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Abstract

We investigate the asymptotic behavior of the Bayes factor for regres-

sion problems in which observations are not required to be independent

and identically distributed and provide general results about consistency

of the Bayes factor. Then we specialize our results to the model selec-

tion problem in the context of partially linear regression model in which

the regression function is assumed to be the additive form of the linear

component and the nonparametric component. Specifically, sufficient con-

ditions to ensure Bayes factor consistency are given for choosing between

the parametric model and the semiparametric alternative in the partially

linear regression model.

Keywords : Bayes factor, Hellinger distance, Kullback-Leibler neighbor-
hoods, Partially linear models, Rate of contraction

1 Introduction

Suppose we have two candidate models M0 and M1 for yn ∈ Yn, a set of n
observations from an arbitrary distribution Pn which is absolutely continuous
with respect to a commone measure µn on Yn. We also assume two candidate
models to have respective parameters and prior distributions, θ, π0(θ), λ and
π1(λ),

M0 = {pn
θ (yn), θ ∈ Θ, π0(θ)}, M1 = {pn

λ(yn), λ ∈ Λ, π1(λ)}, (1.1)

where pn
θ (yn) and pn

λ(yn) denote the densities of yn with respect to µn under
M0 and M1 respectively.

Based on this set of observations, a common Bayesian procedure to measure
the evidence in favor of M0 over M1 is to assess the Bayes factor (Jeffreys,
1961), the ratio of the respective marginal densities or prior predictive densities
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of the data for the two competing models. Given two candidate models M0 and
M1, the marginal densities of yn are computed by

m0(y
n) = p(yn|M0) =

ˆ

p(yn|M0, θ)π(θ|M0)dθ =

ˆ

pn
θ (yn)π0(θ)dθ,

m1(y
n) = p(yn|M1) =

ˆ

p(yn|M1, λ)π(λ|M1)dλ =

ˆ

pn
λ(yn)π1(λ)dλ.

Assuming the prior model probabilities Pr(Mj), j = 0, 1 with
∑1

j=0 P (Mj) =
1, the Bayes factor, i.e. the ratio of posterior odds and prior odds, is equivalent
to the ratio of two marginal densities (Kass and Raftery, 1995), given by

B01 =
Pr(M0|yn)

Pr(M1|yn)

/

Pr(M0)

Pr(M1)
=

p(yn|M0)

p(yn|M1)
=

m0(y
n)

m1(yn)
.

Alternatively, the posterior probability of M0 is represented by

Pr(M0|yn) =
Pr(M0) · B01

Pr(M0) · B01 + Pr(M1)
.

Note that the large value of B01 indicates the strong evidence in support of
model M0 (Jeffreys (1961) and Kass and Raftery (1995)). Accordingly, B01 is
expected to converge to infinity as the sample size increases when M0 is the
true model, and this concept can be formulated as,

lim
n→∞

B01 = ∞, equivalently lim
n→∞

Pr(M0|yn) = 1, (1.2)

when M0 is the true model. The convergence in (1.2) denotes in-probability
convergence under the true sampling distribution of yn, and that the former
is called Bayes factor consistency or consistency of the Bayes factor, and the
latter is often called posterior model consistency or posterior consistency for
model choice. Note that consistency of Bayesian model selection procedure is
the fundamental issue to be secured, whereas the model selection using the
classical tools such as Cp and AIC generally do not guarantee model selection
consistency (e.g. see Berger and Pericchi (1996) and Yang (2005)).

Recent results in the Bayes factor consistency include works by Verdinelli
and Wasserman (1998), Dass and Lee (2004), Ghosal et al. (2008), and McVin-
ish et al. (2009), which focus on the density estimation in the Bayesian goodness
of fit testing problems. Their results are based on verifying sufficient conditions
related to posterior consistency and posterior convergence rates. In addition,
those conditions are mainly designed for the case of independent and identically
distributed (i.i.d.) observations, and thus it is expected to generalize them to
the case of non i.i.d observations as in the case of regression problems. The con-
sistency of the Bayes model selection in regression problems has been largely
studied in Gaussian linear regression models, particularly in the context of vari-
able selection procedures, for example, Liang et al. (2008), Casella et al. (2009),
Moreno et al. (2010) and Shang and Clayton (2011). On the other hand, a re-
cent work by Choi et al. (2009) investigated the Bayes factor consistency in the
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partially linear regression model with a specific trigonometric representation of
the nonparametric component, in which the analytic form of the Bayes factor
was directly evaluated for its asymptotic behavior under suitable conditions.

Alternatively, this paper investigates the asymptotic behavior of the Bayes
factor for regression problems in which observations are not required to be in-
dependent and identically distributed. In particular, we consider a uniform
version of consistency of the Bayes factor and discuss general results on the
Bayes factor consistency in Section 2. Then we specialize our results to the
model selection problem in the context of partially linear regression model, in
which the regression function is assumed to be the additive form of the linear
component and the nonparametric component. Specifically, sufficient conditions
to ensure Bayes factor consistency are given in Section 3 for choosing between
the parametric model and the semiparametric alternative in the partially linear
regression model. sufficient conditions to ensure Bayes factor consistency are
given for the partially linear regression model. Section 4 makes a concluding
remark and discusses further extension of the consistency of the Bayes factor
based on the general theorem we propose in the paper.

2 General Theorem

In this section, we give the general theorem to obtain consistency of the Bayes
factor where observations are not required to be independent and identically
distributed (IID) and in a framework where Θ ⊂ R

k for some k ≥ 1, where Λ
is typically infinite dimensional. For this purpose, we make use of asymptotic
results established in Ghosal and van der Vaart (2007) and McVinish et al.
(2009) and extend general results of the Bayes factor consistency to the non-IID
observations.

Then, the Bayes factor is given by

B01 =

´

Θ
pn

θ (yn)dπ0(θ)
´

Λ
pn

λ(yn)dπ1(λ)
. (2.1)

Consistency of the Bayes factor is usually formulated as follows :

lim
n→∞

B01 =

{

∞, in Pn
θ0

probability, if pn
θ0

∈ M0

0, in Pn
λ0

probability, if pn
λ0

∈ M1,

where Pθ0
represents the true probability measure belonging to the null model,

Pλ0
represents the true probability measure belong to the alternative model.

One drawback of the above formulation is that it is pontwise and not uniform.
We therefore consider in this paper a uniform version of consistency of the Bayes
factor written as : let Λ0 ⊂ Λ, for all K compact subset of Θ and for all ǫ > 0,

lim
n→∞

sup
θ0∈K

Pn
θ0

[

B−1
01 > ǫ

]

= 0

lim
n→∞

sup
λ0∈Λ0

Pn
λ0

[B01 > ǫ] = 0
(2.2)
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In the above formulation Λ0 is to be understood as some functional class
whose distance to the null hypothesis is bounded from below. We shall make
this notion more precision in Assumptions A1 and A2.

