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1. Introduction  

The aim of this paper is to briefly recall heat transfer modes and explain their integration 
within a software dedicated to building simulation (CODYRUN). Detailed elements of the 
validation of this software are presented and two applications are finally discussed. One 
concerns the modeling of a flat plate air collector and the second focuses on the modeling of 
Trombe solar walls. In each case, detailed modeling of heat transfer allows precise 
understanding of thermal and energetic behavior of the studied structures.  
Recent decades have seen a proliferation of tools for building thermal simulation. These 
applications cover a wide spectrum from very simplified steady state models to dynamic 
simulation ones, including computational fluid dynamics modules (Clarke, 2001). These tools 
are widely available in design offices and engineering firms. They are often used for the design 
of HVAC systems and still subject to detailed research, particularly with respect to the 
integration of new fields (specific insulation materials, lighting, pollutants transport, etc.). 

2. General overview of heat transfer and airflow modeling in CODYRUN 
software 

2.1 Thermal modeling 
This part is detailed in reference (Boyer, 1996). With the conventional assumptions of 
isothermal air volume zones, unidirectional heat conduction and linearized exchange 
coefficients, nodal analysis integrating the different heat transfer modes (conduction, 
convection and radiation) achieve to establish a model for each constitutive thermal zone of 
the building (one zone being a room of a group of rooms with same thermal behaviour).  
For heat conduction in walls, it results from electrical analogy that the nodal method leads 
to the setting up of an electrical network as shown in Fig. 1, the number of nodes depending 
on the number of layers and spatial discretization scheme : 
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Fig. 1. Example of associated electrical network associated to wall conduction 
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The physical model of a room (or group of rooms) is then obtained by combining the 
thermal models of each of the walls, windows, air volume, which constitute what 
CODYRUN calls a zone. To fix ideas, the equations are of the type encountered below: 
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Equations of type (1) and (2) correspond to energy balance of nodes inside and outside 
surfaces. Nw denote the number of walls of the room, and correspond to the following 
figure:  
 

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

lwe

swe

ce

lwi

swi

ci

 

Fig. 2. Wall boundary conditions  

ϕ  being heat flux density, lw, sw, and c indices refers to long wave radiation, short wave 

radiation and convective exchanges. Indices e and i are for exterior and indoor. Equation (3) 

comes from the thermo-convective balance of the dry-bulb inside air temperature Tai, taking 

into account an air flow m$  through outside (Tae) to inside. (4) represents the radiative 

equilibrium for the averaged radiative node temperature, Trm. The generic approach 

application implies a building grid-construction focus. Following the selective model 

application logic developed (Boyer, 1999), an iterative coupling process is implemented to 

manage multi-zone projects. From the first software edition, some new models were 

implemented. They are in relation with the radiosity method, radiative zone coupling (short 

wavelength, though window glass) or the diffuse-light reduction by close solar masks 

(Lauret, 2001). Another example of CODYRUN evolution capacity could be illustrated by a 

specific study using nodal reduction algorithms (Berthomieu, 2003). To resolve it, a new 

implementation was done: the system was modified into a canonic form (in state space). 
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From a user utilization point of view, this thermal module exit is mainly linked to the 

discretizated elements temperatures, the surfacic heat flows, zone specific comfort indices, 

energy needs, etc. 

2.2 Airflow modeling  

Thermal and airflow modules are coupled to each other thanks to an iterative process, the 

coupling variables being the air mass flows. It is useful to implement the inter zones flows 

with the help of a matrix m$ . The terms [ , ]m i j$  then qualifies the mass transfer from the zone 

i to the zone j, as it is depicted .  
 

