
HAL Id: hal-00767468
https://hal.science/hal-00767468

Preprint submitted on 19 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BIANCA, A Genetic Algorithm for Engineering
Optimisation - User guide

Marco Montemurro, Paolo Vannucci, Angela Vincenti

To cite this version:
Marco Montemurro, Paolo Vannucci, Angela Vincenti. BIANCA, A Genetic Algorithm for Engineering
Optimisation - User guide. 2011. �hal-00767468�

https://hal.science/hal-00767468
https://hal.archives-ouvertes.fr

BIANCA, A Genetic Algorithm for
Engineering Optimisation

Version 3.1 User’s guide

M. Montemurro
Institut d’Alembert UMR7190 CNRS -Université Pierre et Marie Curie Paris 6,

Case 162, 4, Place Jussieu, 75252 Paris Cedex 05, France.

P. Vannucci
Université de Versailles et St Quentin,

45 Avenue des Etats-Unis, 78035 Versailles, France and

Institut d’Alembert UMR7190 CNRS -Université Pierre et Marie Curie Paris 6,

Case 162, 4, Place Jussieu, 75252 Paris Cedex 05, France.

A. Vincenti

Institut d’Alembert UMR7190 CNRS - Université Pierre et Marie Curie Paris 6,

Case 162, 4, Place Jussieu, 75252 Paris Cedex 05, France.

2

Contents

1 Introduction to BIANCA 5
1.1 Capabilities of BIANCA . 5
1.2 Background and mathematical formulations 6
1.3 General features of BIANCA 8
1.4 The structure of the individual’s genotype 11
1.5 Encoding/decoding of the variables 12

2 BIANCA tutorial 15
2.1 Compiling BIANCA . 15
2.2 Running BIANCA . 15
2.3 Inputs to BIANCA . 16

2.3.1 Genetic parameters . 16
2.3.2 Optimisation parameters 18
2.3.3 The library.inp file . 24
2.3.4 The post processing.inp file 28

2.4 Outputs from BIANCA . 30
2.4.1 The .bio output file . 30
2.4.2 The .pop output file 31
2.4.3 The .sta output file . 33

2.5 The macro MACRO MY PROBLEM.f95 34
2.5.1 The my problem subroutine 35
2.5.2 The my problem var subroutine 36

2.6 Structure of the interface with external codes in BIANCA . . 37
2.6.1 The input file from BIANCA to the external code . . . 38
2.6.2 The output file from the external code to BIANCA . . 41

3 Examples 45
3.1 Test function example . 45
3.2 Library function example . 51

3.2.1 Fixed number of chromosomes/plies 51
3.2.2 Variable number of chromosomes/plies 56

3

4 CONTENTS

3.3 User-defined model example 61
3.4 Example of interface with MATLAB R© code 68
3.5 Example of interface with ANSYS R© code 74
3.6 Example of interface with ABAQUS R© code 80
3.7 Example of interface with CAST3M R© code 85

Bibliography 86

Chapter 1

Introduction to BIANCA

1.1 Capabilities of BIANCA

The genetic algorithm (GA) BIANCA 3.1 is a multi-population GA able to
deal and solve constrained and unconstrained hard combinatorial optimisa-
tion problems in engineering. The effectiveness and robustness of BIANCA
reside upon the generality and richness in the representation of the informa-
tion, and on the way the information is extensively exploited during genetic
operations. For more details see [1, 2].

In its previous version, BIANCA was a GA substantially based on the
principles of the standard GA, see Fig. 1.1. Nowadays, BIANCA is a power-
ful modular numerical tool, able to deal with general problems of engineering
optimisation. The version 3.1 of BIANCA tool-kit provides a flexible, exten-
sive interface between the user simulation code and a variety of iterative
methods and strategies.

Moreover, the version 3.1 of the code goes beyond the structure of the
standard GA: this version, in fact, is able to let evolve individuals and species
at the same time: this is an important feature that makes BIANCA able
to deal with optimisation problems concerning modular systems/structures,
such as composite plates or shells, stiffened panels and so on. Optimising
modular systems with variable number of modules using a GA corresponds
to the evolution of a population where individuals/points belonging to differ-
ent species are mixed. The most part of standard GAs are not able to deal
with such problems. For a deeper insight the matter see [3, 4].
BIANCA is written in FORTRAN language.

5

6 CHAPTER 1. INTRODUCTION TO BIANCA

Figure 1.1: Standard GA’s scheme.

1.2 Background and mathematical formula-

tions

A general optimization problem is formulated as follows:

min
x

f (x)

subject to :







gi (x) ≤ 0 i = 1, ..., r
hj (x) = 0 j = 1, ...,m

xL ≤ x ≤ xU

(1.1)

where vectors and matrix terms are marked in bold typeface. In this formu-
lation x is the n-dimensional vector of design variables, while xL and xU are
the n-dimensional vectors representing the lower and upper bounds of the
design variables, i.e. the design space. Design variables can be of different
type: continuous, regular discrete, scattered discrete or grouped.
The optimisation goal is to minimize the objective function f (x) subject to
a given number of constraints: gi (x) is the r-dimensional vector of inequality
constraints, while hj (x) is the m-dimensional vector of equality constraints.

The optimization problem type can be characterized both by the types
of constraints present in the problem and by the linearity or non-linearity
of the objective and constraint functions. A problem where at least some of
the objective and constraint functions are non-linear is called a non-linear
programming (NLPP) problem. These NLPP problems predominate in en-
gineering applications and are the primary focus of BIANCA 3.0.

In BIANCA the equality and inequality constraints are treated by means
of a particular strategy which is based on the combination between classi-

1.2. BACKGROUND AND MATHEMATICAL FORMULATIONS 7

cal penalisation methods and the exploitation of the distributed information
over the population along the generations. The name of this technique is
ADP, which stands for Automatic Dynamic Penalisation.
Classical penalisation methods transform Eq.(1.1) into an unconstrained op-
timisation problem through the definition of a new modified objective func-
tion F (x):

min
x

F (x)

F (x) =



























f (x) if gk (x) ≤ 0 k = 1, ..., r

and hj (x) = 0 j = 1, ...,m

f (x) +
r
∑

k=1

ckGk (x) +
m
∑

j=1

rjHj (x) if gk (x) > 0 k = 1, ..., r

and hj (x) 6= 0 j = 1, ...,m

(1.2)
In Eq.(1.2) ck and rj are the penalisation coefficients for inequality and equal-
ity constraints respectively. The quantities Gk (x) and Hj (x) are defined as:

Gk (x) = max [0, gk (x)] k = 1, ..., r

Hj (x) = max [0, | hj (x) | − ǫ] j = 1, ...,m
(1.3)

In Eq.(1.2) and (1.3) the equality constraints have been transformed into
inequality constraints having the form | hj (x) |≤ ǫ. Concerning the param-
eters ck and rj, in classical penalisation methods, the user must set their
values to an appropriate level in order to ensure the search of solutions for
the optimisation problem to be forced within the feasible domain. Neverthe-
less, the choice of these coefficients is very difficult and it is common practice
to estimate their values by trial and error. Moreover, it could be useful to ad-
just penalisation pressure along the generations by tuning these coefficients,
but this is directly linked on a guess or on a deep knowledge of the nature of
the optimisation problem by the user.

The idea of the ADP is that it is possible to exploit the information re-
strained in the population, at the current generation, in order to guide the
search in the case of constrained optimisation problem. Generally, in the
first generation the population is generated randomly. With high probabil-
ity the individuals are evenly distributed over both feasible and unfeasible
domain and the corresponding values of objective functions and constraints
can be used to estimate an appropriate level of penalisation, i.e. the values
of penalisation coefficients ck and rj. At the current generation, inside the
population it is possible to separate feasible and unfeasible individuals and

8 CHAPTER 1. INTRODUCTION TO BIANCA

it is also possible classify each group in terms of increasing values of the ob-
jective function or constraint violation. The first individual in each group is
the best candidate to be solution of the optimisation problem on the feasible
and unfeasible side of the domain, respectively. One possible definition of
the penalisation coefficients is the follow:

ck (t) =
| fbestF − fbest

NF |
Gkbest

NF
k = 1, ..., r

rj (t) =
| fbestF − fbest

NF |
Hjbest

NF
j = 1, ...,m

(1.4)

In Eq.(1.4) the coefficients ck and rj are evaluated at the current generation
t, while the apexes F and NF stand for feasible and non-feasible respectively.
It is clear that the estimation of penalisation coefficients, according to the
Eq.(1.4), can be repeated at each generation, thus tuning the appropriate
penalisation pressure on the current population. The main advantages of
this approach are substantially two: first of all this procedure is automatic
because the GA can automatically calculate the values of the penalisation
coefficients, secondly the method is dynamic since the evaluation of the pe-
nalisation level is updated at each generation.

1.3 General features of BIANCA

The version 3.1 of BIANCA shows several original features. As well as the
previous version, one of the main features is the decomposition of the GA
in a certain number of macros : it is possible to assembly them in various
ways in order to suit many different optimisation problems and also to test
and compare the effectiveness of different numerical strategies. In this sense,
BIANCA is a bunch of genetic tools which the user can use as bricks to build
up several GAs.

Another important feature of BIANCA is the representation of the infor-
mation which is rich and detailed, but also non redundant. The biological
metaphor in GAs is a simple but powerful mean to return the richness and
completeness of information linked to design variables. The information re-
strained in the population along the generation is treated in a peculiar man-
ner in such a way to allow a deep mixing of the individuals’ genotype by
means of the reproduction operators, i.e. cross-over and mutation, which act
on every single gene of the individuals. For a deep insight the matter see [2].

In order to allow the reproduction phase among individuals belonging to
different species, in BIANCA 3.1 the structure of the individual and, con-

1.3. GENERAL FEATURES OF BIANCA 9

sequently, the representation of the information as well as the reproduction
operators of cross-over and mutation have been modified in order to deal
with the optimisation problem of modular systems. We have introduced new
genetic operators in BIANCA 3.1 for cross-over and mutation of individuals
belonging to different species.

