] [5.09–13.1] [1.33–21.93]

C4 0.2 0.1 2.9 1500 1325 463.0± 254.7 7.31± 1.63 5.75± 2.61 7612.79
0 CG [19–1241] [5.09–13.1] [1.38–22.32]

L1 0.2 0.1 2.3 500 3156 91.1± 60.5 7.39± 1.65 2.01± 1.11 6357.53
−2.01± 1.01 −6330.40

4 CG [8–642] [5.09–13.1] [0.10–24.45]
[−12.22—0.10]

L2 0.2 0.1 2.3 2500 1415 305.7± 158.6 7.29± 1.63 5.04± 2.06 7127.98
0 CG [19–951] [5.09–12.4] [1.44–22.27]

Q1 0.1 0.1 2.3 1500 1727 438.2± 241.5 7.21± 1.60 4.32± 2.22 7462.54
0 CG [17–1147] [5.09–13.80] [0.96–34.42]

Q2 0.2 0.2 2.3 1500 3361 274.7± 208.9 8.68± 2.16 2.06± 1.69 6933.74
0 CG [5–1330] [5.09–13.80] [0–13.82]

4 The 21 July 1998 EULINOX storm case

The 21 July 1998 EULINOX (European Lightning Nitrogen
Oxides Project) storm case (Huntrieser et al., 2002) is sim-
ulated to evaluate the tuning of the new lightning flash pa-
rameters for a severe event that developped on the evening,
West of Munich, Germany. After a first period of intensi-
fication, the storm split into two distinct cells. The north-
ernmost cell became multicellular in structure and was ob-
served to decay soon after the cell-splitting event, while the
southern cell strengthened and developed supercell charac-
teristics. Cloud-to-ground discharges were recorded by an
LPATS (Lightning Position and Tracking System) system,
while the total lightning activity (IC + CG) was mapped by
the ONERA interferometer. This storm has been previously
simulated with the Penn State/NCAR Mesoscale Model 5
(MM5) (Fehr et al., 2004) and the 3-D Goddard Cumulus
Ensemble (GCE) Model (Ott et al., 2007) to investigate light-
ning NOx production and transport.

4.1 Numerical set-up

The simulation performed is similar toFehr et al.(2004).
A single thermodynamic composite sounding is used to ini-
tialize the storm (see Fig.4 in Fehr et al., 2004). The con-
vection is initiated with a warm (3◦C perturbation) bubble.

The model domain is chosen to be 180× 180× 23 km3 in
x, y, andz directions with 1 km horizontal grid spacing and
51 grid points in the vertical direction, with a variable res-
olution beginning at 250 m at the surface and stretching to
500 m at the top of the domain. The simulation is integrated
with a 2.5 s time step for a 3 h period.

As in the 10 July 1998 STERAO simulation, the physics
of the model included a mixed-phase microphysics scheme
(Pinty and Jabouille, 1998) and a 3-D turbulence scheme
(Cuxart et al., 2000). The parameterization ofTakahashi
(1978) is used to describe the non-inductive processes.
The lightning scheme parameters are the same as for the
STERAO storm simulation. The maximum magnitude of
charge separated per rebounding collision is limited to
100 fC, 30 fC and 10 fC for snow-graupel, ice crystal-graupel
and ice crystal-snow collisions, respectively. The branching
parametersχ andLχ are set to 2.3 and 1500 m, respectively.

4.2 Results: electrical activity

At the begining and as expected from the sounding, the storm
is composed of a single vigorous cell which starts to split af-
ter the first precipitation at 60 min. This leads to a southern
cell that first developed rapidly into a supercell and then de-
cayed after 150 min (Fig.6a–c). The weaker northern cell
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Fig. 6. EULINOX storm: (a/c) Simulated composite radar reflectivity (Zmax, in dBZ) and(b/d) vertical cross section of the total charge
density (colors ; in nC m−3) along the [AB] segment defined in(a/c)at 60/120 min. The + symbols indicate the origin of the lightning flashes
in a 10-min interval from the time of the cross section.

