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1. Introduction

Understanding the complexities of human physiology remains an ex-

citing and challenging field in modern medicine. Of the many research

streams in this field, a popular area is the study of action potentials

(APs), or electrophysiology. Defined by a rapid rise and fall of electrical

potential in an activated cellular membrane, an AP is visibly charac-

terised by a unique waveform shape or trajectory, that is considered as

an event separate from background noise. Biologically, APs play a cen-

tral role in the activation of intracellular processes in the human body,

including heart and muscle contraction, the release of insulin from the

pancreas, facilitation of communication between neurons in the brain
1
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and motor sensory signals between the brain and muscles and tissues

in the body. As such, the study of APs has the potential to gain under-

standing of these processes and how they are affected under different

environmental, genetic and physical conditions.

The understanding of this and other complex phenomena involves

statistical analyses of stochastic processes. What is essentially random

behaviour over time and/or space, the collection of data on stochastic

processes is carried out in a myriad of contemporary research areas,

including but not limited to finance, economics, bioinformatics, signal

processing and machine learning. Regardless of their origin, analysis

of these data centre on the uncovering of patterns or trends amidst

what is otherwise perceived as unpredictable behaviour or noise. For

example, in speaker diarization (Gales and Young, 2008; Tranter and

Reynolds, 2006), an important topic in speech processing, analysis aims

to not only recognise voices in an audio recording originating from dif-

ferent speakers, but also transitions between speakers and the number

of speakers, at the same time accounting for natural variation in an

individual’s tone, volume and pitch. Likewise, in bioinformatics, the

alignment of multiple, highly variable DNA sequences is central to the

identification of potential regions of functionality or structural impor-

tance (Holmes and Bruno, 2001; Eddy, 1995).
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Of the statistical tools available for analysis, hidden Markov models

(HMMs) have proven successful in light of their relative simplicity and

flexibility in describing a wide variety of stochastic processes (Cappé

et al., 2005; MacDonald and Zucchini, 1997). A form of latent variable

model, HMMs aim to describe the observed outputs of a stochastic

process by a finite alphabet of unobservable, discrete valued “states”,

where different states are taken to represent different features of the

process’ behaviour and are inferred from the data. Relating these mod-

els to other chapters in this book, a HMM is a type of Bayesian Net-

work but may also be conceptualised as a finite mixture model for time

dependent observations. In this chapter, we aim to introduce these

models to the reader and to demonstrate their applicability to a case

study in electrophysiology. Specifically, we seek to apply a HMM to the

identification and sorting of action potentials in extracellular recordings

(White, 2011).

2. Case study: Spike identification and sorting of

extracellular recordings

In this chapter, we focus on the analysis of action potentials in brain,

made possible by the collection of extracellular recordings. Extracellu-

lar recordings consist of measurements of electrical potential discharged
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Figure 1. Example of an neural extracellular recording,

to be analysed in Section 4

by either a single or multiple cells, in this case neurons, over time. An

example of an extracellular recording is given in Figure 1.

Applying the definition of an AP, their presence in Figure 1 are

visualised as “spikes”, with an amplitude notably higher (or lower)

than the background noise. That said, it is not clear which of these

spikes genuinely correspond to APs and which merely form part of the

background noise. For this reason, this area of research has witnessed

substantial literature on statistical methods for reliable spike detection,

from simple thresholding rules (Freeman, 1971; Thakur et al., 2007;

Rizk and Wolf, 2009) to more adaptive alternatives, including nonlinear

and wavelet-based detection methods (Yang and Shamma, 1988; Kim

and Kim, 2000; Nenadic and Burdick, 2005; Mtetwa and Smith, 2006).
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In this chpater, HMMs are considered for the unsupervised detec-

tion of APs in extracellular recordings. By assuming the behaviour of

an AP as a sequence of unobservable or latent states, HMMs model

transitions between these states and therefore provide a means of un-

supervised spike detection, without the need to set thresholds. In the

next Section, we first consider a single-sequence HMM and how it may

be specified for the spike detection problem. This model is then ex-

tended to multiple, independent HMMs, in an attempt to model spikes

with distinct trajectories in the same recording. This concept was first

proposed by Herbst et al. (2008), as a novel solution for the simulta-

neous identification and assignment of spikes to source cells, the latter

commonly referred to as the “spike sorting” problem. In this Chapter,

the model proposed by Herbst et al. (2008) is recast into the Bayesian

framework, and is a summary of work presented in White (2011).