In (2.1) and (2.2), we have typically in mind that Λ is much bigger than Θ,
and Θ is often nested to Λ. In such cases, the difficulty comes from the fact that
if pn

θ0
∈ M0, it can also be approximated by densities in M1. Specifically, when

pn
θ0

∈ M0, the Kullback-Leibler property (Walker et al., 2004), a basic condition
to be satisfied for posterior consistency and Bayes factor consistency, holds for
both prior distributions under M0 and M1. Since the Bayes factor is known
to asymptotically support the model with the prior that satisfies the Kullback-
Leibler property (Walker et al., 2004), it is often the case that the Bayes factor
based on prior distributions only with the Kullback-Leiber property may not
be enough, and additional conditions are required for consistent model selection
between two competitive models. Ghosal et al. (2008) and McVinish et al.
(2009) investigated this issue for IID observations, and we adapt it to non-IID
observations.

In this respect, our investigation on Bayes factor consistency begins with the
case that the observations yn is actually generated by M1. We consider first a
set of assumptions to obtain consistency under M1 in (2.2), i.e. when the true
model for yn is assumed to be pn

λ0
. For this purpose, we write the Bayes factor

B01 as

B01 =
Jλ0

0 (yn)

Jλ0

1 (yn)
, (2.3)

where

Jλ0

0 (yn) =

ˆ

Θ

pn
θ (yn)

pn
λ0

(yn)
dπ0(θ), and Jλ0

1 (yn) =

ˆ

Λ

pn
λ(yn)

pn
λ0

(yn)
dπ1(λ).

Moreover let dn be a semimetric on Λ ∪ Θ and define

h(λ0) = lim inf
n

inf
θ∈Θ

dn(pn
λ0

, pn
θ ), λ0 ∈ Λ

Assumption A1. Let Λ0 ⊂ Λ satisfies : For Λ0 ⊂ Λ, there exists ǫn

converging to 0 such that

sup
λ0∈Λ0

Pn
λ0

[

Jλ0

1 (yn) < e−nǫ2n

]

= o(1)

Assumption A2.

A2-1.
inf

λ0∈Λ0

h(λ0) > 0

A2-2. There exists ǫ0 > 0 such that for all λ0 ∈ Λ0 and all ǫ0 > ǫ > 0, there
exists Θn(λ0) ⊂ Θ, such that

π0(Θn(λ0)
c) ≤ e−2nǫ,
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A2-3. For all ǫ > 0 there exists a > 0 such that for all λ0 ∈ Λ0, there exists a
sequence of tests φn(λ0) satisfying

sup
λ0∈Λ0

En
λ0

[φn(λ0)] = o(1), sup
λ0∈Λ0

sup
θ∈Θn(λ0)

En
θ [1 − φn(λ0)] ≤ e−an.

Theorem 1. Suppose that assumptions A1 and A2 hold. Then for all ǫ > 0
there exists δ > 0 such that

sup
λ0∈Λ0

Pn
λ0

[

B01e
δn > ǫ

]

= o(1)

That is, the Bayes factor is exponentially decreasing under M1 (uniformly over
Λ0).

Proof. Under A1, Jλ0

1 (yn) ≥ e−nǫ2n , with probability going to 1, under Pn
λ0

,
uniformly over Λ0.

Let ǫ > 0 and δ > 0, then assumption A2 implies that uniformly over Λ0

Pn
λ0

[

B01e
δn ≥ ǫ

]

≤ En
λ0

(φn(λ0) + En
λ0

[

(1 − φn(λ0))1lB01eδn≥ǫ

]

≤ En
λ0

(φn(λ0)) + Pn
λ0

[Jλ0

1 (yn) < e−nǫ2n ]

+
enǫ2n+δn

ǫ

[

ˆ

Θn(λ0)

En
θ (1 − φn(λ0))dπ0(θ) + π0(Θn(λ0)

c)

]

≤ o(1) + e−nǫ/2−na/2,

as soon as δ < (ǫ ∧ a)/2.

Note that requiring these uniform assumptions is often not a difficulty in the
Bayesian setting, where we typically control the above terms uniformly on balls
with a given radius, such as Hölder or Besov balls.

We next consider a set of assumptions to obtain consistency under M0 in
(2.2), i.e. when the true model for yn is assumed to be pn

θ0
. We write the Bayes

factor B01 as

B01 =
Jθ0

0 (yn)

Jθ0

1 (yn)
, (2.4)

where

Jθ0

0 (yn) =

ˆ

Θ

pn
θ (yn)

pn
θ0

(yn)
dπ0(θ), and Jθ0

1 (yn) =

ˆ

Λ

pn
λ(yn)

pn
θ0

(yn)
dπ1(λ)

Let KL(f, g) denote the Kullback-Leibler divergence between f and g and
V (f, g) =

´

f(log f/ log g)2, and let dn be a semimetric on Λ ∪ Θ.
Assumption B1. For all K ⊂ Θ compact and all θ0 ∈ K, there exists

k0 > 0 such that

inf
θ0∈K

nk0/2π0

[

{θ : KL(pn
θ0

, pn
θ ) ≤ 1, V (pn

θ0
, pn

θ ) ≤ 1)}
]

≥ C
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for some positive constants C.
Assumption B2. For all K ⊂ Θ0, for all θ0 ∈ K, there exists ǫn > 0 going

to 0, with Aǫn
(θ0) = {pλ : dn(pn

λ, pn
θ0

) < ǫn} such that

B2-1.
sup

θ0∈K
Pn

θ0

[

π1

[

Ac
ǫn

(θ0)|yn
]]

= o(1)

and such that

B2-2.
sup

θ0∈K
π1 [Aǫn

(θ0)] = o(n−k0/2).

where k0 is the same positive constant as in Assumption B1.

In other words, the posterior probability of Aǫn
from π1 is converging to 1

in pn
θ0

-probability with rate ǫn, and the prior probability of Aǫn
from π1 has a

positive probability but converging to 0. In the above assumptions k0 and ǫn

depend on θ0. Note that the same condition was also discussed in (McVinish
et al., 2009, Assumption A3) and a similar but stronger condition was given in
(Ghosal et al., 2008, (4.1)) for nonparametric Bayesian density estimation.

Lemma 1. Define Sn = {θ : KL(pn
θ0

, pn
θ ) ≤ 1, V (pn

θ0
, pn

θ ) ≤ 1}, for some
θ0 ∈ Θ. Then,

lim
C→∞

sup
n

Pn
θ0

[

Jθ0

0 (yn) < e−Cπ0(Sn)/2
]

= 0.

Proof. The proof is similar to the proof of Theorem 1 in McVinish et al. (2009)
for instance, given as follows :

First, note that

Jθ0

0 (yn) ≥
ˆ

Θ

pn
θ (yn)

pn
θ0

(yn)
1lΩn

(yn, θ)dπ0(θ) ≥ e−C

ˆ

Sn

1lΩn
(yn, θ)dπ0(θ),

where

Ωn = {(yn, θ) : ℓn(θ) − ℓn(θ0) ≥ −C}, ℓn(θ) = log pn
θ (yn).

