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Abstract

Rational expectations solutions are usually derived by assuming that all

state variables relevant to forward-looking behaviour are directly observable,

or that they are ”...an invertible function of observables” (Mehra and Prescott,

1980). Using a framework that nests linearised DSGE models, we give a

number of results useful for the analysis of linear rational expectations models

with restricted information sets. We distinguish between instantaneous and

asymptotic invertibility, and show that the latter may require significantly

less information than the former. We also show that non-invertibility of the

information set can have significant implications for the time-series properties

of economies.

JEL classifications: D80; E32.

Keywords: imperfect information; invertibility; rational expectations;

fundamental versus nonfundamental time series representations; Kalman fil-

ter; dynamic stochastic general equilibrium

∗We thank Michel Juillard (the Editor) and two anonymous referees for their comments which
have greatly improved the paper. We have also benefited from discussions with Paul Levine, Marco
Lippi, Roland Meeks, Kristoffer Nimark and Joseph Pearlman.

†School of Economics, Maths & Statistics Birkbeck College, University of London.
‡Corresponding author: Department of Economics, University College London, Gower Street,

London WC1E 6BT, UK. Liam.Graham@ucl.ac.uk. Phone: +44 20 7679 5850. Fax: +44 20 7916
2775.

§School of Economics, Maths & Statistics Birkbeck College, University of London.



1 Introduction

Underlying most rational expectations models is the strong assumption that all state

variables relevant to forward-looking behaviour are directly observable. This can be

rationalized, as in Mehra and Prescott (1980) by the assumption that the states are

”...an invertible function of observables”.

In this paper we consider a general linear rational expectations framework that

nests linearised dynamic stochastic general equilibrium (DSGE) models, in which

the Kalman filter is used to estimate the state variables from a given information

set. Compared to standard applications of the Kalman filter, the signal extraction

problem is complicated by the responses of forward-looking variables to new infor-

mation feeding back both on the measurement problem and on future values of the

state variables. Within this framework we analyse the implications of three kinds of

information sets:

1. Instantaneously invertible information sets. The states can be recov-

ered from only t - dated information, the Kalman filter is redundant and the full

information solution is replicated.

2. Asymptotically invertible information sets. The economy converges to

a solution in which the Kalman filter replicates full information. We show that the

conditions for asymptotic invertibility can be satisfied with fewer observables than

needed for instantaneous invertibility. However this puts important additional

restrictions on the nature of the measurement process and its interaction with the

dynamics of the underlying states.

3. Non-invertible information sets. The Kalman filter can never replicate

the full information solution. We show that the impact of limited information is

transitory, but can be highly persistent and that the endogenous nature of the

filtering problem introduces new (but unobservable) sources of dynamics in response

to structural shocks. The only observable dynamics will be those of the estimated,

as opposed to the actual states. We show that, with non-invertible information sets,

the estimated states will follow the same vector autoregressive process as would the

true states in a notional full information economy, but with a different covariance

pattern of shocks. In this notional economy, pre-determined variables like capital

are subject to “pseudo-shocks” that are logically impossible under full information.

We also examine the implications of information for the time series properties

of the economy. Invertibility of an information set is closely related to invertibility

or fundamentalness in time series analysis. The solution to a Kalman filter problem

always results in a fundamental time series representation of the observables i.e.

one in which the innovations can be recovered from the history of the observables.
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But invertibility of the information set implies that the structural innovations that

drive the true states are also fundamental in the time series sense. In contrast,

under non-invertible information sets the structural innovations cannot be recovered

from the history of the observables. Indeed, in the special case of a non-invertible

information set in which the number of observables equals the number of structural

innovations, we show that the latter are also (up to a scaling factor) innovations to

a nonfundamental time series representation of the observables. We also show that

in general the endogenous nature of the filtering problem leads to nonbasic (Lippi

and Reichlin, 1994) nonfundamental representations of the observables.

To complement the paper we provide a Matlab toolkit which allows the easy

application of our techniques to a wide class of linear rational expectations models.

Our analysis builds on past analysis of macroeconomic models with limited in-

formation (Pearlman et al., 1986; Pearlman, 1992; Svensson and Woodford, 2003,

2004). These papers also examine signal extraction problems in the context of both

forms of endogeneity noted above and we show that our solution is identical to theirs.

However, by showing that the solution to the endogenous Kalman filter problem can

be expressed in terms of the solution to a “parallel problem” in which the states and

the measurement process are fully exogenous, we are able to exploit known results in

control theory (Anderson and Moore, 1979) to show the conditions under which the

Kalman filter converges to a unique steady state. This in turn allows us to derive

the conditions under which an information set is asymptotic invertible. We also

show that our analysis of time series properties is closely related to the literature

on econometric inference in time series representations (Hansen and Sargent, 2005;

Lippi and Reichlin, 1994; Fernandez-Villaverde et al., 2007).

Limited information sets within macroeconomic models may arise as in Svensson

and Woodford (2003) and Pearlman (1992), where a policymaker sets policy vari-

ables with incomplete information on the underlying state variables in the economy,

or as in Bomfim (2004), Keen (2010), Collard and Dellas (2010) where represen-

tative consumers are assumed to face informational restrictions, or state variables

are measured with error. Sims (2003) shows in a model of “rational inattention”,

in which agents face information processing capacity constraints, that the optimal

response to these constraints can be represented as a signal extraction problem of

the same form. Woodford (2003), Lorenzoni (2009), Nimark (2007), Graham and

Wright (2010) and Porapakkarm and Young (2008) address the problem of hetero-

geneous agents facing a symmetric filtering problem of inferring aggregates which

requires them to form estimates of a “hierarchy of average expectations“ (Townsend,

1983). While this is a more complex problem, Graham and Wright (2010) show
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that when such models include endogenous states a filtering problem of the form

discussed in the present paper is central to the solution.

The remainder of the paper is organized as follows. Section 2 summarises

the key properties of the general filtering problem within a general linear rational

expectations model. In Section 3 we give conditions for asymptotic invertibility

and in Section 4 we discuss non-invertible information sets. Section 5 discusses

implications for time series properties. In Section 6 we show how our techniques

can be applied to an analytical example based on the benchmark stochastic growth

model. Appendices, available online, provide proofs and derivations.

2 The signal extraction problem

2.1 A general system representation

A structural linear rational expectations model can be written as in McCallum

(1998):

AyyEtyt+1 = Byyyt +Bykkt +Byzzt ∈ R
q×1 (1)

kt+1 = Bkyyt +Bkkkt +Bkzzt ∈ R
rk×1 (2)

zt+1 = Bzzzt + ζt+1 ∈ R
rz×1 (3)

with {k0, z0} given. In the first block of equations yt is a q × 1 vector of non-

predetermined variables. The matrix Ayy may not be invertible. The equations in

this first block may be first-order conditions (both static and dynamic), identities or

production relations. The second block describes the evolution of an rk × 1 vector

of predetermined variables, kt, while the third describes the evolution of an rz × 1

vector of exogenous stochastic processes, zt, that can be represented by a first order

vector autoregression, with ζt an rz × 1 vector of iid innovations.

Throughout the paper we give examples taken from linearised DSGE models,

however the model of (1) to (3) is more general than this.

We assume expectations are formed based on an information set

It =
{
{ij}t

j=0 ; Ξ; Φ0

}
(4)

where Ξ contains the (time-invariant) structure and parameters of equations (1) to

(4); Φ0 represents initial estimates of the states and their covariance matrix
1 and it

1One value for Φ0 would be the unconditional properties of the states implicit in Ξ. Under
conditions given in Proposition 2, initial estimates will have no impact on the equilibrium.
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is an n× 1 vector of observed variables

it = Cikkt + Cizzt + Ciyyt + Ciwwt ∈ R
n×1 (5)

where wt is an rw×1 vector of measurement errors, with 0 ≤ rw ≤ n.2 For generality

we can in principle allow these to be serially correlated by representing them as a

vector autoregression:

wt+1 = Bwwwt + ωt+1 ∈ R
rw×1 (6)

where ωt is a vector of iid innovations.

The nature of the information set (which will be model-specific) should ideally

be explicitly related to the underlying structure of the economy.3 It should also be

borne in mind that, as we show in Appendix A, the structure of the model in (1)

to (3) needs to be both informationally consistent and informationally feasible i.e.

any linear combinations of the states appearing in the forward looking equations of

(1) must be observable.

We provide a Matlab toolkit which takes as input a system in the form specified

in equations (1) to (6) and implements all the transformations and solution methods

that follow.4

2.2 The filtering problem

For compactness of notation we incorporate predetermined and exogenous variables,

kt and zt, together with the measurement errors, wt, into a vector of state variables ξt

of dimension r = rk+rz+rw. We partition yt into two sub-vectors, ct ∈ R
m×1, with

m ≤ q, containing observable forward-looking variables that satisfy expectational

difference equations such as consumption or policy variables and xt ∈ R
(q−m)×1

containing variables given by static relationships. None of our results depend on

this partition.5

In Appendix A we show that we can then use (2) to (5) to derive the following

compact representation of the state evolution and measurement equations

ξt+1 = Fξξt + Fcct + vt+1 ∈ R
r×1 (7)

2Measurement errors may be of lower dimension than the measured variables themselves if, for
example, some linear combination of kt, zt and yt is measured without error, or if measurement
errors in different variables are systematically related.

3For example, Graham and Wright (2010) argue that, in an incomplete markets setting, infor-
mation should be assumed to be ”market-consistent” - i.e. agents only obtain information from
the markets they trade in. Porapakkarm and Young (2008) is another example of this approach.

4Available from the authors’ websites.
5This is discussed in more detail in Appendix A.
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it = H ′
ξξt +Hcct ∈ R

n×1 (8)

where Fξ ∈ R
r×r;Fc ∈ R

r×m; ct ∈ R
m×1, Hξ ∈ R

r×n; Hc ∈ R
n×m, ξ0 is given and

ξt =

⎡⎢⎣ kt

zt

wt

⎤⎥⎦ ∈ R
r×1; vt = Fuut ∈ R

r×1 (9)

ut =

[
ζt

ωt

]
∈ R

s×1; Fu =

[
0rk×rk

0rk×s

0s×rk
Is

]
∈ R

r×s (10)

S ≡ E (utu
′
t) ∈ R

s×s; Q = E (vtv
′
t) = FuSF ′

u ∈ R
r×r (11)

where we assume that the vector of underlying structural disturbances ut is jointly

iid with covariance matrix S and we assume rank (S) = rank (Q) = s ≡ rz + rw;

rank (Hξ) = n. Definitions of the matrices in (7) and (8) are given in Appendix A.

The signal extraction problem is solved using the Kalman filter. The standard

Kalman filter (as in e.g. Harvey, 1981, 1989; Hamilton, 1994; Hansen and Sargent,

2005) can be written as a special case of our system:

ξt+1 = Fξξt + vt+1 (7a)

it = H ′
ξξt + wt (8a)

Comparing this with the general system in (7) and (8) reveals a number of important

differences.

First, there are two forms of endogeneity of the system in (7) and (8) to the solu-

tion to the signal extraction problem. If Fc �= 0 there is “dynamic endogeneity“, for

example in the stochastic growth model capital depends on lagged consumption. If

Hc �= 0 there is ”measurement endogeneity”, for example via intratemporal optimal-

ity conditions.6 Second, when the ξt are exogenous it is typically assumed that the

eigenvalues of the matrix Fξ in (12) are not greater than unity in absolute value. In

contrast, in the problem generated by a typical DSGE model, Fξ will have at least

one explosive eigenvalue, due to the dynamics of capital under dynamic efficiency.7

We shall show that this feature interacts in interesting ways with the endogeneity

of the Kalman filter. Third, whereas in the standard representation (12) there are

typically innovations to each of the states, if ξt in the general representation con-

tains pre-determined variables, the r × 1 vector of innovations vt will have zeros in

6Endogeneity of this form makes the filtering problem in the context of a DSGE much closer
to those analysed in control theory, as in e.g. Whittle (1983) Anderson and Moore (1979) and
Söderstörm (1994).

7The model in Section 6 has this property.
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its first rk rows. Hence the true structural innovations ut, defined in (10), are only

of dimension s = r − rk ≤ r. Fourth (and more trivially) the measurement errors,

wt, have been absorbed into the redefined states, ξt.
8

In the remainder of the paper the only features of the system in (7) and (8)

that are crucial to our results are the overall state dimension, r, the “stochastic

dimension”, s ≤ r and the number of measured variables, n ≤ r, along with the

endogeneity of both states and measured variables to the forward-looking variables,

ct.

2.3 Full information solution

The special case of full information provides a crucial analytical building block for

the more general solution under other information sets.

Definition 1 (Full information) Full information implies the state variables are

known, it = ξt.

Full information is a special case of the system (7) and (8) with n = r, Hξ =

Ir, Hc = 0. The Kalman filter is therefore redundant.