BIANCA 3.1 has the following qualities:

• objective function evaluation: a library of functions corresponding to
objective and constraint functions of different optimisation problems,
in addition in BIANCA the user can write its model by means of a
special macro;

• fitness evaluation: several choices are available for fitness evaluation
depending on the kind of problem, i.e. minimisation or maximisation,
and on the selection pressure that the user decides to introduce. The
fitness is evaluated in such a way that the fitness function can assume
all the possible values in the range [0 1];

• selection: two known techniques of selection are included, i.e. roulette
wheel, tournament;

• standard genetic operators: the main genetic operators are cross-over
and mutation, applying with a certain probability on each gene of the
individual’s genotype;

• additional genetic operators: elitism operator which preserve the best
individual during each generation;

• handling constraints: automatic dynamic penalisation method for han-
dling constraints;

• handling multiple populations: the need to simultaneously explore dif-
ferent regions of the design space, as well as the search of optima re-
sponding to distinct design criteria, led us to introduce the option of
working with multiple populations in BIANCA. Moreover, a migration
operator has been introduced in order to allow exchanges of informa-
tions between populations evolving through parallel generations. This
migration operator is the classical ring-type.

• stop criterion: maximum number of generations reached or test of con-
vergence, i.e. no improvements of the mean fitness of the population
after a given number of cycles.

10 CHAPTER 1. INTRODUCTION TO BIANCA

• new genetic operators: to deal with the problem which considers the
number of variables among the optimisation variables, as in the case of
modular systems, new genetic operators have been developed, such as
the chromosome shift operator, the chromosome reorder operator, the
chromosome addition/deletion operator. These new operators modify
the reproduction phase allowing the reproduction among individuals of
different species, see [3];

• interface with external software: if the model to be optimised is written
in an external environment, it is possible to call it by BIANCA 3.1
in order to evaluate the objective function and constraints, and then
to pass the design variables to the model. The logical scheme of the
structure of the interface is shown in Fig. 1.2.

• post-processing of results: graphical results concerning the trend of the
best feasible solution and the average value of the objective function
along the generation are obtained through the creation of a .m file
(by means of MATLAB R© environment) that reads the output files of
BIANCA 3.1.

Figure 1.2: Logical scheme of the structure of the interface with external
software in BIANCA.

1.4. THE STRUCTURE OF THE INDIVIDUAL’S GENOTYPE 11

1.4 The structure of the individual’s geno-

type

The biological metaphor in GAs is a simple but powerful mean to return
the richness and completeness of information linked to design variables. The
necessity to deal with any type of design variables, i.e. continuous, discrete,
scattered led us to the choice of a discrete representation of the information.
As explained in Sec. 1.5, it exits a two-way relation among the variables
and the pointers, i.e. integer numbers, which refer to the set of feasible
discrete values for each variable. In a standard GA it is usual to encode
integer values in the form of binary strings, in order to use the minimalist
alphabet which increases the number of schemes, according to the theorem
of the implicit parallelism that ensures improvement of the exploration of the
domain and exploitation of information [5, 6]. In addition the use of binary
representation allows the use of binary cross-over and mutation which are
very effective when dealing with particular classes of optimisation problems.

In the previous version of BIANCA, an individual was represented by
an array of dimensions nchrom × ngene. The number of rows, nchrom, is the
number of chromosomes, while the number of columns, ngene, is the number
of genes. Basically, each design variable is coded in the form of a gene, and
its meaning is linked both to the position and to the value of the gene within
the chromosome. In principle, no limit is imposed on the number of genes
and chromosomes for an individual in BIANCA. A number nind of individuals
compose a population, and in BIANCA it is possible to work, at the same
time, with several populations whose number, npop, can be defined by the
user.

In order to include the number of chromosomes (i.e. of design variables)
among the design variables, and then to allow the reproduction among in-
dividuals belonging to different species, some modifications of the individual
genotype have been done. In BIANCA 3.1, the genotype of each individual is
represented by a binary array shown in Fig. 1.3. In this picture, the quantity
(gij)

k represents the jth gene of the ith chromosome of the kth individual.
Letter e stands for empty location, i.e. there is no gene in this location while
nk is the kth individual’s chromosomes number. It appears clearly that every
individual can have a different number of chromosomes, i.e. each individual
can belong to a different species.
As an example, for a composite laminate, one can assume, as design variables,
the layers number, orientation angles and thickness. The information struc-
ture (i.e., in the GA’s language, the genotype) of the individual-laminate is
then structured as shown in Fig. 1.4. In this case the kth laminate’s number

12 CHAPTER 1. INTRODUCTION TO BIANCA

of layers is nk while the orientation and the thickness of the ith ply are δi and
hi, respectively. One can notice that the number of layers nk is the number
of chromosomes of the kth individual, while the orientation and thickness of
the ith layer are the two genes of the ith chromosome.

Figure 1.3: Structure of the individual’s genotype with variable number of
chromosome in BIANCA 3.1.

Figure 1.4: Example of individual-laminate with variable number of layers
in BIANCA.

1.5 Encoding/decoding of the variables

In BIANCA, the representation of the definition domain, i.e. the design
space, of each design variable is made by the use of pointers, which are

1.5. ENCODING/DECODING OF THE VARIABLES 13

themselves integer values. It exists a two-way relation between the variables
and the pointers. This relation is clear in the case of discrete or grouped
variables, in fact if the domain of definition have a finite dimension N , it
is possible to enumerate all admissible values vi, (i = 1, ..., N) and build a
reference between each value vi and its index i, i.e. the pointer of that value.
When the definition domain does not have finite dimension, it is necessary to
restrict it, defining lower and upper bounds to the space of admissible values
of vi, i.e. vmin and vmax respectively. In the case of continuous variables, the
first step is the discretisation of the definition domain by choosing a given
precision p, and then it is possible to apply the same system of referencing
by pointers as for discrete and grouped variables, see Fig.1.5.

In BIANCA pointers constitute the genotype of the individual, more pre-
cisely the single pointer corresponds to a gene, and all genetic operators are
directly applied on the pointers representing the variables. Therefore, a step
of decoding/encoding is necessary to translate the value of the pointer into
the corresponding value of the design variable, and vice-versa. More details
can be found in [1, 2].

Figure 1.5: Two-way relation between continuous variables and pointers in
BIANCA.

14 CHAPTER 1. INTRODUCTION TO BIANCA

Chapter 2

BIANCA tutorial

2.1 Compiling BIANCA

The BIANCA batch file is named BIANCA 3.1.bat. You can compile BIANCA
by a simple double click on this file. In the BIANCA 3.1 folder you must
have the following files:

• libBIANCA.a: this is a library of BIANCA macros containing all the
subroutines that BIANCA needs to run;

• MACRO MY PROBLEM.f95: this is the subroutine that you must use
if you want to realise your model in FORTRAN environment as sub-
routine of BIANCA. The structure of this macro is explained in Sec
2.5.

After the compilation, the executable file BIANCAv3.1.exe is created.

2.2 Running BIANCA

The BIANCA executable file is named BIANCAv3.1.exe. You can run the
code in two different way:

• by double click on the icon BIANCAv3.1.exe;

• by entering the command BIANCAv3.1 in the command prompt, after
you have specified the correct path for BIANCAv3.1.

In both case, after the run of BIANCA, the code requires the specification
of the name of the current job session. The choice of the job’s name is
completely arbitrary, but it must observe the following condition: the name of
the current job session must be the same as the two input files with extension
.gen and .opt, described in the following section.

15

16 CHAPTER 2. BIANCA TUTORIAL

2.3 Inputs to BIANCA

There are two different kind of inputs for BIANCA. In particular, the main
inputs of the code are written in two input files with extension .gen and .opt
respectively. As explained beforehand, these files must have the same name
as the current job session.
The input file with extension .gen contains the genetic parameters of the
simulation, whilst the one with extension .opt contains the optimisation pa-
rameters.

Moreover, in BIANCA there are two additional input files that have fixed
name and structure, i.e. you can modify these input files but you can not
change their name. These files are library.inp and post processing.inp and
they contain the information about some library functions concerning the
laminates’ design (already implemented within BIANCA) and the informa-
tion about the post-processing operations, respectively.
In the following subsections the structure of all these input files is described
in details.

2.3.1 Genetic parameters

As already explained, the input file with extension .gen contains the genetic
parameters of the simulation. The structure of the file is defined below (we
remark that each item-number in the list corresponds to the information
restrained in a single line of the file):

1. npop, number of population (integer), the maximum allowable number
of population is 10;

2. nind, number of individuals (integer), the maximum allowable number
of individuals is 2000;

3. stop crit., stop criterion (character):

• fixed generations, to stop the GA after a given number of the
generation;

• threshold, to stop the GA when the best individual satisfy the sill
value on the objective function;

• mixed, is a combination of the two previous criteria;

4. in this line the user must write some values according to the stop cri-
terion selected in line 3:

2.3. INPUTS TO BIANCA 17

• ngen, number of generations (integer) if fixed generations ;

• tresh, threshold value (double precision) if threshold ;

• tresh ngen, threshold value (double precision) and number of
generations (integer) if mixed ;

5. pcross, crossover probability (double precision);

6. pmut, mutation probability (double precision);

7. pshift, shift operator probability (double precision);

8. pmutchrom, mutation probability of the number of chromosomes (double
precision);

9. SEL, selection operator (integer):

• 1, for roulette wheel selection;

• 2, for tournament selection;

10. fit. pres., fitness pressure (double precision);

11. ELIT , elitism strategy (integer):

• 0, the elitism is not applied;

• 1, the elitism is applied;

12. Itime, isolation time (integer): when in line 1 npop is greater then 1 you
must choice this value. It represents the number of generation during
which the populations are isolated. Every Itime generations an exchange
of the best feasible individuals among the populations is realised.

As example, we show here the structure of the .gen input file.

1

100

fixed generations

200

0.85

0.01

0.5

0.04

1

1.0

18 CHAPTER 2. BIANCA TUTORIAL

1

0

In this example we use a single population with 100 individuals. The stop
criterion is based on a fixed number of generations, i.e. the code stops the
simulation after 200 generations; crossover probability is equal to 0.85, mu-
tation probability is equal to 0.01, shift operator probability is 0.5 whilst the
mutation probability of the number of chromosomes is 0.04. The selection
operator is roulette wheel selection and it acts with a fitness pressure of 1.0.
The elitism strategy is applied and the isolation time is set equal to 0 because
in this example we have only one population.

