Nicole White 
email: ⋆nm.white@qut.edu.au
  
Helen Johnson 
  
Kerrie Mengersen 
  
  
Hidden Markov models for complex stochastic processes: A case study in electrophysiology

Introduction

Understanding the complexities of human physiology remains an exciting and challenging field in modern medicine. Of the many research streams in this field, a popular area is the study of action potentials (APs), or electrophysiology. Defined by a rapid rise and fall ofelectrical potential in an activated cellular membrane, an AP is visibly characterised by a unique waveform shape or trajectory, that is considered as an event separate from background noise. Biologically, APs play a central role in the activation of intracellular processes in theh umanbody , including heart and muscle contraction, the release of insulin from the pancreas, facilitation of communication between neurons int h eb r a i n 1 and motor sensory signals between the brain and muscles and tissues in the body. As such, the study of APs has the potential to gain understanding of these processes and how they are affected under different environmental, genetic and physical conditions.

The understanding of this and other complex phenomena involves statistical analyses of stochastic processes. What is essentially random behaviour over time and/or space, the collection of data on stochastic processes is carried out in a myriad of contemporary researcha r e a s , including but not limited to finance, economics, bioinformatics, signal processing and machine learning. Regardless of their origin, analysis of these data centre on the uncovering of patterns or trends amidst what is otherwise perceived as unpredictable behaviour or noise. For example, in speaker diarization [START_REF] Gales | The application of hidden Markov models in speech recognition[END_REF][START_REF] Tranter | An overview of automatic speaker diarization systems. Audio, Speech, and Language Processing[END_REF], an important topic in speech processing, analysis aims to not only recognise voices in an audio recording originating from different speakers, but also transitions between speakers and the number of speakers, at the same time accounting for natural variation in an individual's tone, volume and pitch. Likewise, in bioinformatics, the alignment of multiple, highly variable DNA sequences is central to the identification of potential regions of functionality or structural importance [START_REF] Holmes | Evolutionary HMMs: a Bayesian approach to multiple alignment[END_REF][START_REF] Eddy | Multiple alignment using hidden Markov models[END_REF].

Of the statistical tools available for analysis, hidden Markov models (HMMs) have proven successful in light of their relative simplicity and flexibility in describing a wide variety of stochastic processes [START_REF] Cappé | Inference in hidden Markov models[END_REF][START_REF] Macdonald | Hidden Markov and Other Models for Discrete-Valued Time Series[END_REF]. A form of latent variable model, HMMs aim to describe the observed outputs of a stochastic process by a finite alphabet of unobservable, discrete valued" s t a t e s " , where different states are taken to represent different features of the process' behaviour and are inferred from the data. Relating these models to other chapters in this book, a HMM is a type of Bayesian Network but may also be conceptualised as a finite mixture model for time dependent observations. In this chapter, we aim to introducet h e s e models to the reader and to demonstrate their applicability to a case study in electrophysiology. Specifically, we seek to apply a HMM to the identification and sorting of action potentials in extracellular recordings [START_REF] White | Bayesian mixtures for modelling complex medical data: A case study in Parkinson's disease[END_REF].

Case study: Spike identification and sorting of extracellular recordings

In this chapter, we focus on the analysis of action potentialsinbrain, made possible by the collection of extracellular recordings. Extracellular recordings consist of measurements of electrical potential discharged Applying the definition of an AP, their presence in Figure 1 are visualised as "spikes", with an amplitude notably higher (orl o w e r ) than the background noise. That said, it is not clear which of these spikes genuinely correspond to APs and which merely form part of the background noise. For this reason, this area of research has witnessed substantial literature on statistical methods for reliablespikedetection, from simple thresholding rules [START_REF] Freeman | A simple multi-unit channel spike height discriminator[END_REF][START_REF] Thakur | Automated optimal detection and classification of neural action potentialsi ne x t r acellular recordings[END_REF][START_REF] Rizk | Optimizing the automatic selectiono fs p i k e detection thresholds using a multiple of the noise level[END_REF] to more adaptive alternatives, including nonlinear and wavelet-based detection methods [START_REF] Yang | A totally automated system for the detection and classification of neural spikes[END_REF]K i m and Kim, 2000;[START_REF] Nenadic | Spike detection using the continuous wavelet transform[END_REF][START_REF] Mtetwa | Smoothing and thresholding in neuronal spike detection[END_REF].