The solution for the forward-looking variables under full information that satisfies

the expectational difference equations in (1) can then be expressed in the form

c∗t = η′ξ∗t (12)

where for any variable xt, x∗t denotes its value under full information. The matrix

η ∈ R
rxm, depends in general on all structural and preference parameters of the

model and can be computed using standard techniques (e.g. Blanchard and Kahn,

1980 ; McCallum, 1998).9 For the rest of the paper we assume it to be unique and

treat it as parametric. Given (12), the full information states follow a first order

vector autoregressive process in reduced form:

ξ∗t+1 = Gξ∗t + vt+1 (13)

where

G = Fξ + Fcη
′ ∈ R

rxr (14)

8This allows us to accommodate both serial correlation of measurement errors wt, and contem-
poraneous correlation with the innovations, ζt to the exogenous variables zt; it also simplifies the
key formulae.

9Note that all elements in the ith row of η are zero for i > rk + rz (measurement errors have
no impact on ct under full information).
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The behaviour of the forward-looking variables, ct, under full information turns out

to be crucial for the stability of the states under any information set. As noted in the

previous section, in a model with endogenous capital Fξ will usually have at least one

explosive eigenvalue. This latent explosive property can only be controlled by the

behaviour of the forward-looking variables. Under full information this stabilisation

follows directly from the standard rational expectations solution. Under standard

conditions the matrices η and Fc always satisfy the following conditions:

Assumption 1. All the eigenvalues of the matrix G = Fξ +Fcη
′ have real parts

less than or equal to unity

Assumption 2. Let G = V ΛV −1 where Λ is a diagonal matrix of eigenvalues

and V the corresponding matrix of eigenvectors. For any strictly unit eigenvalue in

Λ the corresponding row of Fc is zero.

Assumption 1 rules out explosive rational expectations solutions;10 Assumption

2 states that, to the extent that any innovations have permanent effects, these are

innovations to strictly exogenous processes (e.g. there may be a unit root component

in technology).11 These features of the solution under full information turn out to

be equally crucial for the stability of the solution even when the information set is

non-invertible and thus does not replicate full information.

2.4 Instantaneous invertibility

The full information solution is replicated under the following conditions:

Definition 2 (Instantaneous invertibility). An information set is instantaneously

invertible if n = r, the number of observables is equal to the state dimension and

Hξ in the measurement equation (8) is invertible. Hence full information can be

replicated using only t - dated information.

In this case the state variables can be obtained by inverting the measurement

equation (8) to give

ξt =
(
H ′

ξ

)−1
(it −Hcct) (15)

hence again the Kalman filter is redundant, as is all lagged information on the

observables, {ij}t−1
j=0.

10Note that there is no direct link between the explosive eigenvalues in the rational expecta-
tions solution of (1) to (3) (which are set to zero in solving the model and deriving η under full
information), and those of Fξ, except to the extent that, by inspection of (14), the stability of the
rational expectations solution requires that the explosive eigenvalues of Fξ be “switched off” by
the behaviour of the forward-looking variables.

11Assumption 2 follows naturally from the underlying structural model in (1) to (3), since the
dependence of state variables on ct is only via kt+1, hence all elements of the ith row of Fc are zero
for i > rk ≡ r − s.
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2.5 The Kalman filter

For the remainder of the paper we shall assume that the information set is not

instantaneously invertible. We therefore need to apply the Kalman filter.

Given the linear structure of the model we follow standard practice12 and con-

jecture that the solutions for the forward-looking variables ct will be “certainty-

equivalent” i.e.

ct = η′ξ̂t (16)

where ξ̂t = Eξt|It is the optimal estimate of the current state vector given the

available information set It and η is identical to the matrix for the full information

case in (12). We show below that this conjecture is verified.

We first define two key matrices that characterise the properties of the state

estimates and state forecasts.

Mt = E

[(
ξt − ξ̂t

)(
ξt − ξ̂t

)′]
∈ R

r×r (17)

is the covariance matrix of the filtering errors of the state estimates and

Pt+1 = E
[(

ξt+1 − Etξt+1

) (
ξt+1 − Etξt+1

)′] ∈ R
r×r (18)

is the covariance matrix of the one-step ahead state forecast errors.13

The following proposition shows that despite the endogeneity of both states and

measured variables to the forward-looking variables, the solution to the filtering

problem can be related to standard results:

Proposition 1 (The parallel problem). In the solution to the “endogenous” Kalman

filter problem given by (7) and (8), the mean squared error matrices Mt and Pt+1 in

(17) and (18) are identical to those derived from a parallel exogenous Kalman filter

problem

ξ̃t+1 = Fξ ξ̃t + vt+1

ĩt = H ′
ξ ξ̃t

(i.e. setting Fc = 0 andHc = 0 in (7) and (8)) so are given by the standard Kalman

12See, for example, Pearlman (1992); Svensson and Woodford (2004), who in turn are simply
applying standard results in control theory as in e.g. Whittle (1983) and Söderström (1994).

13For compactness of notation we write the period t estimate of the states as ξ̂t; whereas the
standard Kalman filter literature commonly uses ξ̂t|t. For the forecast at time t of the states at

period t+1 we write Etξt+1

(
= Etξ̂t+1

)
instead of the standard ξ̂t+1|t. Pt+1 is commonly denoted

Pt+1|t, and using the same notation Mt = Pt|t, but we separate the two for clarity.
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filter recursion

Pt+1 = FξMtF
′
ξ +Q (19)

Mt =
(
Ir − β̃tH

′
ξ

)
Pt (20)

β̃t = PtHξ

(
H ′

ξPtHξ

)−1 ∈ R
r×n (21)

where Q = E (vtv
′
t) is as defined in (11). In the solution to the actual problem, (i.e.

with Fc �= 0, Hc �= 0 and ct given by (16)), the estimated states follow the process

ξ̂t+1 = Gξ̂t + βtεt+1 (22)

βt = β̃t

(
In +Hcη

′β̃t

)−1

(23)

where G is as defined in (14) and εt is the vector of innovation to the observables,

εt+1 ≡ it+1 −Etit+1 (24)

Proof. See Appendix B.

The filtering problem set out in (7) and (8) displays two forms of endogeneity.

Proposition 1 states that the solution to this problem can be derived from the

solution to a parallel filtering problem for a notional state process ξ̃ and a notional

set of measured variables ĩt in which there is no endogeneity, so that the standard

exogenous Kalman filter formulae can be applied.14 This is the case because, while

the forward-looking variables determine future states in the true problem via the

matrix Fc, this does not impact on one-step ahead uncertainty (since the marginal

impact of today’s choices on tomorrow’s states is known today even if current states

are unknown). As a result the expression for Pt+1 only allows for the direct impact

of uncertainty about today’s states transmitting to uncertainty about tomorrow’s

states, via the matrix Fξ. Since the matrix Fc does not affect the solution to the

filtering problem, it can be solved under the assumption that Fc = 0.

The Kalman gain15 matrix βt for the true problem is not however the same as its

14Our formulae for Pt+1 and β̃t are more compact than the more common formulation, given
our absorption of measurement error into the states, but can be easily shown to be identical.

15We use the definition of the Kalman gain as in Harvey (1981), in which it can be interpreted as
a matrix of regression coefficients updating current state estimates in response to forecast errors in
predicting measured variables (Söderström, 1994, refers to this as the “filter gain”) . The term is
also frequently applied (as in Hamilton, 1994) to a matrix, often denoted K, that updates forecasts
of the states in response to the same forecast errors (Söderström, 1994 refers to this definition as
the “predictor gain”). In the parallel exogenous problem K̃ = Fξβ̃t in our notation, however in
the actual endogenous problem K = Gβt, since it would incorporate the endogenous response of
forward-looking variables both in βt but also in the autoregressive representation in (22).
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counterpart β̃t in the parallel problem because the signal conveyed by innovations to

the measured variables also affects the forward-looking variables ct. But this has no

impact on the mean squared error matrices Mt and Pt+1, hence these can be derived

under the assumption that Hc = 0.

Proposition 1 shows that, conditional upon the solution for βt in (23), the es-

timated states ξ̂t follow the process given by (22) with the same non-explosive au-

toregressive matrix G as for the true states under full information, in (13). In the

parallel problem, in contrast, the notional state process ξ̃t has autoregressive ma-

trix Fξ, which, as noted above may have explosive eigenvalues. We shall see below

that this rather unusual feature of the state process in the parallel problem im-

plies interesting interactions between the signal extraction problem and time series

properties.

In Appendix B we show that the solution to the filtering problem given by

Proposition 1 is implied by standard results in control theory (see Söderström, 1994,

Ch. 6); it is also equivalent to that in Pearlman et al. (1986) and Svensson and

Woodford (2003).16 However the specification in terms of the parallel problem has,

as far as we know, gone unremarked and it is this feature that provides the basis for

many of the results that follow.

2.6 The steady state Kalman filter

Equations (19) to (21) are a set of recursive matrix equations, for which it is natural

to look for a stable steady state. The re-statement of the endogenous Kalman filter

problem in Proposition 1 in terms of the parallel exogenous problem means that this

becomes a straightforward application of existing results.

Proposition 2 (steady-state Kalman filter). If the parallel problem in Proposition

1 is stabilisable and detectable in the sense of Anderson and Moore (1979), then, as

t → ∞ the endogenous Kalman filter converges to a unique steady state satisfying

(19) to (21): Pt → P , Mt → M and βt → β for any initial positive definite matrix

P0.

Proof. See Appendix C.

The twin conditions of stabilisability and detectability can both be related to

the nature of the structural innovations that drive the system in (7) and (8). The

16In Appendix B we show that Svensson and Woodford’s derivation requires that state estimates
update in response to the forecast errors in the parallel, rather than the true forecast errors, but
that their assumed Kalman gain matrix is consistent with this assumption, so that their solution
is the same as ours.
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two conditions can be written as

stabilisability: |Λi (Fξ + FuL
′
1) | < 1 ∀i

detectability: |Λi

(
Fξ + L2H

′
ξ

) | < 1 ∀i

for some matrices L1 ∈ R
r×s and L2 ∈ R

r×n , where Fu is as defined in (10) and

Λi(A) denotes the ith eigenvalue of a matrix A. Note that these conditions apply

to the “parallel problem” of Proposition 1 and hence are entirely unaffected by

endogeneity in the true filtering problem.

The first condition, stabilisability, is trivial if there are no pre-determined vari-

ables (rk = 0) and hence ut the structural innovations defined in (10) are of dimen-

sion s = r, since in that case Fu = Ir. Where there are pre-determined variables

(s < r) it is not so straightforward. As noted above, Fξ may have at least one

explosive eigenvalue and in this case Fu will contain a row of zeros in exactly the

row corresponding to an explosive eigenvalue in Fξ, so that the condition for stabil-

isability can only be met if the relevant row of Fξ contains off-diagonal elements. A

simple example might be that capital must depend not only on lagged consumption,

but also on lags of stochastic exogenous state variables (for example technology).

While this does put restrictions on the underlying structure of the model we have

not encountered examples of DSGE models where the condition for stabilisability is

not satisfied.

The second condition, detectability, requires that there must be some observable

indicator, however poor, of any state variables with associated explosive or unit

eigenvalues.

It is common practice to solve the model using steady-state values of β, P and

M. However, while the recursion in equations (19) to (21) does not depend on the

data it does depend on the passage of time. Hence the use of steady-state values

makes the implicit assumption that there is a sufficiently long history of it in the

information set for the Kalman filter to have converged.

3 Asymptotic invertibility

We have derived the Kalman filter for a general signal extraction problem where

we have assumed only that the information set is not instantaneously invertible

as in Definition 2 (if it were, as we saw in Section 2.4, the Kalman filter would

be redundant). In general the information set will be non-invertible: i.e. state

estimates will differ from the true states. However, under certain conditions on the
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nature of the information set we now show that the Kalman filter will converge to

a steady state that replicates full information.

Definition 3 (asymptotic invertibility) A sequence of information sets {Ij}t
j=1 is

asymptotically invertible if

M ≡ lim
t→∞

Mt (It) = 0

where Mt = E
(
ξt − ξ̂t

)(
ξt − ξ̂t

)′
and, from Proposition 2, M satisfies the steady

state of the recursion in (20).

Definition 3 explicitly notes the dependence of Mt on It and hence on the entire

history of observables. This contrasts with instantaneous invertibility, which, from

Definition 2 requires only t-dated information. Instantaneous invertibility also re-

quires that n, the number of measured variables, equals r, the number of states. In

most standard exogenous Kalman filter problems, in which the stochastic dimension,

s, equals the state dimension, r, this is the only way that full information can be

replicated. However, the endogenous nature of the states in in the context of DSGE

models implies that this condition is sufficient, but not necessary.