2.3.2 Optimisation parameters

As said previously, the input file with extension .opt contains the optimisa-
tion parameters of the simulation. The structure of the file is defined below
(we remark that each item-number in the list corresponds to the information
restrained in a single line of the file):

1. ENV , flag variable (character) that denotes the type of the environ-
ment in which your physical model is realised:

• internal, if the model is realised in FORTRAN language as sub-
routine of BIANCA or if you want to use some internal function
implemented within BIANCA ;

• external, for models realised in a different environment by means
of external codes;

2. KINDF , flag variable (character) that must be set only if you want
to perform an optimisation with some functions already written within
BIANCA or if you want to write your physical model in FORTRAN
language (when in line 1 the internal option is active):

• test function, to access to the library of BIANCA test functions;

• library function, to access to BIANCA composite laminate func-
tion;

• my problem, if you want to write your physical/mathematical model
in FORTRAN environment. The model must be written as sub-
routine of BIANCA;

2.3. INPUTS TO BIANCA 19

3. CODE, flag variable (character) which must be set only if you want
to perform an optimisation process on a model realised by means of
external software (when in line 1 the external option is active):

• MATLAB, for models realised in MATLAB R© environment;

• ANSYS, for models realised in ANSYS R© environment;

• ABAQUS, for models realised in ABAQUS R© environment;

4. MODEL NAME, name of the file (character) that describe the phys-
ical/mathematical model which you want to optimise (valid only when
in line 1 the external option is active). BEWARE: the name of the
file must contain the extension (e.g. for an ANSYS file a possible name
can be cantilevered beam.lgw). EXCEPTION: in case of MATLAB
files the user do not write the extension (e.g. not rotorcraft dynamic.m
but rotorcraft dynamic);

5. MODEL I, name of the input file (character) which passes the design
variables from BIANCA to the external model (valid only when in line
1 the external option is active). BEWARE: the name of the file must
contain the extension. The structure of this file is explained in Sec.
2.6;

6. MODEL O, name of the output file (character) which passes the val-
ues of constraint and objective functions from the external model to
BIANCA (valid only when in line 1 the external option is active). BE-
WARE: the name of the file must contain the extension. The structure
of this file is explained in Sec. 2.6;

7. IDF , ID of the internal function written inside BIANCA (integer)
(valid only when in line 1 the internal option is active):

• if in line 2 the test function option is active:

– 6, Vannucci’s function with one inequality constraint;

– 60, Vannucci’s function without constraints;

– 61, Vannucci’s function with one equality constraint;

– 80, Welded beam design problem, see [];

– 81, Pressure vessel design problem, see [];

– 82, Tension compression spring weight design problem, see [];

• if in line 2 the library function option is active:

20 CHAPTER 2. BIANCA TUTORIAL

– 71, model and functions for the optimisation of the laminates’
elastic symmetries with fixed number of plies, i.e. chromo-
somes (BEWARE: if this option is active you must choose
one or many objective functions from the library.inp file);

– 72, model and functions for the optimisation of the laminates’
elastic symmetries with variable number of plies, i.e. chromo-
somes (BEWARE: if this option is active you must choose
one or many objective functions from the library.inp file);

8. MAXORMIN , ID for maximisation or minimisation problems (inte-
ger):

• 1, for maximisation;

• 2, for minimisation;

9. nobj, number of partial objective functions (integer). If your optimi-
sation problem presents an objective function which is constituted by
the sum of different terms, you can use this options in order to see
the evolution of the different partial objectives along the generations.
BEWARE: this options must be used when you want to perform an
optimisation problem with the internal library function for the lami-
nates’ design of BIANCA, i.e. when in line 7 the function ID is 71 or
72. In this case the total objective function is composed by the sum
of different terms and every one is linked to a particular elastic sym-
metry of the laminate. For more details see [1, 2, 3, 7]. The maximum
allowable number of partial objective functions is 30;

10. IDCONSTR, ID for constraints (integer):

• 0, if constrains are inactive;

• 1, if constrains are active;

11. nconstr, number of constraints (integer), the maximum allowable num-
ber of constraint functions is 30;

12. CHROMV AR, optimisation with individuals with variable number of
chromosomes (character):

• yes, for individuals having different number of chromosomes;

• no, otherwise;

2.3. INPUTS TO BIANCA 21

13. CHROMMIN exp, optimisation with minimum number of chromo-
some (character) and exponent of minimum chromosome function (dou-
ble precision). BEWARE: this option must be set only when in line 2
the library function option is active and when in line 12 the yes option
is active:

• yes p, if you want to perform the optimal laminates’ design with
the minimum number of plies and with an exponent p on the
chromosome function;

• no 0.0, otherwise;

14. nchrommin nchrommax, minimum and maximum number of chromosomes
(integers),(valid only when in line 12 the yes option is active), the
maximum allowable number of chromosomes is 50;

15. nchrom, number of chromosomes (integer), (valid only when in line 12
the no option is active) the maximum allowable number of chromo-
somes is 50;

16. ngene, number of genes (integer), the maximum allowable number of
genes is 50;

17. nvar, number of different type of variables (integer). BEWARE: the
number of different type of variables can be different from the number of
genes, e.g. in a particular optimisation problem we can have 3 design
variables but only 2 different types of variables. We show below an
example about this particular case;

18. BLANK LINE

FOLLOWING LINES : the lines that follow the line number 18 must be oc-
cupied by the declaration of variables. Depending on the kind of variables we
can have 4 or 5 lines for each variable. BEWARE: After the description of
each variable you must put a BLANK LINE. Table 2.1 describes the different
nature of the variables and the number of lines that the declaration occupies.

LAST LINE : chromo−mask, chromo-mask (vector of integers). This mask
denotes the position of the genes within the chromosomes of all individuals.
This mask also shows the nature of the variable linked to each gene. This
line is then constituted by a sequence of integer numbers, e.g. if in a given
optimisation problem there are two different type of variables and two genes
this line must be written in the following way: 1 2.

22 CHAPTER 2. BIANCA TUTORIAL

Continuous Regular discrete Scattered discrete
variables variables variables

Variable name Variable name Variable name
(character) (character) (character)

EXTENDED REGULAR DISCR SCATTERED DISCR

Left bound value Left bound value Vector of scattered values
(double precision) (double precision) (double precision)

Right bound value Right bound value
(double precision) (double precision)

Discretization step
(double precision)

4 lines 5 lines 3 lines

Table 2.1: Declaration of different types of variables in BIANCA

As example, we show here the structure of the .opt input file.

internal

test function

none

none

none

none

6

2

1

1

1

no

no 0.0

0 0

1

2

2

x 1

EXTENDED

0.0

2.3. INPUTS TO BIANCA 23

12.566

x 2

EXTENDED

0.0

6.283

1 2

For this example we use an internal test function written within BIANCA:
the Vannucci’s function with one inequality constraints. We want to minimise
this function. So we perform an optimisation process with fixed number of
chromosome. The structure of the individual’s genotype is made by a single
chromosome with two genes and, hence, with two different type of variables.
The name of the first variable is x 1 while the name of the second one is x 2.
Both variables are continuous, and we have defined their bounds. x 1 varies
in a continuous way between 0.0 and 4π, while x 2 varies in a continuous
way between 0.0 and 2π. Since there are two different types of variables the
chromo-mask is made by two components 1 2.

Concerning the meaning of the parameter nvar, i.e. the number of differ-
ent types of variables, and difference between this parameter and the number
of genes ngene we show here below an example in order to understand in a
better way how you must compile the .opt input file for this kind of situation:

internal

my problem

none

none

none

none

0

2

1

1

4

no

no 0.0

0 0

2

3

2

24 CHAPTER 2. BIANCA TUTORIAL

angle

EXTENDED

0.0

90.0

height

REGULAR DISCR

2.0

5.0

0.1

1 2 1

In this example we use an user self-created model, written in FORTRAN
language as subroutine of BIANCA. The model has 1 objective function
with 4 constraints. We want to minimise this function. The structure of the
individual’s genotype is made by 2 chromosomes with 3 genes, hence we have
6 design variables but only 2 different types of variables. The name of the
first variable’s type is angle while the name of the second one is height. The
first type is continuous, whilst the second one is a discrete variable. We have
also defined their bounds. angle varies in a continuous way between 0.0◦ and
90◦, while height varies between 2.0mm and 5.0mm, with a discretisation
step of 0.1mm. Since there are 2 different types of variables but 3 genes
the chromo-mask is made up by 3 components: 1 2 1. The chromo-mask
identifies the position of each design variable and also of each gene within
the chromosome. So in this example each one of the two chromosomes, that
constitute the genotype of the individual, is composed by 3 variables belong-
ing to 2 different types: the first variable associated to the corresponding
gene is an angle, e.g. α, and it varies between the bounds described by the
variable type angle, the second variable is a height h and varies between the
bounds described by the variable type height, while the third variable is also
an angle, e.g. φ, which has a different physical meaning in our problem but
that belongs to the same type of variable as the first one.

2.3.3 The library.inp file

The library.inp file must be compiled only when in the line 1 and line 2
of the .opt input file the options internal and library function are active,
respectively. Moreover, in the line 7 of the .opt input file the only valid ID
are 71 or 72.

2.3. INPUTS TO BIANCA 25

The ID 71 identifies the problem of the optimal design of laminates’ elastic
symmetries with fixed number of plies, i.e. chromosomes: in this case the
only design variables are the plies’ orientations. The user must declare the
bounds, and eventually the discretisation step, in degrees. A little remark
occurs for this kind of design problem: the number of plies is equal to the
number of chromosomes increased by one, e.g. when you set, in the .opt
input file, the number of chromosomes equal to 10 you perform an analysis
on a laminate with 11 layers, where the first layer has a fixed orientation
equal to 0◦. An example of this kind of analysis can be found in Sec. 3.2.1.
The ID 72 identifies the problem of the optimal design of laminates’ elastic
symmetries with variable number of plies, i.e. chromosomes: in this case you
must perform an analysis with cross-over on species and the design variables
are the plies’ orientations and thickness. The user must declare the bounds,
and eventually the discretisation step, of the orientations in degrees, while
the ones of the thickness must be declared in mm. A little remark occurs for
this kind of design problem: unlike the previous function ID, in this case the
number of plies is equal to the number of chromosomes. An example of this
kind of analysis can be found in Sec. 3.2.2.