In this chpater, HMMs are considered for the unsupervised detection of APs in extracellular recordings. By assuming the behaviour of an AP as a sequence of unobservable or latent states, HMMs model transitions between these states and therefore provide a means of unsupervised spike detection, without the need to set thresholds. In the next Section, we first consider a single-sequence HMM and how itma y be specified for the spike detection problem. This model is then extended to multiple, independent HMMs, in an attempt to model spikes with distinct trajectories in the same recording. This concept was first proposed by [START_REF] Herbst | Spike sorting with hidden Markov models[END_REF], as a novel solution for the simultaneous identification and assignment of spikes to source cells, the latter commonly referred to as the "spike sorting" problem. In this Chapter, the model proposed by [START_REF] Herbst | Spike sorting with hidden Markov models[END_REF] is recast into the Bayesian framework, and is a summary of work presented in [START_REF] White | Bayesian mixtures for modelling complex medical data: A case study in Parkinson's disease[END_REF].

To explore these ideas, we consider a case study of extracellular recordings taken during Deep Brain Stimulation, a popular treatment for advanced Parkinson's disease. Deep Brain Stimulation isasurgical procedure involving the placement of electrodes in an affected part of the brain, to provide a constant source of electrical stimulation. Best described as a "brain pacemaker", this constant supply of electrical pulses has been consistently shown to alleviate symptoms associated with Parkinson's disease [START_REF] Limousin | Electrical stimulation of the Subthalamic Nucleus in advanced Parkinson's disease[END_REF][START_REF] Kumar | Double-blind evaluation of Subthalamic Nucleus Deep Brain Stimulation in advanced Parkinson's disease[END_REF][START_REF] Krack | Fiveyear follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease[END_REF][START_REF] Kleiner-Fisman | Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson's disease[END_REF]. In this Chapter, we model an extracellular recording taken at the Subthalamic Nucleus (STN), a popular surgical target for Deep Brain Stimulation.

Models and Methods

3.1.

What is a hidden Markov model? As described in the Introduction, a HMM is defined by its use of latent or "hidden" states to describe the behaviour of each value in an observed stochastic process, defined as y = y 1 ,y 2 ,...,y T or in shorthand y 1:T .G i v e n t h i s data, the simplest HMM exists when y 1:T is modelled using a single latent sequence, say z 1:T ,t a k i n gafi n i t en u m b e ro fd i s c r e t ev a l u e s , z t ∈ (1,...,G). This scenario is shown in Figure 2. The elements of z 1:T in Figure 2 are connected due to their generation by a first order Markov chain, whereby the distribution of z t is dependent only on the state inferred at time t -1, as opposed to its entire history.

••• z t-1 z t z t+1 ••• ••• y t-1 y t y t+1 •••
The transition from z t-1 to z t is governed by a time homogeneous transition matrix, Q,s u c ht h a tt h ed i s t r i b u t i o no fe a c hz t is given by (1)

z t |z t-1 , Q ∼ Q z t-1 ,:
where Q z t-1 ,: denotes the row of Q corresponding to state z t-1 .T h e elements of Q are defined as q ij = Pr(z t = j|z t-1 = i). Note that as ar e s u l to fi n t r o d u c i n gz 1:T ,t h et i m ed e p e n d e n c ee x h i b i t e db yy 1:T is now assumed to be completely attributed to the latent sequence.