In DSGE models, the dynamic endogeneity of some of the states means that,

because they are pre-determined, the stochastic dimension s is less than r, the state

dimension. There may as a result be cases in which the Kalman filter converges to a

steady state that replicates full information. While this is less demanding in terms

of the number of observables required to replicate full information, it does require

significant restrictions on the nature of the information set and its relation to the

underlying structural model. These are summarised in the following proposition:

Proposition 3 (conditions for asymptotic invertibility). Assume that the Kalman

filter of Proposition 1 satisfies the conditions in Proposition 2. A sequence of infor-

mation sets {Ij}t
j=1 is asymptotically invertible if and only if

1. n = s

2. H ′
ξFu is invertible

3.
∣∣∣Λi

((
I − β̃ (Q)H ′

ξ

)
Fξ

)∣∣∣ < 1 ∀i

where n is the number of observed variables; s =rank(S) =rank(Q) is the stochas-

tic dimension of the state variables; Hξ is as given in equation (8); S, Q and Fu

are as defined in (11) and (10); Λi (A) are the eigenvalues of a matrix A; and β̃ (Q)

=Fu

(
H ′

ξFu

)−1
satisfies (21) setting P = Q.

12



Proof. See Appendix E.

To illustrate, assume that all three conditions in Proposition 3 hold and that

there is a sufficiently long history of the observables that state estimates in period t

have converged on their true values. Since all the conditions relate to features of the

parallel problem as defined in Proposition 1 we can ignore both forms of endogeneity

and set Fc = Hc = 0.17 Manipulation of equations (7), (8), (10) then implies that

in period t+1, the innovations εt+1 in the observables, defined in (24), relate to the

underlying structural innovations, ut+1 by

εt+1|ξt=ξ̂t
= H ′

ξ

(
ξt+1 − Etξt+1|ξt=ξ̂t

)
= H ′

ξFuut+1 (25)

If the first two conditions hold, H ′
ξFu is both square (n = s) and invertible. Then

if the Kalman filter reveals the true states in period t, the structural innovations

can be derived from the innovations to the observables by inverting (25). Hence

the states will also be known in period t+ 1 and so on indefinitely.

However, this simply tells us that if the first two conditions in Proposition 3 are

satisfied, then M = 0, (and hence, from (19), P = Q) is a fixed point of the Kalman

filter. The third condition tells us whether this fixed point is stable and shows that

the nature of the measurement process and its interaction with the dynamics of

the underlying states, is crucial. The intuition for this third condition is discussed

below, after Corollary 2.18

The conditions set by Proposition 3 state the minimal conditions necessary for

the assumption of full information to be at least asymptotically valid. All three

conditions can be related to interesting economic features of DSGE models.

1. Asymptotic invertibility is only of interest in the case that s, the stochastic

dimension of an economic system, is lower than r, the dimension of the states.

The benchmark stochastic growth model, for example, is driven by a single

stochastic process for technology. The first condition in Proposition 3 im-

plies that in this economy (subject to the other two conditions also holding)

full information can be replicated, at least asymptotically, with only a single

observable variable. We illustrate this property in Section 6.

2. A long-recognized inference problem (Muth, 1961, Bomfim, 2004), arises when

technology is subject to shocks with different persistence. Since such shocks

17This assumption is made purely to simplify the algebra; the same qualititative properties hold
with both forms of endogeneity.

18In Appendix E we show that the three conditions in Proposition 3 have a mathematical coun-
terpart to an invertibility condition for an econometrician stated in Fernandez-Villaverde et al.
(2007).
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have an identical initial impact on technology, they will also typically affect

all observable variables identically on impact. In such cases, even if the first

condition in Proposition 3 is satisfied, so that there are as many observable

variables as shocks, the second condition will not be satisfied (i.e. if H ′
ξFu is

not invertible). Thus inference problems of this type will be endemic to a wide

range of DSGE models.

3. Even if both the first two conditions are satisfied, the third condition, relating

to the nature of the measurement process, can also be crucial. In Section 6 we

give an example, again in the context of the stochastic growth model, in which

the information set satisfies conditions 1 and 2, but does not satisfy condition

3 and therefore is not asymptotically invertible.

While a system with an asymptotically invertible information set will converge

to a solution in which the states are perfectly observable, for finite t it will display

differences from the full information solution. We discuss these issues further in

Sections 4.2 and 4.4.

4 Non-invertible information sets

We now address the implications of an information set being non-invertible. We

first show that even in this case the observable dynamics of the economy can be

represented by those of a notional full information economy, but with a different

covariance pattern of innovations. We then examine the implied true (but, in real

time, intrinsically unobservable) dynamics of the economy, which are more complex.

4.1 An isomorphic representation

Corollary 1 Assuming convergence of the Kalman filter, the behaviour of the esti-

mated states ξ̂t and forward-looking variables ct is isomorphic to the behaviour of the

true states, ξt and ct under full information, if Q, defined in (11) as the covariance

matrix of the innovations vt in (7), is replaced by the matrix Q+FξMF ′
ξ−M. In this

representation there will in general be “pseudo-shocks” to states that are in reality

pre-determined.

Proof. See Appendix C.

This property follows directly from the representation of the state estimates in

(22), which shows that the ξ̂t have an autoregressive representation which is identical

that of the full information states, ξ∗t in (13) except in terms of its innovations. If
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the Kalman filter has converged to its steady state, the innovations to the estimated

states are a linear combination of the innovations to the observables and are vector

white noise conditional upon the t - dated information set with a time-invariant

distribution. Furthermore, given the certainty equivalent nature of the forward-

looking variables ct in (16), the estimated states ξ̂t are sufficient for a time series

representation of ct under any information set, just as the true states are under full

information.19

However, despite its identical autoregressive representation, the notional full

information economy described by Corollary 1 will have different dynamic properties,

due to the nature of its innovations. Most notably, as stated in Corollary 1, there

will in general be “pseudo-shocks” to predetermined variables that are logically

impossible under full information. Thus analysis of an economy with a non-invertible

information set may require the derivation of impulse responses to, for example,

”capital shocks” that are never considered in the standard analysis of models with

full information.20

Given certainty equivalence, any differences in the dynamics of the states in

the isomorphic representation in Corollary 1 in turn determine the impact of non-

invertible information sets on the time series properties of forward-looking variables.

The additional terms in the innovation covariance matrix of the isomorphic repre-

sentation do not always sum to a positive definite matrix. Hence non-invertibility of

an information set can in principle result in a process for forward-looking variables

with higher, or lower, variance than under full information.21

4.2 True state dynamics and the implications of non-invertibility

While there is, as stated in Corollary 1, an autoregressive representation of the state

estimates in terms of observable innovations, this representation does not describe

the dynamics of the true states, except in the special case of invertibility. For the

general non-invertible case the true (but unobservable) dynamics of the economy

are richer once expressed in terms of the true structural innovations, ut. Analysis of

these dynamics provides further important insights.

19This reduced form representation of the estimated states has an econometric parallel in the
“Innovations Representation” of Hansen and Sargent (2005, p 191).

20In reality these are of course not true shocks, but an amalgam of true shocks and revisions
to past estimates of the states: but Corollary 1 implies that the responses of the forward-looking
variables, and hence of the states, to these pseudo-shocks will be identical to the full information
response, if such shocks were actually possible.

21A point also made by Pearlman et al. (1986) and Pearlman (1992) and relevant to the results
of Bomfim (2004).
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Define the vector of state filtering errors as

ft ≡ ξt − ξ̂t (26)

We show in Appendix D that the joint process for ft and the true states ξt can be

expressed, for any information set, in the time-varying vector autoregressive form[
ξt+1

ft+1

]
=

[
G −Fcη

′

0
(
I − β̃tH

′
ξ

)
Fξ

][
ξt

ft

]
+

[
I

I − β̃tH
′
ξ

]
Fuut+1 ∈ R

2r×1 (27)

The top block is entirely independent of filtering parameters and transparently re-

duces to the full information process (13) when filtering error ft is zero. In general,

with dynamic endogeneity (Fc �= 0), filtering error “contaminates” state dynamics

via the off-diagonal element of the autoregressive matrix for the joint process for ξt

and ft. In contrast the process for the vector of state filtering errors ft is block recur-

sive. Furthermore, consistent with Proposition 1, ft follows an identical process to

the state filtering error in the parallel exogenous problem (i.e. it does not depend on

Fc or Hc) and hence is also invariant to the properties of the ct, the forward-looking

variables. Note that while the autoregressive matrix of ft is time-varying away from

steady state, due to time variation in βt, this time variation is deterministic.

Proposition 2 has an important corollary that is crucial to the time series prop-

erties summarised in (27):

Corollary 2 Assuming convergence of the Kalman filter, in the autoregressive rep-

resentation (27), the steady-state autoregressive matrix
(
I − β̃H ′

ξ

)
Fξ of the filtering

errors, ft ≡ ξt − ξ̂t, has at most r − n non-zero eigenvalues, all of which have real

parts strictly less than unity in absolute value.

Proof. See Appendix C.

Thus convergence of the Kalman filter to a unique steady state automatically

implies that filtering errors are stationary in the neighbourhood of the steady state

and vice versa.

Corollary 2 sheds light on the third condition for asymptotic invertibility in

Proposition 3. If the first two conditions are satisfied there is a fixed point of the

Kalman filter that replicates full information. But the third condition in Proposi-

tion 3 can be interpreted as a requirement that the full information fixed point be

stable, since from Corollary 2 this is equivalent to a condition that the eigenvalues

of the autoregressive matrix of filtering errors in (27) be stable in the neighbour-

hood of the solution that replicates full information. Furthermore, since, using the
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definitions of ft and Mt in (26) and (17), we have Mt = E (ftf
′
t), from Definition 3,

asymptotic invertibility implies limt→∞Mt = M = 0, so that if all three conditions

in Proposition 3 are met the filtering errors ft have a degenerate distribution.

For the general non-invertible case, in which the conditions in Proposition 3 are

not met, ft �= 0 and hence filtering error will always “contaminate” state dynamics.

Assuming the conditions in Proposition 2 hold, however, there will still be a steady

state of the Kalman filter, in the neighbourhood of which, from Corollary 2, filtering

errors will be stationary. But this steady state will not replicate full information.

The joint process for ξt and ft in (27) provides a complete description of the

true process for the forward-looking variables ct, since, using (16) we can write

ct = η′ξ̂t ≡ η′ (ξt − ft) : thus with a non-invertible information set the process for ct

differs from the process under full information both because of the direct effect of

filtering error on the estimated states and because the true states differ from their

full information values.22 The more persistent is the filtering error process (the

closer are the non-zero eigenvalues of
(
I − β̃H ′

ξ

)
Fξ to unity), the more prolonged

will be the additional dynamics introduced by the filtering problem.

Note that, while filtering errors will contaminate the true state dynamics, they

will not do so in expectation, since Etft = 0 by definition. Given this, at any point

in time the expected process for the states has an identical form to that of the true

states under full information, hence the undetermined coefficients problem to which

η is the solution is identical to that under full information. This feature verifies

the assumption of certainty equivalence used in the solution for the forward-looking

variables, ct, in (16).
23

The representation in (27), together with Corollary 2, also implies a number

of further features of non-invertible information sets that are direct corollaries of

Propositions 1 and 2, given Assumptions 1 and 2.

Corollary 3 Non-invertibility of an information set has no permanent effects, even

when there are permanent structural shocks (i.e. if Bzz has one or more unit eigen-

values).

Proof. See Appendix D

22Note that only filtering errors in the underlying states kt and zt have any direct impact on ct
since, as noted previously, η has zeros in its ith row for i > rk + rz .

23In a DSGE model, certainty equivalence is of course a standard result that arises from the fact
that we first linearise the model (including Euler equations) and then solve the filtering problem.
To the extent that state uncertainty introduces new sources of variance in forward-looking variables
(an issue we discuss in Section 4.3) incorporation of state uncertainty into the optimisation problem
before linearisation would presumably result in effects analogous to those in the precautionary
saving literature.
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Corollary 3 implies that impulse responses under full information and non-

invertible information must converge. Thus while short-run dynamics may be sig-

nificantly affected by informational problems, longer-run responses (especially those

to permanent shocks) derived from models that assume full information will approx-

imate those from models with non-invertible information sets. This has potentially

important implications for econometric analysis: it means, for example, that iden-

tifying assumptions for vector autoregressive models based on long-run restrictions

predicated on theoretical models assuming full information are equally applicable

under imperfect information.

Corollary 3 also implies that in the case of asymptotic invertibility as in Propo-

sition 3, the impact of any filtering errors away from steady state must ultimately

decay to zero, so that in this case ξt → ξ∗t : in the limit the full information solution

is replicated.

Corollary 4 The filtering errors ft satisfy H ′
ξft = 0.