To explore these ideas, we consider a case study of extracellular

recordings taken during Deep Brain Stimulation, a popular treatment

for advanced Parkinson’s disease. Deep Brain Stimulation is a surgical

procedure involving the placement of electrodes in an affected part of

the brain, to provide a constant source of electrical stimulation. Best

described as a “brain pacemaker”, this constant supply of electrical

pulses has been consistently shown to alleviate symptoms associated
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with Parkinson’s disease (Limousin et al., 1998; Kumar et al., 1998;

Krack et al., 2003; Kleiner-Fisman et al., 2003). In this Chapter, we

model an extracellular recording taken at the Subthalamic Nucleus

(STN), a popular surgical target for Deep Brain Stimulation.

3. Models and Methods

3.1. What is a hidden Markov model? As described in the In-

troduction, a HMM is defined by its use of latent or “hidden” states

to describe the behaviour of each value in an observed stochastic pro-

cess, defined as y = y1, y2, . . . , yT or in shorthand y1:T . Given this

data, the simplest HMM exists when y1:T is modelled using a single

latent sequence, say z1:T , taking a finite number of discrete values,

zt ∈ (1, . . . , G). This scenario is shown in Figure 2. The elements of

· · · zt−1 zt zt+1 · · ·

· · · yt−1 yt yt+1 · · ·

Figure 2. Directed Acyclic Graph of a simple HMM,

with dependencies observed in the observed data y are

attributed to a latent variable z, modelled by a first order

Markov chain.
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z1:T in Figure 2 are connected due to their generation by a first order

Markov chain, whereby the distribution of zt is dependent only on the

state inferred at time t− 1, as opposed to its entire history.

The transition from zt−1 to zt is governed by a time homogeneous

transition matrix, Q, such that the distribution of each zt is given by

(1) zt|zt−1,Q ∼ Qzt−1,:

where Qzt−1,: denotes the row of Q corresponding to state zt−1. The

elements of Q are defined as qij = Pr(zt = j|zt−1 = i). Note that as

a result of introducing z1:T , the time dependence exhibited by y1:T is

now assumed to be completely attributed to the latent sequence.

Accompanying this transition matrix and completing the model, we

also specify a distribution for yt, conditional on zt. In doing so, changes

in the behaviour of the stochastic process are defined by changes in the

parameters of the proposed distribution. For example, given Poisson

distributed data, a suitable choice for yt may be

(2) yt|zt,Q,λ ∼ Poisson(λzt)

such that the behaviour of y1:T is assumed to be driven by changes in

the unknown rate, λ, which depends on z1:T .
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Taking this basic definition, the remainder of this Section aims to

demonstrate how HMMs can be adapted to the problems of spike iden-

tification and spike sorting. This discussion begins with the application

of the single HMM in Figure 2, where the specification of the transi-

tion matrix Q can be done in such a way to model the dynamics of

a single AP. This model is then extended to multiple independent la-

tent sequences, commonly referred to as a factorial HMM (fHMM)

(Ghahramani and Jordan, 1997).

3.2. Modelling a single AP: Application of a simple HMM.

Given the model defined in Section 3.1, we first consider modelling

a single AP over time, given an extracellular recording consisting of

observations y1:T , which are subject to background noise. The latent

variable zt therefore represents the state of behaviour of the AP at time

t.

Central to the modelling of this behaviour is the specification of the

transition probability matrix Q. To do this, we consider the behaviour

of a typical action potential over time. Explicitly, we acknowledge that

at any given time, an AP exists exclusively in one of three phases,

depicted in Figure 3.