Accompanying this transition matrix and completing the model, we also specify a distribution for y t ,conditionalonz t .I nd o i n gs o ,c h a n g e s in the behaviour of the stochastic process are defined by changes in the parameters of the proposed distribution. For example, givenP o i s s o n distributed data, a suitable choice for y t may be

(2)

y t |z t , Q,λ ∼ Poisson(λ zt )
such that the behaviour of y 1:T is assumed to be driven by changes in the unknown rate, λ,w h i c hd e pe n d so nz 1:T .

Taking this basic definition, the remainder of this Section aims to demonstrate how HMMs can be adapted to the problems of spike identification and spike sorting. This discussion begins with theapplication of the single HMM in Figure 2, where the specification of the transition matrix Q can be done in such a way to model the dynamics of a single AP. This model is then extended to multiple independent latent sequences, commonly referred to as a factorial HMM (fHMM) [START_REF] Ghahramani | Factorial hidden Markov models[END_REF]. from the background noise. When this equilibrium is interrupted and the potential rises above a certain threshold, the AP's trajectory is initiated, a state which we refer to as the firing state and refers to the processes of depolarization and repolarization. Upon completion of the firing phase, the AP enters what is known as the absolute refractory period,be f o r er e t u r n i n gt ot h er e s t i n gpe r i od .

When transitioning between these phases it is assumed that, from the time of firing until the end of the absolute refractory period, it is biologically impossible for the AP to refire. Given this description, Q is given by,
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where z t = 1 denotes that the AP is in the resting phase at time t.T h e number of states G is chosen proportional to the sampling frequency of y 1:T and enforces the aforementioned assumption. For example, ifa n extracellular recording has a sampling rate of 20KHz, G =2 0m e a n s from the moment the AP fires, with probability 1q 11 ,i ti su n a b l et o refire for 1ms.

Conditional on z t , y t is assumed Normally distributed with unknown mean and common unknown variance, namely

y t |z t = g, Q,µ,σ 2 ∼ N µ g ,σ 2 g =1,...,G. (4)
This distributional form is chosen for two reasons. Firstly,thecommon variance term, σ 2 ,p r o v i d e sa ne s t i m a t eo ft h eb a c k g r o u n dn o i s e . S e condly, by conditioning the unknown mean on z t ,w eobtainanestimate of the average voltage across all defined states of the AP's behaviour.

By ordering these means for 1 to G,t h ep r e d i c t e da v e r a g es h a p eo r trajectory of the AP is produced, commonly referred to as the spike template.

For all unknown parameters, prior distributions are conjugate and of the form,

σ 2 ∼ IG(α, β) (5) µ|Q,σ 2 ,b ∼ N b, σ 2 τ 2 (6) q 11 |Q ∼ Beta(γ, φ) (7)
The inclusion of σ 2 in Equation ( 6) allow for the derivation of closedform full conditionals for model estimation, discussed further in Section 3.5.

In summary, by specifying an appropriate transition probability matrix, one is able to not only predict when the AP enters the firingstate but also its expected trajectory. This second property may become useful when multiple APs are present, addressed in the next Section, as a possible solution to the spike sorting problem.

Multiple neurons: An application of a factorial HMM.

In some cases, it is possible that an extracellular recordingc o n t a i n s spikes from more than a single AP. With this comes the additional task of spike sorting, whereby identified spikes are classified by predicted trajectory, as this is indicative of their origin from different cells. In order to accommodate this general case, the current HMM must be extended to include N latent sequences, one for the behaviour of each distinct AP. This collection of sequences is denoted thorughout this Chapter by z 1:N 1:T =(z 1 1:T ,...,z N 1:T ).

The introduction of an additional N -1, independent latent sequences results in the specification of a factorial HMM (fHMM) (Ghahramani and Jordan, 1997), depicted in Figure 4.