The library.inp file presents a list of all the possible elastic symmetries of
the laminate in terms of stiffness and compliance matrices. Each symmetry
is characterised by a name, and every names are written in the file itself.
You can copy the name of each symmetry over the line which contains the
following words: Don’t modify the following lines. You can see an example
of the structure of this file in Fig. 2.1.

26 CHAPTER 2. BIANCA TUTORIAL

Figure 2.1: Structure of the library.inp input file.

BEWARE: the number of elastic symmetries must be equal to the num-
ber of partial objective function written in the input file with extension .opt
at line 9.
We show here below an example of the structure of both .opt and library.inp
input files.

.opt input file

internal

library function

none

none

none

none

71

2

2.3. INPUTS TO BIANCA 27

3

0

0

no

no 0.0

0 0

12

1

1

angle

REGULAR DISCR

-90.0

90.0

5.0

1

library.inp input file

membrane stiffness isotropy

bending stiffness orthotropy K=0

uncoupling

In this example we want to find a laminate which posses the following
elastic symmetries:

• elastic uncoupling;

• in-plane stiffness isotropy;

• bending stiffness orthotropy.

We use the internal function 71 and the objective function is made up by
3 partial objective: each one is associated to the symmetries cited before-
hand. The number of chromosomes is associated to the number of plies
(BEWARE, for the library function 71 the number of laminates’plies is
equal to the number of chromosomes increased by one, so in this example we
have 12 chromosomes and the laminate has 13 plies. In fact the first ply is

28 CHAPTER 2. BIANCA TUTORIAL

oriented at 0.0◦). For each chromosome-ply we have one gene, i.e. one design
variable: the angle which varies with a discretisation step of 5.0◦ between
−90.0◦ and 90.0◦. We remark that the number of partial objective function
is 3 and is equal to the number of the elastic symmetries written in the file
library.inp.

2.3.4 The post processing.inp file

The post processing.inp input file contains several options that you can set if
you want to perform the graphical post processing of the simulation’s results.

Post processing operations are performed via MATLAB R© software. At
the end of the simulation BIANCA writes a file named graphic results.m
which contains all the instructions for the plotting of the results. This file
automatically reads the data restrained in the output files of BIANCA, whose
structure is explained in the next Section.
These MATLAB R© instructions are strictly linked with what you write in the
post processing.inp file. The graphical results that you obtain, after you have
compiled in a correct way the post processing.inp input file, are substantially
2 files whose name is the same as the current job session preceded by the
following words:

• obj min (job’s session name) for the file which contains the plot of the
best feasible solution vs. generations;

• obj mean (job’s session name) for the file which contains the plot of
the average value of the penalised objective function vs. generations;

The structure of the post processing.inp input file is defined below (we
remark that each item-number in the list corresponds to the information
restrained in a single line of the file):

1. POST ENV , post processing environment (character). This is a flag
variable that you must set if you want to activate the graphical treat-
ment of results:

• MATLAB, if you want to use MATLAB R© package for the post
processing of results;

• none, otherwise;

2. axis, flag variable (character) that allows you to choice the axis kind
of the results’ plot:

• linear, for a linear scale;

2.3. INPUTS TO BIANCA 29

• semilog, for a semi-logarithmic scale;

3. grid, flag variable (character) that allows you to activate/deactivate
the grid on the plots:

• on, grid is active;

• off , grid is not active;

4. plot format, flag variable (character) that allows you to choice the
format for the simulation’s plots:

• bmp, the graphical results are saved as Windows bitmap file;

• emf , the graphical results are saved as Enhanced metafile;

• eps, the graphical results are saved as EPS level 1;

• jpg, the graphical results are saved as JPEG image;

• pbm, the graphical results are saved as Portable bitmap;

• pcx, the graphical results are saved as Paintbrush 24-bit;

• pdf , the graphical results are saved as Portable Document Format;

• pgm, the graphical results are saved as Portable Graymap;

• png, the graphical results are saved as Portable Network Graphics;

• ppm, the graphical results are saved as Portable Pixmap;

• tif , the graphical results are saved as TIFF image, compressed;

We show here below an example of the structure of post processing.inp
input file.

MATLAB

linear

off

png

In this case we have performed a post processing treatment of results via
MATLAB software. We obtain two file obj min (job’s session name).png and
obj mean (job’s session name).png which contain the results of the simula-
tion. The graphics are in linear scale and without grid.

30 CHAPTER 2. BIANCA TUTORIAL

2.4 Outputs from BIANCA

In BIANCA, at the end of the optimisation process, we have 3 output files.
The name of these files is the same as the one of the current job session.
These output files have 3 different extension: .bio, .pop and .sta respectively.
We describe the structure and the contents of those files in the following
subsections.

2.4.1 The .bio output file

This file contains the informations about the best feasible individual for every
generations. In particular in this file we can find:

• the number of generations;

• the ID of the population;

• the ID of the best individual within the population;

• the name and the number of each design variable for each chromosome
of the best individual;

• the value of the non-penalised partial objective functions of the best
individual;

• the value of the constraint functions of the best individual;

• the value of the total objective function of the best individual.

Fig. 2.2 shows the structure of the .bio output file for the Vannucci’s function
problem with one inequality constraint. In this simulation we consider a
population of 10 individuals evolving through 50 generations.

2.4. OUTPUTS FROM BIANCA 31

Figure 2.2: Structure of the .bio output file.

2.4.2 The .pop output file

In the output file with extension .pop the informations about the whole
population are written every 10 generations. Concerning the informations
about the whole population we can find:

• the number of generations;

• the ID of the population;

• the ID of every individual within each population;

• the name and the number of each design variable for each chromosome
for each individual;

• the value of the non-penalised partial objective functions for each in-
dividual;

• the value of the constraint functions for each individual;

32 CHAPTER 2. BIANCA TUTORIAL

• the value of the total objective function for each individual.

Fig. 2.3 shows the structure of the .pop output file for the Vannucci’s function
problem with one inequality constraint. In this simulation we consider a
population of 10 individuals evolving through 50 generations.

Figure 2.3: Structure of the .pop output file.

2.4. OUTPUTS FROM BIANCA 33

2.4.3 The .sta output file

This file contains the informations about the statistics on the whole popula-
tion for each generation. In particular in this file we can find:

• the number of generations;

• the ID of the population;

• the number of each non-penalised partial objective function and the
minimum and average values within the population for each generation;

• the minimum and average values of the total objective function within
the population for each generation;

• the maximum and average values of the fitness function within the
population for each generation;

Fig. 2.4 shows the structure of the .sta output file for the Vannucci’s function
problem with one inequality constraint. In this simulation we consider a
population of 10 individuals evolving through 50 generations.

Figure 2.4: Structure of the .sta output file.

34 CHAPTER 2. BIANCA TUTORIAL

2.5 The macro MACRO MY PROBLEM.f95

If you want to perform an optimisation process on your model, by means
of the GA BIANCA, one possible way to do that is to write your model
in FORTRAN environment. In this case you must observe the following
conditions:

1. you must write your physical/mathematical model in FORTRAN lan-
guage;

2. you must write your model as subroutine of BIANCA.

The macro MACRO MY PROBLEM.f95 has been realised in order to allow
you to write in an easily way your model in FORTRAN language and to
understand how your model can be interfaced within the code BIANCA.
This macro contains 2 subroutines named my problem and my problem var
which have some input and output quantities. Fig. 2.5 shows the structure
of the macro.

Figure 2.5: Structure of the macro MACRO MY PROBLEM.f95.

2.5. THE MACRO MACRO MY PROBLEM.F95 35

In the next subsections we explain in detail the structure of the two
subroutines restrained in this macro and how and when you can use them.
We show also an example on how you can write your model as subroutine of
BIANCA, by means of the MACRO MY PROBLEM.f95, in Sec. 3.3.

2.5.1 The my problem subroutine

The my problem subroutine must be used when you want to write your math-
ematical model in FORTRAN environment, as subroutine of BIANCA, and
when you have an optimisation problem where the number of design vari-
ables is fixed. In this case the cross-over between individuals belonging to
different species is no longer required and you have to perform a standard
genetic optimisation process.

The input quantities of this subroutine are:

• npop, number of populations (input derived from the input file .gen,
line 1);

• nind, number of individuals for each population (input derived from
the input file .gen, line 2);

• nchrom, number of chromosomes of each individual (input derived from
the input file .opt, line 15);

• ngene, number of genes within each chromosome of the individual (in-
put derived from the input file .opt, line 16);

• n obj, number of partial objectives (input derived from the input file
.opt, line 9);

• n constr: number of constraints (input derived from the input file .opt,
line 11);

• x being: phenotype of the whole population, the real size of this 4-
dimensional array is x being(npop, nind, nchrom, ngene). This array
contains the value of each design variable, linked to each gene, for the
whole population.

The output quantities of this subroutine are:

• obj: 3-dimensional array which contains the values of the partial ob-
jective functions for every individuals of each population. The real size
of this array is obj(npop, nind, n obj);

36 CHAPTER 2. BIANCA TUTORIAL

• constr ineq: 3-dimensional array which contains the values of the in-
equality constraint functions for every individuals of each population.
The real size of this array is constr ineq(npop, nind, n constr).

2.5.2 The my problem var subroutine

The my problem var subroutine must be used when you want to write your
mathematical model in FORTRAN environment, as subroutine of BIANCA,
and when you have an optimisation problem where the number of design
variables is also a variable of the process, such as the case of the optimisation
of modular systems where the number of modules and, hence, the number of
variables is also a design variable for the problem. In this case the cross-over
between individuals belonging to different species is required and you have
to perform a non-standard genetic optimisation process.

The input quantities of this subroutine are:

• npop, number of populations (input derived from the input file .gen,
line 1);

• nind, number of individuals for each population (input derived from
the input file .gen, line 2);

• nchrom min, minimum number of chromosomes (input derived from
the input file .opt, line 14);

• nchrom max, maximum number of chromosomes (input derived from
the input file .opt, line 14);

• ngene, number of genes within each chromosome of the individual (in-
put derived from the input file .opt, line 16);

• n obj, number of partial objectives (input derived from the input file
.opt, line 9);

• n constr: number of constraints (input derived from the input file .opt,
line 11);

• x being: phenotype of the whole population, the size of this 4-dimensional
array can change for each individual because each one can belong to
a different specie and can have a different number of chromosome. In
particular, the effective number of chromosomes of each individual is
also restrained into the phenotype in a particular position of the array;
if we consider the jth individual of the ith population the number of

2.6. STRUCTUREOF THE INTERFACEWITH EXTERNAL CODES IN BIANCA37

chromosomes of this individual, nchrom(i, j), is uniquely individuated
by the following equality: nchrom(i, j) = x being(i, j, 1, ngene+1). So
for each individual the real size of the 4-dimensional array x being is
x being(npop, nind, nchrom(npop, nind), ngene + 1). This array con-
tains the value of each design variable, linked to each gene, for the
whole population.