The first of these phases, resting, corresponds to times of equilib-

rium membrane potential and therefore, the AP is indistinguishable
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Figure 3. Schematic for the behaviour of an AP, where

its behaviour can be divided into one of three phases:

resting, firing and the refractory period.

from the background noise. When this equilibrium is interrupted and

the potential rises above a certain threshold, the AP’s trajectory is

initiated, a state which we refer to as the firing state and refers to the

processes of depolarization and repolarization. Upon completion of the

firing phase, the AP enters what is known as the absolute refractory

period, before returning to the resting period.

When transitioning between these phases it is assumed that, from

the time of firing until the end of the absolute refractory period, it is

biologically impossible for the AP to refire. Given this description, Q
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is given by,

(3) Q =
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where zt = 1 denotes that the AP is in the resting phase at time t. The

number of states G is chosen proportional to the sampling frequency of

y1:T and enforces the aforementioned assumption. For example, if an

extracellular recording has a sampling rate of 20KHz, G = 20 means

from the moment the AP fires, with probability 1− q11, it is unable to

refire for 1ms.

Conditional on zt, yt is assumed Normally distributed with unknown

mean and common unknown variance, namely

yt|zt = g,Q, µ, σ2 ∼ N
(

µg, σ
2
)

g = 1, . . . , G.(4)

This distributional form is chosen for two reasons. Firstly, the common

variance term, σ2, provides an estimate of the background noise. Sec-

ondly, by conditioning the unknown mean on zt, we obtain an estimate

of the average voltage across all defined states of the AP’s behaviour.
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By ordering these means for 1 to G, the predicted average shape or

trajectory of the AP is produced, commonly referred to as the spike

template.

For all unknown parameters, prior distributions are conjugate and

of the form,

σ2 ∼ IG(α, β)(5)

µ|Q, σ2, b ∼ N
(

b, σ2τ 2
)

(6)

q11|Q ∼ Beta(γ,φ)(7)

The inclusion of σ2 in Equation (6) allow for the derivation of closed-

form full conditionals for model estimation, discussed further in Section

3.5.

In summary, by specifying an appropriate transition probability ma-

trix, one is able to not only predict when the AP enters the firing state

but also its expected trajectory. This second property may become

useful when multiple APs are present, addressed in the next Section,

as a possible solution to the spike sorting problem.

3.3. Multiple neurons: An application of a factorial HMM.

In some cases, it is possible that an extracellular recording contains

spikes from more than a single AP. With this comes the additional task

of spike sorting, whereby identified spikes are classified by predicted
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trajectory, as this is indicative of their origin from different cells. In

order to accommodate this general case, the current HMM must be

extended to include N latent sequences, one for the behaviour of each

distinct AP. This collection of sequences is denoted thorughout this

Chapter by z1:N1:T = (z11:T , . . . , z
N
1:T ).

The introduction of an additional N − 1, independent latent se-

quences results in the specification of a factorial HMM (fHMM) (Ghahra-

mani and Jordan, 1997), depicted in Figure 4.

· · · z
1
t−1 z

1
t

z
1
t+1 · · ·

· · · z
2
t−1 z

2
t z

2
t+1 · · ·

· · ·
...

...
... · · ·

· · · z
N

t−1 z
N
t z

N

t+1 · · ·

· · · yt−1 yt yt+1 · · ·

1

Figure 4. Factorial HMM for N independent APs.

The independence amongst latent sequences assumes that the be-

haviour of APs originating from different neurons is independent. As a

consequence, the behaviour of each AP can be expressed by its own
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transition probability matrix, Qn; n = 1, . . . , N . Furthermore, it

means that, for all t, the joint transition probability for t − 1 → t

is the product of individual AP transition probabilities,

(8) Pr(z1:Nt |z1:Nt−1) =
N
∏

n=1

qnzn
t
,zn

t−1
.

This assumption is chosen entirely for of computational convenience,

with model estimation described in Section 3.4.