••• z 1 t-1 z 1 t z 1 t+1 ••• ••• z 2 t-1 z 2 t z 2 t+1 ••• ••• . . . . . . . . . ••• ••• z N t-1 z N t z N t+1 ••• ••• y t-1 y t y t+1 ••• 1 Figure 4. Factorial HMM for N independent APs.
The independence amongst latent sequences assumes that the behaviour of APs originating from different neurons is independent. As a consequence, the behaviour of each AP can be expressed by its own transition probability matrix, Q n ; n =1 ,...,N.F u r t h e r m o r e , i t means that, for all t,t h ej o i n tt r a n s i t i o np r o b a b i l i t yf o rt -1 → t is the product of individual AP transition probabilities, ( 8)

Pr(z 1:N t |z 1:N t-1 )= N n=1 q n z n t ,z n t-1 .
This assumption is chosen entirely for of computational convenience, with model estimation described in Section 3.4.

We also assume for this mo del that the observed voltage at any given time is the sum of individual voltages from all APs. This a biologically relevant assumption and allows for the possibility of overlapping APs, namely when more than one AP enters the firing state simultaneously or one AP fires during another AP's refractory or resting phase. Taking this second assumption into account, Equation ( 4) becomes (9)

y t |y 1:t-1 ,z 1:N t , Q ∼ N N n=1 µ n z n t ,σ 2
where µ n z n t is the mean for the n th AP conditional on z n t . As a result of this modification to the distribution of y t , each AP is defined by its own spike template, In this Chapter, the extension of the model into the Bayesian framework requires the extension of priors in Equations ( 5) to ( 7) to accommodate the N>1c a s e . W h i l eE q u a t i o n( 5 )r e m a i n su n c h a n g e d ,t h i s extension involves the hierarchical prior on µ defined by Equation ( 6) being replaced by an independence prior over n. Also, for each q n 11 ,w e specify a Beta(γ, φ)d i s t r i b u t i o n . 

µ n =( µ n 1 ,...,µ n G ),
z 1:N ∼ p(z 1:N 1:T |y 1:T , Q 1:N , Θ)
Here, Θ defines the parameter set {µ, σ 2 }.T h eg e n e r a t i o no fs a mples from Equation ( 10) is simplified by first re-expressing this joint distribution by the decomposition,

p(z 1:N 1:T |y 1:T , Q 1:N , Θ)=p(z 1:N T |y 1:T , Q 1:N , Θ) × ... ×p(z 1:N t |z 1:N t+1 ,...,z 1:N T , y 1:T , Q 1:N , Θ) × ... ×p(z 1:N 1 |z 1:N 2 ,...,z 1:N T , y 1:T , Q 1:N , Θ). (11)
This implies that simulation of z 1:N involves calculation of each probability mass function on the right hand side of Equation ( 11).T h i st a s k is further simplified by the knowledge that the dependence exhibited by z 1:N is restricted to first order, as illustrated in both Figures 2 and4. [START_REF] Chib | Calculating posterior distributions and modal estimates in Markov mixture models[END_REF] showed that each of these terms, through the application of Bayes' rule, is given by, ( 12)

p(z 1:N t |z 1:N t+1:T , y 1:T , Q 1:N , Θ)= p(z 1:N t |y 1:t , Q 1:N , Θ)p(z 1:N t+1 |z 1:N t , Q 1:N ) z 1:N t+1 p(z 1:N t |y 1:t , Q 1:N , Θ)p(z 1:N t+1 |z 1:N t , Q 1:N )
.

with p(z 1:N t+1 |z 1:N t , Q 1:N )c o r r e s p o n d i n gt ot h ej o i n tt r a n s i t i o nm a t r i x probability defined in Equation ( 8). The term p(z 1:N t |y 1:t , Q 1:N , Θ)i s computed recursively for each t,ap r o c e s sk n o w na sf o r w a r dfi l t e r i n g .

