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We investigate the asymptotic behavior of the Bayes factor for regression problems in which observations are not required to be independent and identically distributed and provide general results about consistency of the Bayes factor. Then we specialize our results to the model selection problem in the context of partially linear regression model in which the regression function is assumed to be the additive form of the linear component and the nonparametric component. Specifically, sufficient conditions to ensure Bayes factor consistency are given for choosing between the parametric model and the semiparametric alternative in the partially linear regression model.

Introduction

Suppose we have two candidate models M 0 and M 1 for y n ∈ Y n , a set of n observations from an arbitrary distribution P n which is absolutely continuous with respect to a commone measure µ n on Y n . We also assume two candidate models to have respective parameters and prior distributions, θ, π 0 (θ), λ and π 1 (λ),

M 0 = {p n θ (y n ), θ ∈ Θ, π 0 (θ)}, M 1 = {p n λ (y n ), λ ∈ Λ, π 1 (λ)}, (1.1) 
where p n θ (y n ) and p n λ (y n ) denote the densities of y n with respect to µ n under M 0 and M 1 respectively.

Based on this set of observations, a common Bayesian procedure to measure the evidence in favor of M 0 over M 1 is to assess the Bayes factor [START_REF] Jeffreys | Theory of probability[END_REF], the ratio of the respective marginal densities or prior predictive densities of the data for the two competing models. Given two candidate models M 0 and M 1 , the marginal densities of y n are computed by m 0 (y n ) = p(y n |M 0 ) = ˆp(y n |M 0 , θ)π(θ|M 0 )dθ = ˆpn θ (y n )π 0 (θ)dθ, m 1 (y n ) = p(y n |M 1 ) = ˆp(y n |M 1 , λ)π(λ|M 1 )dλ = ˆpn λ (y n )π 1 (λ)dλ.

Assuming the prior model probabilities Pr(M j ), j = 0, 1 with 1 j=0 P (M j ) = 1, the Bayes factor, i.e. the ratio of posterior odds and prior odds, is equivalent to the ratio of two marginal densities [START_REF] Kass | Bayes factors[END_REF], given by

B 01 = Pr(M 0 |y n ) Pr(M 1 |y n ) Pr(M 0 ) Pr(M 1 ) = p(y n |M 0 ) p(y n |M 1 ) = m 0 (y n ) m 1 (y n ) .
Alternatively, the posterior probability of M 0 is represented by

Pr(M 0 |y n ) = Pr(M 0 ) • B 01 Pr(M 0 ) • B 01 + Pr(M 1 )
.

Note that the large value of B 01 indicates the strong evidence in support of model M 0 [START_REF] Jeffreys | Theory of probability[END_REF] and [START_REF] Kass | Bayes factors[END_REF]). Accordingly, B 01 is expected to converge to infinity as the sample size increases when M 0 is the true model, and this concept can be formulated as,

lim n→∞ B 01 = ∞, equivalently lim n→∞ Pr(M 0 |y n ) = 1, (1.2)
when M 0 is the true model. The convergence in (1.2) denotes in-probability convergence under the true sampling distribution of y n , and that the former is called Bayes factor consistency or consistency of the Bayes factor, and the latter is often called posterior model consistency or posterior consistency for model choice. Note that consistency of Bayesian model selection procedure is the fundamental issue to be secured, whereas the model selection using the classical tools such as C p and AIC generally do not guarantee model selection consistency (e.g. see [START_REF] Berger | The intrinsic Bayes factor for model selection and prediction[END_REF] and [START_REF] Yang | Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation[END_REF]).

Recent results in the Bayes factor consistency include works by Verdinelli and Wasserman (1998), [START_REF] Dass | A note on the consistency of Bayes factors for testing point null versus non-parametric alternatives[END_REF], [START_REF] Ghosal | Nonparametric Bayesian model selection and averaging[END_REF], and [START_REF] Mcvinish | Bayesian goodness of fit testing with mixtures of triangular distributions[END_REF], which focus on the density estimation in the Bayesian goodness of fit testing problems. Their results are based on verifying sufficient conditions related to posterior consistency and posterior convergence rates. In addition, those conditions are mainly designed for the case of independent and identically distributed (i.i.d.) observations, and thus it is expected to generalize them to the case of non i.i.d observations as in the case of regression problems. The consistency of the Bayes model selection in regression problems has been largely studied in Gaussian linear regression models, particularly in the context of variable selection procedures, for example, [START_REF] Liang | Mixtures of g priors for Bayesian variable selection[END_REF][START_REF] Casella | Consistency of Bayesian procedures for variable selection[END_REF], [START_REF] Moreno | Consistency of objective Bayes factors as the model dimension grows[END_REF] and [START_REF] Shang | Consistency of Bayesian linear model selection with a growing number of parameters[END_REF]. On the other hand, a recent work by [START_REF] Choi | A note on the Bayes factor in a semiparametric regression model[END_REF] investigated the Bayes factor consistency in the partially linear regression model with a specific trigonometric representation of the nonparametric component, in which the analytic form of the Bayes factor was directly evaluated for its asymptotic behavior under suitable conditions.

Alternatively, this paper investigates the asymptotic behavior of the Bayes factor for regression problems in which observations are not required to be independent and identically distributed. In particular, we consider a uniform version of consistency of the Bayes factor and discuss general results on the Bayes factor consistency in Section 2. Then we specialize our results to the model selection problem in the context of partially linear regression model, in which the regression function is assumed to be the additive form of the linear component and the nonparametric component. Specifically, sufficient conditions to ensure Bayes factor consistency are given in Section 3 for choosing between the parametric model and the semiparametric alternative in the partially linear regression model. sufficient conditions to ensure Bayes factor consistency are given for the partially linear regression model. Section 4 makes a concluding remark and discusses further extension of the consistency of the Bayes factor based on the general theorem we propose in the paper.

General Theorem

In this section, we give the general theorem to obtain consistency of the Bayes factor where observations are not required to be independent and identically distributed (IID) and in a framework where Θ ⊂ R k for some k ≥ 1, where Λ is typically infinite dimensional. For this purpose, we make use of asymptotic results established in [START_REF] Ghosal | Convergence rates of posterior distributions for non-i.i.d. observations[END_REF] and [START_REF] Mcvinish | Bayesian goodness of fit testing with mixtures of triangular distributions[END_REF] and extend general results of the Bayes factor consistency to the non-IID observations.