The output quantities of this subroutine are:

• obj: 3-dimensional array which contains the values of the partial ob-
jective functions for every individuals of each population. The real size
of this array is obj(npop, nind, n obj);

• constr ineq: 3-dimensional array which contains the values of the in-
equality constraint functions for every individuals of each population.
The real size of this array is constr ineq(npop, nind, n constr).

2.6 Structure of the interface with external

codes in BIANCA

In several problems, the value of the objective function and/or of the con-
straints, cannot be computed analytically, but it has to be evaluated using
special numerical codes. Typically, this is the case of structural optimization,
where the most part of times the structural response is numerically assessed
using finite element (FE) codes. For these cases, a very general interface
has been developed, which renders BIANCA able to exchange input/output
informations with mathematical models supported by an external software.

Fig. 2.6 shows the structure of the data-exchange between BIANCA and
a generic external software. For each individual, BIANCA performs the
genetic operations, such as selection, cross-over, mutation and so on, and
then passes the design variables to the mathematical model written in a
different environment. At this point, the external software evaluates the
objective and the eventual constraint functions values, and then passes them
back to BIANCA. The data-exchange between BIANCA and the external
software is simply done by means of two I/O files.

The first one is the file written from BIANCA and passed to the external
software, i.e. the input file, which contains the informations related to the
current individual at the current generation, i.e. the number and the values
of the design variables restrained in that individual’s genotype. This input
file also contains additional information such as the number of objective and

38 CHAPTER 2. BIANCA TUTORIAL

constraint functions and also a particular variable, i.e. the counter whose
meaning is explained in the next subsection.
The second one is the file written from external software and passed to
BIANCA, i.e. the output file, in which are written the values of objective
and constraint functions, and once again the value of the counter.

The writing operations of these files are made for every individual in
the current generation, so the external code, during the whole optimisation
process, is called from BIANCA Nind×Ngen times, where Nind is the number
of individuals while Ngen is the number of generations.

Some current and well known software packages have been interfaced with
BIANCA in this way, like for instance MATLAB R©, CAST3M R©, ABAQUS R©
and ANSYS R©.

Figure 2.6: Structure of interface with external software in BIANCA.

2.6.1 The input file from BIANCA to the external
code

As previously said, during the whole optimisation process, BIANCA passes
an input file to the external code. You must read the value of design variables
which your mathematical model (realised within your external code) needs
from this file. The name of this filemust be the same as the one you declare
in line 5 of the .opt input file of BIANCA. The input file is automatically

2.6. STRUCTUREOF THE INTERFACEWITH EXTERNAL CODES IN BIANCA39

written from BIANCA for each individual at the current generation. It
appears clearly that, within your model, you must provide a reading process
of the design variables from that file.

The structure of the input file which BIANCA passes to your model is
shown in Fig. 2.7.

Figure 2.7: Structure of the input file which BIANCA passes to the external
software.

As shown in Fig. 2.7, in this input file BIANCA automatically writes:

• the number of chromosomes, nchrom, for the current individual at the
current generation. In the case of an optimisation process where the
number of chromosomes is fixed this value is equal to the one you
declare in line 15 of the .opt input file of BIANCA, while in the case
of an optimisation process where the number of chromosomes is also a
variable of the problem, in this line you can find any possible integer
value between the bounds that you declare in in line 14 of the .opt
input file of BIANCA;

• the array of design variables for your model. The dimensions of this
array are nchrom × m where m is equal to the number of genes ngene

which you declare in line 16 of the .opt input file of BIANCA;

• the number of partial objective functions, nobj, which you declare in
line 9 of the .opt input file of BIANCA;

• the number of constraint functions, nconstr, which you declare in line
11 of the .opt input file of BIANCA;

40 CHAPTER 2. BIANCA TUTORIAL

• the counter. This is an integer variable which ensures the synchronisa-
tion between BIANCA and the external code. Within your model you
must read the value of the counter from the input file and your model
has to return this value to BIANCA by means of the creation of the
output file, whose structure is explained in the next subsection.

As example, we show here below the structure of the .opt input file for
BIANCA and the structure of the input file which BIANCA passes to the
external software, in the case where the user mathematical model is realised
by means of the MATLAB R© package.

test matlab.opt input file (for more details about this .opt input file see
Sec. 3.4):

external

none

MATLAB

Vannucci

input mat.txt

output mat.txt

0

2

1

0

0

no

no 0.0

0 0

1

2

2

x 1

EXTENDED

0.0

12.556

x 2

EXTENDED

0.0

2.6. STRUCTUREOF THE INTERFACEWITH EXTERNAL CODES IN BIANCA41

6.283

1 2

Structure of the input mat.txt input file which BIANCA passes to MATLAB R©:

1

1.4186705767350929 0.97096774193548396

1

0

30

In this simulation we have used the MATLAB R© code for the construc-
tion of our mathematical model. This model is described in the example of
Sec. 3.4. In this subsection we want to remark the parallelism which exists
between the correct compilation of the .opt input file and the input file that
BIANCA passes to the external code.

For our example, in the test matlab.opt input file, we can see that the
name of the MATLAB R© script is Vannucci, as written in line 4; at line 5 we
have named the input file for our MATLAB R© model as input mat.txt ; the
name of the output file which our MATLAB R© model passes to BIANCA is
output mat.txt. Moreover, the optimisation problem described in MATLAB R©
environment has two design variables, i.e. x 1 and x 2. In addition the
structure of the genotype is made up by one chromosome with 2 genes. The
problem has one objective function and no constraint function. You can see
the coherence between what we have write in the test matlab.opt input file
for BIANCA and what BIANCA writes in the input mat.txt. You can see
the structure of the MATLAB R© script in Sec. 3.4.

Concerning the input mat.txt (input file from BIANCA to MATLAB R©),
for the current individual at the current generation BIANCA automatically
writes the number of chromosomes, 1, the value of both design variables,
x1 = 1.4186705767350929 and x2 = 0.97096774193548396, the number of
partial objective functions, 1, the number of constraint functions, 0, and
finally the value of the counter, 30.

2.6.2 The output file from the external code to BIANCA

As said beforehand, during the whole optimisation process, the external code
passes an output file to BIANCA. You must include the writing operation of
this file within your mathematical model (realised with your external code).
The name of this file must be the same as the one you declare in line 6 of

42 CHAPTER 2. BIANCA TUTORIAL

the .opt input file of BIANCA. The output file must be written from your
model.

The structure of the output file which your model passes to BIANCA is
shown in Fig. 2.8.

Figure 2.8: Structure of the output file which the external software passes to
BIANCA.

As shown in Fig. 2.8, in this output file the following quantities must be
written from your model:

• the counter. As previously said, this is an integer variable which ensures
the synchronisation between BIANCA and the external code;

• the array of partial objective functions for your model. The dimen-
sions of this array is nobj, where nobj is the number of partial objective
functions which you declare in line 9 of the .opt input file of BIANCA;

• the array of constraint functions for your model. The dimensions of
this array is nconstr, where nconstr is the number of constraint functions
which you declare in line 11 of the .opt input file of BIANCA.

As example, we show here below the structure of the output file which
the external software passes to BIANCA, in the case where the user mathe-
matical model is realised by means of the MATLAB R© package.

Structure of the output mat.txt output file which MATLAB R© passes to
BIANCA:

2.6. STRUCTUREOF THE INTERFACEWITH EXTERNAL CODES IN BIANCA43

30

-0.550094

In this simulation we have used the MATLAB R© code for the construc-
tion of our mathematical model. This model is described in the example of
Sec. 3.4. In this subsection we want to remark the parallelism which exists
between the correct compilation of the .opt input file and what the output
file (written by your model) passes to BIANCA.

For our example, the structure of the .opt input file is the same as the
one described in the previous subsection. The name of the .opt input file is
test matlab.opt. The name of the output file which our MATLAB R© model
passes to BIANCA is output mat.txt, as written in line 6.

You can see that in the output mat.txt we can find the value of the counter,
30, and the value of the objective function, −0.550094. Since our optimi-
sation problem is an unconstrained problem we cannot write the value of
constraint functions in the output mat.txt file.

44 CHAPTER 2. BIANCA TUTORIAL

Chapter 3

Examples

3.1 Test function example: welded beam de-

sign problem

In this section we show the input and output files concerning a particular test
case optimisation problem: the welded beam design problem. This problem
was firstly studied by Rao. The objective is to design a welded beam for
minimum cost subject to several constraints, e.g. on shear stress, bending
stress, buckling load, deflection of the beam and other side constraints. There
are 4 design variables: the height of the weld h(x1), the length of the weld
l(x2), and finally the height t(x3) and the width b(x4) of the beam.

Mathematically, the problem can be stated as follows:

min
x

f (x) = 1.10471x1
2x2 + 0.04811x3x4 (14.0 + x2)

subject to :



























































g1 (x) = τ (x)− 13000 ≤ 0

g2 (x) = σ (x)− 30000 ≤ 0

g3 (x) = x1 − x4 ≤ 0

g4 (x) = 0.10471x1
2 + 0.04811x3x4 (14.0 + x2)− 5.0 ≤ 0

g5 (x) = 0.125− x1 ≤ 0

g6 (x) = δ (x)− 0.25 ≤ 0

g7 (x) = 6000− Pc (x) ≤ 0
(3.1)

where:

45

46 CHAPTER 3. EXAMPLES















































































































































τ (x) =

√

(τ1)
2 + 2τ1τ2

x2

2R
+ (τ2)

2

τ1 =
6000√
2x1x2

τ2 =
MR

J

M = 6000
(

14 +
x2

2

)

R =

√

x2
2

4
+

(

x1 + x3

2

)2

J = 2

{

√
2x1x2

[

x2
2

12
+

(

x1 + x3

2

)2
]}

σ (x) =
504000

x3
2x4

δ (x) =
2.1952

x3
2x4

Pc (x) = 64746.022 (1− 0.0282346x3) x3x4
3

(3.2)

The name of the job session is welded beam, so the input files must have
the same name with extensions .gen and .opt and the 3 output files are going
to have the same name with extensions .bio, .pop and .sta. For this case we
perform an optimisation process with 2 population evolving at the same time.