Then for sufficiently large C > 0, we have

Pn
θ0

[

Jθ0

0 (yn) < e−Cπ0(Sn)/2
]

≤ Pn
θ0

[π0(Sn ∩ Ωc
n) > π0(Sn)/2]

≤ 2

´

Sn
Pn

θ0
[Ωc

n(θ)] dπ0(θ)

π0(Sn)

≤ 8

C2
.

where the latter inequality comes from Chebyshev inequality on ln(θ0)− ln(θ)−
KL(pn

θ0
, pn

θ ). Therefore, it follows that

Pn
θ0

[

Jθ0

0 (yn) < e−Cπ0(Sn)/2
]

→ 0 as C → ∞,

uniformly in θ0.
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Theorem 2. Suppose that assumptions B1 and B2 hold. Let Pn
θ0

denote the
joint distribution of yn. If θ0 ∈ Θ0, then

B01 → ∞ in Pn
θ0

-probability .

That is, the Bayes factor is increasing to infinity under M0.

Proof. Let B10 = B−1
01 , ǫ > 0 and θ0 ∈ K for some compact set K, define

An = {yn : Jθ0

0 (yn) > e−Cπ0(Sn)/2} ∩ {yn : π1(Aǫn
|yn) > 1 − ǫ},

where Sn is defined in the proof of Lemma 1 and ǫn and Aǫn
are defined in

Assumption A2. Suppose that yn ∈ An. Then, by assumption B1,

B10 ≤ eC 2

C
nd/2Jθ0

1 (yn) = eC 2

C
nd/2

´

Aǫn

pn
λ(yn)

pn
θ0

(yn)dπ1(λ)

π1(Aǫn
|yn)

.

Thus, by Lemma 1 and assumption B2-1,

Pn
θ0

[

B10 > e2Cnk0/2π1(Aǫn
)
]

≤ Pn
θ0

[

An ∩
{

B10 > e2Cnk0/2π1(Aǫn
)
}]

+ Pn
θ0

[Ac
n]

≤ Ce−C

2(1 − ǫ)
+ Pn

θ0
[Ac

n]

≤ o(1) + 2Ce−C + 8/C2 C→∞→ 0.

Note the above bounds are uniform over K. Theorefore, under M0, the Bayes
factor goes to infinity at a rate bounded by O(nd/2π(Aǫn

)).
Hence, by assumption B2-2, B−1

01 → 0 with Pn
θ0

probability tending to 1,
which implies B01 converges to infinity with Pn

θ0
probability tending to 1 when

the true model is from M0.

3 Application to the partially linear model

In this section we apply the general theorems in the previous section to the
model selection problem for partially linear models in choosing between the
linear regression model, and the semiparametric alternative. Bayesian methods
in partially linear models have been developed in for example Lenk (1999), Koop
and Poirier (2004), and Ko et al. (2009), whereas theoretical validation of these
Bayesian methods has little been investigated, in particular for consistency of
Bayes factor except for the recent result by Choi et al. (2009).

Accordingly, we attempt to investigate Bayes factor consistency in the par-
tially linear regression based on the general theorems, Theorem 1 and Theorem
2 which we established in the previous section. Specifically, we adapt assump-
tions A1 and A2 of Theorem 1 and assumptions B1 and B2 of Theorem 2 to
the partially linear regression models, and provide sufficient conditions to ensure
consistency of the Bayes factor.
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For this purpose, we consider the following partially linear regression model,

yi = α + βtdi + f(xi) + σǫi, ǫi
i.i.d.∼ N (0, 1), (3.1)

where the mean function of the regression model in (3.1) has two parts: a
p-dimensional parametric part with βtdi, {di}n

i=1 ∈ [−1, 1]p and a nonpara-
metric part with an unknown function f(xi), {xi}n

i=1 ∈ [0, 1]q in the infinite
dimensional parameter space, with p, q ≥ 1. We consider here the case of ran-
dom design, i.e. (di, xi) ∼ µ independently, with µ a probability measure on
[−1, 1]p × [0, 1]q, we assume that E[d] = 0 under this measure and that

ˆ

ddtdµp(d) > 0,

where the latter inequality means that the covariance matrix of d is positive
definite.

To begin with, we introduce additional notations and assumptions necessary
for the technical details in the remainder of the paper. For all function g ∈
L2([0, 1]q), we denote ||g|| =

(

´ 1

0
g2(x)dx

)1/2

, and gn = (g(x1), . . . , g(xn))t.

Also for all n-dimensional vector ηn = (η1, . . . , ηn)t ∈ R
n, we denote ||ηn||2n =

n−1
∑n

i=1 η2
i . Let Z be the matrix whose i-th row is given by Zi = (1, dt

i),
i = 1, ..., n. Let γ0 ∈ R

p+1 and f0 ∈ L2([0, 1]q) be the true values of unknown
parameters in (3.1).

Bayesian inference for the partially linear regression model in (3.1) begins
with the specification of prior distributions for α ∈ R, β ∈ R

p, f(·) on a given
class of measurable functions and σ ∈ R

+. Based on the model structure in (3.1)
with suitable prior distributions for unknown parameters, we build the posterior
distribution and estimate the regression function ηα,β,f (d, x) = α + βtd + f(x).
After the model estimation, we perform the Bayesian model checking procedure
and see the adequacy of the model structure we assumed. Specifically, under
the partially linear regression model in (3.1), we would like to choose between a
parametric component and its semiparametric counter part, M0 and M1, given
by

M0 : yi = α + βtdi + σǫi, vs. M1 : yi = α + βtdi + f(xi) + σǫi, (3.2)

and model selection is made by computing the Bayes factor in (2.1),

B01 =

´

Θ
pn

θ (yn)dπ0(θ)
´

Λ
pn

λ(yn)dπ1(λ)
,

where θ = (γ, σ), γ = (α, β) and λ = (γ, f, σ). This is equivalent to testing

H0 : inf
γ∈Rp+1

ˆ

[0,1]p+q

‖(1, dt)γ − f(x)‖2dµ(d, x) = 0 vs

H1 : inf
γ∈Rp+1

ˆ

[0,1]p+q

‖(1, dt)γ − f(x)‖2dµ(d, x) > 0
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If d and x are independent under µ then this is equivalent to testing

H0 : f = constant vs H1 : f 6= constant

For each f ∈ L2[0, 1]q, we write

H(f) = inf
γ∈Rp+1

ˆ

[0,1]p+q

‖(1, dt)γ − f(x)‖2dµ(d, x)

H(f) acts as a distance to the null hypothesis.
We consider the following general families of prior distributions under M0

and M1 :

• Prior distribution π0 on M0: The prior π0 on the parametric model is
assumed to be absolutely continuous with respect to the Lebesgue measure
with positive, continuous and bounded density on R

p+1 × R
+.