Then, the Bayes factor is given by

B 01 = ´Θ p n θ (y n )dπ 0 (θ) ´Λ p n λ (y n )dπ 1 (λ)
.

(2.1) Consistency of the Bayes factor is usually formulated as follows :

lim n→∞ B 01 = ∞, in P n θ0 probability, if p n θ0 ∈ M 0 0, in P n λ0 probability, if p n λ0 ∈ M 1 ,
where P θ0 represents the true probability measure belonging to the null model, P λ0 represents the true probability measure belong to the alternative model. One drawback of the above formulation is that it is pontwise and not uniform. We therefore consider in this paper a uniform version of consistency of the Bayes factor written as : let Λ 0 ⊂ Λ, for all K compact subset of Θ and for all ǫ > 0,

lim n→∞ sup θ0∈K P n θ0 B -1 01 > ǫ = 0 lim n→∞ sup λ0∈Λ0 P n λ0 [B 01 > ǫ] = 0 (2.2)
In the above formulation Λ 0 is to be understood as some functional class whose distance to the null hypothesis is bounded from below. We shall make this notion more precision in Assumptions A1 and A2.

In (2.1) and (2.2), we have typically in mind that Λ is much bigger than Θ, and Θ is often nested to Λ. In such cases, the difficulty comes from the fact that if p n θ0 ∈ M 0 , it can also be approximated by densities in M 1 . Specifically, when p n θ0 ∈ M 0 , the Kullback-Leibler property [START_REF] Walker | On priors with a Kullback-Leibler property[END_REF], a basic condition to be satisfied for posterior consistency and Bayes factor consistency, holds for both prior distributions under M 0 and M 1 . Since the Bayes factor is known to asymptotically support the model with the prior that satisfies the Kullback-Leibler property [START_REF] Walker | On priors with a Kullback-Leibler property[END_REF], it is often the case that the Bayes factor based on prior distributions only with the Kullback-Leiber property may not be enough, and additional conditions are required for consistent model selection between two competitive models. [START_REF] Ghosal | Nonparametric Bayesian model selection and averaging[END_REF][START_REF] Mcvinish | Bayesian goodness of fit testing with mixtures of triangular distributions[END_REF] investigated this issue for IID observations, and we adapt it to non-IID observations.

In this respect, our investigation on Bayes factor consistency begins with the case that the observations y n is actually generated by M 1 . We consider first a set of assumptions to obtain consistency under M 1 in (2.2), i.e. when the true model for y n is assumed to be p n λ0 . For this purpose, we write the Bayes factor B 01 as

B 01 = J λ0 0 (y n ) J λ0 1 (y n ) , (2.3) 
where

J λ0 0 (y n ) = ˆΘ p n θ (y n ) p n λ0 (y n ) dπ 0 (θ), and J λ0 1 (y n ) = ˆΛ p n λ (y n ) p n λ0 (y n ) dπ 1 (λ).
Moreover let d n be a semimetric on Λ ∪ Θ and define

h(λ 0 ) = lim inf n inf θ∈Θ d n (p n λ0 , p n θ ), λ 0 ∈ Λ Assumption A1. Let Λ 0 ⊂ Λ satisfies : For Λ 0 ⊂ Λ, there exists ǫ n converging to 0 such that sup λ0∈Λ0 P n λ0 J λ0 1 (y n ) < e -nǫ 2 n = o(1) Assumption A2. A2-1. inf λ0∈Λ0 h(λ 0 ) > 0 A2-2.
There exists ǫ 0 > 0 such that for all λ 0 ∈ Λ 0 and all ǫ 0 > ǫ > 0, there exists Θ n (λ 0 ) ⊂ Θ, such that

π 0 (Θ n (λ 0 ) c ) ≤ e -2nǫ ,
A2-3. For all ǫ > 0 there exists a > 0 such that for all λ 0 ∈ Λ 0 , there exists a sequence of tests φ n (λ 0 ) satisfying

sup λ0∈Λ0 E n λ0 [φ n (λ 0 )] = o(1), sup λ0∈Λ0 sup θ∈Θn(λ0) E n θ [1 -φ n (λ 0 )] ≤ e -an .
Theorem 1. Suppose that assumptions A1 and A2 hold. Then for all ǫ > 0 there exists δ > 0 such that

sup λ0∈Λ0 P n λ0 B 01 e δn > ǫ = o(1)
That is, the Bayes factor is exponentially decreasing under M 1 (uniformly over Λ 0 ).

Proof. Under A1, J λ0 1 (y n ) ≥ e -nǫ 2 n , with probability going to 1, under P n λ0 , uniformly over Λ 0 .

Let ǫ > 0 and δ > 0, then assumption A2 implies that uniformly over Λ 0

P n λ0 B 01 e δn ≥ ǫ ≤ E n λ0 (φ n (λ 0 ) + E n λ0 (1 -φ n (λ 0 ))1l B01e δn ≥ǫ ≤ E n λ0 (φ n (λ 0 )) + P n λ0 [J λ0 1 (y n ) < e -nǫ 2 n ] + e nǫ 2 n +δn ǫ ˆΘn(λ0) E n θ (1 -φ n (λ 0 ))dπ 0 (θ) + π 0 (Θ n (λ 0 ) c ) ≤ o(1) + e -nǫ/2-na/2 ,
as soon as δ < (ǫ ∧ a)/2.

Note that requiring these uniform assumptions is often not a difficulty in the Bayesian setting, where we typically control the above terms uniformly on balls with a given radius, such as Hölder or Besov balls.

We next consider a set of assumptions to obtain consistency under M 0 in (2.2), i.e. when the true model for y n is assumed to be p n θ0 . We write the Bayes factor B 01 as

B 01 = J θ0 0 (y n ) J θ0 1 (y n ) , (2.4) 
where

J θ0 0 (y n ) = ˆΘ p n θ (y n ) p n θ0 (y n ) dπ 0 (θ), and J θ0 1 (y n ) = ˆΛ p n λ (y n ) p n θ0 (y n ) dπ 1 (λ)
Let KL(f, g) denote the Kullback-Leibler divergence between f and g and V (f, g) = ´f (log f / log g) 2 , and let d n be a semimetric on Λ ∪ Θ.