We also assume for this model that the observed voltage at any given

time is the sum of individual voltages from all APs. This a biologically

relevant assumption and allows for the possibility of overlapping APs,

namely when more than one AP enters the firing state simultaneously

or one AP fires during another AP’s refractory or resting phase. Taking

this second assumption into account, Equation (4) becomes

(9) yt|y1:t−1, z
1:N
t ,Q ∼ N

(

N
∑

n=1

µn
zn
t

, σ2

)

where µn
zn
t

is the mean for the nth AP conditional on znt . As a result

of this modification to the distribution of yt, each AP is defined by its

own spike template, µn = (µn
1 , . . . , µ

n
G), and common variance, σ2, as

per the single AP model. This model was first introduced by Herbst

et al. (2008) in the maximum likelihood framework.
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In this Chapter, the extension of the model into the Bayesian frame-

work requires the extension of priors in Equations (5) to (7) to accom-

modate the N > 1 case. While Equation (5) remains unchanged, this

extension involves the hierarchical prior on µ defined by Equation (6)

being replaced by an independence prior over n. Also, for each qn11, we

specify a Beta(γ,φ) distribution.

3.4. Model Estimation and Inference. Estimation of any HMM,

regardless of its structure, consists of two key tasks: the estimation

of (i) the latent sequence/s and (ii) the parameters associated with

each latent state. In a Bayesian framework, we can achieve these tasks

using a combination of MCMC, in this case Gibbs sampling, and a

unique algorithm for latent sequence estimation, henceforth referred to

as the forward-backward algorithm. For the sake of brevity, we restrict

our attention to the factorial HMM, as this model reduces to a single

sequence HMM when N = 1.

3.4.1. The Forward-Backward Algorithm. First developed by Rabiner

(1989) in the classical statistical framework, the forward-backward al-

gorithm aims to produce samples from the joint distribution of the

latent sequence or sequences, represented by

(10) z1:N ∼ p(z1:N1:T |y1:T ,Q
1:N ,Θ)
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Here, Θ defines the parameter set {µ,σ2}. The generation of sam-

ples from Equation (10) is simplified by first re-expressing this joint

distribution by the decomposition,

p(z1:N1:T |y1:T ,Q
1:N ,Θ) = p(z1:NT |y1:T ,Q

1:N ,Θ)× . . .

×p(z1:Nt |z1:Nt+1, . . . , z
1:N
T ,y1:T ,Q

1:N ,Θ)× . . .

×p(z1:N1 |z1:N2 , . . . , z1:NT ,y1:T ,Q
1:N ,Θ).(11)

This implies that simulation of z1:N involves calculation of each prob-

ability mass function on the right hand side of Equation (11). This task

is further simplified by the knowledge that the dependence exhibited

by z1:N is restricted to first order, as illustrated in both Figures 2 and 4.

Chib (1996) showed that each of these terms, through the application

of Bayes’ rule, is given by,

(12)

p(z1:Nt |z1:Nt+1:T ,y1:T ,Q
1:N ,Θ) =

p(z1:Nt |y1:t,Q
1:N ,Θ)p(z1:Nt+1|z

1:N
t ,Q1:N )

∑

z
1:N
t+1

p(z1:Nt |y1:t,Q1:N ,Θ)p(z1:Nt+1|z
1:N
t ,Q1:N )

.

with p(z1:Nt+1|z
1:N
t ,Q1:N ) corresponding to the joint transition matrix

probability defined in Equation (8). The term p(z1:Nt |y1:t,Q
1:N ,Θ) is

computed recursively for each t, a process known as forward filtering.

Beginning at t = 1, the recursive scheme consists of iterating between
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the two steps:

p(z1:Nt |y1:t,Q
1:N ,Θ) =

p(z1:Nt |y1:t−1,Q
1:N ,Θ)p(yt|Θ, z1:Nt )

∑

z1:N
t

p(z1:Nt |y1:t−1,Q1:N ,Θ)p(yt|Θ, z1:Nt )
(13)

p(z1:Nt |y1:t−1,Q
1:N ,Θ) =

∑

z1:N
t−1

p(z1:Nt |z1:Nt−1,Q
1:N )p(z1:Nt−1|y1:t−1,Q

1:N ,Θ)(14)