Beginning at t =1 ,t her ecur si v esc hem eco nsi st so fi t er a t i ngbet w een the two steps:

p(z 1:N t |y 1:t , Q 1:N , Θ)= p(z 1:N t |y 1:t-1 , Q 1:N , Θ)p(y t |Θ,z 1:N t ) z 1:N t p(z 1:N t |y 1:t-1 , Q 1:N , Θ)p(y t |Θ,z 1:N t ) (13) p(z 1:N t |y 1:t-1 , Q 1:N , Θ)= z 1:N t-1 p(z 1:N t |z 1:N t-1 , Q 1:N )p(z 1:N t-1 |y 1:t-1 , Q 1:N , Θ) (14)
Upon computing Equation ( 13) for all t,s a m p l i n gf r o mt h ej o i n td i stribution of z 1:N is achieved via Equation ( 12). Explicitly, sampling is performed backwards in time and is thus referred to as backward smoothing. This process is outlined in Equation ( 15).

z 1:N T ∼ p(z 1:N T |y 1:T , Q 1:N , Θ) z 1:N T -1 ∼ p(z 1:N T -1 |z 1:N T , y 1:T , Q 1:N , Θ)
. . .

z 1:N 1 ∼ p(z 1:N 1 |z 1:N 2 ,...,z 1:N T , y 1:T , Q 1:N , Θ). ( 15 
)
The forward backward algorithm has found success in many areas of research, in particular speech processing, also appearing under the guise of the Baum-Welch [START_REF] Baum | A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains[END_REF] and Viterbi [START_REF] Forney | The viterbi algorithm[END_REF] algorithms. For a more comprehensive discussion of this algorithm in the Bayesian framework, see Frühwirth-Schnatter (2006).

Gibbs Sampler. The choice of conjugate priors on all unknown

parameters means model estimation can be implemented using Gibbs sampling [START_REF] Geman | Stochastic relaxation, Gibbs distributions, and the Bayeisan restoration of images[END_REF][START_REF] Smith | Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods[END_REF][START_REF] Chib | Calculating posterior distributions and modal estimates in Markov mixture models[END_REF]. For our model, the Gibbs sampler involves sampling from the following full conditionals:

z 1:N | y 1:T , Q 1:N , Θ (16) Q 1:N | y 1:T , z 1:N (17) Θ | y 1:T , z 1:N (18)
Equation ( 16) is sampled from using the forward-backward algorithm described in the previous Section, given current realisations of Q 1:N and Θ.G i v e nz 1:N , Q 1:N and Θ,a r et h e nu pd a t e dv i at h e i rc o r r e s po n d i n g full conditionals. For Q 1:N ,t h i si n v o l v e su p d a t i n ge a c hq n 11 ,f o rn = 1,...,N.T h e s eu p d a t e sa r ei nt h eo fB e t ad i s t r i b u t i o n s , (19)

q n 11 = Beta(γ + m n 11 ,φ+1)
where m n 11 =# ( z n t =1 |z n t-1 =1 ) ,o rt h en u m b e ro ft r a n s i t i o n sw h e r e the latent sequence remains in the resting state. For Θ, we note that the posterior can be decomposed to give (20) p(µ, σ 2 |y 1:T , z 1:N )=p(µ|σ 2 , y 1:T , z 1:N ) × p(σ 2 |y 1:T , z 1:N ).

The full conditional for µ follows a Multivariate Normal distribution,

p(µ|σ 2 , y 1:T , z 1:N ) ∼ MV N b τ 2 + d(y) T Σ,σ 2 Σ (21) µ = µ 1 1 ,µ 1 2 ,...,µ 1 G ,µ 2 1 ,...,µ N G T d(y)= d z 1 t =1 (y),...,d z 1 t =G (y),d z 2 t =1 (y),...,d z N t =G (y) T d z n t =g (y)= T t=1 I {z n t = g} y t . (22) 
Here, µ has been defined as a row vector, containing all possible combinations or n =1 ,...,N and g =1 ,...,G.T h i sa l l o w sf o ra l lm e a n parameters to be sampled in a single, vectorised step and is done so for computational convenience.