Assumption B1. For all K ⊂ Θ compact and all θ 0 ∈ K, there exists

k 0 > 0 such that inf θ0∈K n k0/2 π 0 {θ : KL(p n θ0 , p n θ ) ≤ 1, V (p n θ0 , p n θ ) ≤ 1)} ≥ C
for some positive constants C. Assumption B2. For all K ⊂ Θ 0 , for all θ 0 ∈ K, there exists ǫ n > 0 going to 0, with

A ǫn (θ 0 ) = {p λ : d n (p n λ , p n θ0 ) < ǫ n } such that B2-1. sup θ0∈K P n θ0 π 1 A c ǫn (θ 0 )|y n = o(1)
and such that

B2-2. sup θ0∈K π 1 [A ǫn (θ 0 )] = o(n -k0/2 ).
where k 0 is the same positive constant as in Assumption B1.

In other words, the posterior probability of A ǫn from π 1 is converging to 1 in p n θ0 -probability with rate ǫ n , and the prior probability of A ǫn from π 1 has a positive probability but converging to 0. In the above assumptions k 0 and ǫ n depend on θ 0 . Note that the same condition was also discussed in (McVinish et al., 2009, Assumption A3) and a similar but stronger condition was given in (Ghosal et al., 2008, (4.1)) for nonparametric Bayesian density estimation.

Lemma 1. Define S n = {θ : KL(p n θ0 , p n θ ) ≤ 1, V (p n θ0 , p n θ ) ≤ 1}, for some θ 0 ∈ Θ. Then, lim C→∞ sup n P n θ0 J θ0 0 (y n ) < e -C π 0 (S n )/2 = 0.
Proof. The proof is similar to the proof of Theorem 1 in [START_REF] Mcvinish | Bayesian goodness of fit testing with mixtures of triangular distributions[END_REF] for instance, given as follows :

First, note that

J θ0 0 (y n ) ≥ ˆΘ p n θ (y n ) p n θ0 (y n ) 1l Ωn (y n , θ)dπ 0 (θ) ≥ e -C ˆSn 1l Ωn (y n , θ)dπ 0 (θ),
where

Ω n = {(y n , θ) : ℓ n (θ) -ℓ n (θ 0 ) ≥ -C}, ℓ n (θ) = log p n θ (y n ).
Then for sufficiently large C > 0, we have

P n θ0 J θ0 0 (y n ) < e -C π 0 (S n )/2 ≤ P n θ0 [π 0 (S n ∩ Ω c n ) > π 0 (S n )/2] ≤ 2 ´Sn P n θ0 [Ω c n (θ)] dπ 0 (θ) π 0 (S n ) ≤ 8 C 2 .
where the latter inequality comes from Chebyshev inequality on l n (θ 0 )l n (θ) -KL(p n θ0 , p n θ ). Therefore, it follows that

P n θ0 J θ0 0 (y n ) < e -C π 0 (S n )/2 → 0 as C → ∞,
uniformly in θ 0 .

Theorem 2. Suppose that assumptions B1 and B2 hold. Let P n θ0 denote the joint distribution of y n . If θ 0 ∈ Θ 0 , then

B 01 → ∞ in P n θ0 -probability .
That is, the Bayes factor is increasing to infinity under M 0 .

Proof. Let B 10 = B -1 01 , ǫ > 0 and θ 0 ∈ K for some compact set K, define

A n = {y n : J θ0 0 (y n ) > e -C π 0 (S n )/2} ∩ {y n : π 1 (A ǫn |y n ) > 1 -ǫ},
where S n is defined in the proof of Lemma 1 and ǫ n and A ǫn are defined in Assumption A2. Suppose that y n ∈ A n . Then, by assumption B1,

B 10 ≤ e C 2 C n d/2 J θ0 1 (y n ) = e C 2 C n d/2 ´Aǫn p n λ (y n ) p n θ 0 (y n ) dπ 1 (λ) π 1 (A ǫn |y n ) .
Thus, by Lemma 1 and assumption B2-1,

P n θ0 B 10 > e 2C n k0/2 π 1 (A ǫn ) ≤ P n θ0 A n ∩ B 10 > e 2C n k0/2 π 1 (A ǫn ) + P n θ0 [A c n ] ≤ Ce -C 2(1 -ǫ) + P n θ0 [A c n ] ≤ o(1) + 2Ce -C + 8/C 2 C→∞ → 0.
Note the above bounds are uniform over K. Theorefore, under M 0 , the Bayes factor goes to infinity at a rate bounded by O(n d/2 π(A ǫn )).

Hence, by assumption B2-2, B -1 01 → 0 with P n θ0 probability tending to 1, which implies B 01 converges to infinity with P n θ0 probability tending to 1 when the true model is from M 0 .

Application to the partially linear model

In this section we apply the general theorems in the previous section to the model selection problem for partially linear models in choosing between the linear regression model, and the semiparametric alternative. Bayesian methods in partially linear models have been developed in for example [START_REF] Lenk | Bayesian inference for semiparametric regression using a Fourier representation[END_REF], [START_REF] Koop | Bayesian variants of some classical semiparametric regression techniques[END_REF], and [START_REF] Ko | Wavelet-based Bayesian estimation of partially linear regression models with long memory errors[END_REF], whereas theoretical validation of these Bayesian methods has little been investigated, in particular for consistency of Bayes factor except for the recent result by [START_REF] Choi | A note on the Bayes factor in a semiparametric regression model[END_REF].

Accordingly, we attempt to investigate Bayes factor consistency in the partially linear regression based on the general theorems, Theorem 1 and Theorem 2 which we established in the previous section. Specifically, we adapt assumptions A1 and A2 of Theorem 1 and assumptions B1 and B2 of Theorem 2 to the partially linear regression models, and provide sufficient conditions to ensure consistency of the Bayes factor.

For this purpose, we consider the following partially linear regression model,

y i = α + β t d i + f (x i ) + σǫ i , ǫ i i.i.d. ∼ N (0, 1), (3.1)
where the mean function of the regression model in (3.1) has two parts: a p-dimensional parametric part with β t d i , {d i } n i=1 ∈ [-1, 1] p and a nonparametric part with an unknown function f (x i ), {x i } n i=1 ∈ [0, 1] q in the infinite dimensional parameter space, with p, q ≥ 1. We consider here the case of random design, i.e. (d i , x i ) ∼ µ independently, with µ a probability measure on [-1, 1] p × [0, 1] q , we assume that E[d] = 0 under this measure and that

ˆdd t dµ p (d) > 0,
where the latter inequality means that the covariance matrix of d is positive definite.