Upon computing Equation (13) for all t, sampling from the joint dis-

tribution of z1:N is achieved via Equation (12). Explicitly, sampling

is performed backwards in time and is thus referred to as backward

smoothing. This process is outlined in Equation (15).

z1:NT ∼ p(z1:NT |y1:T ,Q
1:N ,Θ)

z1:NT−1 ∼ p(z1:NT−1|z
1:N
T ,y1:T ,Q

1:N ,Θ)

...

z1:N1 ∼ p(z1:N1 |z1:N2 , . . . , z1:NT ,y1:T ,Q
1:N ,Θ).(15)

The forward backward algorithm has found success in many areas of

research, in particular speech processing, also appearing under the guise

of the Baum-Welch (Baum et al., 1970) and Viterbi (Forney Jr, 1973)

algorithms. For a more comprehensive discussion of this algorithm in

the Bayesian framework, see Frühwirth-Schnatter (2006).

3.4.2. Gibbs Sampler. The choice of conjugate priors on all unknown

parameters means model estimation can be implemented using Gibbs
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sampling (Geman and Geman, 1984; Smith and Roberts, 1993; Chib,

1996). For our model, the Gibbs sampler involves sampling from the

following full conditionals:

z1:N | y1:T ,Q
1:N ,Θ(16)

Q1:N | y1:T , z
1:N(17)

Θ | y1:T , z
1:N(18)

Equation (16) is sampled from using the forward-backward algorithm

described in the previous Section, given current realisations ofQ1:N and

Θ. Given z1:N , Q1:N and Θ, are then updated via their corresponding

full conditionals. For Q1:N , this involves updating each qn11, for n =

1, . . . , N . These updates are in the of Beta distributions,

(19) qn11 = Beta(γ +mn
11,φ+ 1)

where mn
11 = #(znt = 1|znt−1 = 1), or the number of transitions where

the latent sequence remains in the resting state. For Θ, we note that

the posterior can be decomposed to give

(20) p(µ,σ2|y1:T , z
1:N ) = p(µ|σ2,y1:T , z

1:N )× p(σ2|y1:T , z
1:N ).
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The full conditional for µ follows a Multivariate Normal distribution,

p(µ|σ2,y1:T , z
1:N ) ∼ MVN

(

(

b

τ 2
+ d(y)

)T

Σ, σ2
Σ

)

(21)

µ =
[

µ1
1, µ

1
2, . . . , µ

1
G, µ

2
1, . . . , µ

N
G

]T

d(y) =
[

dz1
t
=1(y), . . . , dz1

t
=G(y), dz2

t
=1(y), . . . , dzN

t
=G(y)

]T

dzn
t
=g(y) =

T
∑

t=1

I {znt = g} yt.

(22)

Here, µ has been defined as a row vector, containing all possible com-

binations or n = 1, . . . , N and g = 1, . . . , G. This allows for all mean

parameters to be sampled in a single, vectorised step and is done so for

computational convenience.

The remaining term, σ2, is updated by an Inverse Gamma distribu-

tion, having integrated out µ .

(23) σ2|y1:T , z
1:N ∼ IG

(

α +
T

2
, β +

1

2

(

T
∑

t=1

y2t − d(y)TΣd(y)

))

.

The covariance matrix Σ is a diagonal matrix with entries in the

form of counts and ordered identically to d(y). The diagonal of the

inverse of Σ is given by

(24) diag(Σ−1) =
1

τ 2
+N(y).
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with N(y) being a row vector of latent state counts for each action

potential, written as

N(y) = [Nz1=1(y), . . . , NzN=G(y)]
T(25)

Nzn=g(y) =
T
∑

t=1

I {znt = g} .(26)

The primary goal of model inference is to predict the latent sequences

z1:N . In the Bayesian framework, posterior inference on each znt given

y1:T is possible through the Monte Carlo estimate of the forward filter

(Chib, 1998). For D Gibbs iterations, this probability is given by,

Pr(znt |y) =

∫

p(znt |y1:t−1,Θ, Qn)p(Θ, Qn|y) dΘ dQn

=
1

D

D
∑

d=1

p(z
n(d)
t |y1:t−1,Θ

(d), Qn(d))(27)

which is simply the average over Equation (14), marginalised over all

action potentials n′ &= n.