The remaining term, σ 2 ,i su pd a t e db ya nI n v e r s eG a m m ad i s t r i b ution, having integrated out µ .

(

) σ 2 |y 1:T , z 1:N ∼ IG α + T 2 ,β + 1 2 T t=1 y 2 t -d(y) T Σd(y) . 23 
The covariance matrix Σ is a diagonal matrix with entries in the form of counts and ordered identically to d(y). The diagonal of the inverse of Σ is given by ( 24) diag(Σ -1 )= 1 τ 2 + N (y).

with N (y)b e i n gar o wv e c t o ro fl a t e n ts t a t ec o u n t sf o re a c ha c t i o n potential, written as

N (y)=[ N z 1 =1 (y),...,N z N =G (y)] T (25) N z n =g (y)= T t=1 I {z n t = g} . (26)
The primary goal of model inference is to predict the latent sequences z 1:N .I nt h eB a y e s i a nf r a m e w o r k ,p o s t e r i o ri n f e r e n c eo ne a c hz n t given y 1:T is possible through the Monte Carlo estimate of the forward filter [START_REF] Chib | Estimation and comparison of multiple change-point models[END_REF]. For D Gibbs iterations, this probability is given by,

Pr(z n t |y)= p(z n t |y 1:t-1 , Θ,Q n )p(Θ,Q n |y) dΘ dQ n = 1 D D d=1 p(z n(d) t |y 1:t-1 , Θ (d) ,Q n(d) ) (27)
which is simply the average over Equation ( 14), marginalisedo v e ra l l action potentials n ′ = n.

DATA ANALYSIS AND RESULTS

In this Section, we apply the model defined in Section 3.4 to both a simulated and real dataset, the latter being extracellular recordings collected during Deep Brain Stimulation, a popular treatment for patients diagnosed with advanced Parkinson's disease.

For each dataset, the Gibbs sampler presented in the previousSection was run for 10,000 iterations, discarding the first 5,000 as the burnin period. The results presented are based on the following choice of hyperparameters: τ 2 =1 0 ,b =0 ,γ =1 0 ,φ =1 ,α =2 .5a n d β =0.5s 2 ,w h e r es 2 is the sample variance of the observed data. To explore the possibility of overlapping APs being present, Figure 8 illustrates the posterior probabilities of partially overlapping APs over all locations, for each AP individually. In this case, these probabilities are of the form Pr(z

n t = G, z n ′ t =1∩ z n ′ t = G|y 1:T , µ,σ 2 ,Q 1:N )o r ,t h e
probabilty that the n th AP fires given the other AP is in the resting period.

Given the first row of plots in Figure 8, two partially overlapping APs have been recovered, one for each AP. For the first AP, we see that it is initiated during the refractory period of the second AP at approximately t = 1000. Likewise, the second AP fires during the refractory period of the first AP later in the dataset between t =2500 and t =3 0 0 0 . C o m p a r i n gt h i sr e s u l tw i t ht h eo m i s s i o n si nF i g u r e 7, one sees that these partial overlaps for two of the four omissions between the inferred and true latent sequences. 

t = G|y 1:T , µ,σ 2 , Q 1:N ),
the final omissions in Figure 7 are recovered, corresponding to the full overlap between t =1500andt =2000.