To begin with, we introduce additional notations and assumptions necessary for the technical details in the remainder of the paper. For all function g ∈

L 2 ([0, 1] q ), we denote ||g|| = ´1 0 g 2 (x)dx 1/2
, and g n = (g(x 1 ), . . . , g(x n )) t . Also for all n-dimensional vector

η n = (η 1 , . . . , η n ) t ∈ R n , we denote ||η n || 2 n = n -1 n i=1 η 2 i .
Let Z be the matrix whose i-th row is given by

Z i = (1, d t i ), i = 1, ..., n. Let γ 0 ∈ R p+1 and f 0 ∈ L 2 ([0, 1] q ) be
the true values of unknown parameters in (3.1).

Bayesian inference for the partially linear regression model in (3.1) begins with the specification of prior distributions for α ∈ R, β ∈ R p , f (•) on a given class of measurable functions and σ ∈ R + . Based on the model structure in (3.1) with suitable prior distributions for unknown parameters, we build the posterior distribution and estimate the regression function

η α,β,f (d, x) = α + β t d + f (x).
After the model estimation, we perform the Bayesian model checking procedure and see the adequacy of the model structure we assumed. Specifically, under the partially linear regression model in (3.1), we would like to choose between a parametric component and its semiparametric counter part, M 0 and M 1 , given by M 0 :

y i = α + β t d i + σǫ i , vs. M 1 : y i = α + β t d i + f (x i ) + σǫ i , (3.2)
and model selection is made by computing the Bayes factor in (2.1),

B 01 = ´Θ p n θ (y n )dπ 0 (θ) ´Λ p n λ (y n )dπ 1 (λ)
, where θ = (γ, σ), γ = (α, β) and λ = (γ, f, σ). This is equivalent to testing

H 0 : inf γ∈R p+1 ˆ[0,1] p+q (1, d t )γ -f (x) 2 dµ(d, x) = 0 vs H 1 : inf γ∈R p+1 ˆ[0,1] p+q (1, d t )γ -f (x) 2 dµ(d, x) > 0
If d and x are independent under µ then this is equivalent to testing

H 0 : f = constant vs H 1 : f = constant
For each f ∈ L 2 [0, 1] q , we write

H(f ) = inf γ∈R p+1 ˆ[0,1] p+q (1, d t )γ -f (x) 2 dµ(d, x)
H(f ) acts as a distance to the null hypothesis.

We consider the following general families of prior distributions under M 0 and M 1 :

• Prior distribution π 0 on M 0 : The prior π 0 on the parametric model is assumed to be absolutely continuous with respect to the Lebesgue measure with positive, continuous and bounded density on R p+1 × R + .

• Prior distribution π 1 on M 1 : The prior π 1 on λ is assumed to be

dπ 1 (λ) = π p (γ, σ)dπ f (f )dγdσ, with π p (γ, σ) continuous and positive on R p+1 × R + and π f is assumed to have support in L 2 ([0, 1] q ).
We assume the following condition on π 0 :

Condition (P0) (Parametric prior π 0 ): for all ǫ > 0 there exists a ǫ > 0 and N ǫ such that ∀n ≥ N ǫ , π 0 e -aǫn ≤ σ ≤ e e aǫn ; γ p+1 ≤ e aǫn ≥ 1e ǫn This is a very weak assumption on the prior π 0 . In particular if σ follows a either a Gamma(a, b) with a, b > 0, or an inverse Gamma(a, b) or a truncated Gaussian as in [START_REF] Gelman | Prior distributions for variance parameters in hierarchical models[END_REF] and if the prior on α and β has at least polynomial tails then condition (P0) is satisfied.

We first study the consistency of the Bayes factor under the alternative hypothesis.

Consistency under M 1

Condition (P0) and basic assumptions on π 0 and π 1 above are sufficient to ensure the following consistency result under M 1 : Theorem 3. Consider the above framework with π p and π 0 satisfying Condition (P0), then for all L > 0 and all all functional classes C ⊂ {(γ, σ, f

) ∈ R p+1 × R + × L 2 ([0, 1] q ); α 2 + β 2 p + f 2 ≤ L} such that there exists ǫ n ↓ 0, with nǫ 2 n → +∞, for which inf f0∈C π ( f -f 0 2 ≤ ǫ n ) ≥ e -cnǫ 2 n (3.3)
for some c > 0, we have for all ǫ > 0 there exists δ > 0 such that sup f0∈C:H(f0)>ǫ P 0 B 01 e δn > ǫ = o(1).

Before we prove Theorem 3, we consider the following Lemma which will be useful for the proof of Theorem 3.

Lemma 2. There exist 0 < c 1 ≤ C 1 < +∞ such that µ c 1 n ≤ Z t Z ≤ C 1 n = 1 + o(1) (3.4)
We now prove Theorem 3.

Proof. Let ǫ > 0 be fixed and K be a compact subset of R p+1 × R + and define

Λ 0 = {(α, β, σ, f ); (α, β, σ) ∈ K, f ∈ C ∩ {H(f ) > ǫ}}.
To prove Theorem 3 we verify assumptions A1 and A2. We write λ = (α, β, σ, f ). Under the Gaussian noise assumption in (3.1), it follows that

KL(p n λ0 , p n λ ) = E p n λ 0 log p n λ0 log p n λ = n 2 σ 2 0 σ 2 -1 -log(σ 2 0 /σ 2 ) + ||η n -η n 0 || 2 n 2σ 2 , V (p n λ0 , p n λ ) = Var p n λ 0 log p n λ0 log p n λ = n σ 2 0 σ 2 -1 2 0 σ 4 ||η n -η n 0 || 2 n , (3.5) 
where

η n = (α + β t d 1 + f (x 1 ), . . . , α + β t d n + f (x n )) t , and η n 0 = (α 0 + β t 0 d 1 + f 0 (x 1 ), . . . , α + β t d n + f 0 (x n )) t . Since ||η n -η n 0 || 2 n ≤ 2 ||f n -f n 0 || 2 n + (γ -γ 0 ) t Z t Z(γ -γ 0 ) , we have using Lemma 2, on Z, that if ||γ -γ 0 || 2 p+1 ≤ ǫ 2 n , ||f n -f n 0 || 2 n ≤ nǫ 2 n , |σ -σ 0 | ≤ ǫ n , then there exists τ > 0 such that KL(p n λ0 , p n λ ) ≤ τ nǫ 2 n and V (φ n λ0 , φ n λ ) ≤ τ nǫ 2 n .
Then, similarly to Lemma 1,