• Prior distribution π1 on M1: The prior π1 on λ is assumed to be

dπ1(λ) = πp(γ, σ)dπf (f)dγdσ,

with πp(γ, σ) continuous and positive on R
p+1 ×R

+ and πf is assumed to
have support in L2([0, 1]q).

We assume the following condition on π0 :

Condition (P0) (Parametric prior π0): for all ǫ > 0 there exists aǫ > 0
and Nǫ such that ∀n ≥ Nǫ,

π0

[

e−aǫn ≤ σ ≤ eeaǫn

; ‖γ‖p+1 ≤ eaǫn
]

≥ 1 − eǫn

This is a very weak assumption on the prior π0. In particular if σ follows a
either a Gamma(a, b) with a, b > 0, or an inverse Gamma(a, b) or a truncated
Gaussian as in Gelman (2006) and if the prior on α and β has at least polynomial
tails then condition (P0) is satisfied.

We first study the consistency of the Bayes factor under the alternative
hypothesis.

3.1 Consistency under M1

Condition (P0) and basic assumptions on π0 and π1 above are sufficient to
ensure the following consistency result under M1:

Theorem 3. Consider the above framework with πp and π0 satisfying Condi-
tion (P0), then for all L > 0 and all all functional classes C ⊂ {(γ, σ, f) ∈
R

p+1 × R
+ × L2([0, 1]q);α2 + ‖β‖2

p + ‖f‖2 ≤ L} such that there exists ǫn ↓ 0,
with nǫ2n → +∞, for which

inf
f0∈C

π (‖f − f0‖2 ≤ ǫn) ≥ e−cnǫ2n (3.3)
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for some c > 0, we have for all ǫ > 0 there exists δ > 0 such that

sup
f0∈C:H(f0)>ǫ

P0

[

B01e
δn > ǫ

]

= o(1).

Before we prove Theorem 3, we consider the following Lemma which will be
useful for the proof of Theorem 3.

Lemma 2. There exist 0 < c1 ≤ C1 < +∞ such that

µ
[

c1n ≤ ‖ZtZ‖ ≤ C1n
]

= 1 + o(1) (3.4)

We now prove Theorem 3.

Proof. Let ǫ > 0 be fixed and K be a compact subset of R
p+1 × R

+ and define
Λ0 = {(α, β, σ, f); (α, β, σ) ∈ K, f ∈ C ∩ {H(f) > ǫ}}. To prove Theorem 3 we
verify assumptions A1 and A2. We write λ = (α, β, σ, f). Under the Gaussian
noise assumption in (3.1), it follows that

KL(pn
λ0

, pn
λ) = Epn

λ0

(

log pn
λ0

log pn
λ

)

=
n

2

(

σ2
0

σ2
− 1 − log(σ2

0/σ2)

)

+
||ηn − ηn

0 ||2n
2σ2

,

V (pn
λ0

, pn
λ) = Varpn

λ0

(

log pn
λ0

log pn
λ

)

= n

(

σ2
0

σ2
− 1

)2

+
σ4

0

σ4
||ηn − ηn

0 ||2n,

(3.5)

where ηn = (α + βtd1 + f(x1), . . . , α + βtdn + f(xn))t, and ηn
0 = (α0 + βt

0d1 +
f0(x1), . . . , α + βtdn + f0(xn))t.

Since ||ηn − ηn
0 ||2n ≤ 2

[

||fn − fn
0 ||2n + (γ − γ0)

tZtZ(γ − γ0)
]

, we have using
Lemma 2, on Z, that if

||γ − γ0||2p+1 ≤ ǫ2n, ||fn − fn
0 ||2n ≤ nǫ2n, |σ − σ0| ≤ ǫn,

then there exists τ > 0 such that KL(pn
λ0

, pn
λ) ≤ τnǫ2n and V (φn

λ0
, φn

λ) ≤ τnǫ2n.
Then, similarly to Lemma 1,

Pn
λ0

[

Jλ0

1 <
e−2τnǫ2nπ1

(

{KL(pn
λ0

, pn
λ) ≤ τnǫ2n;V (pn

λ0
, pn

λ) ≤ τnǫ2n}
)

2

]

≤ 2τ

nǫ2n

so that under assumption (3.3),

sup
λ0∈Λ0

Pn
λ0

[

Jλ0

1 <
Ce−(c+2)nǫ2n

2

]

≤ 2

nǫ2n

and assumption A1 is satisfied. We now consider assumption A2. By definition
of Λ0, A2-1 is satisfied with dn defined through the functional H(λ). However
the metric which is used to construct tests in regression models is often the
average of the squares of the Hellinger distances for the n observations given by

d2
n(pn

λ1
, pn

λ2
) =

1

n

n
∑

i=1

ˆ

(

√

φλ1
(yi|wi) −

√

φλ2
(yi|wi)

)2

dµ,

10



where φλ(y|w) is the Gaussian density of y given w = (d, x) with mean η(d, x) =
α + βtd + f(x) and variance σ2. Note that obvious calculations lead to

d2
n(pn

λ1
, pn

λ2
) = 2 − 2

(

1 − (σ1 − σ2)
2

σ2
1 + σ2

2

)1/2
1

n

n
∑

i=1

exp

(

− (ηi1 − ηi2)
2

4(σ2
1 + σ2

2)

)

, (3.6)

where ηij = αj + βt
jdi + fj(xi), i = 1, . . . , n and j = 1, 2. We thus have

d2
n(pn

λ1
, pn

λ2
) ≥ 2 − 2

(

1 − (σ1 − σ2)
2

σ2
1 + σ2

2

)1/2

exp

(

− ||ηn
1 − ηn

2 ||2n
4n(σ2

1 + σ2
2)

)

≤ 2 − 2

(

1 − (σ1 − σ2)
2

σ2
1 + σ2

2

)1/2(

1 − ||ηn
1 − ηn

2 ||2n
4n(σ2

1 + σ2
2)

)

, (3.7)

where ηn
j = (η1j , . . . , ηnj)

t, j = 1, 2. Let λ0 ∈ Λ satisfy H(λ0) > ǫ, γ∗
n =

argminγ ||Z(γ − γ0) − fn
0 ||2n and γ∗ = argminα,β

´

d,x
(α − α0 − (β − β0)d −

f0(x))2dµ(d, x). We can represent

γ∗
n = (ZtZ)−1Ztfn

0 = V −1
d

ˆ

(1, dt)tf0(x)dµ(d, x) + op(1) = γ∗ + op(1),

where Vd is the (p + 1)× (p + 1) symmetric matrix whose components are given
by Vd(1, 1) = 1, Vd(1, j) = 0 for j = 2, . . . , p + 1 and Vd(i, j) = E(di−1dj−1) for
i, j = 2, . . . , p + 1.