 

Fig. 3. Interzonal airflow rates matrix 

Then, a pressure model for calculating previous airflow rates is set and takes into account 

wind effect and thermal buoyancy. To date, the components are integrated ventilation vents, 

small openings governed by the equation of crack flow, as : 

 nm = Cd S (ƦP)$  (5) 

S is aperture surface, Cd and n (typically 0.5- 0.67) depends on airflow regime and type of 

openings and PΔ the pressure drop. Therefore, the following scheme can be applied for 

encountered cases. 
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Fig. 4. Exterior and interior small openings 

Taking into account the inside air volume incompressibility hypothesis, the mass weight 

balance should be nil. Thus, in the established system, called pressure system, the 

unknowns are the reference pressure for each of the zones. Mechanical ventilation is simply 

taken into account through its known airflow values. In this way, ventilation inlets are not 

taken into detailed consideration which could have been the case owing to their flow-

pressure characteristics.  
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k$m ( )vmc is the flow extracted from zone k (by vents) and N the total number of zones. 

After the setting up of this non linear system, its resolution is performed using a variant of 

the Newton-Raphson (under relaxed method). This airflow model has recently been 

supplemented by a CO2 propagation model in buildings (Calogine, 2010).  

2.3 Humidity transfers 

For decoupling reasons, zones dry temperatures, as well as inter zone airflows, have been 

previously calculated. At this calculation step, for a given building, each zone's specific 

humidity evolution depends on the matricial equation : 

 = +$. .

h h h
C r A r B  (7) 

According to Duforestel’s model, an improvement of the hydric model (Lucas, 2003) was 

given by the use of a hygroscopic buffer.  If we consider N as the number of zones, a linear 

system of dimension 2N is obtained and a finite difference scheme is used for numerical 

solution. 

3. Some elements of CODYRUN validation  

3.1 Inter model comparison  

A large number of comparisons on specific cases were conducted with various softwares, 

whether CODYBA, TRNSYS for thermal part, with AIRNET, BUS, for airflow calculation or 

even CONTAM, ECOTECT and ESP. To verify the correct numerical implementation of 

models, we compared the simulation results of our software with those from other 

computer codes (Soubdhan, 1999). The benchmark for inter-comparison software is the 

BESTEST procedure (Judkoff, 1983), (Judkoff, 1995). This procedure has been developed 

within the framework of Annex 21 Task 12 of the Solar Heating and Cooling Program (SHC) 

by the International Energy Agency (IEA). This tests the software simulation of the thermal 

behavior of building by simulating various buildings whose complexity grows gradually 

and comparing the results with other simulation codes (ESP DOE2, SERI-RES, CLIM2000, 

TRNSYS, ...). The group's collective experience has shown that when a program showed 

major differences with the so-called reference programs, the underlying reason was a bug or 

a faulty algorithm. 
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3.1.1 IEA BESTEST cases  

The procedure consists of a series of buildings carefully modeled, ranging progressively 
from stripped, in the worst case, to the more realistic. The results of numerical simulations, 
such as energy consumed over the year, annual minimum and maximum temperatures, 
peak power demand and some hourly data obtained from the referral programs, are a 
tolerance interval in which the software test should be. This procedure was developed using 
a number of numerical simulation programs for thermal building modeling, considered as 
the state of the art in this field in the US and Europe. After correction of certain parts of 
CODYRUN, an example output from this confrontation is the following concerns and 
energy needs for heating over a year, for which the results of our application are clearly 
appropriate.  
 

 

Fig. 5. Exemple of BESTEST result 

The procedure requires more than a hundred simulations and cases treated with 
CODYRUN showed results compatible with most referral programs, except for a few. We 
were thus allowed to reveal certain errors, such as the algorithm for calculating the 
transmittance of diffuse radiation associated with double glazing and another in the 
distribution of the incident radiation by the windows inside the envelope. As in the 
reference codes, two points are to remember: the majority of errors came from a poor 
implementation of the code and all the efficiency of the procedure BESTEST is rechecked, 
errors belonging to modules that have been used for years. 
Concerning airflow validation, IEA multizone airflow test cases describe several theoretical 
and comparative test cases for the airflow including multizone cases. It was developed 
within the International Energy Agency (IEA) programs: Solar Heating and Cooling (SHC) 
Task 34 and Energy Conservation in Building and Community Systems (ECBCS) Annex 43. 
The tests are designed for testing the capability of building energy simulation programs to 
predict the ventilation characteristics including wind effect, buoyancy and mechanical fan. 
CODYRUN passed all the test cases.  
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3.1.2 TN51 airflow case  

In (Orme, 1999), a test case composed of a building with three storeys is described and first 
published in (Tuomala, 1995). All boundary conditions are imposed (wind, external 
temperature) and indoor conditions are constant, i.e. in steady state.  
 