P n λ0 J λ0 1 < e -2τ nǫ 2 n π 1 {KL(p n λ0 , p n λ ) ≤ τ nǫ 2 n ; V (p n λ0 , p n λ ) ≤ τ nǫ 2 n } 2 ≤ 2τ nǫ 2
n so that under assumption (3.3),

sup λ0∈Λ0 P n λ0 J λ0 1 < Ce -(c+2)nǫ 2 n 2 ≤ 2 nǫ 2 n
and assumption A1 is satisfied. We now consider assumption A2. By definition of Λ 0 , A2-1 is satisfied with d n defined through the functional H(λ). However the metric which is used to construct tests in regression models is often the average of the squares of the Hellinger distances for the n observations given by

d 2 n (p n λ1 , p n λ2 ) = 1 n n i=1 ˆ φ λ1 (y i |w i ) -φ λ2 (y i |w i ) 2 dµ,
where φ λ (y|w) is the Gaussian density of y given w = (d, x) with mean η(d, x) = α + β t d + f (x) and variance σ 2 . Note that obvious calculations lead to

d 2 n (p n λ1 , p n λ2 ) = 2 -2 1 - (σ 1 -σ 2 ) 2 σ 2 1 + σ 2 2 1/2 1 n n i=1 exp - (η i1 -η i2 ) 2 4(σ 2 1 + σ 2 2 ) , (3.6) 
where η ij = α j + β t j d i + f j (x i ), i = 1, . . . , n and j = 1, 2. We thus have

d 2 n (p n λ1 , p n λ2 ) ≥ 2 -2 1 - (σ 1 -σ 2 ) 2 σ 2 1 + σ 2 2 1/2 exp - ||η n 1 -η n 2 || 2 n 4n(σ 2 1 + σ 2 2 ) ≤ 2 -2 1 - (σ 1 -σ 2 ) 2 σ 2 1 + σ 2 2 1/2 1 - ||η n 1 -η n 2 || 2 n 4n(σ 2 1 + σ 2 2 ) , (3.7)
where

η n j = (η 1j , . . . , η nj ) t , j = 1, 2. Let λ 0 ∈ Λ satisfy H(λ 0 ) > ǫ, γ * n = argmin γ ||Z(γ -γ 0 ) -f n 0 || 2 n and γ * = argmin α,β ´d,x (α -α 0 -(β -β 0 )d - f 0 (x)) 2 dµ(d, x). We can represent γ * n = (Z t Z) -1 Z t f n 0 = V -1 d ˆ(1, d t ) t f 0 (x)dµ(d, x) + o p (1) = γ * + o p (1),
where V d is the (p + 1) × (p + 1) symmetric matrix whose components are given by

V d (1, 1) = 1, V d (1, j) = 0 for j = 2, . . . , p + 1 and V d (i, j) = E(d i-1 d j-1 ) for i, j = 2, . . . , p + 1. Let ǫ > 0 and λ 0 ∈ Λ 0 = C ∩ {H(λ) > ǫ}, then P n λ0 1 n ||Zγ * n -f n 0 || 2 n < ǫ/2 = P n λ0 1 n ||Zγ * -f n 0 || 2 n < ǫ/3 + P n λ0 1 n ||Z • (γ * -γ * n )|| 2 n < ǫ 2 = P n λ0 1 n ||Zγ * -f n 0 || 2 n < ǫ/3 + P n λ0 1 n ||γ * -γ * n || 2 n < Cǫ 2 = P n λ0 1 n ||Zγ * -f n 0 || 2 n -H(λ 0 ) > 2ǫ/3 + o(1) = o(1) (3.8)
Uniformly over Λ 0 . Hence assumption A2-1 is satisfed with P n λ0 probability going to 1, uniformly in λ 0 ∈ Λ 0 .

Let ǫ > 0 and consider a ǫ > 0 defined by condition (P1) and

Θ n = {(α, β, σ); |α| ≤ e aǫn , β ≤ e aǫn , e -aǫn ≤ σ ≤ e e aǫ }
this set satisfies assumption A2-2. We now verify assumption A2-3, using results in [START_REF] Birgé | Robust testing for independent nonidentically distributed variables and Markov chains[END_REF][START_REF] Cam | Asymptotic methods in statistical decision theory[END_REF], or Lemma 2 of [START_REF] Ghosal | Convergence rates of posterior distributions for non-i.i.d. observations[END_REF]. It follows that there exists a sequence of tests φ n 1 such that for all λ 0 ∈ Λ 0 and all θ 1 ∈ Θ,

E n λ0 [φ n 1 ] ≤ e -nd 2 n (λ0,θ1)/2
sup dn(θ1,θ)≤dn(θ1,λ0)/18

E n θ [1 -φ n 1 ] ≤ e -nd 2 n (λ0,θ1)/2 ,
where d n is the average Hellinger entropy. Then, combining (3.7) with (3.8) we have for n large enough inf α,β ||η n 1η n 0 || 2 n ≥ ǫn/2 and if |σ 1σ 0 | ≤ 2σ 0 then there exists a constant a > 0 such that d 2 n (λ 0 , θ 1 ) > a, with P n λ0 probability going to 1 If

|σ 1 -σ 0 | > 2σ 0 then direct computations imply that d 2 n (λ 0 , θ 1 ) ≥ ( √ 8 - √ 7)/ √ 2 and choosing a ≤ ( √ 8 - √ 7)/ √ 2 we have that d 2 n (λ 0 , θ 1 ) > a. This leads to E n λ0 [φ n 1 ] ≤ e -na 2 /2 , sup dn(θ1,θ)≤a/18 E n θ [1 -φ n 1 ] ≤ e -na 2 /2 , (3.9)
Let t > 0 and let N n (t, Θ n , d 2 n ) be the t covering number of Θ n in d n norm. Then, the second inequality of (3.7) implies that for all θ j = (α j , β j , σ j ) ∈ Θ n and θ 18) 2 , and |σ j -σ| 2 ≤ aσ 2 j /[4( 18) 2 ], by choosing τ small enough,

= (α, β, σ) ∈ Θ n , if |α -α j | ≤ τ σ j , |β -β j | ≤ τ σ j , ||η n -η n j || 2 ≤ naσ 2 j /(
d 2 n (p n θ , p n θj ) ≤ 2 -2 1 - (σ -σ j ) 2 σ 2 + σ 2 j 1/2 1 - ||η n -η n j || 2 n 4n(σ 2 + σ 2 j ) , so that d 2 n (p n θ , p n θj ) ≤ a/(18) 2 . For each subinterval (σ j , σ j+1 ) with σ j = e -aǫn (1 + √ a ǫ /36) j , j = 0....J n where J n = ⌊36[exp(a ǫ n) + a ǫ n]/ √ a ǫ ⌋ + 1.
we bound the number of intervals in α, β satisfying the above constraint by