Let ǫ > 0 and λ0 ∈ Λ0 = C ∩ {H(λ) > ǫ}, then

Pn
λ0

[

1

n
||Zγ∗

n − fn
0 ||2n < ǫ/2

]

= Pn
λ0

[

1

n
||Zγ∗ − fn

0 ||2n < ǫ/3

]

+ Pn
λ0

[

1

n
||Z · (γ∗ − γ∗

n)||2n < ǫ2
]

= Pn
λ0

[

1

n
||Zγ∗ − fn

0 ||2n < ǫ/3

]

+ Pn
λ0

[

1

n
||γ∗ − γ∗

n||2n < Cǫ2
]

= Pn
λ0

[
∣

∣

∣

∣

1

n
||Zγ∗ − fn

0 ||2n − H(λ0)

∣

∣

∣

∣

> 2ǫ/3

]

+ o(1) = o(1)

(3.8)

Uniformly over Λ0. Hence assumption A2-1 is satisfed with Pn
λ0

probability
going to 1, uniformly in λ0 ∈ Λ0.

Let ǫ > 0 and consider aǫ > 0 defined by condition (P1) and

Θn = {(α, β, σ); |α| ≤ eaǫn, ‖β‖ ≤ eaǫn, e−aǫn ≤ σ ≤ eeaǫ}

this set satisfies assumption A2-2. We now verify assumption A2-3, using
results in Birgé (1983), Le Cam (1986), or Lemma 2 of Ghosal and van der
Vaart (2007). It follows that there exists a sequence of tests φn

1 such that for
all λ0 ∈ Λ0 and all θ1 ∈ Θ,

En
λ0

[φn
1 ] ≤ e−nd2

n(λ0,θ1)/2

sup
dn(θ1,θ)≤dn(θ1,λ0)/18

En
θ [1 − φn

1 ] ≤ e−nd2
n(λ0,θ1)/2,

11



where dn is the average Hellinger entropy. Then, combining (3.7) with (3.8) we
have for n large enough infα,β ||ηn

1 − ηn
0 ||2n ≥ ǫn/2 and if |σ1 − σ0| ≤ 2σ0 then

there exists a constant a > 0 such that d2
n(λ0, θ1) > a, with Pn

λ0
probability

going to 1 If |σ1 − σ0| > 2σ0 then direct computations imply that d2
n(λ0, θ1) ≥

(
√

8 −
√

7)/
√

2 and choosing a ≤ (
√

8 −
√

7)/
√

2 we have that d2
n(λ0, θ1) > a.

This leads to

En
λ0

[φn
1 ] ≤ e−na2/2, sup

dn(θ1,θ)≤a/18

En
θ [1 − φn

1 ] ≤ e−na2/2, (3.9)

Let t > 0 and let Nn(t, Θn, d2
n) be the t covering number of Θn in dn norm. Then,

the second inequality of (3.7) implies that for all θj = (αj , βj , σj) ∈ Θn and
θ = (α, β, σ) ∈ Θn, if |α − αj | ≤ τσj , |β − βj | ≤ τσj , ||ηn − ηn

j ||2 ≤ naσ2
j /(18)2,

and |σj − σ|2 ≤ aσ2
j /[4(18)2], by choosing τ small enough,

d2
n(pn

θ , pn
θj

) ≤ 2 − 2

(

1 − (σ − σj)
2

σ2 + σ2
j

)1/2(

1 −
||ηn − ηn

j ||2n
4n(σ2 + σ2

j )

)

,

so that d2
n(pn

θ , pn
θj

) ≤ a/(18)2. For each subinterval (σj , σj+1) with σj =

e−aǫn(1 +
√

aǫ/36)j , j = 0....Jn where Jn = ⌊36[exp(aǫn) + aǫn]/
√

aǫ⌋ + 1.
we bound the number of intervals in α, β satisfying the above constraint by

Nn,j ≤ 4e2aǫnτ−2σ−2
j ∨ 1

Moreover, when let j be such that σj ≥ 2eaǫn/τ , uniformly in σ ∈ (σj , σj+1)
and α2 + ||β||2, (α′)2 + ||β′||2 ≤ e2aǫn, with θ = (α, β, σj) and θ′ = (α′, β′, σ),
d2

n(pn
θ , pn

θ′) ≤ a/(18)2, so that the global covering number of Θn is bounded by

Nn(a/(18)2,Θn, d2
n) ≤ e4aǫn

τ2





∞
∑

j=0

(1 +
√

aǫ/36)−2j + Jn



 ≤ ean/4, (3.10)

if the constant aǫ in the definition of Θn is small enough. Finally, combining
(3.10) with (3.9), we prove assumption A2-3 and Theorem 3 is proved.

We now turn to studying the consistency of the Bayes factor under the null
hypothesis.

3.2 Under M0

Suppose that the true model is M0. That is, the true regression model is
assumed to be the parametric linear model, y = α0+βt

0d+σ0ǫi, θ0 = (α0, β0, σ0),
pn

θ0
∈ M0. Thus, assuming that H(f) = 0, the parametric vector ηn

0 has
components equal to η0i = α0 + βt

0di, and we verify Assumptions B1-B2.
Verification of assumption B1 is relatively straightforward using (3.5), since if

|σ − σ0| ≤ n−1/2, |α − α0| ≤ n−1/2, ‖β − β0‖p ≤ n−1/2, θ = (α, β, σ),

12



then KL(pn
θ0

, pn
θ )+V (pn

θ0
, pn

θ ) ≤ C for some positive constant C. The conditions
on the prior density π0 implies that assumption B1 is verified with k0 = p + 2.
In order to verify assumption B2 we need to verify that the semiparametric
posterior probability π1(.|yn) of the ǫn-shrinkage ball of pn

θ0
based on dn metric

converges to 1, while the semiparametric prior π1 assigns negligible probability
on the ǫn-shrinkage ball. Define

Aun
= {λ ∈ Λ : dn(pn

λ, pn
θ0

) < un}.

We now prove that there exists un going to 0, such that

π1 [Aun
|yn] = 1 + op(1), π1 [Aun

] = o(n−(p+2)/2).

Recall that

d2
n(pn

λ, pn
θ0

) = 2 − 2

(

1 − (σ − σ0)
2

σ2 + σ2
0

)1/2
1

n

n
∑

i=1

exp

(

− (ηi − ηi0)
2

4(σ2 + σ2
0)

)

,

where ηi = α + βtdi + f(xi), and ηi0 = α0 + βt
0di, and that d2

n(pn
λ, pn

θ0
) ≤ u2

n

implies that (σ − σ0)
2 ≤ Cu2

n for some positive C, regardless of η. Obviously
B2-1 and B2-2 depends on the chosen prior on f . We consider the following
assumptions on πf and πp :

Condition (P1) (Semiparametric prior π1) :

• (i) There exists un ↓ 0, C1, c1, τ > 0 and Fn,1 ⊂ L2([0, 1]q) s.t.