The genetic parameters are:

• npop = 2;

• nind = 400;

• stop crit. = fixed generations ;

• ngen = 200;

• pcross = 0.85;

• pmut = 0.0025;

• pshift = 0.0;

• pmutchrom = 0.0;

• selection operator = roulette wheel;

3.1. TEST FUNCTION EXAMPLE 47

• selection pressure = 1.0;

• elitism operator = active;

• isolation time = 50.

We show here below the structure of the welded beam.gen input file:

2

400

fixed generations

200

0.85

0.0025

0.0

0.0

1

1.0

1

50

The optimisation parameters are:

• simulation environment type = internal;

• kind of problem = test function;

• external code = none;

• external code model file = none;

• external code input file = none;

• external code output file = none;

• function ID = 80;

• minimisation or maximisation = minimisation;

• nobj = 1;

• constr. active or not = active;

• nconstr = 7;

• CHROMV AR = no;

48 CHAPTER 3. EXAMPLES

• CHROMMIN exp = no 0.0;

• nchrommin nchrommax = 0 0;

• nchrom = 1;

• ngene = 4;

• nvar = 4;

• variables :

– x 1, extended, bounds [0.1 2.0]mm;

– x 2, extended, bounds [0.1 10.0]mm;

– x 3, extended, bounds [0.1 10.0]mm;

– x 4, extended, bounds [0.1 2.0]mm;

Then we show here below the structure of the welded beam.opt input file:

internal

test function

none

none

none

none

80

2

1

1

7

no

no 0.0

0 0

1

4

4

x 1

EXTENDED

0.1

2.0

3.1. TEST FUNCTION EXAMPLE 49

x 2

EXTENDED

0.1

10.0

x 3

EXTENDED

0.1

10.0

x 4

EXTENDED

0.1

2.0

1 2 3 4

You can see the structure of the welded beam.bio, welded beam.pop and welded beam.sta
output files in the following paths:

BIANCA 3.1 User guide\ Examples\ welded beam.bio;
BIANCA 3.1 User guide\ Examples\ welded beam.pop;
BIANCA 3.1 User guide\ Examples\ welded beam.sta.

We perform also the post processing of results and we show here below the
structure of the post processing.inp input file:

MATLAB

linear

off

png

In this case we obtain two image files saved as Portable Network Graphics
files named obj min welded beam.png and obj mean welded beam.png. You
can find those files in the following paths:

BIANCA 3.1 User guide\ Examples\ obj min welded beam.png;
BIANCA 3.1 User guide\ Examples\ obj mean welded beam.png.

Figs. 3.1 and 3.2 show the curves of the best feasible solution vs generations
and the average value of the objective function vs generations, respectively.

50 CHAPTER 3. EXAMPLES

Figure 3.1: Best feasible solution vs generations for the welded beam design
problem.

Figure 3.2: Average value of the objective function vs generations for the for
the welded beam design problem.

3.2. LIBRARY FUNCTION EXAMPLE 51

3.2 Library function example: laminates’ de-

sign problem

In this section we show the input and output files concerning the optimisation
process on the laminate’s elastic properties design problem. For more details
about this kind of problem see [1, 7, 3]. Here we want to find a laminate that
has the following symmetries:

• elastic uncoupling;

• in-plane stiffness isotropy;

• bending stiffness orthotropy.

We make 2 kind of simulations: in the first one the number of layers is
fixed and only the orientations are the design variables, while in the second
one the number of plies is variable and the design variables are the orientation
and the thickness of each layer. In this last case the reproduction between
different species is required. In the following subsections we show how to
perform the optimisation process by means of the library functions for the
design of laminate elastic symmetries developed within BIANCA.

3.2.1 Fixed number of chromosomes/plies

In this first simulation we use the library function with ID 71.
The name of the job session is Symmetries, so the input files must have the
same name with extensions .gen and .opt and the 3 output files are going to
have the same name with extensions .bio, .pop and .sta. In addition we must
compile in a correct way the library.inp input file.

The genetic parameters are:

• npop = 1;

• nind = 500;

• stop crit. = fixed generations;

• ngen = 500;

• pcross = 0.85;

• pmut = 0.002;

• pshift = 0.0;

52 CHAPTER 3. EXAMPLES

• pmutchrom = 0.0;

• selection operator = roulette wheel;

• selection pressure = 1.0;

• elitism operator = active;

• isolation time = 0.

We show here below the structure of the Symmetries.gen input file:

1

500

fixed generations

500

0.85

0.002

0.0

0.0

1

1.0

1

0

For our example, the laminate has 14 plies and the only variables are the
layers’ orientations. According to what we have already explained in Sec.
2.3 about the library.inp input file and about the structure of individual’s
genotype, in this case the number of variables is 13 (the first ply has a fixed
orientation, i.e. 0.0◦). Each ply corresponds to a chromosome in the struc-
ture of the genotype and the layer’s orientation is linked to a single gene.
Then, the optimisation parameters are:

• simulation environment type = internal;

• kind of problem =library function;

• external code = none;

• external code model file = none;

• external code input file = none;

• external code output file = none;

3.2. LIBRARY FUNCTION EXAMPLE 53

• function ID = 71;

• minimisation or maximisation = minimisation;

• nobj = 3;

• constr. active or not = not active;

• nconstr = 0;

• CHROMV AR = no;

• CHROMMIN exp = no 0.0;

• nchrommin nchrommax = 0 0;

• nchrom = 13;

• ngene = 1;

• nvar = 1;

• variables :

– angle, regular discrete, step 1.0◦, bounds [−90.0◦ 90.0◦];

We show here below the structure of the Symmetries.opt input file:

internal

library function

none

none

none

none

71

2

3

0

0

no

no 0.0

0 0

13

1

1

54 CHAPTER 3. EXAMPLES

angle

REGULAR DISCR

-90.0

90.0

1.0

1

The structure of the library.inp input file is the following:

membrane stiffness isotropy

bending stiffness orthotropy K=0

uncoupling

You can see the structure of the Symmetries.bio, Symmetries.pop and Sym-
metries.sta output files in the following paths:

BIANCA 3.1 User guide\ Examples\ Symmetries.bio

BIANCA 3.1 User guide\ Examples\ Symmetries.pop

BIANCA 3.1 User guide\ Examples\ Symmetries.sta.

We perform also the post processing of results and we show here below the
structure of the post processing.inp input file:

MATLAB

semilog

off

png

In this case we obtain two image files saved as Portable Network Graph-
ics files named obj min Symmetries.png and obj mean Symmetries.png. You
can find those files in the following paths:

BIANCA 3.1 User guide\ Examples\ obj min Symmetries.png;
BIANCA 3.1 User guide\ Examples\ obj mean Symmetries.png.

Figs. 3.3 and 3.4 show the curves of the best feasible solution vs generations
and the average value of the objective function vs generations, respectively.

3.2. LIBRARY FUNCTION EXAMPLE 55

Figure 3.3: Best feasible solution vs generations for the design of laminate’s
elastic symmetries.

Figure 3.4: Average value of the objective function vs generations for the
design of laminate’s elastic symmetries.

56 CHAPTER 3. EXAMPLES

3.2.2 Variable number of chromosomes/plies

In this second simulation we use the library function with ID 72.
The name of the job session is Symmetries var, so the input files must have
the same name with extensions .gen and .opt and the 3 output files are going
to have the same name with extensions .bio, .pop and .sta. In addition we
must compile in a correct way the library.inp input file.

The genetic parameters are:

• npop = 1;

• nind = 500;

• stop crit. = fixed generations ;

• ngen = 500;

• pcross = 0.85;

• pmut = 0.002;

• pshift = 0.5;

• pmutchrom = 0.008;

• selection operator = roulette wheel;

• selection pressure = 1.0;

• elitism operator = active;

• isolation time = 0.

We show here below the structure of the Symmetries var.gen input file:

1

500

fixed generations

500

0.85

0.002

0.5

0.008

1

1.0

3.2. LIBRARY FUNCTION EXAMPLE 57

1

0

For our example, the laminate has a variable number of plies and the de-
sign variables are the orientation and thickness of every layer. According
to what we have already explained in Sec. 2.3 about the library.inp input
file and about the structure of individual’s genotype, in this case the num-
ber of variables is 2n where n is the number of chromosomes. We consider
that the number of chromosome can varies between 12 and 16. Each ply
corresponds to a chromosome in the structure of the genotype and the ori-
entation and thickness of each layer are linked to two different genes. Then,
the optimisation parameters are:

• simulation environment type = internal;

• kind of problem =library function;

• external code = none;

• external code model file = none;

• external code input file = none;

• external code output file = none;

• function ID = 72;

• minimisation or maximisation = minimisation;

• nobj = 3;

• constr. active or not = not active;

• nconstr = 0;

• CHROMV AR = yes;

• CHROMMIN exp = yes 2.0;

• nchrommin nchrommax = 12 16;

• nchrom = 0;

• ngene = 2;

• nvar = 2;

58 CHAPTER 3. EXAMPLES

• variables :

– angle, regular discrete, step 1.0◦, bounds [−90.0◦ 90.0◦];

– thick, extended, bounds [0.1 0.2]mm.

We show here below the structure of the Symmetries var.opt input file:

internal

library function

none

none

none

none

72

2

3

0

0

yes

yes 2.0

12 16

0

1

1

angle

REGULAR DISCR

-90.0

90.0

1.0

thick

EXTENDED

0.1

0.2

1 2

The structure of the library.inp input file is the following:

membrane stiffness isotropy

3.2. LIBRARY FUNCTION EXAMPLE 59

bending stiffness orthotropy K=0

uncoupling

You can see the structure of the Symmetries var.bio, Symmetries var.pop
and Symmetries var.sta output files in the following paths:

BIANCA 3.1 User guide\ Examples\ Symmetries var.bio

BIANCA 3.1 User guide\ Examples\ Symmetries var.pop

BIANCA 3.1 User guide\ Examples\ Symmetries var.sta.