Proof. See Appendix D

Linear dependence between the elements of the vector of filtering errors arises

from the efficient use of the structural knowledge of the economy that underpins the

Kalman filter. To see the intuition for this result, note that, if we take t - dated

expectations of the measurement equation (8), using (12) this implies

it = Hξξt +Hcη
′ξ̂t = (Hξ +Hcη

′) ξ̂t

⇒ H ′
ξξt = H ′

ξξ̂t ⇒ Hξft = 0 (28)

thus filtering errors for any given state variable must be precisely offset by some

combination of other filtering errors. By implication neither the innovation matrix

of the vector of filtering errors, ft, nor its autoregressive matrix can be of full rank

and thus the n - dimensional vector ft can always be expressed in terms of a sub-

vector of dimension r − n.

Corollary 5 Let β =
[

βk βz βw

]′
. If Fξ has explosive eigenvalues, βk = 0 can

never be a convergent solution of the Kalman filter problem.

Proof. See Appendix D

This result follows directly from the stationarity of the filtering error process.

When Fξ has explosive eigenvalues associated with the evolution of the pre-determined

variables, kt, the steady-state autoregressive matrix of the filtering error in (27),(
I − β̃H ′

ξ

)
Fξ, could not have stable eigenvalues with β̃k = 0. Since, from Corollary
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2, stability of the filtering errors is directly equivalent to convergence of the Kalman

filter, this in turn implies that in this case βk �= 0 can never be a solution of the

filtering problem.

This has interesting implications for the nature of the optimal response to in-

formation, as the quality of that information deteriorates. In standard exogenous

Kalman filter problems, in which Fc = 0 and Fξ usually has at worst borderline

unit eigenvalues, the lower the quality of the information, the smaller is the optimal

response to that information. The same feature applies in our problem when Fξ has

stable or unit eigenvalues.24 In contrast, if Fξ has explosive eigenvalues, so does the

state process in the parallel problem of Proposition 1. So for βk sufficiently close

to zero, the filtering error process would itself be explosive, contradicting Corollary

2. In this case, as Sωω tends to infinity, βk tends to a fixed, non-zero matrix. Thus

however poor the information, it is always optimal to respond to it.25

4.3 A caveat on impulse responses

The joint process for ξt and ft in (27) discussed in the previous section shows that

non-invertible information introduces more complicated dynamics than under full

information. However, impulse responses derived from the full reduced form repre-

sentation in (27) would not be observable in real time. The only observable impulse

responses would be those to the isomorphic representation of Corollary 1, in which,

as already discussed, the innovation covariance properties of this notional economy

may be very different from those of the true structural shocks.26

4.4 Mappings

We have discussed four types of information set: full information; instantaneous

invertibility; asymptotic invertibility and general incomplete information. These

can be contrasted by writing the system as mappings, either from initial values and

shocks to the true states, or from observables to state estimates.

24This feature is noted in Svensson and Woodford (2003, p711) where it appears to be presented
as a general result.

25A close parallel is in Sims (2003, p680) who notes that under rational inattention, if the
response of consumption is too weak to stabilise the explosive states there will be no stationary
equilibrium.

26There is a counterpart here with the econometric invertibility problem in Fernandez-Villaverde
et al. (2007).
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4.4.1 The mapping from initial values and shocks to the true states

Inputs consisting of initial values ξ0, Φ0 =
{
ξ̂0, P0

}
and shocks {ui}t

i=1 are mapped

to outputs consisting of states {ξi}t
i=1 and filtering errors {fi}t

i=1, by (19) - (21) and

(27), reproduced here

β̃t = PtHξ

(
H ′

ξPtHξ

)−1 ∈ R
r×n (29)

Mt =
(
Ir − β̃tH

′
ξ

)
Pt ∈ R

r×x (30)

Pt+1 = FξMtF
′
ξ +Q ∈ R

r×r where Q = FuSF ′
u (31)[

ξt+1

ft+1

]
=

[
G −Fcη

′

0
(
I − β̃tH

′
ξ

)
Fξ

][
ξt

ft

]
+

[
I

I − β̃tH
′
ξ

]
Fuut+1 ∈ R

2r×1(32)

The four types of information set are:

1. Full information: under full information Φ0 = {ξ0, Q} , Pt = Q, Mt =

0, ft = 0, ∀t ≥ 0 and the mapping reduces to

ξt+1 = Gξt + Fuut+1 (33)

which, given (10) is identical to the standard solution (13).

2. Instantaneous invertibility: using (15) and (16) we have

ξ̂t =
(
I +

(
H ′

ξ

)−1
Hcη

′
)−1 (

H ′
ξ

)−1
it = ξt ∀t ≥ 0 (34)

Hence observing it is equivalent to observing ξt and again, Φ0 = {ξ0, P0} , M0 =

0, so this case is identical to full information.

3. General incomplete information: Φ0 =
{
ξ̂0, P0

}
. Under the conditions

stated in Proposition 2 initial estimates have only transitory impact and the

Kalman Filter converges to a unique steady state. Thus as t → ∞, Pt → P,

Mt → M, β̃t → β̃ (P ) and the mapping converges to a time invariant vector

autoregressive process.

4. Asymptotic invertibility: as for case 3, but with lim
t→∞

Pt = P = Q, lim
t→∞

Mt =

M = 0, lim
t→∞

β̃t = β̃ (Q) =Fu

(
H ′

ξFu

)−1
thus lim

t→∞
ft = 0, so that in the limit

as t → ∞ the mapping reduces to (33). For finite t, the behaviour of the

model will in general be different from the full-information case , since Pt−Q

is non-negative definite symmetric.
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4.4.2 The mapping from initial values and observables to state estimates

Whereas the above mapping was in terms of quantities that will in general be un-

observable, there is also a mapping in terms of observables. Inputs, consisting of

initial values ξ̂0 and P0 and observables {ii}t
i=0, are mapped to outputs, consisting

of state estimates
{
ξ̂i

}t

i=1
, by

Etit+1 =
[
H ′

ξ +Hcη
′]Gξ̂t ∈ R

n×1 (35)

ξ̂t+1 = Gξ̂t + βt [it+1 − Etit+1] ∈ R
r×1 (36)

where βt is defined as above in (19) - (21), (24).

The four cases are:

1. Full information: we have ξ̂t = ξt, βt = Ir and it+1 − Etit+1 = Fuut+1, so

that (36) reduces to (33)

2. Instantaneous invertibility: since ξt can be derived directly from it (as in

the previous mapping) the mapping is identical to that in Case 1.

3. General incomplete information: under the assumptions of Proposition

2, as t → ∞ βt → β and hence the mapping reduces to a time invariant

vector autoregressive representation of the state estimates, which in turn, from

Corollary 1, is isomorphic to a full information state process with “pseudo

shocks”.

4. Asymptotic invertibility: β̃t converges to β̃ (Q) = Fu

(
H ′

ξFu

)−1
, so that as

t → ∞ the structural shocks ut can be recovered from the innovations to the

observables.

In both cases 3 and 4 when the Kalman filter has not converged (t < ∞), there

will be “pseudo-shocks” to state estimates. However these are different from the

pseudo-shocks in the converged case in that they will be drawn from a time-varying

(and in case 4, degenerate) distribution

5 Time series representations of the observables

It is a standard result (see Hamilton, 1994, p. 391) that, conditional upon conver-

gence of the Kalman filter, the innovations εt to the observable variables it must

also be the innovations to an invertible, or fundamental, time series representation

21



of it. The key characteristic of fundamental innovations is that they can be recov-

ered from and are white noise conditional upon, the history of it. The link with the

Kalman filter is evident from the fact that the same applies for the innovations that

condition upon state estimates, ξ̂t.

Another standard result in time series analysis (Hamilton, 1994, pp. 67-68;

Lippi and Reichlin, 1994) is that for any fundamental autoregressive moving average

representation of an observable vector process such as it there is a finite set of

alternative representations of the same ARMA order, but each with a different set of

nonfundamental innovations. These nonfundamental representations have the same

autocovariance properties as the fundamental representation, but the associated

innovations are not recoverable from the history of it.

A further feature of time series representations noted by Lippi and Reichlin

(1994) is that for any fundamental representation there is a potentially infinite

set of nonfundamental representations of arbitrarily higher ARMA order, which

they term non-basic.27 Lippi and Reichlin conclude however that such non-basic

representations are “not likely to occur in models based on economic theory” (Lippi

and Reichlin 1994, p. 315).

These characteristics of the time series representation of it are invariant to the

nature of the information set or of the underlying structural model. Where the

nature of the information set and the structural model does make a difference is in

the nature of the link between the alternative time series representations of it and

the underlying structural innovations, ut to the true state process. The following

proposition summarises the nature of this link.

Proposition 4 (time series representations and structural innovations) For any

n× 1 vector of observables, it that satisfies the measurement equation (8) and given

convergence of the Kalman filter to its steady state:

a)For any information set It there exists a fundamental vector autoregressive

27The intuition for non-basic representations can be demonstrated by noting that any univariate
white noise process can in principle by written as a nonfundamental ARMA(1,1) in terms of
another white noise process with lower variance. For example, if ωt is univariate white noise, for
any arbitrary ψ ∈ (−1, 1) we can write

ωt =
(

1− ψ−1L

1− ψL
)
ζt

with σ2
ζ = ψ2σ2

ω. The fundamental representation has MA parameter equal to ψ, and hence the MA
and AR components cancel, which indeed they must, since ωt is univariate white noise. Thus the the
history of ωt can be consistent with any value of ψ and hence any value of σ2

ζ . Furthermore, for any
arbitrary choice of ψ �= 0 the nonfundamental innovation ζt can in turn be given a nonfundamental
representation, and so on ad infinitum. Hence in principle there is an infinite set of nonfundamental
representation of ωt, of arbitrary order, but they are all nonbasic.
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moving average VARMA(n, p, q) representation of it with autoregressive order p ≤
r − n+ 1 and moving average order q ≤ r − n.

b) If It is invertible, the structural innovations ut are, up to a scaling factor, the

innovations to this fundamental representation.

c) If It is non-invertible and n = s =rank
(
H ′

ξFu

)
the ut are, up to a scaling

factor, innovations to a non-fundamental representation of it

d) If It is non-invertible and n < s, the innovations to nonfundamental rep-

resentations can in general only be recovered from an information set consisting of

both the history and future of the structural innovations, ut.

e) If It is non-invertible and there is dynamic endogeneity (Fc �= 0), the true

process for it implies a nonbasic nonfundamental VARMA representation with re-

ciprocal autoregressive roots given by the eigenvalues of G and the eigenvalues of(
I − β̃H ′

ξ

)
Fξ.

Proof. See Appendix F

Table 1 summaries the properties of the information set and the resulting time

series representation of it.

Part (a) of the proposition states that the fundamental time series representation

of the observables has autoregressive and moving average orders reducing in n,

the dimension of the observables. In the special case of instantaneous invertibility

(r = n) Table 1 shows that both the states and the observables have a first order

VAR representation, the reciprocal autoregressive roots of which are the eigenvalues

of G, defined in (14).

Part (b) covers the cases of both instantaneous and asymptotic invertibility. In

the first case, described in the first row of Table 1, we can recover the true states,

ξt from (15), substitute for ct and re-write the law of motion for ξt (7) as a vector

autoregression for it. In the second case of asymptotic invertibility (as in Proposition

3), the ut can be recovered from the εt, but, from part (a) of the Proposition, a pure

VAR representation of it in terms of ut does not exist, since s < r. It is however

possible to derive a finite order VARMA representation by substituting for εt in

terms of ut using (25), see the second row of Table 1. In both cases, since ut can

be recovered from the history of the observables, it, invertibility of the information

set and fundamentalness of the ut are two sides of the same coin.

If the information set is non-invertible, the vector of structural innovations ut

cannot be recovered from the history of the observables. Part (c) of the proposition

highlights an interesting special case, when s, the number of structural innovations

equals n, the number of linearly independent observables, but the information set

is not asymptotically invertible (i.e. the third condition in Proposition 3 is not
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satisfied). In this case a VARMA representation of it with innovations given by

some scaling of ut does exist, but these innovations must be nonfundamental. The

nonfundamentalness of ut in this case is just another way of saying that, despite

the fact that both sets of innovations have the same dimension, the ut cannot be

recovered from the history of the observables.

In the more general non-invertible case, in which n < s, summarised in part

(d) of the proposition, the link between VARMA and structural innovations is less

straightforward but is included for the sake of completeness.28

Part (e) reveals an aspect of the time series properties of the observables that

is specific to the endogenous Kalman Filter. As discussed in Section 4, the true

state process in (27) contains additional dynamics due to the contamination of the

state process by filtering error due to dynamic endogeneity (when Fc �= 0). These

additional dynamics are not observable: so the fundamental reduced form VARMA

representation is of the same order as the reduced form of the system under full

information (since it can be written in terms of the isomorphic state representation

of Corollary 1). However, there is a nonfundamental VARMA representation that

contains these additional dynamics: as a result this representation is not only non-

fundamental, but also nonbasic in Lippi and Reichlin’s (1994) terminology. Thus,

in contrast, to Lippi and Reichlin’s conclusion that nonbasic nonfundamental repre-

sentations are unlikely to occur in models based on economic theory, part (e) shows

that, on the contrary, they are an intrinsic feature of models that combine endoge-

nous states with non-invertible information sets. When the states are exogenous,

however (if Fc = 0), this feature disappears. The last two rows of Table 1 illustrate

the contrast between the cases of exogenous and endogenous states.