N n,j ≤ 4e 2aǫn τ -2 σ -2 j ∨ 1
Moreover, when let j be such that σ j ≥ 2e aǫn /τ , uniformly in σ ∈ (σ j , σ j+1 ) and α 2 + ||β|| 2 , (α ′ ) 2 + ||β ′ || 2 ≤ e 2aǫn , with θ = (α, β, σ j ) and θ ′ = (α ′ , β ′ , σ), d 2 n (p n θ , p n θ ′ ) ≤ a/(18) 2 , so that the global covering number of Θ n is bounded by

N n (a/(18) 2 , Θ n , d 2 n ) ≤ e 4aǫn τ 2   ∞ j=0 (1 + √ a ǫ /36) -2j + J n   ≤ e an/4 , (3.10)
if the constant a ǫ in the definition of Θ n is small enough. Finally, combining (3.10) with (3.9), we prove assumption A2-3 and Theorem 3 is proved.

We now turn to studying the consistency of the Bayes factor under the null hypothesis.

Under M 0

Suppose that the true model is M 0 . That is, the true regression model is assumed to be the parametric linear model, y = α 0 +β t 0 d+σ 0 ǫ i , θ 0 = (α 0 , β 0 , σ 0 ), p n θ0 ∈ M 0 . Thus, assuming that H(f ) = 0, the parametric vector η n 0 has components equal to η 0i = α 0 + β t 0 d i , and we verify Assumptions B1-B2. Verification of assumption B1 is relatively straightforward using (3.5), since if

|σ -σ 0 | ≤ n -1/2 , |α -α 0 | ≤ n -1/2 , β -β 0 p ≤ n -1/2 , θ = (α, β, σ),
then KL(p n θ0 , p n θ )+V (p n θ0 , p n θ ) ≤ C for some positive constant C. The conditions on the prior density π 0 implies that assumption B1 is verified with k 0 = p + 2. In order to verify assumption B2 we need to verify that the semiparametric posterior probability π 1 (.|y n ) of the ǫ n -shrinkage ball of p n θ0 based on d n metric converges to 1, while the semiparametric prior π 1 assigns negligible probability on the ǫ n -shrinkage ball. Define

A un = {λ ∈ Λ : d n (p n λ , p n θ0 ) < u n }.
We now prove that there exists u n going to 0, such that

π 1 [A un |y n ] = 1 + o p (1), π 1 [A un ] = o(n -(p+2)/2 ).
Recall that

d 2 n (p n λ , p n θ0 ) = 2 -2 1 - (σ -σ 0 ) 2 σ 2 + σ 2 0 1/2 1 n n i=1 exp - (η i -η i0 ) 2 4(σ 2 + σ 2 0 )
,

where η i = α + β t d i + f (x i ), and η i0 = α 0 + β t 0 d i , and that d 2 n (p n λ , p n θ0 ) ≤ u 2 n implies that (σ -σ 0 ) 2 ≤ Cu 2
n for some positive C, regardless of η. Obviously B2-1 and B2-2 depends on the chosen prior on f . We consider the following assumptions on π f and π p : Condition (P1) (Semiparametric prior π 1 ) :

• (i) There exists u n ↓ 0, C 1 , c 1 , τ > 0 and F n,1 ⊂ L 2 ([0, 1] q ) s.t. π f ( f n n ≤ u n ) ≥ C 1 e -c1nu 2 n , π f (F c n,1 ) = o(e -(2+c1)nu 2 n u p+1 n ),
and if Fn,1 = {f n = (f (x 1 ), . . . , f (x n )) t , f ∈ F n,1 } µ log N (u n , Fn,1 , . n ) > τ nu 2 n = o(1)
• (ii) For all a 1 , b > 0 there exists a 2 > 0 such that for all n large enough,

π p a 1 u n ≤ σ ≤ e e a 2 nu 2 n ; γ ≤ e a2nu 2 n ≥ 1 -e bnu 2 n (3.11)
Moreover for all ǫ > 0, there exists C > 0 such that if

w n = log(nu 2 n ), π f f ∞ > C √ nu n /w n + π f [H(f ) ≤ Cu 2 n ] < ǫ 1 u n √ n p+2 , (3.12) 
• (iii) For all ǫ > 0, there exists C > 0 such that

µ π f (f n -P z f n n ≤ Cu n ) > ǫ 1 u n √ n p+2 = o(1) (3.13)
We then have the following result :

Theorem 4. Under condition (P1), (i) and either (ii) or (iii), the Bayes factor B 01 is uniformly increasing to infinity under P θ0 uniformly over any compact subset of Θ.

The proof is postponed to the Appendix (Section 5).

Remark 1. Set z(d) = (1, d t ) and < z(d), f >= ´[-1,1] p ×[0,1] q (1, d t )f (x)dµ(d, x), then we can write H(f ) = f -(1, d t )V -1 d < z(d), f > 2
, and note that if d and x are independent under µ, writing f = f -´[0,1] q f (x)dµ(x) we obtain that

H(f ) = f 2 2 .
Here, f (x) is a centered random quantity of f (x), and H(f ) = 0 is equivalent to f (x) = 0, i.e. f (x) = constant. Therefore, H(f ) can be regarded as a distance to the null hypothesis as mentioned before.

Remark 2. Note that condition (ii) implies condition (iii) (see Section 5, Appendix). However, it is quite possible that depending on the families of priors considered, (iii) might be easier to prove than (ii). We consider two examples with Gaussian process priors or hierarchical Gaussian process priors on f in the following section, in which condition (ii) is easier to prove.

The case of Gaussian process priors

In this section we assume that condition (P0) is satisfied by the parametric prior π 0 under model M 0 and that condition (P1) is satisfied by the parametric prior π p under model M 1 .