We perform also the post processing of results and we show here below the
structure of the post processing.inp input file:

MATLAB

semilog

off

png

In this case we obtain two image files saved as Portable Network Graphics
files named obj min Symmetries var.png and obj mean Symmetries var.png.
You can find those files in the following paths:

BIANCA 3.1 User guide\ Examples\ obj min Symmetries var.png;
BIANCA 3.1 User guide\ Examples\ obj mean Symmetries var.png.

Figs. 3.5 and 3.6 show the curves of the best feasible solution vs generations
and the average value of the objective function vs generations, respectively.

60 CHAPTER 3. EXAMPLES

Figure 3.5: Best feasible solution vs generations for the design of laminate’s
elastic symmetries, variable number of layers.

Figure 3.6: Average value of the objective function vs generations for the
design of laminate’s elastic symmetries, variable number of layers.

3.3. USER-DEFINED MODEL EXAMPLE 61

3.3 User-defined model example: beam de-

sign problem

In this section we show the input and output files concerning the optimi-
sation process on a possible user-defined model and also how to write the
mathematical model in the MACRO MY PROBLEM.f95.

In this example we consider a simple optimisation problem about beams’
design. We have a clamped beam subject to a tip load P of 1000 N. The
beam is made up by an Aluminium alloy with a Young modulus E equal to
72 GPa and a tensile yield stress σy of 345 MPa. The beam has a circular
section. The design variables are the beam’s length L and the beam’s radius
R.
We want to find the optimal values of L and R which minimise the tip
displacement δ and respect both constraints imposed on the maximum stress
and on the beam’s volume. The reference value of the volume Vref is 140000
mm3.

The problem can be formulated as follows:

min
L,R

δ (L,R) =
4PL3

3πER4

subject to :







4PL

πR3
− σy ≤ 0

LπR2 − Vref ≤ 0

(3.3)

The name of the job session is beam design, so the input files must have
the same name with extensions .gen and .opt and the 3 output files are going
to have the same name with extensions .bio, .pop and .sta.
Since the problem do not require the cross-over between species, the structure
of the individual’s genotype is made up by a single chromosome with two
genes which identify the design variables, i.e. the length L and the radius
R. In addition, since the number of chromosome is fixed we must write our
model by means of the subroutine my problem. We have written our model
in the MACRO MY PROBLEM.f95 as shown in Fig. 3.7.

62 CHAPTER 3. EXAMPLES

Figure 3.7: Structure of the macro MACRO MY PROBLEM.f95 for the
beam design problem.

3.3. USER-DEFINED MODEL EXAMPLE 63

The genetic parameters are:

• npop = 1;

• nind = 100;

• stop crit. = fixed generations;

• ngen = 200;

• pcross = 0.85;

• pmut = 0.01;

• pshift = 0.0;

• pmutchrom = 0.0;

• selection operator = roulette wheel;

• selection pressure = 1.0;

• elitism operator = active;

• isolation time = 0.

Then we show here below the structure of the beam design.gen input file:

1

100

fixed generations

200

0.85

0.01

0.0

0.0

1

1.0

1

0

The optimisation parameters are:

• simulation environment type = internal;

• kind of problem = my problem;

64 CHAPTER 3. EXAMPLES

• external code = none;

• external code model file = none;

• external code input file = none;

• external code output file = none;

• function ID = 0;

• minimisation or maximisation = minimisation;

• nobj = 1;

• constr. active or not = active;

• nconstr = 2;

• CHROMV AR = no;

• CHROMMIN exp = no 0.0;

• nchrommin nchrommax = 0 0;

• nchrom = 1;

• ngene = 2;

• nvar = 2;

• variables :

– Length, regular discrete, step 1.0 mm, bounds [100.0 500.0]mm;

– Radius, regular discrete, step 1.0 mm, bounds [10.0 50.0]mm.

Then we show here below the structure of the beam design.opt input file:

internal

my problem

none

none

none

none

0

2

1

3.3. USER-DEFINED MODEL EXAMPLE 65

1

2

no

no 0.0

0 0

1

2

2

Length

REGULAR DISCR

100.0

500.0

1.0

Radius

REGULAR DISCR

10.0

50.0

1.0

1 2

You can see the structure of the beam design.bio, beam design.pop and beam
design.sta output files in the following paths:

BIANCA 3.1 User guide\ Examples\ beam design.bio;
BIANCA 3.1 User guide\ Examples\ beam design.pop;
BIANCA 3.1 User guide\ Examples\ beam design.sta.

We perform also the post processing of results and we show here below the
structure of the post processing.inp input file:

MATLAB

linear

off

png

In this case we obtain two image files saved as Portable Network Graph-
ics files named obj min beam design.png and obj mean beam design.png. You
can find those files in the following paths:

66 CHAPTER 3. EXAMPLES

BIANCA 3.1 User guide\ Examples\ obj min beam design.png;
BIANCA 3.1 User guide\ Examples\ obj mean beam design.png.

Figs. 3.8 and 3.9 show the curves of the best feasible solution vs generations
and the average value of the objective function vs generations, respectively.

3.3. USER-DEFINED MODEL EXAMPLE 67

Figure 3.8: Best feasible solution vs generations for the beam design problem.

Figure 3.9: Average value of the objective function vs generations for the
beam design problem.

68 CHAPTER 3. EXAMPLES

3.4 Example of interface with MATLAB R©

code: Vannucci’s function problem

In order to have a general idea on how BIANCA 3.1 works when it is inter-
faced with external codes, we show here the input and output files concerning
the optimisation process on the unconstrained Vannucci’s function problem.
The problem can be stated as follows:















min f (x1, x2) = −eka
√

x2

1
+x2

2sin (ax1) cos (2bx2)

0 ≤ x1 ≤ 4π

0 ≤ x2 ≤ 2π

(3.4)

Although this problem is already implemented as test function within
BIANCA, we have rewrite this problem in MATLAB R© environment in order
to explain how you can easily interface with BIANCA any model realised
within the MATLAB R© code.

First of all we can consider the structure of the model written within
MATLAB R©. The structure is completely free, except for the part concerning
the exchange of data with BIANCA. For our example the model is written as
MATLAB R© script whose name is Vannucci.m and whose structure is shown
in Fig 3.10. The data exchange between BIANCA and our model is realised
according to what we have explained in Sec. 2.6.

You can see the structure of this MATLAB R© script in the following path:

BIANCA 3.1 User guide\ Examples\ Vannucci.m;

The name of the job session is test matlab, so the input files must have
the same name with extensions .gen and .opt and the 3 output files are going
to have the same name with extensions .bio, .pop and .sta.

The genetic parameters are:

• npop = 1;

• nind = 100;

• stop crit. = fixed generations ;

• ngen = 200;

• pcross = 0.85;

• pmut = 0.01;

3.4. EXAMPLE OF INTERFACE WITH MATLAB R© CODE 69

Figure 3.10: Structure of the Vannucci.m MATLAB R© script.

• pshift = 0.0;

• pmutchrom = 0.0;

• selection operator = roulette wheel;

• selection pressure = 1.0;

• elitism operator = active;

• isolation time = 0.

Then we show here below the structure of the test matlab.gen input file:

1

100

fixed generations

200

0.85

0.01

70 CHAPTER 3. EXAMPLES

0.0

0.0

1

1.0

1

0

The optimisation parameters are:

• simulation environment type = external;

• kind of problem = none;

• external code = MATLAB;

• external code model file = Vannucci;

• external code input file = input mat.txt;

• external code output file = output mat.txt;

• function ID = 0;

• minimisation or maximisation = minimisation;

• nobj = 1;

• constr. active or not = not active;

• nconstr = 0;

• CHROMV AR = no;

• CHROMMIN exp = no 0.0;

• nchrommin nchrommax = 0 0;

• nchrom = 1;

• ngene = 2;

• nvar = 2;

• variables :

– x 1, extended, bounds [0.0 12.556];

– x 2, extended, bounds [0.0 6.283];

3.4. EXAMPLE OF INTERFACE WITH MATLAB R© CODE 71

Then we show here below the structure of the test matlab.opt input file:

external

none

MATLAB

Vannucci

input mat.txt

output mat.txt

0

2

1

0

0

no

no 0.0

0 0

1

2

2

x 1

EXTENDED

0.0

12.556

x 2

EXTENDED

0.0

6.283

1 2

You can see the structure of the test matlab.bio, test matlab.pop and test matlab.sta
output files in the following paths:

BIANCA 3.1 User guide\ Examples\ test matlab.bio;
BIANCA 3.1 User guide\ Examples\ test matlab.pop;
BIANCA 3.1 User guide\ Examples\ test matlab.sta.

We perform also the post processing of results and we show here below the
structure of the post processing.inp input file:

72 CHAPTER 3. EXAMPLES

MATLAB

linear

off

png

In this case we obtain two image files saved as Portable Network Graph-
ics files named obj min test matlab.png and obj mean test matlab.png. You
can find those files in the following paths:

BIANCA 3.1 User guide\ Examples\ obj min test matlab.png;
BIANCA 3.1 User guide\ Examples\ obj mean test matlab.png.

Figs. 3.11 and 3.12 show the curves of the best feasible solution vs generations
and the average value of the objective function vs generations, respectively.

3.4. EXAMPLE OF INTERFACE WITH MATLAB R© CODE 73

Figure 3.11: Best feasible solution vs generations for the unconstrained Van-
nucci’s function problem.

Figure 3.12: Average value of the objective function vs generations for the
unconstrained Vannucci’s function problem.

74 CHAPTER 3. EXAMPLES

3.5 Example of interface with ANSYS R© code:

stiffened plate design problem

In order to have a general idea on how BIANCA 3.1 works when it is inter-
faced with external codes, we show here the input and output files concerning
the optimisation process on the engineering problem of the optimal design
of an aeronautical stiffened panel. Here, the optimal design of the stiffened
panel is intended in terms of minimizing its weight and, at the same time,
respecting a constraint imposed on its buckling load. The problem to obtain
a minimum weight panel which presents particular characteristics in terms
of buckling load, is a very important issue in the aeronautics.