The nonbasic nature of these representations is not just of theoretical interest.

If nonfundamental representations are at least basic, this implies that, while the

structural innovations themselves cannot be derived from the history of the observ-

ables, it is at least possible for an econometrician to identify from the data some of

the characteristics (e.g. covariance properties and impulse responses) of these unob-

28The contrast between the cases in (c) and (d) can be be briefly summarised as follows. When
n = s, as in part (c) of the proposition, we have εt = A (L)ut, where A (L) is a square matrix lag
polynomial that is a reduced form of the true state process in (27). While A (L) is non-invertible
in non-negative powers of L it is invertible in the forward operator hence to recover ut requires
information on the future, as well as the history of εt, and hence of the observables. When n < s ,
as in part (d) of the proposition, A (L) is no longer square. But any nonfundamental representation
also has a set of innovations ηt of the same dimension as εt such that εt = B (L) ηt, where B (L)
is square. Thus ηt = B (L)−1

A (L)ut, where the inversion of B (L) again involves a term in
the forward operator and hence ηt depends in general on both the history and the future of the
structural innovations. Only when n = s, as in part (c), do we have B (L) = A (L) , so that these
additional dynamics cancel out.
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servable structural innovations from the observable fundamental representation. The

non-basic characteristic of VARMA representations that arise from non-invertible

information sets with endogenous states rules this out.

6 Example: information in the stochastic growth

model

In this section we present an analytical example that shows how our techniques can

be applied to the benchmark stochastic growth model. We consider three aggre-

gate information sets corresponding to the three cases of instantaneous invertibility,

asymptotic invertibility and non-invertibility.

Following Campbell (1994) the aggregate state evolution equations are

kt+1 = λ1k2 + λ2at + (1− λ1 − λ2) ct (37)

at+1 = φat + ut+1 (38)

where capital kt is pre-determined, at is aggregate technology and ct is consumption

and the λi are linearisation constants.

Implicitly underlying the aggregates is a heterogeneous agent model in which

each agent faces a budget constraint of the form (37) but in idiosyncratic variables.

We do not need to give details of this model (although we discuss it further in Section

6.4) since we are only concerned with the circumstances under which information on

aggregate prices, assumed to be common knowledge, is or is not sufficient to reveal

aggregate states.

Note that the aggregate budget constraint will hold at all times and in all states

of nature irrespective of how individual consumption is determined and whatever the

level of aggregate consumption. Even if this means linearised capital falls without

bound, aggregate capital in levels is bounded below by zero.

If we define the state vector as ξt =
[

kt at

]′
, we can rewrite (37) and (38),

using (10), in the form of (7) as:

ξt+1 = Fξξt + Fcct + Fuut+1 (39)

where

Fξ =

[
λ1 λ2

0 φ

]
;Fc =

[
1− λ1 − λ2

0

]
;Fu =

[
0

1

]
(40)

Using Campbell’s (1994, p. 469) derivation of the linearisation constants from un-
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derlying structural parameters,29 we have λ2 = α (r + δ) / ((1 + g) (1− α)) > 0,

where r is the steady state value of the return on capital, g is the growth rate, δ

is the depreciation rate and α is the exponent on labour in a Cobb-Douglas pro-

duction function. The eigenvalues of Fξ are φ ∈ [0, 1] and λ1 = 1+r
1+g

. Under the

standard assumptions of dynamic efficiency, therefore, r > g ⇒ λ1 > 1 hence Fξ,

the autoregressive matrix of the states in the parallel problem of Proposition 1, has

one explosive eigenvalue.

We now consider what information is available to agents in the model. The

standard assumption that kt and at can both be directly measured is arguably a

questionable one.30 It appears more reasonable to assume that the information set

is “market-consistent” (Graham and Wright, 2010): that agents have information

based on the prices in the markets they trade in. Using this assumption, the vector

of possible observable aggregate variables is:[
wt

rt

]
=

[
1− α α

−λ3 λ3

][
kt

at

]
(41)

where wt is the aggregate wage, rt is the aggregate return on capital and λ3 > 0

is Campbell’s third linearisation parameter. The first line of (41) is the marginal

product relation for labour, the second uses Campbell’s linearisation of the return

on capital. There is no noise in the measurement process.

We now consider the implications of three possible information sets. The first

assumes that both possible measured variables are observable. The other two are

censored versions of the information set, in which there is only a single observable

variable.

The apparently arbitrary nature of these censored information sets can be jus-

tified on several grounds. First, they provide a technical illustration that contrasts

two simple cases in which asymptotic invertibility does and does not hold, which

we show relates to the nature of the measurement process and its interaction with

the evolution of the states. Second, they are of some independent interest, since in

any solution that does asymptotically replicate full information the pre-determined

nature of capital in this model means that innovations to the two measured variables

will be perfectly correlated. The examples therefore allow us to identify which of

29We simplify the specification of the law of motion of capital and the measurement process by
following Campbell’s assumption in the first half of his paper that labour supply is fixed. This
means that we have only one of the two potential forms of endogeneity in the filtering problem
(Hc = 0 but Fc �= 0).Given that we can exploit the “parallel problem” of Proposition 1 in solving
the filtering problem, setting Hc = 0 has no qualitative impact on the results.

30For a discussion of this assumption see Bomfim (2004), Porapakarrm and Young (2008) and
Graham and Wright (2010).
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the two observable variables will be informationally redundant if full information

can be replicated. Third, as we discuss in Section 6.4, each restricted information

set can be derived as a special case of fully specified models.

6.1 An instantaneously invertible information set

In the first case we assume that it =
[

wt rt

]′
. Given this information set, we have

n = r = 2 and by inspection of (41) the conditions for instantaneous invertibility in

Definition 2 are satisfied. Thus factor prices provide sufficient information to infer

the state vector from t-dated information and hence the Kalman filter is redundant.

6.2 An asymptotically invertible information set

We first consider it = wt, hence H ′
ξ =

[
1− α α

]
. With a single shock, we thus

have n = s = 1, hence the first condition in Proposition 3 is satisfied. The second

is also satisfied, since
(
H ′

ξFu

)−1
=

([
1− α α

] [
0 1

]′)−1

= α−1 �= 0. For the

third condition, we have, using the formulae in the proposition,

β̃ (Q) = Fu

(
H ′

ξFu

)−1
=

[
0

1

]
1

α
=

[
0
1
α

]
(
I − β̃ (Q)H ′

ξ

)
Fξ =

([
1 0

0 1

]
−

[
0
1
α

] [
1− α α

])[
λ1 λ2

0 φ

]

Λ
((

I − β̃ (Q)H ′
ξ

)
Fξ

)
= λ1 −

(
1− α

α

)
λ2 (42)

and thus, again, using Campbell (1994) the single critical eigenvalue31 is, in terms

of structural parameters,

Λ = λ1 −
(
1− α

α

)
λ2 =

1− δ

1 + g
< 1

Hence the fixed point is stable, or, equivalently, using Corollary 2, filtering errors

converge to zero in the neighbourhood of the full information equilibrium. Since it

can also be shown that the model satisfies the conditions in Proposition 2, it follows

that this is the unique steady state of the Kalman filter.

Thus the information set is asymptotically invertible: full information can be

replicated from a sufficiently long history of the aggregate wage alone and hence the

history of returns is informationally redundant.

31Recall that, from Corollary 2, the autoregressive matrix of filtering errors will have only r−n =
1 non-zero eigenvalue.
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6.3 A non-invertible information set

We now consider the alternative censored information set, it = rt, hence H ′
ξ =[

−λ3 λ3

]
. The first two conditions in Proposition 3 are again trivially satisfied,

with n = s = 1; and
(
H ′

ξFu

)−1
=

∣∣∣∣[ −λ3 λ3

] [
0 1

]′∣∣∣∣ = λ−1
3 �= 0. Thus full

information is again a fixed point of the Kalman filter given this information set.

However the third condition is not satisfied: it is not a stable fixed point. To see

this, we again use the formulae in the proposition to give

β̃ (Q) = Fu

(
H ′

ξFu

)−1
=

[
0

1

]
1

λ3
=

[
0
1
λ3

]
(
I − β̃ (Q)H ′

ξ

)
Fξ =

([
1 0

0 1

]
−

[
0
1
λ3

] [
−λ3 λ3

])[
λ1 λ2

0 φ

]

Λ
((

I − β̃ (Q)H ′
ξ

)
Fξ

)
= Λ

([
λ1 λ2

λ1 λ2

])
= λ1 + λ2 > 1 (43)

Hence this restricted information set is non-invertible.

To see the intuition for this result and for the contrast with the previous exam-

ple, recall that, from the representation in (27), the matrices in (42) and (43) are

both the autoregressive matrices of the filtering error ft in the neighbourhood of an

equilibrium that replicates full information. In the information set with only the

history of wages filtering errors are stationary, hence any initial error in estimating

the state decays back to zero. When the information set consists only of the his-

tory of the return on capital, filtering errors are explosive in the neighbourhood of

full information. By implication, the history of the aggregate wage, however poorly

measured, is never informationally redundant.

For this example it can again be shown that the information set does satisfy the

two conditions in Proposition 2 for the existence of a unique steady state Kalman

filter; but the non-invertibility of the information set rules out the possibility that

this can replicate full information.

The solution to the filtering problem in this third example implies that, using

Proposition 4a the single observable variable rt has a fundamental ARMA(2, 1)

representation. The order of this representation and its autoregressive roots, are

identical to those under full information (and hence to the two preceding invertible

cases). The moving average roots will however differ, as will the innovation εt. In the

invertible cases this will simply be a scaling of the productivity shock, ut; whereas in

this case it will be a composite of current and lagged values of ut. However, since n =
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s , Proposition 4c implies that there will be an alternative nonbasic nonfundamental

ARMA(3, 2) representation of rt, the innovation to which will simply be a scaling

of ut.
32

It is possible to show that the qualitative nature of the equilibrium for the

aggregate economy that arises from this non-invertible information set is very close

to that of the more complex model analyzed in Graham and Wright (2010), which

we discuss further in the next section. The non-invertible information set results in

“pseudo-shocks” to capital, of opposite sign to the true technology shock; this in

turn induces significant differences in aggregate dynamics.

6.4 Discussion

Although we have discussed the three cases purely in terms of the aggregate economy,

each of the three examples can be related to an underlying economy with many

agents. Note that, given symmetry of information sets on the aggregate economy,

it is the nature of the parallel problem that allows us to focus on aggregates, since

the solution to the filtering problem is independent of exactly how any particular

agent determines their consumption.

The first example can be derived from an economy with many identical agents

earning the same wage and the same return. The example shows that even if these

agents cannot measure the aggregate states directly, the information in the market

prices they observe is sufficient to recover the states. Graham and Wright (2010)

show that the same information set, defined in terms of the average wage and the

return on capital, will also be common knowledge in a heterogeneous economy with

complete markets.

The second example shows that, given a sufficiently long history of the economy,

market-consistent information sets may reveal more information than is actually

required to replicate full information, since in the limit the history of the return

on capital becomes informationally redundant. This example can be seen as the

limiting case of a model with noise in measuring aggregate returns on capital, due

for example, to market frictions or noise traders in financial markets and shows that

such noise will have no impact on the equilibrium of the stochastic growth model,

as long as the history of the aggregate wage is observable. The assumption of

frictionless and complete financial markets is thus not of itself a necessary condition

for replication of full information.

32The AR roots in the fundamental representation will be the eigenvalues of G, hence will depend
on the nature of the consumption function (which corresponds to (16) in the general model). The
additional autoregressive root in the nonfundamental representation will be the autoregressive
parameter of the single filtering error, ft = kt − k̂t.
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However, some forms of market incompleteness can imply that the market-

consistent information set is non-invertible. Our third example can be derived from

the framework of Graham and Wright (2010), who analyse an incomplete markets

version of the stochastic growth model in which there is a unified market for capi-

tal, but households earn a wage with an idiosyncratic component. As a result their

(agent-specific) market-consistent information set does not contain the history of

the aggregate wage. In a limiting case in which each household’s individual wage

is an arbitrarily poor signal of the aggregate wage, it is possible to show that the

(common) information set on the aggregate economy consists only of the history of

the return on capital and hence is non-invertible, as in our third example.33

7 Conclusions

In this paper we have presented a general method of solving the signal extraction

problem in linear rational expectations models, with particular focus on the prop-

erties that arise in linearised DSGE models. We allow for endogeneity between

forward-looking variables and both measured and state variables. We derive a num-

ber of key features of such economies, that relate to the nature of the solution of the

Kalman filter, focussing in particular on whether the information set is invertible,

i.e. whether it can replicate full information, at least asymptotically.