Given this favourable performance of this modelling approach, Figure 9 compares the true versus predicted templates for each AP, given by µ n 1 ,...,µ n G ; n =1, 2. Given the presence of label switching throughout the course of the Gibbs sampler, predicted templates were constructed by choosing the estimates of µ corresponding to the approximate maximum a posteri (MAP) estimate. For each Gibbs iteration, the approximate MAP estimate was calculated by multiplying the observedd a t a likelihood with the prior density p(µ 1:N ,σ 2 ). Given these estimates for For b oth neurons, the p osterior probability of remaining in the resting state was very high, with posterior expectations both equalling approximately 0.94. This result indicated that, for both modelled APs, spiking events were rare. Reviewing the number of identified spikes in Figure 11, some variation was noted, with an expectation of 54s p i k e s and a 95% credible interval of between 47 and 60 spikes. This analysis of real data, however, provided inferences there were not as conclusive as those obtained for the simulation study.I nF i gure 12, posterior inference for the chosen model for summarised for isolated, partially overlapping and fully overlapping APs. For isolated APs, the majority of nonzero posterior probabilities did not exceed 0.5 and therefore suggested substantial uncertainty about the presence of many APs. This result was somewhat expected, in part due to the higher level of background activity visible in Figure 1. Furthermore, investigation into this result revealed that many posteriorprobabilities regarding the locations of isolated APs were in fact shared between neighbouring locations. This suggested that the uncertainty in Fig- ure 12 not so much suggested uncertainty in the presence of APs but more so the uncertainty in the exact locations where APs were initiated. A similar statement was made for possible locations of partially overlapping APs, also summarised in Figure 12. That said, in inferring the most likely locations for each AP, it was thought feasible to set the posterior probability threshold lower than 0.5. Finally, in this case, there was no evidence of fully overlapping APs, indicated by the bottom right plot in Figure 12. Concerns about the use of this model also arose following inference on the average templates for each of the two assumed APs. This inference is summarised in Figure 13.

In Figure 13, predicted APs given posterior probabilities of onset greater than 0.4 are given and compared with their predicted template. In the chosen model's favour, many APs assigned to the second neuron (right hand plots) resemble the predicted the predicted average template well, however there appeared to be a small subset of APs with notably higher amplitude. This raised concern that thissubsetin fact corresponded to a third neuron and were thus incorrectlys o r t e d .

Representing a less favourable result, the predicted APs attributed to the first neuron (left hand plots) did not appear to consistently follow the predicted average template, for either threshold. This was thought to be the result on two possible reasons. Firstly, given the maximum and minimum amplitudes of the predicted template are closer to the background noise than the other template for the second AP, it was possible that the corresponding spikes were corrupted by noise to a greater degree. Secondly, and of greater concern, was that these spikes were false positives and did not correspond to true APs at all.

DISCUSSION

In this Chapter, we have highlighted the use of HMMs for modelling data-rich, complex stochastic processes. Furthermore, taking the simplest definition of a HMM, we have shown its flexibility in adapting to different modelling situations, in this case the extensiono fas i n g l e sequence HMM to a factorial setting, in an attempt to simultaneously identify and sort spikes arising from multiple APs.

In the simulation study, the model provided promising results and was able to correctly identify both APs and locations where they overlapped. However, in the analysis of the real dataset, a number of key concerns arose, presenting opportunities for future research in this area and form the focus of this discussion. Broadly speaking, these concerns could be categorised as either computational or methodological.

An analysis not considered in this Chapter is that of model comparison. This comparison could take place for models with different values of N or, as explored in [START_REF] White | Bayesian mixtures for modelling complex medical data: A case study in Parkinson's disease[END_REF], models with different distributional assumptions for y t and/or different transition matrix specifications. Analyses of this form could be conducted with the use of goodness-of-fit criteria, such as the Deviance InformatinC r i t e r i o n [START_REF] Spiegelhalter | Bayesian measures of model complexity and fit[END_REF][START_REF] Celeux | Deviance information criteria for missing data models[END_REF], as is used in [START_REF] White | Bayesian mixtures for modelling complex medical data: A case study in Parkinson's disease[END_REF], or by Bayes' factors [START_REF] Kass | Bayes factors[END_REF].