Fig. 7. EULINOX storm: Lightning flash characteristics as simulated by Meso-NH with(a) temporal evolution of the total (black curve) and
CG (blue curve) flash rates and histograms of(b) number of segments per flash,(c) triggering altitude (kV m−1) per flash, and(d) charge
neutralized (C) per flash. Due to the presence of negative CG flashes, slighlty more negative charges were neutralised.
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turned into a multicell and remained in the domain for the
rest of the simulation.

The electrical structure is shown in Fig.6b and6d. At
60 min, the storm shows a forward tilted tripole, except for
the anvil with a slightly positive dipole. The highest charges
are found in the updraft core at 5–6 km altitude. At 120 min,
the updraft charge structure of the southern cell is much
complex and an inverted dipole tends to emerge in the anvil
(Fig. 6b and d).

The flash rate simulated by Meso-NH for the 21 July 1998
EULINOX storm is shown in Fig.7. The first flash is trig-
gered after 19 min of simulation. Then, during 75 min, the
total flash rate ranges between 5 and 15 fl. min−1. This corre-
sponds to the first stage of weak lightning activity observed
and reported byFehr et al.(2004) (see their Fig. 6b) with
a slow increase of the total flash rate close to 10 fl. min−1.
After 75 min, the flash rate increases and reaches a peak of
58 fl. min−1 at 128 min. Then, the flash rate remains in the
range 35–55 fl. min−1 until the end of the simulation. This
sequence is slightly different in the observations. First the
total lightning activity achieved an abrupt increase up, to
52 fl. min−1 around 17:45 UTC, i.e.∼95 min after the first
flash was detected by the ITF. Then, the observed total flash
rate decreased gradually until 19:00 UTC (∼20 fl. min−1).
At this time however,Fehr et al.(2004) indicated that the
lightning flash detection efficiency was possibly degraded
when the supercell moved over the interferometer antenna.
Meso-NH produced 4521 flashes, 33 of them being cloud-
to-ground flashes, representing 0.7 % of the total lightning
activity. Fehr et al.(2004) reported that 3321 flashes were
detected, and 7 % were cloud-to-ground flashes. So one can
estimate that Meso-NH is able to reproduce the character-
ics (amplitude and time evolution of the total flash rate) of
the EULINOX storm approximately but the cloud-to-ground
proportion is clearly underpredicted by a factor 10. This is
not surprising since the criterion to decide the formation of
cloud-to ground flashes must be refined.

The histograms of the number of segments per flash
(Fig. 7b) shows that almost 85 % of the lightning flashes are
made up of less than 600 segments, the average number of
segments per flash being 348 segments per flash. As in the
STERAO storm, lightning flashes are preferentially triggered
in two layers (Fig.7c): 5.5–6.5 km and 10–12 km, which is
consistent with the charge structure displayed in Fig.6b and
6d. Each flash neutralizes 5.02 C on average.

In conclusion, Meso-NH succeeded in reproducing the
EULINOX storm and its lightning activity in case of highly
simplified environmental conditions. This is a first step since
only a full real case simulation followed by a direct compari-
son with detailed lightning measurements (Rison et al., 1999)
allows an unambiguous validation of the electrical scheme.

For the EULINOX simulation performed on 32 processors
of the CCUR, the electrical scheme computation represents
40 % of the total computing time. The computing time due

to CELLS is expected to vary with more or less lightning
activity in the domain.

5 Conclusions

In this paper, we report the recent improvements brought
to the electrification and lightning flash scheme in Meso-
NH. The governing equations of the electric charge carried
by the condensed species (including hail) are completed by
two equations treating the physics of positive and negative
ions. Ions ensure a continuity of the electric charge out of
the clouds and the precipitation in particular when particules
evaporate. The ions are also responsible of the screen charge
layers which form on the edge of electrified clouds.