πf (‖fn‖n ≤ un) ≥ C1e
−c1nu2

n , πf (Fc
n,1) = o(e−(2+c1)nu2

nup+1
n ),

and if F̄n,1 = {fn = (f(x1), . . . , f(xn))t, f ∈ Fn,1}

µ
[

log N(un, F̄n,1, ‖.‖n) > τnu2
n

]

= o(1)

• (ii) For all a1, b > 0 there exists a2 > 0 such that for all n large enough,

πp

[

a1un ≤ σ ≤ eea2nu2
n
; ‖γ‖ ≤ ea2nu2

n

]

≥ 1 − ebnu2
n (3.11)

Moreover for all ǫ > 0, there exists C > 0 such that if wn =
√

log(nu2
n),

πf

[

‖f‖∞ > C
√

nun/wn

]

+ πf [H(f) ≤ Cu2
n] < ǫ

(

1

un
√

n

)p+2

, (3.12)

• (iii) For all ǫ > 0, there exists C > 0 such that

µ

[

πf (fn − Pzf
n‖n ≤ Cun) > ǫ

(

1

un
√

n

)p+2
]

= o(1) (3.13)
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We then have the following result :

Theorem 4. Under condition (P1), (i) and either (ii) or (iii), the Bayes factor
B01 is uniformly increasing to infinity under Pθ0

uniformly over any compact
subset of Θ.

The proof is postponed to the Appendix (Section 5).

Remark 1. Set z(d) = (1, dt) and < z(d), f >=
´

[−1,1]p×[0,1]q
(1, dt)f(x)dµ(d, x),

then we can write H(f) = ‖f − (1, dt)V −1
d < z(d), f > ‖2, and note that if d

and x are independent under µ, writing f̃ = f −
´

[0,1]q
f(x)dµ(x) we obtain that

H(f) = ‖f̃‖2
2. Here, f̃(x) is a centered random quantity of f(x), and H(f) = 0

is equivalent to f̃(x) = 0, i.e. f(x) = constant. Therefore, H(f) can be regarded
as a distance to the null hypothesis as mentioned before.

Remark 2. Note that condition (ii) implies condition (iii) (see Section 5, Ap-
pendix). However, it is quite possible that depending on the families of priors
considered, (iii) might be easier to prove than (ii). We consider two examples
with Gaussian process priors or hierarchical Gaussian process priors on f in the
following section, in which condition (ii) is easier to prove.

3.3 The case of Gaussian process priors

In this section we assume that condition (P0) is satisfied by the paramet-
ric prior π0 under model M0 and that condition (P1) is satisfied by the
parametric prior πp under model M1.

In this section we consider two specific examples of the nonparametric prior,
πf for studying the validity of condition (3.3) of Theorem 3 and condition
(P1) of Theorem 4. For this purpose, we deal with a family of Gaussian process
priors for the nonparametric component f which is a common family of priors
for such models. Throughout this section, we assume that condition (P0)
is satisfied by the parametric prior π0 under model M0 and that equation 3.11
in condition (P1) is satisfied by the parametric prior πp under model M1.
Consequently, we focus on the nonparametric prior, πf and investigate the Bayes
factor consistency. To be specific, we assume that f is distributed as a zero-mean
Gaussian process prior on B = C([0, 1]) the Banach space of continuous functions
over [0, 1] associate with ‖.‖∞, under πf , with reproducing kernel Hilber space
H (RKHS) and concentration function φf defined by : for all f ∈ B,

φf (ǫ) = inf
h∈H:‖h−f0‖∞<ǫ

‖h‖2
H
− log πf [‖f‖∞ < ǫ],

see van der Vaart and van Zanten (2008) for a more complete discussion of the
notion of RKHS and concentration function. Recall that the support S of πf is
the closure of H ∈ B. Hence, for all f0 ∈ S, there exists ǫn going to 0 such that
φf0

(ǫn) ≤ nǫ2n and using Theorem 2.4 of van der Vaart and van Zanten (2008),

πf [‖f − f0‖∞ ≤ ǫn] ≥ e−cnǫ2n

14



for some c > 0 and condition (3.3) is satisfied. Thus, Theorem 3 is valid and
the Bayes factor is consistent under M1.

To verify the consistency under model M0 we study the validity of condi-
tion (P1) (i) and (ii) equation (3.12) and apply Theorem 4. To do so we need
to consider some assumptions on the Gaussian process prior. First note that
the constant function equal to 0 is in the support of all zero-mean Gaussian
process, so that for all zero mean Gaussian process on B, there exists un such
that

ϕ0(un) = − log πf (‖f‖∞ ≤ un) ≤ nu2
n.

Thus using Theorem 2.4 of van der Vaart and van Zanten (2008) condition
(P1) (i) of Theorem 4 is verified. Next, we check condition (P1) (ii) of
Theorem 4 as follows.

Denote mj(x) = E[dj |X = x], Σ to be the expectation of the conditional co-
variance matrix of d given X, β(f) = (β1(f), . . . , βp(f)) with βj(f) =< mj , f >

and assume that Σ is positive definite. Denote also f̃ = f −
´ 1

0
f(x)dµ(x).

A Markov inequality implies that for all s > p + 2

πf

[

‖f‖∞ >
√

nun/wn

]

≤ E[‖f‖s
∞]ws

n

(
√

nun)s
= o((

√
nun)−(p+2)).

Thus equation (3.12) of condition (P1) (ii) is satisfied if

πf

[

H(f) ≤ Cu2
n

]

≤= o((
√

nun)−(p+2)), H(f) =

ˆ

(f(x)−(1, dt)V −1
d < z(d), f >)2dx.

Without loss of generality we can assume that Vd is the identity matrix, then

H(f) =

ˆ

(f̃ −
p
∑

j=1

mjβj(f))2(x)dµ(x) + β(f)tΣβ(f)

≥
ˆ

(f̃ −
p
∑

j=1

mjβj(f))2(x)dµ(x) + c0‖β(f)‖2

for some positive c0. Hence H(f) ≤ Cu2
n implies that ‖β(f)‖2 ≤ Cc−1

0 u2
n . u2

n,
which in turns implies that ‖f̃‖2 . un and that

πf [H(f) ≤ Cun] ≤ πf

[

‖f̃‖2 ≤ C ′un

]

for some positive C ′.
Therefore, if πf is the distribution of a zero mean Gaussian process on

C([0, 1]), (3.12) condition (P1) is verified ifand only if

πf

[

‖f̃‖2 ≤ C ′un

]

= o(un

√
n)−(p+2).