 

Fig. 6. TN 51 Test case 

Next figure shows solution of 3 references codes, i.e. COMIS, CONTAM93 and BREEZE. 
CODYRUN’s results were added on the figure extracted from the paper (Orme, 1999). 
 

 

Fig. 7. Intermodel airflow comparison 
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As it can be seen, in terms of numerical results, CODYRUN gives nearly the same values as 

the other codes, little differences being linked to numerical aspects as algorithms or 

convergence criteria used.  

3.2 Experimental confrontation  

As part of measurement campaigns on dedicated cells and real homes, a set of elements of 

models have been to face action (and for some improved), mostly concerning thermal and 

humidity aspects. Not limited to, some of these aspects are presented in the articles (Lauret, 

2001) (Lucas, 2001) and (Mara, 2001), (Mara, 2002). 

4. Two applications of the software 

4.1 Air solar collector  

An air solar collector is used to heat air from solar irradiation. More precisely, it allows to 

convert solar energy (electromagnetic form) into heat (Brownian motion). This type of 

system can be used to heat buildings or to preheat air for drying systems. Air solar 

collector is constituted by an absorber encapsulated into an isolated set-up (Fig. 8). To 

avoid heat loss by the incoming flux side, a glass is located above the absorber, letting a 

gap between them. This glass allowing to catch long wavelength emitted by the set-up 

when its temperature rises-up. Air temperature improvement is mostly done by air 

convection at the absorber interface. This heat is then carried by air in the building or in 

the drying system. 

 
 

 
 

Fig. 8. Air solar collector principle, adapted from (Sfeir, 1984) 

The enclosure is not strictly speaking a building, but the generic nature of the software 

allows to study this device. This is a zone (within the captation area), a glazed windows, 

exterior walls and an inner wall of absorber on which it is possible to indicate that solar 

radiation is incident. 

It should be noted that this is part of a class simulation exercise allowing students to learn 

collector physics basis. 
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4.1.1 Collector modeling and description of the study 

It is assumed that before initial moment, there is no solar irradiation and the collector is at 

thermal equilibrium, i.e. outside air temperature is the set-up temperature. At t=0, an 

irradiation flux Dh is applied without interactions with the outside air temperature. In a 

simplified approach, a theoretical study is easily obtained. Some equations below are used 

to understand the functioning of the collector. In steady state, the incoming irradiation flux 

reaching the absorber is fully converted and transmitted to the air (assumed to uniform 

temperature):  

 

ai
as as 0 h p ai ae as ai ae

dTǒ C V = D - K S(T - T ) - mC (T - T )
dt

τ $
 (8) 

Where Kp is the thermal conductance (W.m-2.K-1) of each wall through which losses can pass, 

m dot is a constant air mass flow through the collector, Tai is the inside air temperature, Tae is 

the outside air temperature, and ǒas (1.2 kg.m-3) and Cas (1000 J.kg-1.K-1) are respectively the 

air thermal conductivity and density. By knowing initial conditions (at t=0, Tai=Tae), the 

solution of equation (8) appears: 
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The power delivered by the collector is given by 

 
u as ai aeP = mC (T - T )$

 (10) 

The studied collector is horizontal, the irradiated face has a surface of 1m², and an air gap 

thickness of 0.1m. The meteorological file is constituted of a constant outside air 

temperature (25°C) and a constant direct horizontal solar irradiation of 500W (between 6 am 

and 7 pm). It is assumed (and further verified) that the steady state is reached at the end of 

the day. 