4. DATA ANALYSIS AND RESULTS

In this Section, we apply the model defined in Section 3.4 to both a

simulated and real dataset, the latter being extracellular recordings col-

lected during Deep Brain Stimulation, a popular treatment for patients

diagnosed with advanced Parkinson’s disease.
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For each dataset, the Gibbs sampler presented in the previous Section

was run for 10,000 iterations, discarding the first 5,000 as the burnin

period. The results presented are based on the following choice of

hyperparameters: τ 2 = 10, b = 0, γ = 10, φ = 1, α = 2.5 and

β = 0.5s2, where s2 is the sample variance of the observed data.

4.1. Simulation study. Data for this study was simulated assuming

two distinct APs (N = 2) and a sampling frequency of 15kHz, leading

to the specification of fifteen latent states for each AP (G = 15) or an

AP duration of 1ms. This dataset is illustrated in Figure 5.
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Figure 5. Simulated dataset with N = 2 and G = 15

Spike onset locations were set at every 95th time step for the first

AP, beginning at t = 85 and at every 122nd time step for the second

AP, starting at t = 453. This resulted in one full overlap of the two

APs (each AP fires simultaneously) and two partial overlaps (one AP
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fires during the refractory period of the other AP). From Figure 5,

the presence of the second AP is clear, characterised by an amplitude

between 0.2 and 0.3, however the locations of the first AP are less clear

and the locations of overlaps even less so.

For the Gibbs sampler in this study, two chains were run with dif-

ferent initial templates (µ1, . . . , µG), for each AP. In the first instance,

initial templates were set to the true, simulated template for each AP.

For the second chain, each µn
g was randomly drawn from a N(0, τ 2σ2)

distribution with each µn
1 then set to zero to correspond to the as-

sumed mean amplitude of the background noise. The comparison of

inferences between these two chains did not result in any major dis-

crepancies. Thus, the results that follows are based on MCMC output

for the second chain.

The posterior probabilities of firing for isolated or non-overlapping

spikes are summarised in Figure 6. Given each latent sequence was

sampled backwards recursively, Figure 6 gives posterior probabilities

for each AP in the form Pr(znt = G, zn
′

t = 1|y1:T ,µ, σ
2,Q1:N ).

In Figure 6, there are the high posterior probabilities associated with

the locations of each isolated AP. Assuming a probability threshold of

0.5, Figure 7 shows posterior inference performed well with recovering

the true locations of each AP. However for the inferred locations of each
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Figure 6. Plot of isolated firing probabilities for the

simulated dataset, under the assumption of Normally dis-

tributed emissions. Neuron 1 = Dotted line, Neuron 2 =

Solid line

AP, one sees some omissions when compared to the true sequences, that

may be the result of overlaps.

To explore the possibility of overlapping APs being present, Figure 8

illustrates the posterior probabilities of partially overlapping APs over

all locations, for each AP individually. In this case, these probabilities

are of the form Pr(znt = G, zn
′

t &= 1 ∩ zn
′

t &= G|y1:T ,µ, σ
2, Q1:N ) or, the

probabilty that the nth AP fires given the other AP is in the resting

period.

Given the first row of plots in Figure 8, two partially overlapping

APs have been recovered, one for each AP. For the first AP, we see

that it is initiated during the refractory period of the second AP at
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Figure 7. Comparison of inferred locations of spike on-

set (top row) versus true spikes given a posterior prob-

ability threshold of 0.5 (bottom row). Comparisons are

given for each individual AP: first AP (left column) and

second AP (right column). For each plot, the horizontal

axis represents time, and the vertical axis represents the

indicator variable for the posterior probability exceeding

0.5.

approximately t = 1000. Likewise, the second AP fires during the

refractory period of the first AP later in the dataset between t = 2500

and t = 3000. Comparing this result with the omissions in Figure

7, one sees that these partial overlaps for two of the four omissions

between the inferred and true latent sequences.
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Figure 8. Plots of partially overlapping firing proba-

bilities (top row) and simultaneous firing probabilities

(bottom row) for the simulated dataset, under the as-

sumption of Normally distributed emissions. Partially

overlapping probabilities are given for Neuron 1 (top left)

and Neuron 2 (tow right)

For the identification of fully overlapping APs, summarised in the

second row of Figure 8 by the posterior probability Pr(z1:Nt = G|y1:T ,µ, σ
2,Q1:N ),

the final omissions in Figure 7 are recovered, corresponding to the full

overlap between t = 1500 and t = 2000.