We now illustrate on how to verify such a condition on two types of Gaussian (or
conditionally) Gaussian priors. Note first that the above computations remain
valid for conditionnally Gaussian process priors.
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• Purely Gaussian prior : f can be represented as an infinite series

f =
∑

k

σkZkξk, σk > 0 Zk ∼ N (0, 1), i.i.d, (3.14)

where (ξk, k ≥ 0) is an orthonormal basis of L2([0, 1]), and each ξk is
bounded. If σk ∝ k−τ−1/2, following van der Vaart and van Zanten (2008)
or Castillo (2008) it can be proved that un . n−τ/(2τ+1) log n. To simplify
the presentation we assume that 1 = ξ0.

• Hierarchical Gaussian prior, that is f can be represented as a truncated
Gaussian with random truncation :

f =

K
∑

k=0

σkZkξk, σk > 0 Zk ∼ N (0, 1), i.i.d (3.15)

and K is random and is distributed according to some probability on N
∗,

which we assume to satisfy

e−a1kL(k) . P (K = k) . e−a2kL(k)

where L(k) is either equal to 1 (as in the Hypergeometric distribution ) or
log k (as in the Poisson distribution). We also assume that σk ∝ k−τ−1/2.

In the case of the Purely Gaussian prior distribution, then f̃ =
∑∞

k=1 σkZkξk

πf

[

‖f̃‖2 ≤ C ′un

]

= P

[

∞
∑

k=1

σ2
kZ2

k ≤ Cu2
n

]

≤ e−Anu2
n = o

(

(
√

nun)−(p+2)
)

.

for some A > 0.
In the case of the hierarchical Gaussian prior, then following Arbel (2012) it

can be proved that un .
√

log n/n and

πf

[

‖f̃‖2 ≤ C ′un

]

=
∞
∑

k=1

P [K = κ]Pr

[

∞
∑

k=κ

σ2
kZ2

k ≤ Cu2
n

]

. un = o((
√

nun)p+2).

Hence, the Bayes factor is consistent under M0 when the Gaussian process prior
πf is constructed with both Gaussian-type priors in (3.14) and (3.15).

4 Discussion

In this paper, we investigated the consistency of the Bayes factor for indepen-
dent but non identically distributed observations. In particular, we considered a
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uniform version of consistency of the Bayes factor and discussed general results
on the Bayes factor consistency. Then we specialized our results to the model
selection problem in the context of partially linear regression model, in which
the regression function is assumed to be the additive form of the linear com-
ponent and the nonparametric component. Specifically, sufficient conditions to
ensure Bayes factor consistency were given for choosing between the paramet-
ric model and the semiparametric alternative in the partially linear regression
model. These results extend the work of McVinish et al. (2009) to the non-
IID observations and complent their work in the context of Bayesian lack of fit
testing for partially linear models. The main challenge was to deal with the
prior probabilities when the true model is a parametric regression model and
in particular to lower bound prior probability mass of neighbourhoods of the
true model. Here two commonly used family of Gaussian type priors for the
nonparametric component in the partially linear model were shown to satisfy
the required conditions and thus illustrated validity of sufficient conditions we
presented. Our computations generalize very easily to other families of priors
up to the condition

πf

[

‖f̃‖2 ≤ C ′un

]

= o(un

√
n)−(p+2),

which can be checked on a case by case basis. The computations we proposed
for the priors 3.15 should be relatively easy to extend to other families of priors
based basis expansions such as orthogonal priors with wavelets or Legendre
polynomials. The investigation of this inequality nonorthogonal priors with
spline bases or mixture priors discussed in de Jonge and van Zanten (2010)
would be of interest.
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5 Appendix : Proof of Theorem 4

First we show that assumption (i) implies that π1 [AMun
|yn] = 1 + op(1), for

some M > 0. Using (3.5), there exists M0 such that if λ = (σ, γ, f) satisfies

‖fn‖n ≤ σ0un/2, (γ − γ0)
tZtZ(γ − γ0) ≤ unσ0/2 0 < σ − σ0 < ǫun

for some ǫ > 0, then

λ ∈ Sn = {λ : KL(pn
λ0

, pn
λ) ≤ nu2

n, V (pn
λ0

, pn
λ) ≤ M0nu2

n}.

Assumption (i) implies that with probability going to 1, π1(Sn) & C1e
−c1nu2

nup+1
n ,

so that
Jλ0

1 (yn) & e−(2+c1)nu2
nup+1

n (5.1)
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with probability going to 1. Moreover define

Fn(a1, a2) = {(γ, σ, f); ‖γ‖ ≤ ea2nu2
n , a1un ≤ σ ≤ eea2nu2

n
, f ∈ Fn,1}

then under (i), we have that for all a > 0 there exists c0 > 0 with π(Fc
n(a1, a2)) =

o(e−(2+c1)nu2
nup+1

n ). Let ǫ0 > 0 and define Sn,1 = {λ; d2
n(pn

λ, pn
θ0

) ≤ ǫ20} and
Sn,2 = {λ; d2

n(pn
λ, pn

θ0
) > ǫ20}. Then λ ∈ Sn,1 implies that there exists C > 0

such that

|σ − σ0| ≤ σ0/2, and ||ηn − ηn
0 ||n ≤ Cdn(pn

λ, pn
θ0

).

Thus if λ, λ′ ∈ Sn,1, with λ = (σ, γ, f) and λ′ = (σ′, γ′, f ′) and

|σ − σ′| ≤ un, ||γ − γ′|| ≤ un ||fn − f ′n||n ≤ un

then there exists ρ > 0 such that dn(pn
λ, pn

λ′) ≤ ρun. Therefore, it follows that
there exists ρ such that

log N (ρun,Fn ∩ Sn,1, dn) . nu2
n + log N (un,Fn,1, ||.||n)

. nu2
n,

with probability going to 1. Next, suppose that λ ∈ Sn,2 and σ ∈ (σ0/2, 3σ0/2).
Then using the same computations as before,

log N (ǫ0/18,Fn ∩ Sn,2 ∩ {σ ∈ (σ0/2, 3σ0/2)}, dn)

. nu2
n + log N (un,Fn,1, ||.||n) = o(n)

Set σn = a1un and σ̄n = eea2nu2
n . We consider separately the cases σ ∈

(σn, σ0/2) or σ ∈ (3σ0/2, σ̄n). In the former case, we define σj = σn(1 + a1)
j

with a1 > 0 chosen as small as needed be, and j = 1, ..., Jn,1 where Jn,1 =
⌊a−1

1 log(σ0/(2σn))⌋ + 1. For each j ≤ Jn,1, for all σ, σ′ ∈ (σj , σj+1), all γ, γ′

such that ||γ − γ′|| ≤ ρσj and all f, f ′ such that ||fn − (f ′)n||n ≤ a−1
1 σj with

ρ small enough and a1 large enough, dn(pn
λ, pn

λ′) ≤ ǫ0/18. Thus, based on the
similar derivation of covering number to the case of (3.10), we have that

log N (ǫ0/18,Fn ∩ {σ ∈ (σn, σ0/2)}, dn) = o(n).