Concerning the building description file, the collector is composed by 1 zone, 3 boundaries 

(1 for the upper face, 1 for the lower face, and 1 for all lateral faces), and 4 components 

(glass, lateral walls, lower wall and absorber). Walls are made - from inside to outside - of 

wood (1cm), polystyrene (5cm) and wood (1cm). Wood walls have a short wave absorptivity 

of ǂ = 0.3. 

The glass type is a single layer ( 0τ = 0.85), and the absorber is a metallic black sheet of 2mm 

(ǂ = 0.95). 

The solar irradiation absorption model of the collector is a specific one. This has to be chosen 

in CODYRUN, because traditionally in buildings the solar irradiation doesn’t impact 

directly an internal wall (absorber), but the floor.  

Even if this solar air heater is considered as a very simple one, the following figure gives 

some details about heat exchanges in the captation area.  
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Fig. 9. Solar irradiation absorption process. 

4.1.2 Simulation results in the case of forced convection in air gaps 

An air flow of 1 m3.h-1 is set. After running simulations, the following graph is obtained for 
two identical days :  
 

 

Fig. 10. Evolution of air temperature at the output of the solar collector with forced 
convection (1m3.h-1). 
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Simulation results are consistent with simplified study, but not exactly identical. In fact, 
CODYRUN model is more precise than those use in eq. 8: thermal inertia of walls are taken 
into account, superficial exchanges are detailed, exchange coefficients are depending on 
inclination, glass transmittance is depending on solar incidence, … 
With a low air flow rate of 1 m3.h-1, the collector output power is about 22W and its 
efficiency about 4.5%. A solution to improve efficiency is to increase air flow rate (see  
Fig. 11), in link with the fact that conductive thermal losses are decreasing when internal 
temperature is decreasing. 
Increase of flow rate leads to a lower air output temperature (and also to change convection 
exchange coefficients). In some cases like some drying systems where a minimal air output 
temperature should be needed, this can be problematic. In these cases, CODYRUN can help 
to choose the best compromise between air output temperature and collector power or 
efficiency. 
 

 

Fig. 11. Evolution of collector outputs regarding air flow rate. 

Many other simulations could be conducted, in particular in the case of natural convection. 

Some of these cases could be applied to air pre-heating in case of passive building design, as 

for next application.  

4.2 Trombe wall modeling 
4.2.1 Trombe-Michel wall presentation 

A Trombe-Michel wall (often called Trombe wall), is a passive heating system invented and 

patented (in 1881) by Edward Morse. It takes its name from two French people who 

popularized it in 1964, one engineer and one architect, respectively Félix Trombe and 

Jacques Michel. 

A Trombe-Michel wall allows to store solar energy and distribute heat following simple 
physical principles. This system is composed of a vertical wall, submitted to the sunshine, 
which absorb and store the radiative energy as thermal energy by inertia. To improve its 
absorptivity, the wall can be paint in a dark color. Stored energy rises-up the wall 
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temperature, inducing some heat transfer such as conduction (into the wall from outdoor to 
indoor side), radiation and convection (both with in/outdoor). 
To avoid outdoor losses, a glazing, which is not transmissive to ultraviolet and far infrared, 
is located few centimeters in front of the wall (outdoor side). So the glazing reduces outside 
losses by convection and traps wall's radiation due to its temperature (far infrared emission) 
into the building. But it also slightly reduces the solar incoming flux, because some of it is 
reflected or absorbed.  
Nota: Considering the glazing, the sunshine insulation (etc.), it is not easy to choose the 
optimal set-up configuration; this kind of situations are typical cases where CODYRUN 
simulations allow to find out. 
Heat transfer through the wall is done by conduction. According to the wall size and its 
composition, a thermal delay appears between heat absorption and emission. This 
characteristic allows to configure specifically the system in function of the needs.  
Considering the thermal delay, conductive transfer-mode is convenient to heat by night, but 
not by day. To palliate this lack, a faster transfer mode is brought by a variant of the 
Trombe-Michel wall, called recycling wall (Fig. 12). The recycling wall is obtained by holes 
addition at the top and the bottom of the wall. This variant allows to get a natural air flow, 
transferring energy by sensitive enthalpy between the system side of the wall (also called 
Trombe side) and the room. Indeed, as long as the glass is far enough of the wall, the 
temperature difference between them induces some air-convective movement, initiating the 
global air-circulation, so allowing heat distribution. 
 