Our framework has considered a class of models where the signal extraction

problem can be represented either as that of a single forward-looking agent, or

a set of such agents who share the same information set. There is potentially a

much wider class of models in which individual agents, or types of agent, have

overlapping, but not common information sets, which typically results a ”hierarchy

of expectations” (Townsend, 1983, Woodford, 2003) Even in such models, however,

the techniques outlined in this paper are still a crucial part of the solution when

states are endogenous (see for example, Graham and Wright, 2010); and limiting

cases can have an identical form to the symmetric information equilibrium set out

in this paper.

We have emphasised the application of our techniques to DSGE models. How-

ever most of our results are quite general and in principle applicable in a wide variety

of contexts where dynamic optimisation problems involve states that are both en-

dogenous and not directly observable. As such the techniques set out in this paper

33It is also possible to show that in this limiting case there is a modified law of motion of aggregate
capital; but it is still of the same general form as (37). Furthermore, aggregate consumption can
be written as the optimising decision of a single representative agent. Details of the derivation of
this limiting case are available from the authors.

30



broaden out further the already wide scope for application of the Kalman filter.
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Supplementary material for

”Invertible and non-invertible information sets in linear
rational expectations models”

by Brad Baxter, Liam Graham1 and Stephen Wright.

A Derivation of Equations (7) and (8)

We first stack equations (2) on top of (3) and (6) to derive the law of motion for

the state variables, ξt =
[

kt zt wt

]′
, and respecify (5) accordingly,

ξt+1 = Dξξξt +Dξyyt + vt+1 (A.1)

it = Diξξt +Diyyt (A.2)

where vt =
[
0 ζt ωt

]′
= Fuut, as in (10).

Dξξ =

⎡⎢⎣ Bkk Bkz 0

0 Bzz 0

0 0 Bww

⎤⎥⎦ ; Dξy =

⎡⎢⎣ Bky

0

0

⎤⎥⎦ ; Diξ =
[

Cik Ciz Ciw

]
; Diy = Ciy;

We next partition yt as yt =
[

c′t x′t
]′
and express (1) conformably as:2

[
Acc Acx

0 0

]
Et

[
ct+1

xt+1

]
=

[
Bcc Bcx

Bxc Bxx

][
ct

xt

]
+

[
Bcξ

Bxξ

]
ξt (A.3)

where the first block of equations are expectational difference equations and thus

represent forward-looking variables such as consumption or policy variables The

second block of equations represent purely static relationships (for example, in-

tratemporal optimality conditions, production functions, identities, etc.) that can

1Corresponding author: Department of Economics, University College London, Gower Street,
London WC1E 6BT, UK. Liam.Graham@ucl.ac.uk. Phone: +44 20 7679 5850. Fax: +44 20 7916
2775.

2This form for Ayy will usually follow naturally from the structure of the model, but as long
as Ayy is singular (if it is not, then the vector xt will be empty) this structure can always be
achieved by an appropriate linear re-weighting of the elements of yt. The sub-matrix Acx may also
in principle contain columns of zeros.
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be substituted out. Using these, assuming B−1
xx exists3 we can substitute out using

xt = −B−1
xx [Bxcct +Bxξξt] = Dxcct +Dxξξt (A.4)

and write the state and measurement equation in their final form in the main text

as

ξt+1 = Fξξt + Fcct + vt+1 (A.5)

it = H ′
ξξt +Hcct (A.6)

where Dξy =
[

Dξc Dξx

]
, Diy =

[
Dic Dix

]
, etc., and

Fξ = Dξξ +DξxDxξ; Fc = Dξc +DξxDxc; (A.7)

H ′
ξ = Diξ +DixDxξ Hc = Dic +DixDxc (A.8)

Note that the substitutions involved in deriving (7) and (8) are by no means

innocuous in informational terms.

First, even static relationships may require informational assumptions. Since

they may involve linear combinations of state variables it may be of considerable

importance whether these combinations, or the elements of xt themselves, are in the

information set It. The form of the measurement equation allows for the possibility

that elements of xt may be observable, whether directly or indirectly, but there are

interesting cases where they are not.4

The nature of the expectational difference equations satisfied by ct, the forward-

looking variables, may also have important informational implications. While this

framework can in principle accommodate any structure to the top block of equa-

tions in (A.3), certain structures may require assumptions about the nature of the

information set. Thus if we substitute out for xt using (A.4) and (7) and use (16)

we can write the top block, applying the law of iterated expectations, as

{Accη
′ + Acx (Dxcη

′ +Dxξ)}Gξ̂t = {Bcc +BcxDxc} η′ξ̂t + {Bcξ +BcxDxξ} ξt

which depends on ξt as well as ξ̂t. For such a formulation to be informationally feasi-

ble in this precise form, the linear combination of states given by {Bcξ +BcxDxξ} ξt

must be observable, and therefore should also be an element of it. In principle this

may significantly alter the information set and hence the nature of the filtering

3The case where B−1
xx does not exist implies that some elements of xt can be expressed as linear

combinations of other elements, and can thus be trivially dealt with by substitution.
4In Graham and Wright (2010), for example, the aggregate wage is an element of xt that is not

observable, given heterogeneous labour and incomplete markets.
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problem (although the rationale for this combination being observable should be

justifiable). If this linear combination is indeed observable, then (from Corollary 4)

efficiency of the state estimates requires that they satisfy the adding up constraint

{Bcξ +BcxDxξ} ξt = {Bcξ +BcxDxξ} ξ̂t thus allowing the top block to be written

entirely in terms of state estimates, as

{Accη
′ + Acx (Dxcη

′ +Dxξ)}Gξ̂t = [{Bcc +BcxDxc} η′ +Bcξ +BcxDxξ] ξ̂t

which results in an undetermined coefficients problem identical to that under full

information. Note also that the nature of the undetermined coefficients problem is

unchanged if this linear combination of states is not observable, but is replaced by

the same combination of state estimates.

This issue does not, of course, arise if, as in many contexts (for example con-

sumption Euler equations) Bcx and Bcξ are zero.

B Proof of Proposition 1

For completeness, and because some elements of the proof are of relevance to later

analysis, we present a full proof of the proposition. Most strictly algebraic elements

of the proof are however to be found in the existing literature on optimal control.

For example, Söderström (1994, Ch. 6) derives the solution to a filtering problem

with what we refer to here as “dynamic endogeneity” (i.e. Fc �= 0). His solution is

identical to ours if we set Hc = 0, once we allow for differences in notation; he does

not however explicitly draw out the link with the “parallel problem”. We also show

in Section B.3 of this appendix that our approach yields identical answers to those

derived in Svensson and Woodford (2003), despite their rather unusual statement of

the filtering process.

We assume that in some period t− 1 initial estimates of the states ξt and Pt are

available, that must satisfy Et−1ξ̂t = Et−1ξt by the law of iterated expectations, given

the definition of ξ̂t. This condition will always be satisfied if, at t = 0, E0ξ̂1 = E0ξ1.

B.1 Forecasting it

Using (8)

Et−1it = H ′
ξEt−1ξt +Hcη

′Et−1ξ̂t =
(
H ′

ξ +Hcη
′)Et−1ξ̂t (B.1)
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where the second expression follows by the law of iterated expectations. The error

of this forecast is, using (24), (5) and (16)

εt ≡ it −Et−1it = H ′
ξ

[
ξt − Et−1ξ̂t

]
+Hcη

′
[
ξ̂t − Et−1ξ̂t

]
= H ′

ξ [ξt − Et−1ξt] +Hcη
′
[
ξ̂t −Et−1ξ̂t

]
(B.2)

where the second line follows from the definition of ξ̂t, after (16), by applying the

Law of Iterated Expectations. We then treat (22), the process for the estimated

states, as a conjectured solution to the filtering process. Conditional upon this

conjectured solution we have

εt = H ′
ξ [ξt − Et−1ξt] +Hcη

′βtεt

hence

εt = J ′t [ξt − Et−1ξt] (B.3)

where

J ′t = [In −Hcη
′βt]

−1H ′
ξ (B.4)

Thus we have, using (B.3) and (18)

E [εtε
′
t] = J ′tE

[
(ξt − Et−1ξt) (ξt −Et−1ξt)

′] Jt = J ′tPtJt (B.5)

B.2 Deriving βt, Mt and Pt.

Since (conditional upon βt and hence Jt) innovations to it depend only on unobserv-

able errors in forecasting the states, the Kalman Gain matrix, βt in the updating

equation (22) is

βt = {E [(ξt −Et−1ξt) ε
′
t]} {E [εtε

′
t]}−1

(B.6)

Hence, using (B.3), (18), and (B.5),

βt = PtJt [J
′
tPtJt]

−1
(B.7)

and the MSE of the state estimates can be written as

Mt = E

[(
ξt − Et−1ξ̂t

)(
ξt −Et−1ξ̂t

)′]
− βtE

[
εt

(
ξt −Et−1ξ̂t

)′]
(B.8)

= Pt − βtJ
′
tPt = [Ir − βtJ

′
t]Pt
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however these do not yet constitute closed form solutions since, via (B.4), Jt depends

on βt.

To show that the recursion for Pt+1 is Fc-independent, note that the forecast

error in predicting the states in period t+ 1 is, using (14), and (7),

ξt+1 − Etξ̂t+1 = Fξξt + Fcη
′ξ̂t + vt+1 − (Fξ + Fcη

′) ξ̂t

= Fξ

(
ξt − ξ̂t

)
+ vt+1 (B.9)

and is thus independent of Fc. Hence, using the orthogonality assumptions and (17),

Pt+1 = FξMtF
′
ξ +Q. (B.10)

To show that Pt+1 and Mt are Hc-independent, let

J
′
t = K−1

t H
′
ξ, (B.11)

where Kt is the (as yet unknown) matrix that satisfies

Kt = (In −Hcη
′βt) . (B.12)

⇒ (J ′tPtJt)
−1

=
(
K−1

t H ′
ξPtHξ

(
K−1

t

)′)−1

= K ′
t

(
H ′

ξPtHξ

)−1
Kt (B.13)

and hence, substituting (B.11) and (B.13) into (B.7), we obtain

βt = PtHξ

(
H ′

ξPtHξ

)−1
Kt (B.14)

and thus

βtJ
′
t = PtHξ

(
K−1

t

)′
K ′

t

(
H ′

ξPtHξ

)−1
KtK

−1
t H ′

ξ

= PtHξ

(
H ′

ξPtHξ

)−1
H ′

ξ. (B.15)

We thus have

Mt =
(
Ir − PtHξ

(
H ′

ξPtHξ

)−1
H ′

ξ

)
Pt, (B.16)

Pt+1 = Fξ

(
Ir − PtHξ

(
H ′

ξPtHξ

)−1
H ′

ξ

)
PtF

′
ξ +Q, (B.17)

Thus the recursions for Mt and Pt do not depend on Fc or Kt (and hence Hc) and

can thus be derived by setting Hc = Fc = 0 as in the parallel problem. If we define

β̃t as in (21) then the above formulae are identical to (19) and (20) in Proposition
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1. We also have, using (B.15)

βtJ
′
t = β̃tH

′
ξ (B.18)

Finally we need to obtain an expression for Jt itself, and hence for βt. Equations

(B.4) and (B.7) imply the seemingly nonlinear equation

J ′t =
(
In −Hcη

′PtJt

(
JtPtJ

−1
t

))−1
H ′

ξ.

However, using (B.11) and (B.14), we obtain

K−1
t H

′
ξ = J ′t =

(
In −Hcη

′PtHξ

(
H ′

ξPtHξ

)−1
Kt

)−1

H ′
ξ, (B.19)

⇒ K−1
t H ′

ξ −Hcη
′PtHξ

(
H ′

ξPtHξ

)−1
H ′

ξ = H ′
ξ. (B.20)

Recalling (B.11) once again, we find

J ′t = H ′
ξ +Hcη

′PtHξ

(
H ′

ξPtHξ

)−1
H ′

ξ

=
(
In +Hcη

′PtHξ

(
H ′

ξPtHξ

)−1
)

H ′
ξ (B.21)

⇒ Kt =
[
In +Hcη

′PtHξ

(
H ′

ξPtHξ

)−1
]−1

(B.22)

Using (21), these can be expressed as

J ′t =
(
In +Hcη

′β̃t

)
H ′

ξ (B.23)

Kt =
(
In +Hcη

′β̃t

)−1

(B.24)

which, after substituting from (B.24) into (B.14) gives (23), completing the proof of

Proposition 1.�

B.3 Comparison with Svensson and Woodford (2003) and

Pearlman et al. (1986)

Svensson and Woodford (2003) have a structural model which in reduced form is

extremely close to ours. Their equations (15) and (16) correspond directly to our

state and measurement equations (7) and (8), after substituting from (16). Using

their notation their equation (22) is

Xt|t = Xt|t−1 +K
[
L
(
Xt −Xt|t−1

)
+ vt

]
(B.25)
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where, Xt|t in their notation corresponds to ξ̂t in ours, and Zt to our it. They then

assert that this allows them to identifyK as ”(one form of) the Kalman Gain Matrix”

(which they assume, without proof, will converge to a fixed matrix). However, by

the usual convention in the literature the Kalman gain updates in response to a

forecast error. The square bracketed expression is not a forecast error. Using their

(16), the true forecast error in their framework is

Zt − Et−1Zt = L
(
Xt −Xt|t−1

)
+M

(
Xt|t −Xt|t−1

)
+ vt (B.26)

where the endogeneity of the measured variables to the response of the estimated

states is evident.