The most important change however concerns the light-
ning flash scheme which has been heavily revised in order
to be run in a multi-processor environment. The treatment
of the flashes is the bottleneck of an electrification scheme
because the filamentary aspect of the channel which needs to
be resolved at high resolution, imposes to develop an algo-
rithm which is not suitable to parallelization. Previously, the
growth of the lightning discharge was based on a recursive
description of the flash propagation into positive and negative
pockets of charges. Here recursion comes from the rule that
at a given stage of the flash, new segments are added only
after a random selection of all the possible grid points that
can be connected to the current structure. The new scheme
simplifies this view by relaxing the connectivity criterion in
order to select at once all the grid points of the flash structure.

The new flash algorithm identifies first all the indepen-
dent electrified cells in order to prepare a parallel treatment
of all flashes that propagate inside the cells. In most of the
cases, an electrified cell is split over several subdomains on a
distributed-memory computer. A bidirectional leader phase
of the flash is defined for each cell with an upward and down-
ward vertical tracing from the flash triggering grid point. The
density of the branches is assumed to follow a fractal law so
that the number of grid points reached by the flash increases
with the distance from the triggering point. These distances,
filtered by an electric charge density conditions, are com-
puted by the processors attached to the subdomains where
the flash propagates and the corresponding end grid points
are stored. Then a subset of grid points at an equal distance
from the triggering point are selected at random in order to
fit the number of points deduced by the fractal law for this
distance. All these operations can be parallelized owing an
exchange of messages between all processors.

The electrical scheme was tested for two idealized storm
cases drawn from the STERAO and EULINOX field exper-
iments in order to compare first of all, the observed and
the simulated flash rates. Three-hour simulations were per-
formed over relatively large computational domains on clus-
ters with up to 32 processors. Using the same setting for the
electrification scheme, the model succeeded in reproducing
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favorably the thousands of flashes in both cases but with a
few number of CG flashes, obtained for the EULINOX case
only. A sensitivity study carried out for the STERAO case
helped to limit some excessive NI charging rates and to esti-
mate non-measurable flash parameters.

The next step is to run the electrical scheme for storms
developing over complex terrain in order to verify that the
new lightning scheme supports well a high coordinate dis-
tortion as anticipated. This objective is part of the HyMeX
experiment planned in 2012 with the purpose of studying the
heavy rainfalls produced by electrified orographically-forced
storms in the South of France.
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Sãnudo, J., Ǵomez, J. B., Castaño, F., and Pacheco, A. F.: Fractal
dimension of lightning discharge, Nonlin. Processes Geophys.,
2, 101–106,doi:10.5194/npg-2-101-1995, 1995.

Saunders, C. P. R. and Brooks, I.: The effects of high liquid water
content on thunderstorm charging, J. Geophys. Res., 97, 14671–
14676, 1992.

Saunders, C. P. R. and Peck, S. L.: Laboratory studies of the
influence of the rime accretion rate on charge transfer during
crystal/graupel collisions, J. Geophys. Res., 103, 13949–13956,
1998.

Saunders, C. P. R., Keith, W. D., and Mitzeva, R. P.: The effect
of liquid water on thunderstorm charging, J. Geophys. Res., 96,
11007–11017, 1991.

Schumann, U. and Huntrieser, H.: The global lightning-induced
nitrogen oxides source, Atmos. Chem. Phys., 7, 3823–3907,
doi:10.5194/acp-7-3823-2007, 2007.

Shao, X. M. and Krehbiel, P. R.: The spatial and temporal devel-
opment of intracloud lightning, J. Geophys. Res., 101, 26641–
26668, 1996.

Skamarock, W. C., Powers, J. G., Barth, M., Dye, J. E., Mate-

jka, T., Bartels, D., Baumann, K., Stith, J., Parrish, D. D., and
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