 

window 

absorber 

airstream 

radiation 

convection 

 

Fig. 12. Trombe-Michell recycling wall set-up (Sfeir, 1981) 

Several variants of the Trombe-Michel wall can be used. These one usually evolve in 
function of the climatic need and can, for example, be defined by: the holes size and 
presence (or not), the characteristics of the storage wall (e.g. thickness, density, presence of 
fluid circulation or phase change materials, etc. ) or the glazing type (e.g. simple or double, 
treated surface, noble gas, etc.). Some technical indications about these considerations are 
given by Mazria (Mazria, 1975). Though two levels experimental design, (Zalewski, 1997) 
shows that external glazing emissivity, window type and wall absorptivity mainly 
characterize the system. 
Trombe-Michel system (and its variants) inspired numerous publications about temperate 
climate and proved their efficiency as passive heating system. By extension, there is also a 
lot of studies about similar system, as solar chimney (Ong, 2003), (Awbi, 2003). 
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There are several values usually used to describe Trombe-Michel wall functioning: 

• Transmitted energy through the wall by conduction, 

• Transmitted energy through the holes by sensitive enthalpy, 

• The system efficiency, defined as the rate between the energy received into the room 

over the total energy received by the North wall (South hemisphere) in the meantime. 

• The FGS (solar benefits fraction), defined as the rate between the benefits from the 

Trombe-Michel system and the energy needed by the room without it, for a room 

temperature of 22°C.  

Nota: Even if the FGS refers to active heating systems, it allows to compare easily passive 
heating systems between them and to other installations. 

4.2.2 Presentation of Trombe-Michel wall simulations under CODYRUN 

This numerical study is resolved by software simulations. The case study case presented 

here takes place in Antananarivo, Madagascar (Indian Ocean). The aim of the simulations 

conducted was to help this developing country to face low temperatures in classrooms 

during winter season.  

The word 'zone', used previously, is understood as CODYRUN vocable, correspond usually 

to one room. Into the actual description, isothermal air assumption is made into the 

capitation area. This consideration is taken as first approximation and can be possibly 

modified later to improve the model (e.g. replaced by linear gradient hypothesis, etc.). 

According to the bibliography, one of the main issues mentioned is about the convection 

coefficient into the Trombe side of the wall. Because of the system successively laminar and 

turbulent, convection correlation such as - Nu = f(Gr) – cannot be used. In this case, 

(Zalewski, 1997) says that the laminar coefficient evolve between 2 and 2.3 W.m-2.K-1 and the 

turbulent one evolve between 2.25 and 3.75 W.m-2.K-1. So, in a first approach, we 

approximate the temperature-evolving value of the convection coefficient as the average of 

the turbulent and laminar values (2.9 W.m-2.K-1 ).  

Considering thermo-circulation, the CODYRUN's airflow module allows to calculate air 

flows through wall's holes. This consideration and the case study description, the two areas 

(the Trombe system and the room) are studied coupled, which is a right physical 

representation of the reality. Results validity are certified by the fact that each module of 

CODYRUN, and their combinations, has been validated by comparison with experimental 

results, reference codes and BESTEST procedures. 

This multi-model code structure (Boyer, 1996) can be efficiently exploited by studies such as 

this one, where it is necessary to choose the convection coefficients by area or by wall, to 

mesh slightly the walls to calculate precisely the conductive fluxes, to choose a solar gains 

repartition model or equivalent sky temperature, etc.  

CODYRUN also creates numerous output simulation variables, in addition to the one 

related to the dry temperature area, such as sensible power outputs from mass exchange 

through wall holes, conductive fluxes through the wall, enthalpic zone balance and the 

PMV (Predictive Mean Vote, according to Gagge) of interior zone to quantify comfort 

conditions. It is also possible to explore the conductive flux through the Trombe-Michel 

wall glass. 