However, it turns out that, despite the somewhat unusual basis for their deriva-

tion, their final result is in fact identical to our own. If we re-express their (22) in

our own notation (apart from the matrix K), it becomes

ξ̂t − Et−1ξ̂t = K
[
H ′

ξ

(
ξt − Et−1ξ̂t

)]
(B.27)

whereas we show that, in our notation, from (B.3), after substituting from the

endogenous response of ct, and assuming convergence, the updating rule in response

to the forecast error in the measured variables is given by

ξ̂t − Et−1ξ̂t = βεt = βJ ′
(
ξt − Et−1ξ̂t

)
(B.28)

But using their equations (24) and (25) (noting that we absorb the covariance

matrix of measurement errors into Q, and hence P ), their derivation implies, in our

notation,

K = β̃

thus in our notation K is identical to the Kalman gain matrix in the parallel, rather

than the actual problem. But, from (B.18), we have βJ ′ = β̃H ′
ξ, hence

ξ̂t −Et−1ξ̂t = βJ ′
(
ξt − Et−1ξ̂t

)
= β̃H ′

ξ

(
ξt − Et−1ξ̂t

)
(B.29)

thus Svensson and Woodford’s updating rule is in fact identical to our own. An

equivalent updating rule is also given in Pearlman et al. (1986) equation (39).

However, neither of these papers note the equivalence of Mt and Pt+1 in the parallel

problem, nor do they derive convergence conditions.
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C Proof of Proposition 2 and Corollary 2.

C.1 Proof of Proposition 2

Since βt and Mt can both be expressed in terms of Pt and structural parameters a

necessary and sufficient condition for convergence of all three matrices to a unique

steady state is convergence of Pt to a unique steady state. Since Pt can be derived

from the the parallel problem of Proposition 1 in which the states are exogenous

we only need be concerned with the stability properties of that problem. Anderson

and Moore (1979, pp. 77-81) provide a proof of a unique stable steady state given

controllability and detectability as defined in the main text for any invertible P0.

C.2 Proof of Corollary 2

We first restate (19), writing F ≡ Fξ, H ≡ Hξ in this section, for brevity, as

Pt+1 = F
(
Ir − PtH (H ′PtH)

−1
H ′

)
PtF

′ +Q. (C.1)

In other words, we are iterating the function g : Pr → Pr, where Pr denotes the set

of all non-negative definite symmetric, real r × r matrices, and

g(Pt) = F
(
Ir − PtH (H ′PtH)

−1
H ′

)
PtF

′ +Q, Pt ∈ Pr. (C.2)

If the conditions set by Proposition 2 are satisfied, then this iteration is stable

around a unique fixed point P

We first note a convenient simplification. Let

F̂ (Pt) = F
(
Ir − PtH (H ′PtH)

−1
H ′

)
= F

(
Ir − β̃(Pt)H

′
)

(C.3)

(where the second expression uses (21)) then:

Lemma 1 The function g : Pr → Pr defined by (C.2) can be expressed, using (C.3),

in the symmetric form

g(Pt) = F̂ (Pt)PF̂ (Pt)
′ +Q, (C.4)

Proof. Using (C.3), we have

g(Pt) = F̂ (Pt)PtF
′ +Q (C.5)

F̂P F̂ ′ = F̂PF ′ − F
(
Ir − β̃H ′

)
PHβ̃

′
F ′ (C.6)
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but(
Ir − β̃H ′

)
PHβ̃

′
= PHβ̃

′ − β̃H ′PHβ̃
′
= PHβ̃

′ − PH (H ′PH)
−1

H ′PHβ̃
′
= 0

(C.7)

As is usual in the analysis of fixed point iteration, we must calculate the (Fréchet)

derivative of g at the fixed point P.

Lemma 2 If E ∈ Pr, then, letting F̂P = F̂ (P )

g(P + E) = g(P ) + F̂P EF̂ ′
P +O(E2). (C.8)

Thus if we let DgP denote the Fréchet derivative of the matrix function g at the

point P ∈ Pr, then

DgP (E) = F̂P EF̂ ′
P E ∈ Pr. (C.9)

Proof. We have, using (C.2)

g(P + E)

= F (P + E)F ′ − F (P + E)H(H ′PH +H ′EH)−1H ′(P + E)F ′ +Q

= F (P + E)F ′ − F (P + E)H
[
(H ′PH)(I + (H ′PH)−1(H ′EH))

]−1
H ′(P + E)F ′ +Q

= ...− F (P + E)H
[
I − (H ′PH)−1(H ′EH)

]
(H ′PH)−1H ′(P + E)F ′ +Q+O(E2)

(C.10)

= g(P ) + F̂PEF̂ ′
P +O(E2). (C.11)

It is useful to restate (C.8) and (C.9) in Kronecker product notation, as

vec(g(P + E)) = vec(g(P )) + F̂P ⊗ F̂P vec(E) +O(vec(E2))

hence, in this form the Fréchet derivative is (using (C.3))

DgP = F̂P ⊗ F̂P = F
(
Ir − β̃(P )H ′

)
⊗ F

(
Ir − β̃(P )H ′

)
(C.12)

and thus as a corollary of Proposition 2, stability of the steady state implies that the

matrix Fξ

(
Ir − β̃(P )H ′

ξ

)
must have eigenvalues with real parts strictly less than

one in absolute value. Since products of matrices have common non-zero eigenvalues

irrespective of order of multiplication this condition must also apply to the matrix(
Ir − β̃(P )H ′

ξ

)
Fξ. The proof of Corollary 4 shows that this matrix will be of rank

≤ r − n. �
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C.3 Proof of Corollary 1.

From the autoregressive representation of the estimated states in (22) it is evident

that they have the same autoregressive form as the true states under full information

in (13). To derive the implied innovation covariance matrix we have, using (24),

(B.3), (B.5) and (B.18),

E

[(
ξ̂t+1 −Etξ̂t+1

)(
ξ̂t+1 − Etξ̂t+1

)′]
= βE

(
εt+1ε

′
t+1

)
β ′

= βJ ′PJβ′ = β̃H ′
ξPHξβ̃

′
(C.13)

but hence, using (19), (21), (20), and exploiting symmetry of P and M

E

[(
ξ̂t+1 −Etξ̂t+1

)(
ξ̂t+1 − Etξ̂t+1

)′]
= PHξ

[
H ′

ξPHξ

]−1
PHξβ̃

′

= PHξβ̃
′
= (βH ′P )′

= (P −M)′ = Q+ FξMF ′
ξ −M � (C.14)

D Derivation of joint process for ξt and ft in (27)

and proofs of corollaries 3 to 5

D.1 Derivation of (27).

Using (7), (16) and (26) we have

ξt+1 = Fξξt + Fcη
′ξ̂t + vt+1 = (Fξ + Fcη

′) ξt − Fcη
′ft + vt+1 (D.1)

= Gξt − Fcη
′ft + vt+1 (D.2)

For the estimated states we have, using (22), the definition of G in (13), (B.3) and

(7)

ξ̂t+1 = Gξ̂t + βtεt+1 = Gξ̂t + βtJ
′
t

[
ξt+1 −Gξ̂t

]
= Gξ̂t + βtJ

′
t

[
ξt+1 − (Fξ + Fcη

′) ξ̂t

]
(D.3)

= Gξ̂t + βtJ
′
t

[
ξt+1 − Fξξt − Fcη

′ξ̂t + Fξ

(
ξt − ξ̂t

)]
(D.4)

= Gξ̂t + βtJ
′
t [vt+1 + Fξft] (D.5)
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hence, using (14), (B.18) and (10),

ft+1 = (G− Fcη
′ − βtJ

′
tFξ) ft + (I − βtJ

′
t) vt+1 (D.6)

= [I − βtJ
′
t]Fξft + (I − βtJ

′
t) vt+1 (D.7)

=
[
I − β̃tH

′
ξ

]
Fξft +

(
I − β̃tH

′
ξ

)
Fuut+1

Stacking (D.1) above (D.6) gives the joint process for ξt+1 and ft+1 in (27).

D.2 Proof of Corollary 3

Since the filtering error process ft is block recursive we can write the top block of

equations as

ξt+1 = [I −GL]−1 vt+1 − [I −GL]−1 Fcη
′ft = ξ∗t+1 − [I −GL]−1 Fcη

′ft

= ξ∗t+1 − [I −GL]−1 Fcη
′
[
I −

(
I − β̃tH

′
ξ

)
FξL

]−1 (
I − β̃tH

′
ξ

)
Fuut(D.8)

where ξ∗t+1, the full information state process, is as given by (13), and the last line

uses the lower block of (27). The incomplete information states are thus equal to

the full information states plus a lag polynomial in the filtering error (itself a lag

polynomial in the underlying shocks, ut). Since the filtering errors have a limiting

stationary distribution (from Corollary 2) and the full information process is non-

explosive (from Assumptions 1 and 2) the incomplete information process is also

non-explosive. Since there may be permanent productivity or other shocks, G may

have unit eigenvalues, implying permanent effects of these shocks. But permanent

effects will only arise with respect to rows of vt for which the relevant rows of Fc are,

by Assumption 1, zero (the shock processes are exogenous). Hence filtering error

will only cause transitory deviations from the full information outcome, proving the

corollary.�

D.3 Proof of Corollary 4

Using (21) we have

H ′
ξβ̃t = H ′

ξPtHξ

(
H ′

ξPtHξ

)−1
= In (D.9)

If we pre-multiply (D.6) by H ′
ξ and use (D.9) we have

H ′
ξft+1 = H ′

ξ

[
I − β̃tH

′
ξ

]
Fξft +H ′

ξ

(
I − β̃tH

′
ξ

)
Fuut+1 = 0 (D.10)
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thus proving Corollary 4, and at the same time showing that the matrix
[
I − β̃tH

′
ξ

]
Fξ

is of rank ≤ r − n, completing the proof of Corollary 2.�

D.4 Proof of Corollary 5

By inspection of (27), if Fξ has explosive eigenvalues in its sub-matrix Fkk and βk =

0, then the steady-state matrix
(
I − β̃H ′

)
Fξ will also have explosive eigenvalues,

which, from Corollary 2, contradicts stability of the recursion for Pt+1, thus proving

Corollary 5.�

E Proof of Proposition 3

E.1 Proof of Proposition 3

Recall that in general M = limt→∞Mt is, from Proposition 2, the unique stable

fixed point of the recursion in equations (19) to (21). We showed in the proof of

Corollary 2 that stability of the fixed point requires the general eigenvalue condition∣∣∣Λi

(
Ir − β̃(P )H ′

ξ

)
Fξ

∣∣∣ < 1 ∀i (E.1)

which we use in what follows.

E.1.1 M = 0⇒ Conditions 1 to 3.

If M = 0 it follows immediately from (19) that P = Q. Further, we can infer the

the invertibility of H ′
ξQH = limt→∞H ′

ξPtH from the existence of a steady state in

Proposition 1, and hence, using (11)

H ′
ξQH = H ′

ξFuSF ′
uH

thus

n = rank
(
H ′

ξQHξ

) ≤ min
(
rank

(
H ′

ξFu

)
, s
)

hence s ≥ n. Further, (11) and (20) imply, setting P = Q

M = Fu

(
S − S

[
F ′

uHξ

(
H ′

ξFuSF ′
uHξ

)−1
HξFu

]
S
)

F ′
u (E.2)

which requires n ≥ s for M = 0. Hence n = s and H ′
ξFu is invertible. Further

for this to be a stable fixed point we require the third condition in the proposition,

which satisfies (E.1) setting P = Q.
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E.1.2 Conditions 1 to 3 ⇒M = 0.