Given this favourable performance of this modelling approach, Figure

9 compares the true versus predicted templates for each AP, given by

µn
1 , . . . , µ

n
G;n = 1, 2. Given the presence of label switching throughout

the course of the Gibbs sampler, predicted templates were constructed
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by choosing the estimates of µ corresponding to the approximate max-

imum a posteri (MAP) estimate. For each Gibbs iteration, the approx-

imate MAP estimate was calculated by multiplying the observed data

likelihood with the prior density p(µ1:N , σ2). Given these estimates for
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Figure 9. Plot of Simulated templates (solid line) su-

perimposed on predicted templates (dashed line), based

on the approximate MAP estimate for each µ. The left

and right plots correspond to the first and second AP

respectively.

each AP, Figure 9 further supports the favourable performance of the

model, with minimal discrepancies between true and predicted tem-

plates.

4.2. Case study: Extracellular recordings collected during Deep

Brain Stimulation. Results are now presented on an extracellular
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recording taken from the STN. Given the computational burden in-

volved in estimating HMMs, analysis is restricted to N = 2 and to

a small section of real time recording of approximately 0.1 seconds.

The dataset is given in Figure 1. Potential extensions to allow for the

feasible computation of larger datasets is left to the Discussion.
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Figure 10. Sample autocorrelation function (ACF) up

to and including lag fifty for the real dataset given in

Figure 1.

To estimate the number of latent states G to model to trajectory

of each AP, the sample autocorrelation function (ACF) over the entire

dataset was calculated and is summarised in Figure 4.2. G was then

approximated by identifying the nearest lag corresponding to the ACF

crossing zero for the second time, to take into account the biphasic

nature of an AP, as illustrated by the schematic in Figure 3. This
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resulted in setting G equal to 30, representing a refractory period of

approximately 1.3ms.

Based on the last 5000 iterations of the Gibbs sampler, Figure 11

summarises the total number of spikes detected over the course of the

Gibbs sampler.
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Figure 11. Summary of the total number of APs de-

tected by a histogram (left) and empirical CDF (right).

For both neurons, the posterior probability of remaining in the rest-

ing state was very high, with posterior expectations both equalling ap-

proximately 0.94. This result indicated that, for both modelled APs,

spiking events were rare. Reviewing the number of identified spikes in

Figure 11, some variation was noted, with an expectation of 54 spikes

and a 95% credible interval of between 47 and 60 spikes.
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This analysis of real data, however, provided inferences there were

not as conclusive as those obtained for the simulation study. In Fig-

ure 12, posterior inference for the chosen model for summarised for

isolated, partially overlapping and fully overlapping APs. For isolated

APs, the majority of nonzero posterior probabilities did not exceed 0.5

and therefore suggested substantial uncertainty about the presence of

many APs. This result was somewhat expected, in part due to the

higher level of background activity visible in Figure 1. Furthermore,

investigation into this result revealed that many posterior probabilities

regarding the locations of isolated APs were in fact shared between

neighbouring locations. This suggested that the uncertainty in Fig-

ure 12 not so much suggested uncertainty in the presence of APs but

more so the uncertainty in the exact locations where APs were initi-

ated. A similar statement was made for possible locations of partially

overlapping APs, also summarised in Figure 12. That said, in infer-

ring the most likely locations for each AP, it was thought feasible to

set the posterior probability threshold lower than 0.5. Finally, in this

case, there was no evidence of fully overlapping APs, indicated by the

bottom right plot in Figure 12.
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Figure 12. Posterior probability plots for isolated APs

(top), partially overlapping APs (bottom left) and fully

overlapping APs (bottom right).