Simulation results are presented with meteorological data of Antananarivo coming from 

TRNSYS 16.0 software and its TMY2 documentation data file. According to this one, daily 
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sunshine insulation annual average is about 5.5 kWh.m-2. The one on the North and East 

walls are respectively 2.23 and 2.67 kWh.m-2. Modified in function of the current albedo 

(0.3), the previous values become 3 and 3.46 kWh.m-2.  

The simulated building represents a residence unit based on a geometric cell description (9 
m² parallelepiped square base ground). Moreover, materials, thermo-physics characteristics 
and wall type are typical from Madagascar. The room is supposed to be constantly occupied 
by two persons and have a usual profile for intern lighting. This area is supposed to 
exchange air with the outside at a rate of 1 volume per hour. Finally, the system area is of 2 
m2 and is located on the North wall (South hemisphere). 

4.2.3 Simulation 

Passive heating oriented-simulations are made the first day of July (Julian calender days 181 
and following). In a first time, the objective is to explain the set-up functioning. So, some 
hourly based analyses will be conducted. Finally, the last experiment will compare the same 
Trombe-Michel wall with and without the recycling variant. 

4.2.3.1 Inverse thermo-circulation evidence 

By night, over some system specific conditions (open holes) and in function of previous day 

insulations (e.g. low insulation), the flow evolution can sometime be the symmetric of the 

one by day (Fig. 13). In this configuration, the system functioning is reversed, cooling the 

room instead of heating it. Between points 19 and 32 (i.e. 7 pm to 8 am next day), the 

Trombe-area temperature is lower than the room temperature, inducing the inverse thermo-

circulation. This physical process can be illustrated by the negative part of the sensitive 

aeraulic benefits for the inside area.  
Even if the flux values by night are low, it is important to note the following point : the 
curves are obtained by assuming a sky temperature equal to the outside air temperature. 
This assumption reduces the impact of the system/sky radiation transfer, so involves an 
error. This error could be reduced by taking a sky temperature value more realistic, so by 
considering the night-sky wide wavelength emission and the high glass emissivity (0.9). A 
better approximation can be done by a sky temperature model such as Tsky=Tae– K, where 
K=6. 
 

 

Fig. 13. Dry temperatures and sensible power balance through holes. 

4.2.3.2 Night hole closing system 

Hole closing system strategy deserve a specific comment. This one can be done nicely from 
flow measurement, but a simpler and passive way to do it also exists. This one consists in a 
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plastic foil, only attached on one side and occulting the holes preventing from inverse 
thermo-circulation. Into CODYRUN, the closure system is designed by the “little opening” 
component added to a hourly profile (i.e. 24 opening percentages), where the hole is closed 
by night and opened by day. However, the thermo-circulation (by system inertia) continues 
during the two first hours of the evening, so the profile includes this pattern too. Because of 
the small gap with the previous curves (Fig. 13), the results are firstly surprising. An 
explanation can be done by the small thermal gradient during the considered night. 
According to Mazria (Mazria, 1975) and Bansal (Bansal, 1994), recycling variant are only 
useful into cold climates (winter averages: -1 °C to -7 °C). So, simulation results show the 
minor impact of the hole control in this study case. In other words, it seems that the mass 
flow have a very low sensibility to the opening state. This hypothesis is rejoined by another 
author (Zalewski, 1997) who have substantively the same conclusion for a North France 
located case. 

4.2.3.3 Global Trombe wall functioning 

To obtain the full power delivered by the wall, airflow and conductive heat transfer have to 

be summed. By night, it appears a constantly positive heat flux inducing a rise-up of the 

room temperature (Fig. 14). In the morning (e.g. 9am first day), the global flux becomes 

negative. A full curve interpretation is approached by airflow and conductive heat flux 

analyze through the wall (right part of Fig. 14). Early morning, the global heat flux inversion 

can be explained by highly negative conductive heat flux resulting certainly from the heat 

flux night inversion (around 9 to 14, so a delay of 4 hours). Drawn curves of the incoming 

heat flux through the wall confirm this hypothesis.  