By Proposition 2 there exists a unique stable fixed point such that Pt → P, Mt → M,

where, taking limits in (19) and (20), using (21) we have

P = FξMF ′
ξ +Q (E.3)

M = P − PHξ

(
H ′

ξPHξ

)−1
H ′

ξP (E.4)

Now P = Q, M = 0 satisfies (E.3). Given conditions 1 and 2 it also satisfies

(E.2), which sets P = Q in (E.4). Given condition 3 this is a stable fixed point.�

E.2 Equivalence of Proposition 3 with Fernandez-Villaverde

et al. (2007)

Fernandez-Villaverde et al. (2007) analyse the problem of econometric invertibil-

ity: i.e. whether an econometrician can infer true structural shocks and impulse

responses from an estimated vector autoregressive representation. It turns out that

the conditions in which their “square case” is invertible correspond precisely to those

given in Proposition 3. They do not, however, draw out the link with pre-determined

variables, nor with the stability of the Kalman filter in the neighbourhood of the

fixed point corresponding to full information.

To show the correspondence, Fernandez-Villaverde et al. have

xt+1 = Axt +Bwt+1 (E.5)

yt+1 = Cxt +Dwt+1 (E.6)

where xt is n×1, yt is k×1 and wt is m×1. Note that the timing convention in (E.6)
is somewhat unusual compared to the standard Kalman filter state space representa-

tion, in which the measured variables are normally related to the contemporaneous

states (possibly plus noise).5 They then assume

m = k (E.7)

|D| �= 0 (E.8)

implying

wt+1 = D−1 [yt+1 − Cxt] (E.9)

5This is however the same timing convention as used by Whittle (1983) p146.
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which gives, after substitution into (E.5),

xt+1 =
[
A− BD−1C

]
xt +BD−1yt+1 (E.10)

which gives the third condition (their Condition 1, since the first two conditions are

taken as implicit) ∣∣Λi

[
A− BD−1C

]∣∣ < 1 (E.11)

where the Λi are eigenvalues. If satisfied, this means that xt+1 can be recovered

from the infinite history of yt+1 (implicitly, even if n > m = k, which will be the

case, as we note, if there are predetermined variables).

We have (using (6) and (20)), for the states,

ξt+1 = Fξξt + Fuut+1 (E.12)

which with appropriate relabelling of variables and matrices is precisely the same as

(E.5). Our measurement equation can be written as

yt+1 = Hξξt+1 (E.13)

which, substituting from (E.12) gives

yt+1 = H ′
ξFξξt +H ′

ξFuut+1

which, with appropriate relabelling (i.e. C = H ′
ξFξ, D = H ′

ξFu) is identical to

(E.6). The relabelling makes it clear that their first two conditions are identical to

ours. Our third condition relates to the eigenvalues of

[
I − β (Q)H ′

ξ

]
Fξ (E.14)

but in Proposition 3 we show that

β (Q) = Fu

(
H ′

ξFu

)−1
(E.15)

i.e. can be derived directly from structural matrices. Substituting the crucial matrix

becomes

Fξ − Fu

(
H ′

ξFu

)−1
H ′

ξFξ (E.16)

which given the relabelling can be written as

A− BD−1C. (E.17)
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F Proof of Proposition 4

F.1 Proof of part (a)

We first exploit the diagonalisation G = V ΛV −1 used in Assumption 2, which

allows us to represent the process for the estimated states (22), conditional upon

the Kalman Filter having converged, in the diagonalised autoregressive form

Xt ≡ V −1ξ̂t = ΛXt−1 + Γεt (F.1)

with Γ = V −1β. Note that this subsumes all invertible cases in which we can write

ξ̂t = ξt; βεt = Fuut, hence applies irrespective of the nature of the information set.

We assume in what follows, without loss of generality, that the diagonal elements of

Λ, the eigenvalues of G, are non-zero and distinct (i.e. that we have a minimal state

variable representation). We can then rewrite the measurement equation (8) as

it = Ψ′Xt (F.2)

where, exploiting Corollary 4, Ψ′ =
(
H ′

ξ +Hcη
′)V. Note that we have, using (D.9),

(
H ′

ξ +Hcη
′)β =

(
H ′

ξ +Hcη
′) β̃

[
I +Hcη

′β̃
]−1

=
[
I +Hcη

′β̃
] [

I +Hcη
′β̃
]−1

= I

and hence

Ψ′Γ = I (F.3)

Partition Ψ′ and order the elements of Xt such that we can write

Ψ′ =
[
Ψ1 Ψ2

]
; |Ψ1| �= 0⇒ X1t = Ψ−1

1 [it −Ψ2X2t]

where Ψ1 ∈ R
n×n and Ψ2 ∈ R

n×(r−n), hence, exploiting the property that Λ is

diagonal,

it = Ψ′
{[

Λ11 0

0 Λ22

][
Ψ−1

1 [it−1 −Ψ2X2t−1]

X2t−1

]
+

[
Γ1

Γ2

]
εt

}

=
[
Ψ1 Ψ2

]{[
−Λ11Ψ

−1
1 Ψ2

Λ22

]
[I − Λ22L]

−1 Γ2εt−1 +

[
Λ11Ψ

−1
1

0

]
it−1

}
+ εt

= Φ1 [I − Λ22L]
−1 Γ2εt−1 + Φ2it−1 + εt (F.4)
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where the last two lines use (F.3), and

Φ1 = Ψ′
[
−Λ11Ψ

−1
1 Ψ2

Λ22

]
; Φ2 = Ψ1Λ11Ψ

−1
1 (F.5)

Hence we can write

it =
Φ1Λ

∗
22 (L)

det [I − Λ22L]
Γ2εt−1 + Φ2it−1 + εt (F.6)

where Λ∗22 (L) = adj [I − Λ22L] . Note that det [I − Λ22L] is a scalar polynomial of

order r−n, and the elements of the (diagonal) matrix polynomial Λ∗22 (L) are scalar

polynomials of order r − n− 1.6 Hence

λ (L) it = θ (L) εt (F.7)

where

λ (L) = det [I − Λ22L] (In − Φ2L) (F.8)

θ (L) = det [I − Λ22L] In + Φ1Λ
∗
22 (L) Γ2L (F.9)

which is a VARMA(n, p, q) representation with p = r − n + 1 and q = r − n with

both holding with equality because, as assumed at the outset, the diagonal elements

of Λ (the eigenvalues of G) are real and distinct. If this is not the case, but G

has r̃ < r distinct non-zero eigenvalues, the argument goes through replacing r

with r̃ throughout. The values of p and q given in the proposition are the maximal

orders of the minimal VARMA representation, in which the both the autoregressive

and moving average matrix lag polynomials are in general non-diagonal. If these

polynomials are restricted to be diagonal (i.e. the system is a set of univariate ARMA

representations with correlated innovations) this is equivalent to setting n = 1.�

F.2 Proof of part (b)

In the case of instantaneous invertibility we can derive the states using (15), then

substitute into (7) giving a vector autoregression for it. with innovations given by

εt =
[
H ′

ξ +Hcη
′]Fuut, where εt and ut are both of dimension r. In the case of

asymptotic invertibility we have a generalised version of (25), given Hc �= 0, of the

6Letting {μi}r−n
i=1 be the eigenvalues of Λ22, then det [I − Λ22L] =

∏r−n
i=1 (1− μiL) , and the ith

diagonal element of [I − Λ22L] −1 = (1− μiL)−1, hence the ith diagonal element of Λ∗22 (L) equals∏
j �=i

(
1− μjL

)
, a polynomial of order r − n− 1.
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form

εt+1 = H ′
ξ

(
ξt+1 − Etξt+1

)
+Hc (ct+1 −Etct+1) =

[
H ′

ξ +Hcη
′]Fuut

where the only difference is that εt and ut are in this case both of dimension n < r.�

F.3 Proof of parts (c), (d) and (e).

We first derive a (non-invertible) VARMA representation in terms of the vector of

underlying structural innovations ut by exploiting the structure of the proof of part

(a) of the proposition, with a relatively small number of changes.

Redefine Xt in (F.1) to be the minimal state vector for the true process in (27),

which is driven by the true structural innovations ut. Thus we now write

Xt = ΛXt−1 + Γut (F.10)

From Corollary 2 the autoregressive matrix
(
I − β̃H ′

ξ

)
Fξ of the filtering error

process ft has at most r − n non-zero eigenvalues. Hence for Fc �= 0, Xt will be of

dimension 2r − n, and we can redefine V and Λ such that[
ξt

ft

]
= V Xt; (F.11)

V ΛV −1 =

[
G −Fcη

′

0
(
I − β̃H ′

ξ

)
Fξ

]
(F.12)

where V is now 2r× (2r − n) and hence V −1 is a generalised inverse. The diagonal

elements of Λ (which become the reciprocal autoregressive roots of the VARMA

representation) are given by the non-zero eigenvalues of G and of
(
I − β̃H ′

ξ

)
Fξ. We

redefine Γ consistently with (27) such that

Γ = V −1

[
I(

I − β̃H ′
ξ

) ]
Fu (F.13)

We also need to redefine Ψ′ in (F.2), using (16) to write ct = η′ (ξt − ft), giving

Ψ′ =
[

H ′
ξ +Hcη

′ −Hcη
′
]
V (F.14)
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As a result (F.3) no longer holds, but becomes

Ψ′Γ =
[

H ′
ξ +Hcη

′ −Hcη
′
] [ I(

I − β̃H ′
ξ

) ]
Fu (F.15)

reflecting the impact of structural shocks on both states and filtering errors.

Note that in the restricted case that the states are dynamically exogenous (Fc =

0) by inspection of (F.12) the true states are block recursive (there is no ”contami-

nation” of state dynamics by filtering errors), hence the minimal state vector of the

true process remains of dimension r, as for the observable process.

Given the redefinitions above we can proceed as in the proof of part (a), which

allows us to derive a representation of the form7

λ (L) it = [det [I − Λ22L] Γ + Φ1Λ
∗
22 (L) Γ2L] ut (F.16)

where now for the general case with Fc �= 0, the autoregressive polynomial λ (L) is

of order 2 (r − n) + 1 The right-hand side defines a vector moving average process

of order 2 (r − n) , of dimension n, in terms of an underlying vector of innovations

ut of dimension s ≥ n

The proof of part (c) of the proposition is now straightforward. A non-fundamental

VARMA representation takes the general form

λ (L) it = θnf (L) ηt (F.17)

where ηt is an n−vector of innovations that cannot be recovered from the history of

it (i.e. θnf (L) is non-invertible in non-negative powers of L), and λ (L) and θnf (L)

are both finite order polynomials. For the case where n = s = rank(H ′Fu), it follows

immediately, by comparison of (F.16) and (F.17), that ut is (up to a scaling factor)

the vector of innovations to a non-fundamental VARMA representation.�
By substitution from (F.17) into (F.16) we have, for any nonfundamental repre-

sentation of the same moving average order8

θnf (L) ηt = [det [I − Λ22L] Γ + Φ1Λ
∗
22 (L) Γ2L] ut (F.18)

7Which implicitly defines A (L) in the exposition in the main text.
8Note that even if we fix the moving average order there are still in general multiple (but a finite

number of) non-fundamental representations, that can be generated by sequentially replacing a
single MA root with its reciprocal, but in which at least one such root is less than unity in
absolute value (the representation with all roots greater than unity in absolute value is the unique
fundamental representation).
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For the case in part (c) where n = s, this simply defines a particular ηt and θnf (L) .

For the general case with n < s, inversion of θnf (L) involves terms in powers of

F = L−1, the forward shift operator. Hence non-fundamental innovations can only

be recovered from an information set consisting of both the history and future of ut,

thus proving part (d) of the proposition.�
Following Lippi and Reichlin’s (1994) terminology, if the representation is of

higher autoregressive moving average order than the fundamental representation

it is a ”nonbasic” representation. By comparison of the order of the representa-

tions in (F.7) and (F.16) it is evident that for the general case (i.e. with Fc �=
0) the true process results in a VARMA(n, 2 (r − n) + 1, 2 (r − n)) representation,

hence there is an associated set of non-fundamental representations of the same

order, defined by (F.18). By comparison the fundamental representation in (F.7)

is VARMA(n, r − n+ 1, r − n) ; hence the non-fundamental representations defined

by (F.18) are also non-basic, proving part (e) of the proposition. �
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Table 1.  Time Series Properties of Observables 
 
 
 
 

Number of Non-Zero Eigenvalues of State 
Representation 

VARMA(n,p,q) order of 
observables, it (p=autoregressive 
order, q = moving average order) 
True Process Observable 

Process 

Nature of Information Set 

Full 
Information, 
equation (10) 

True 
Process, 
equation 
(25) 

Estimated 
Process, 
equation (19) p q p q 

Instantaneously Invertible r r r 1 0 1 0 
Asymptotically Invertible r r r r-n+1 r-n r-n+1 r-n 
Non-invertible, 
exogenous state process 
(Fc=0) 

r r r r-n+1 r-n r-n+1 r-n 

Non-invertible, 
dynamically endogenous 
state process( Fc � 0) 

r 2r - n r 2(r-
n)+1 

2(r-n) r-n+1 r-n 

 