In this section we consider two specific examples of the nonparametric prior, π f for studying the validity of condition (3.3) of Theorem 3 and condition (P1) of Theorem 4. For this purpose, we deal with a family of Gaussian process priors for the nonparametric component f which is a common family of priors for such models. Throughout this section, we assume that condition (P0) is satisfied by the parametric prior π 0 under model M 0 and that equation 3.11 in condition (P1) is satisfied by the parametric prior π p under model M 1 . Consequently, we focus on the nonparametric prior, π f and investigate the Bayes factor consistency. To be specific, we assume that f is distributed as a zero-mean Gaussian process prior on B = C([0, 1]) the Banach space of continuous functions over [0, 1] associate with . ∞ , under π f , with reproducing kernel Hilber space H (RKHS) and concentration function φ f defined by : for all f ∈ B,

φ f (ǫ) = inf h∈H: h-f0 ∞ <ǫ h 2 H -log π f [ f ∞ < ǫ],
see [START_REF] Van Der Vaart | Rates of contraction of posterior distributions based on Gaussian process priors[END_REF] for a more complete discussion of the notion of RKHS and concentration function. Recall that the support S of π f is the closure of H ∈ B. Hence, for all f 0 ∈ S, there exists ǫ n going to 0 such that φ f0 (ǫ n ) ≤ nǫ 2 n and using Theorem 2.4 of [START_REF] Van Der Vaart | Rates of contraction of posterior distributions based on Gaussian process priors[END_REF],

π f [ f -f 0 ∞ ≤ ǫ n ] ≥ e -cnǫ 2 n
for some c > 0 and condition (3.3) is satisfied. Thus, Theorem 3 is valid and the Bayes factor is consistent under M 1 .

To verify the consistency under model M 0 we study the validity of condition (P1) (i) and (ii) equation (3.12) and apply Theorem 4. To do so we need to consider some assumptions on the Gaussian process prior. First note that the constant function equal to 0 is in the support of all zero-mean Gaussian process, so that for all zero mean Gaussian process on B, there exists u n such that

ϕ 0 (u n ) = -log π f ( f ∞ ≤ u n ) ≤ nu 2 n .
Thus using Theorem 2.4 of van der Vaart and van Zanten ( 2008) condition (P1) (i) of Theorem 4 is verified. Next, we check condition (P1) (ii) of Theorem 4 as follows.

Denote

m j (x) = E[d j |X = x],
Σ to be the expectation of the conditional covariance matrix of d given X, β(f ) = (β 1 (f ), . . . , β p (f )) with β j (f ) =< m j , f > and assume that Σ is positive definite. Denote also f = f -´1 0 f (x)dµ(x).

A Markov inequality implies that for all s > p + 2 p+2) ).

π f f ∞ > √ nu n /w n ≤ E[ f s ∞ ]w s n ( √ nu n ) s = o(( √ nu n ) -(
Thus equation (3.12) of condition (P1) (ii) is satisfied if

π f H(f ) ≤ Cu 2 n ≤= o(( √ nu n ) -(p+2) ), H(f ) = ˆ(f (x)-(1, d t )V -1 d < z(d), f >) 2 dx.
Without loss of generality we can assume that V d is the identity matrix, then

H(f ) = ˆ( f - p j=1 m j β j (f )) 2 (x)dµ(x) + β(f ) t Σβ(f ) ≥ ˆ( f - p j=1 m j β j (f )) 2 (x)dµ(x) + c 0 β(f ) 2
for some positive c 0 . Hence H(f

) ≤ Cu 2 n implies that β(f ) 2 ≤ Cc -1 0 u 2 n u 2 n , which in turns implies that f 2 u n and that π f [H(f ) ≤ Cu n ] ≤ π f f 2 ≤ C ′ u n for some positive C ′ .
Therefore, if π f is the distribution of a zero mean Gaussian process on C([0, 1]), (3.12) condition (P1) is verified ifand only if p+2) .

π f f 2 ≤ C ′ u n = o(u n √ n) -(
We now illustrate on how to verify such a condition on two types of Gaussian (or conditionally) Gaussian priors. Note first that the above computations remain valid for conditionnally Gaussian process priors.

• Purely Gaussian prior : f can be represented as an infinite series (3.14) where (ξ k , k ≥ 0) is an orthonormal basis of L 2 ([0, 1]), and each ξ k is bounded. If σ k ∝ k -τ -1/2 , following van der Vaart and van Zanten (2008) or [START_REF] Castillo | Lower bounds for posterior rates with Gaussian process priors[END_REF] it can be proved that u n n -τ /(2τ +1) log n. To simplify the presentation we assume that 1 = ξ 0 .

f = k σ k Z k ξ k , σ k > 0 Z k ∼ N (0, 1), i.i.d,
• Hierarchical Gaussian prior, that is f can be represented as a truncated Gaussian with random truncation :

f = K k=0 σ k Z k ξ k , σ k > 0 Z k ∼ N (0, 1), i.i.d (3.15)
and K is random and is distributed according to some probability on N * , which we assume to satisfy e -a1kL(k) P (K = k) e -a2kL (k) where L(k) is either equal to 1 (as in the Hypergeometric distribution ) or log k (as in the Poisson distribution). We also assume that σ k ∝ k -τ -1/2 .

In the case of the Purely Gaussian prior distribution, then f = p+2) .

∞ k=1 σ k Z k ξ k π f f 2 ≤ C ′ u n = P ∞ k=1 σ 2 k Z 2 k ≤ Cu 2 n ≤ e -Anu 2 n = o ( √ nu n ) - ( 
for some A > 0.

In the case of the hierarchical Gaussian prior, then following Arbel (2012) it can be proved that u n log n/n and

π f f 2 ≤ C ′ u n = ∞ k=1 P [K = κ]P r ∞ k=κ σ 2 k Z 2 k ≤ Cu 2 n u n = o(( √ nu n ) p+2 ).
Hence, the Bayes factor is consistent under M 0 when the Gaussian process prior π f is constructed with both Gaussian-type priors in (3.14) and (3.15).