As foreseeable (without simulation tools), the curves show the alternate functioning of the 

conductive and sensible airflow input power (the wall characteristics setting the shifting 

period). By night, the conductive heat flux through the wall rises-up the room temperature, 

whereas by day this action is done by the heat flux associated to air displacement, physically 

expressed by the natural air movement which is a priori synchronous with the sunlight 

distribution profile. 

The previous report allows to ask about the holes necessity. In fact, even if there is no heat 

transfer improvement, the main interest comes from the heat distribution and its time-

evolving modulation into the building. 
 

 

Fig. 14. Global and specific fluxes induced by the Trombe wall into the room. 

To increase the room input power (i.e. the global heat flux), it could be simple to rise-up the 
wall surface and/or to add some reflectors to raise the incoming sunlight intensity. 



 
Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design 

 

241 

However, in every cases the system have to be simulated for summer conditions. In order to 
reduce the external loss (illustrated by negative heat fluxes), a double glazing could be used, 
even if it reduces the incoming sunlight intensity (transmission loss). For reference, double 
glazing can be easily made from simple glazing. Another solution consists in isolating the 
indoor side of the wall. 

4.2.3.4 Trombe-Michel wall and recycling variant comparison  

The comparison, in the meantime, of the wall's holes presence (or not), expresses a gap 
between the global heat fluxes. The values corresponding to the recycling variant are shifted 
to the left compared to the classic Trombe-Michel wall (Fig. 15). The input power delivered 
with the holes is slightly superior, which confirms the hypothesis of low impact on section 
4.2.3.2. A piece of explanation (checkable by simulation) can be given by the thermal 
gradient between the room and the Trombe system, the decrease of this one reducing the 
conductive transfer through the glazing. 
Predicted Mean Votes (PMV) curves (of the right of Fig. 15) express the comfort sensation 
which evolve between -3 and +3. By comparison, it can be affirmed that the holes improve 
the comfort sensation. This improvement is related to the previous comment (about the 
superior input power amount which led to a rise-up of the dry temperature), and to the 
higher indoor side wall temperatures. 
 

 

Fig. 15. Input power and PMV comparisons 

4.2.4 Trombe wall simulation exercise conclusion 
This example of CODYRUN use allows to find some interesting results about Trombe-
Michel wall configurations for the specific location of Antananarivo. Results such as the 
interest of the recycling variant (which is almost not influenced by hole closing procedure), 
the time-repartition (and impact) of the airflow and conductive heat flow on the room 
temperature, (etc.) have been found. Considering the case study, much more informations 
could be deduced from other well designed simulations. The considerable amount of 
knowledge found was only deduced from simulations, so only following a numerical 
approach. From this consideration and the results precision, a good estimation about 
CODYRUN quality and level of development can be done. 

5. Conclusion 

This paper describes the models, validation elements and two applications of a general 
software simulation of building envelopes, CODYRUN. Many studies and applications have 
been conducted using this code and illustrate the benefits of this specific development. 
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Conducted and sustained for over fifteen years, the specific developments made around 
CODYRUN led our team to be owner of a building simulation environment and develop 
connex themes such as validation or application to large scale in building architectural 
requirements. This evolving environment has enabled us to drive developments in 
methodological areas (Mara, 2001) (modal reduction, sensitivity analysis, coupling with 
genetic algorithms (Lauret, 2005), neural networks, meta models,...) or related to 
technological aspects (solar masks, integration of split-system, taking into account the 
radiant barriers products, ...). This approach allows a detailed understanding of the physical 
phenomena involved, the use of this application in teaching and capitalization within a 
work tool of a research team. Accompanied by the growth of computer capabilities, the 
subject of high environmental quality in buildings, our field becomes more complex by the 
integration of aspects other than those originally associated with the thermal aspects 
(environmental quality, including lighting, pollutants, acoustics, ...). Simultaneously, it is 
also essential to achieve a better efficiency in the transfer of knowledge and operational 
tools. 
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