For many segments of real data analysed but not presented in this Chapter, the specification of G also led to problems, in terms of the number of APs detected and the posterior probabilities of spikes occurring at a given location. Furthermore, for the real data analysis in Section 4.2, a number of different values for G were trialled. Although these additional analyses are not included in this Chapter, it was seen that smaller values of G than the one chosen resulted in many false positives, compared to larger values of G that resulted in the detection of very few or no spikes in the observed data. The most likely reason for sensitivity regarding the choice of G is that, in recordings of multiple cells, the refractory period may vary considerably. It was this reason that motivated the alternative choice of transition matrix however, in both analyses presented, this extension did not appear to provide an improved fit to the data. For the real dataset, evidence for the presence of two different refractory periods could be seeni nt h e sample ACF, with it almost crossing zero for the second time atl a g twenty. To implement different refractory periods in the current model would involve the specification of identifiability constraints and would be suitable extension for future work.

To conclude, while implementation of the prop osed mo del in the Bayesian framework was appealing, in terms of the range of probability statements possible, the cost of model computation byM C M C was found to be a prohibitive factor, with computation takinga p p r o ximately 2hours per 0.1seconds of real recording. That said, less expensive alternative to MCMC would be desirable for future work in this area. Examples of viable alternatives to MCMC include Variational Bayes [START_REF] Mcgrory | Variational Bayesian analysis for hidden Markov models[END_REF][START_REF] Ghahramani | Variational learning for switching state-space models[END_REF][START_REF] Mcgrory | A Variational Bayes approach to fitting Hidden Markov Models in Parkinsons Disease Research[END_REF], Approximate Bayesian Computation [START_REF] Jasra | Filtering via approximate Bayesian computation[END_REF] and Sequential Monte Carlo [START_REF] Doucet | On sequential MonteC a r l o sampling methods for Bayesian filtering[END_REF].
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  and common variance, σ 2 ,a s per the single AP model. This model was first introduced by Herbst et al. (2008) in the maximum likelihood framework.

3. 4 .

 4 Model Estimation and Inference. Estimation of any HMM, regardless of its structure, consists of two key tasks: the estimation of (i) the latent sequence/s and (ii) the parameters associated with each latent state. In a Bayesian framework, we can achieve these tasks using a combination of MCMC, in this case Gibbs sampling, and a unique algorithm for latent sequence estimation, henceforth referred to as the forward-backward algorithm. For the sake of brevity, we restrict our attention to the factorial HMM, as this model reduces to a single sequence HMM when N =1.3.4.1. The Forward-Backward Algorithm. First developed by[START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF] in the classical statistical framework, the forward-backward algorithm aims to produce samples from the joint distribution of the latent sequence or sequences, represented by(10) 
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 13 Figure 13. Identified APs given a probability threshold

fires during the refractory period of the other AP). From Figure5 , the presence of the second AP is clear, characterised by an amplitude between 0.2 and 0.3, however the locations of the first AP are less clear and the locations of overlaps even less so.

For the Gibbs sampler in this study, two chains were run with different initial templates (µ 1 ,...,µ G ), for each AP. In the first instance, initial templates were set to the true, simulated template for each AP.

For the second chain, each µ n g was randomly drawn from a N (0,τ 2 σ 2 ) distribution with each µ n 1 then set to zero to correspond to the assumed mean amplitude of the background noise. The comparisono f inferences between these two chains did not result in any major discrepancies. Thus, the results that follows are based on MCMC output for the second chain.

The posterior probabilities of firing for isolated or non-overlapping spikes are summarised in Figure 6. Given each latent sequencew a s sampled backwards recursively, Figure 6 gives posterior probabilities for each AP in the form Pr(z n t = G, z n ′ t =1|y 1:T , µ,σ 2 , Q 1:N ).

In Figure 6, there are the high posterior probabilities associated with the locations of each isolated AP. Assuming a probability threshold of 0.5, Figure 7 shows posterior inference performed well with recovering the true locations of each AP. However for the inferred locations of each