Discussion

In this paper, we investigated the consistency of the Bayes factor for independent but non identically distributed observations. In particular, we considered a uniform version of consistency of the Bayes factor and discussed general results on the Bayes factor consistency. Then we specialized our results to the model selection problem in the context of partially linear regression model, in which the regression function is assumed to be the additive form of the linear component and the nonparametric component. Specifically, sufficient conditions to ensure Bayes factor consistency were given for choosing between the parametric model and the semiparametric alternative in the partially linear regression model. These results extend the work of [START_REF] Mcvinish | Bayesian goodness of fit testing with mixtures of triangular distributions[END_REF] to the non-IID observations and complent their work in the context of Bayesian lack of fit testing for partially linear models. The main challenge was to deal with the prior probabilities when the true model is a parametric regression model and in particular to lower bound prior probability mass of neighbourhoods of the true model. Here two commonly used family of Gaussian type priors for the nonparametric component in the partially linear model were shown to satisfy the required conditions and thus illustrated validity of sufficient conditions we presented. Our computations generalize very easily to other families of priors up to the condition

π f f 2 ≤ C ′ u n = o(u n √ n) -(p+2) ,
which can be checked on a case by case basis. The computations we proposed for the priors 3.15 should be relatively easy to extend to other families of priors based basis expansions such as orthogonal priors with wavelets or Legendre polynomials. The investigation of this inequality nonorthogonal priors with spline bases or mixture priors discussed in de Jonge and van Zanten (2010) would be of interest.
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5 Appendix : Proof of Theorem 4

First we show that assumption (i) implies that π 1 [A M un |y n ] = 1 + o p (1), for some M > 0. Using (3.5), there exists M 0 such that if λ = (σ, γ, f ) satisfies

f n n ≤ σ 0 u n /2, (γ -γ 0 ) t Z t Z(γ -γ 0 ) ≤ u n σ 0 /2 0 < σ -σ 0 < ǫu n
for some ǫ > 0, then λ ∈ S n = {λ : KL(p n λ0 , p n λ ) ≤ nu 2 n , V (p n λ0 , p n λ ) ≤ M 0 nu 2 n }.

Assumption (i) implies that with probability going to 1, π 1 (S n ) C 1 e -c1nu 2 n u p+1 n , so that J λ0 1 (y n ) e -(2+c1)nu 2 n u p+1 n (5.1) with probability going to 1. Moreover define F n (a 1 , a 2 ) = {(γ, σ, f ); γ ≤ e a2nu 2 n , a 1 u n ≤ σ ≤ e e a 2 nu 2 n , f ∈ F n,1 } then under (i), we have that for all a > 0 there exists c 0 > 0 with π(F c n (a 1 , a 2 )) = o(e Set σ n = a 1 u n and σn = e e a 2 nu 2 n . We consider separately the cases σ ∈ (σ n , σ 0 /2) or σ ∈ (3σ 0 /2, σn ). In the former case, we define σ j = σ n (1 + a 1 ) j with a 1 > 0 chosen as small as needed be, and j = 1, ..., J n,1 where J n,1 = ⌊a -1 1 log(σ 0 /(2σ n ))⌋ + 1. For each j ≤ J n,1 , for all σ, σ ′ ∈ (σ j , σ j+1 ), all γ, γ ′ such that ||γγ ′ || ≤ ρσ j and all f, f ′ such that ||f n -(f ′ ) n || n ≤ a -1 1 σ j with ρ small enough and a 1 large enough, d n (p n λ , p n λ ′ ) ≤ ǫ 0 /18. Thus, based on the similar derivation of covering number to the case of (3.10), we have that log N (ǫ 0 /18, F n ∩ {σ ∈ (σ n , σ 0 /2)}, d n ) = o(n).

For the latter, we have the covering number in the same manner as before, log N (ǫ 0 /36, F n ∩ {σ ∈ (3σ 0 /2, σn }, (1), uniformly over all compact K ⊂ R p+1 × R + * , for some M > 0.

d n ) = o(n).
Now we bound from above π 1 [A M un ]. We first note that λ ∈ A M un implies that there exist τ 1 , τ 2 > 0 such that |σσ 0 | ≤ τ 1 u n and η nη n 0 2 n ≤ τ 2 u 2 n . Thus, it follows that

π 1 (A M un ) π 1 |σ -σ 0 | ≤ τ 1 u n } ∩ {||η n -η n 0 || 2 n ≤ τ 2 u 2 n } u n π 1 ||η n -η n 0 || 2 n ≤ τ 2 nu 2 n .

Finally

  this implies that π[A M un |y n ] = 1 + o p n θ 0

  -(2+c1)nu 2 n u p+1 n ). Let ǫ 0 > 0 and define S n,1 = {λ; d 2 Then λ ∈ S n,1 implies that there exists C > 0 such that|σσ 0 | ≤ σ 0 /2, and ||η nη n 0 || n ≤ Cd n (p n λ , p n θ0 ). Thus if λ, λ ′ ∈ S n,1 , with λ = (σ, γ, f ) and λ ′ = (σ ′ , γ ′ , f ′ ) and |σσ ′ | ≤ u n , ||γγ ′ || ≤ u n ||f nf ′ n || n ≤ u nthen there exists ρ > 0 such that d n (p n λ , p n λ ′ ) ≤ ρu n . Therefore, it follows that there exists ρ such thatlog N (ρu n , F n ∩ S n,1 , d n ) nu 2 n + log N (u n , F n,1 , ||.|| n ) nu 2 n ,with probability going to 1. Next, suppose that λ ∈ S n,2 and σ ∈ (σ 0 /2, 3σ 0 /2).Then using the same computations as before, log N (ǫ 0 /18, F n ∩ S n,2 ∩ {σ ∈ (σ 0 /2, 3σ 0 /2)}, d n )

	S n,2 = {λ; d 2 n (p n λ , p n θ0 ) > ǫ 2 0 }. nu 2	n (p n λ , p n θ0 ) ≤ ǫ 2 0 } and

n + log N (u n , F n,1 , ||.|| n ) = o(n)

Let P z be the projection operator from R n onto the vector space spanned by Z, we then obtain

(5.2) So that

for some τ 3 > 0.

Thus, to prove that for all ǫ > 0, π 1 [A M un ] < ǫn -(p+2)/2 with probability going to 1, it is enough to prove that

Condition (iii) implies the above result which terminates the proof. We now prove that condition (ii) implies condition (iii). Condition (ii) (3.12) implies that we can restrict ourselves to the set {||f n -

and for the sake of simplicity we still call this set

3) and when Z ∈ Ω n,1 (B),

We also have for all A > 0, using a Markov inequality, andσ 2 1,f = ´f (x) 2 dµ(x), then we can write [START_REF] Shorack | Empirical processes with applications to statistics[END_REF] p 855, implies that

) on A n by choosing A large enough. We finally obtain that there exists c > 0, such that

for some positive C, where w 2 (f ) = ´(f (x)z(d)V -1 d < z(d), f >) 4 dµ(d, x) -H(f ) 2 . In both cases the right hand term is bounded by e -cCw 2 n = o((

by choosing c large enough.