For the latter, we have the covering number in the same manner as before,

log N (ǫ0/36,Fn ∩ {σ ∈ (3σ0/2, σ̄n}, dn) = o(n).

Finally this implies that π[AMun
|yn] = 1 + opn

θ0

(1), uniformly over all compact

K ⊂ R
p+1 × R

+∗, for some M > 0.
Now we bound from above π1 [AMun

]. We first note that λ ∈ AMun
implies

that there exist τ1, τ2 > 0 such that |σ − σ0| ≤ τ1un and ‖ηn − ηn
0 ‖2

n ≤ τ2u
2
n.

Thus, it follows that

π1(AMun
) . π1

[

|σ − σ0| ≤ τ1un} ∩ {||ηn − ηn
0 ||2n ≤ τ2u

2
n}
]

. unπ1

[

||ηn − ηn
0 ||2n ≤ τ2nu2

n

]

.
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Let Pz be the projection operator from R
n onto the vector space spanned by Z,

we then obtain

||ηn − ηn
0 ||2n = ||Z(γ − γ0) − Pzf

n||2n + ||fn − Pzf
n||2n

& ||γ − γ0 − (ZtZ)−1Ztfn||2 + ||fn − Pzf
n||2n. (5.2)

So that

π1

[

||ηn − ηn
0 ||2n ≤ τ2u

2
n

]

. up+1
n πf

[

||fn − Pzf
n||2n ≤ τ3u

2
n

]

for some τ3 > 0.
Thus, to prove that for all ǫ > 0, π1 [AMun

] < ǫn−(p+2)/2 with probability
going to 1, it is enough to prove that

µ
(

πf

[

||fn − Pzf
n||2n ≤ τ3u

2
n

]

> ǫ
(

nu2
n

)−(p+2)/2
)

= o(1)

Condition (iii) implies the above result which terminates the proof. We now
prove that condition (ii) implies condition (iii).

Condition (ii) (3.12) implies that we can restrict ourselves to the set {||fn −
Pzf

n||2n ≤ τ3u
2
n} ∩ {f ; ‖f‖∞ ≤ C

√
nun} ∩ {f ; ‖f‖2 ≤ C

√
nun/wn} and for the

sake of simplicity we still call this set An. Moreover, let Ωn,1(B) = {Z; ||ZtZ/n−
Vd|| ≤ B/

√
n}, then for all ǫ > 0 there exists B > 0 such that µ [Ωn,1(B)c] ≤ ǫ.

Since

||fn − Pzf
n||2n ≥ (||fn − n−1ZV −1

d Ztfn||n − ||(Pz − n−1ZV −1
d Zt)fn||n)2. (5.3)

and when Z ∈ Ωn,1(B),

||(Pz − n−1ZV −1
z Zt)fn||2n . n−2||Z[(ZtZ)/n − Vd]Z

tfn||2n

≤ B2

n

(∑n
i=1 ||Zi||2

n

)2

||fn||2n

.
||fn||2n

n
.

‖f‖2
∞

n
= o(u2

n)

if f ∈ An. Hence, if Z ∈ Ωn,1(B), there exists C > 0 such that for all f ∈ An,
||fn − n−1ZV −1

d Ztfn||2n ≤ Cu2
n. We also have for all A > 0, using a Markov

inequality,

µ

[

πf

(

An ∩
{

∥

∥

∥

∥

ZV −1
d

(

Ztfn

n
− < z(d), f >

)
∥

∥

∥

∥

2

n

> Au2
n

})

> ǫ(
√

nun)−(p+2)

]

≤ (
√

nun)(p+2)

ǫ

ˆ

An

µ

[

∥

∥

∥

∥

ZV −1
d

(

Ztfn

n
− < z(d), f >

)
∥

∥

∥

∥

2

n

> Au2
n

]

dπf (f)

Note that for Z ∈ Ωn(B),

∥

∥

∥

∥

ZV −1
d

(

Ztfn

n
− < z(d), f >

)∥

∥

∥

∥

2

n

.

p+1
∑

j=1

(

n
∑

i=1

Zijf(xi)

n
− < zj(d), f >

)2
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where zj(d) = 1 if j = 1 and zj(d) = dj−1 if j > 1. Set σ2
j,f =

´

d2
j−1f(x)2dµ(dj , x)

if j ≥ 2 and σ2
1,f =

´

f(x)2dµ(x), then we can write

µ

[

n
∑

i=1

(Zijf(xi)− < zj(d), f >) >
√

Anun

]

= µ

[

n
∑

i=1

(Zijf(xi)− < zj(d), f >)√
nσj,f

>

√
Anun

σj,f

]

.

Since for all f ∈ An, Zijf(xi) is bounded by ‖f‖∞, Kolmogorov’s exponential
inequality see Shorack and A. (1986) p 855, implies that

µ

[

n
∑

i=1

(Zijf(xi)− < zj(d), f >) >
√

Anun

]

≤ e
−

Anu2
n

4‖f‖2 if σ2
j,f ≥

√
Aun‖f‖∞

≤ e−
√

Anun
4‖f‖∞ if σ2

j,f <
√

Aun‖f‖∞

In both cases the right hand side is 0(e−Aw2
n/4C) = o((

√
nun)−(p+2)) on An by

choosing A large enough. We finally obtain that there exists c > 0, such that

πf [An] ≤ πf

[

‖fn − ZV −1
d < z(d), f > ‖2

n ≤ cu2
n

]

+ op((
√

nun)−(p+2)/2).

Consider f ∈ An with H(f) > 2cu2
n, then

µ
[

πf

[

{‖fn − ZV −1
d < z(d), f > ‖2

n ≤ cu2
n} ∩ {H(f) > 2cu2

n}
]

> ǫ(
√

nun)−(p+2)
]

≤ (
√

nun)(p+2)

ǫ

ˆ

An

µ
(

{−‖fn − ZV −1
d < z(d), f > ‖2

n + H(f) > (H(f)/2 + cu2
n)/2}

)

dπf (f)

Using Kolmogorov inequality, if H(f) ≥ 2cu2
n, and since (f(xi) − ZiV

−1
d <

z(d), f >)2 ≤ c0‖f‖2
∞, for some positive c0,

µ
(

{−‖fn − ZV −1
d < z(d), f > ‖2

n + H(f) > H(f)/4}
)

≤ exp

(

−cCnH(f)2

w2(f)

)

if H(f) ≤ 16w2(f)

c0‖f‖2
∞

≤ exp

(

−cCnH(f)2

‖f‖2
∞

)

if H(f) >
16w2(f)

‖f‖2
∞

for some positive C, where w2(f) =
´

(f(x) − z(d)V −1
d < z(d), f >)4dµ(d, x) −

H(f)2. In both cases the right hand term is bounded by e−cCw2
n = o((

√
nun)(p+2))

by choosing c large enough.
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