Concerns about the use of this model also arose following inference on

the average templates for each of the two assumed APs. This inference

is summarised in Figure 13.

In Figure 13, predicted APs given posterior probabilities of onset

greater than 0.4 are given and compared with their predicted tem-

plate. In the chosen model’s favour, many APs assigned to the second

neuron (right hand plots) resemble the predicted the predicted average

template well, however there appeared to be a small subset of APs

with notably higher amplitude. This raised concern that this subset in

fact corresponded to a third neuron and were thus incorrectly sorted.

Representing a less favourable result, the predicted APs attributed to
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Figure 13. Identified APs given a probability threshold

of 0.4 for the first (top left) and second AP (top right).

The predicted templates based on the MAP estimate are

also given for each AP (bottom left and right).

the first neuron (left hand plots) did not appear to consistently follow

the predicted average template, for either threshold. This was thought

to be the result on two possible reasons. Firstly, given the maximum

and minimum amplitudes of the predicted template are closer to the

background noise than the other template for the second AP, it was

possible that the corresponding spikes were corrupted by noise to a

greater degree. Secondly, and of greater concern, was that these spikes

were false positives and did not correspond to true APs at all.
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5. DISCUSSION

In this Chapter, we have highlighted the use of HMMs for modelling

data-rich, complex stochastic processes. Furthermore, taking the sim-

plest definition of a HMM, we have shown its flexibility in adapting

to different modelling situations, in this case the extension of a single

sequence HMM to a factorial setting, in an attempt to simultaneously

identify and sort spikes arising from multiple APs.

In the simulation study, the model provided promising results and

was able to correctly identify both APs and locations where they over-

lapped. However, in the analysis of the real dataset, a number of key

concerns arose, presenting opportunities for future research in this area

and form the focus of this discussion. Broadly speaking, these concerns

could be categorised as either computational or methodological.

An analysis not considered in this Chapter is that of model com-

parison. This comparison could take place for models with different

values of N or, as explored in White (2011), models with different

distributional assumptions for yt and/or different transition matrix

specifications. Analyses of this form could be conducted with the use

of goodness-of-fit criteria, such as the Deviance Informatin Criterion

(Spiegelhalter et al., 2002; Celeux et al., 2006), as is used in White

(2011), or by Bayes’ factors (Kass and Raftery, 1995).
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For many segments of real data analysed but not presented in this

Chapter, the specification of G also led to problems, in terms of the

number of APs detected and the posterior probabilities of spikes oc-

curring at a given location. Furthermore, for the real data analysis in

Section 4.2, a number of different values for G were trialled. Although

these additional analyses are not included in this Chapter, it was seen

that smaller values of G than the one chosen resulted in many false

positives, compared to larger values of G that resulted in the detec-

tion of very few or no spikes in the observed data. The most likely

reason for sensitivity regarding the choice of G is that, in recordings

of multiple cells, the refractory period may vary considerably. It was

this reason that motivated the alternative choice of transition matrix

however, in both analyses presented, this extension did not appear to

provide an improved fit to the data. For the real dataset, evidence for

the presence of two different refractory periods could be seen in the

sample ACF, with it almost crossing zero for the second time at lag

twenty. To implement different refractory periods in the current model

would involve the specification of identifiability constraints and would

be suitable extension for future work.
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To conclude, while implementation of the proposed model in the

Bayesian framework was appealing, in terms of the range of proba-

bility statements possible, the cost of model computation by MCMC

was found to be a prohibitive factor, with computation taking approx-

imately 2hours per 0.1seconds of real recording. That said, less ex-

pensive alternative to MCMC would be desirable for future work in

this area. Examples of viable alternatives to MCMC include Varia-

tional Bayes (McGrory and Titterington, 2009; Ghahramani and Hin-

ton, 2000; McGrory et al., 2011), Approximate Bayesian Computation

(Jasra et al., 2010) and Sequential Monte Carlo (Doucet et al., 2000).
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