We show here that this optimisation problem can be formulated and
solved in a very general way by applying our approach for the optimisa-
tion of modular engineering systems where not only the characteristics of
each module, but also the number of the constitutive modules are taken into
account as optimisation variables. In addition, this problem is numerically
more complex than the ones presented in the previous sections: in fact it is
a constrained optimisation problem where either the objective or the con-
straint function are evaluated by means of a Finite Element (FE) code. To
represent the wing-box section we use the ANSYS R© FE code. The optimi-
sation variables are: the number of stiffeners n, and for each stiffener there
are two design variables, i.e. the thickness tsi and the height hi, (i = 1...n).
The total number of design variables is 2n.

Concerning the mathematical formalisation of the constrained optimisa-
tion problem, it can be stated as:

{

min
n,ts,h

[

W
up
stiff (n, ts,h)

]

subject to : pref − pcr (n, ts,h) ≤ 0
(3.5)

In Eq.(3.5), W up
stiff (n, ts,h) stands for the weight of the upper panel’s stiff-

eners, while the quantities n, ts,h represent the number of stiffeners for each
panel and the vectors of stiffeners’ thickness and heights respectively, i.e. the
design variables. The quantity pcr (n, ts,h) stands for the first buckling load
of the structure, while pref is a reference value for this quantity. More details
about this problem can be found in [4].

First of all we can consider the structure of the model written within
ANSYS R©. The structure is completely free, except for the part concern-
ing the exchange of data with BIANCA. As well explained in Sec. 2.6 the
interface between the two codes is realised by means of the creation of two in-
put/output files which pass the design variables from BIANCA to ANSYS R©

3.5. EXAMPLE OF INTERFACE WITH ANSYS R© CODE 75

and the objective and constraints from ANSYS R© to BIANCA. For our case
the name of the ANSYS R© file which contains all the information about the
wing-box FE model is panel.lgw. You can see the structure of this file in the
following path:

BIANCA 3.1 User guide\ Examples\ panel.lgw;

The structure of this file is substantially articulated in three parts: the
first one concerns the reading operations of design variables that BIANCA
passes to the FE model, the second one concerns the creation of the model
and, finally, the third one concerns the writing operations of the output file
that contains the counter, objective function and constraint that ANSYS R©
passes to BIANCA.

The name of the job session is test ansys, so the input files must have the
same name with extensions .gen and .opt and the 3 output files are going to
have the same name with extensions .bio, .pop and .sta.

The genetic parameters are:

• npop = 1;

• nind = 150;

• stop crit. = fixed generations;

• ngen = 200;

• pcross = 0.85;

• pmut = 0.0067;

• pshift = 0.5;

• pmutchrom = 0.04;

• selection operator = tournament;

• selection pressure = 1.0;

• elitism operator = active;

• isolation time = 0.

Then we show here below the structure of the test ansys.gen input file:

1

76 CHAPTER 3. EXAMPLES

150

fixed generations

200

0.85

0.0067

0.5

0.04

2

1.0

1

0

The optimisation parameters are:

• simulation environment type = external;

• kind of problem = none;

• external code = ANSYS;

• external code model file = panel.lgw;

• external code input file = inputs.txt;

• external code output file = outputs.txt;

• function ID = 0;

• minimisation or maximisation = minimisation;

• nobj = 1;

• constr. active or not = active;

• nconstr = 1;

• CHROMV AR = yes;

• CHROMMIN exp = no 0.0;

• nchrommin nchrommax = 20 26;

• nchrom = 0;

• ngene = 2;

3.5. EXAMPLE OF INTERFACE WITH ANSYS R© CODE 77

• nvar = 2;

• variables :

– thick, regular discrete, step 0.1 mm, bounds [2.0 5.0]mm;

– height, regular discrete, step 0.5 mm, bounds [50.0 100.0]mm;

Then we show here below the structure of the test ansys.opt input file:

external

none

ANSYS

panel.lgw

inputs.txt

outputs.txt

0

2

1

1

1

yes

no 0.0

20 26

0

2

2

thick

REGULAR DISCR

2.0

5.0

0.1

height

REGULAR DISCR

50.0

100.0

0.5

1 2

78 CHAPTER 3. EXAMPLES

You can see the structure of the test ansys.bio, test ansys.pop and test ansys.sta
output files in the following paths:

BIANCA 3.1 User guide\ Examples\ test ansys.bio;
BIANCA 3.1 User guide\ Examples\ test ansys.pop;
BIANCA 3.1 User guide\ Examples\ test ansys.sta.

We perform also the post processing of results and we show here below the
structure of the post processing.inp input file:

MATLAB

linear

off

png

In this case we obtain two image files saved as Portable Network Graph-
ics files named obj min test ansys.png and obj mean test ansys.png. You can
find those files in the following paths:

BIANCA 3.1 User guide\ Examples\ obj min test ansys.png;
BIANCA 3.1 User guide\ Examples\ obj mean test ansys.png.

Figs. 3.13 and 3.14 show the curves of the best feasible solution vs generations
and the average value of the objective function vs generations, respectively.

3.5. EXAMPLE OF INTERFACE WITH ANSYS R© CODE 79

Figure 3.13: Best feasible solution vs generations for the stiffened plate design
problem.

Figure 3.14: Average value of the objective function vs generations for the
stiffened plate design problem.

80 CHAPTER 3. EXAMPLES

3.6 Example of interface with ABAQUS R©

code: beam design problem

In this section we consider a simple optimisation problem about beams’ de-
sign. We have a clamped beam subject to a tip load P of 1000 N. The beam
is made up by a Steel alloy with a Young modulus E equal to 200 GPa. The
beam has a rectangular cross section. The design variables are the beam’s
length L and the beam’s height h. The width b of the section is equal to
10 mm. The model of the beam is realised by means of the ABAQUS R© FE
code.
We want to find the optimal values of L and h which minimise the absolute
value of the tip displacement |δ|.

The problem can be formulated as follows:

min
L,h

|δ (L, h) | (3.6)

First of all we must consider the structure of the model written within
ABAQUS R©. Again, the structure is completely free, except for the part
concerning the exchange of data with BIANCA. As well explained in Sec.
2.6 the interface between the two codes is realised by means of the creation
of two input/output files which pass the design variables from BIANCA to
ABAQUS R© and the objective and constraints from ABAQUS R© to BIANCA.
For our case the name of the ABAQUS R© file which contains all the infor-
mation about the beam FE model is cantilevered beam.py. You can see the
structure of this file in the following path:

BIANCA 3.1 User guide\ Examples\ cantilevered beam.py;

The structure of this file is substantially articulated in three parts: the
first one concerns the reading operations of design variables that BIANCA
passes to the FE model, the second one concerns the creation of the model
and, finally, the third one concerns the writing operations of the output file
that contains the counter, objective function and constraint that ABAQUS R©
passes to BIANCA.

The name of the job session is test abaqus, so the input files must have
the same name with extensions .gen and .opt and the 3 output files are going
to have the same name with extensions .bio, .pop and .sta.

The genetic parameters are:

• npop = 1;

3.6. EXAMPLE OF INTERFACE WITH ABAQUS R© CODE 81

• nind = 30;

• stop crit. = fixed generations;

• ngen = 100;

• pcross = 0.85;

• pmut = 0.033;

• pshift = 0.0;

• pmutchrom = 0.0;

• selection operator = tournament;

• selection pressure = 1.0;

• elitism operator = active;

• isolation time = 0.

Then we show here below the structure of the test abaqus.gen input file:

1

30

fixed generations

100

0.85

0.033

0.0

0.0

2

1.0

1

0

The optimisation parameters are:

• simulation environment type = external;

• kind of problem = none;

• external code = ABAQUS;

• external code model file = cantilevered beam.py;

82 CHAPTER 3. EXAMPLES

• external code input file = input.txt;

• external code output file = out.txt;

• function ID = 0;

• minimisation or maximisation = minimisation;

• nobj = 1;

• constr. active or not = not active;

• nconstr = 0;

• CHROMV AR = no;

• CHROMMIN exp = no 0.0;

• nchrommin nchrommax = 0 0;

• nchrom = 1;

• ngene = 2;

• nvar = 2;

• variables :

– Length, extended, bounds [500.0 1000.0]mm;

– Height, extended, bounds [10.0 50.0]mm;

Then we show here below the structure of the test abaqus.opt input file:

external

none

ABAQUS

cantilevered beam.py

input.txt

out.txt

0

2

1

0

0

no

3.6. EXAMPLE OF INTERFACE WITH ABAQUS R© CODE 83

no 0.0

0 0

1

2

2

Lenght

EXTENDED

500.0

1000.0

Height

EXTENDED

10.0

50.0

1 2

You can see the structure of the test abaqus.bio, test abaqus.pop and test abaqus.sta
output files in the following paths:

BIANCA 3.1 User guide\ Examples\ test abaqus.bio;
BIANCA 3.1 User guide\ Examples\ test abaqus.pop;
BIANCA 3.1 User guide\ Examples\ test abaqus.sta.

We perform also the post processing of results and we show here below the
structure of the post processing.inp input file:

MATLAB

linear

off

png

In this case we obtain two image files saved as Portable Network Graph-
ics files named obj min test abaqus.png and obj mean test abaqus.png. You
can find those files in the following paths:

BIANCA 3.1 User guide\ Examples\ obj min test abaqus.png;
BIANCA 3.1 User guide\ Examples\ obj mean test abaqus.png.

Figs. 3.15 and 3.16 show the curves of the best feasible solution vs generations

84 CHAPTER 3. EXAMPLES

and the average value of the objective function vs generations, respectively.

Figure 3.15: Best feasible solution vs generations for the stiffened plate design
problem.

Figure 3.16: Average value of the objective function vs generations for the
stiffened plate design problem.

3.7. EXAMPLE OF INTERFACE WITH CAST3M R© CODE 85

3.7 Example of interface with CAST3M R© code:

plate design problem

86 CHAPTER 3. EXAMPLES

Bibliography

[1] A. Vincenti. Conception et optimisation de composites par mèthode po-
laire et algorithmes génétiques. PhD thesis, Université de Bourgogne,
France, 2002.

[2] A. Vincenti, M.R. Ahmadian, and P. Vannucci. Bianca: a genetic algo-
rithm to solve hard combinatorial optimisation problems in engineering.
Journal of Global Optimisation, 48:399–421, 2010.

[3] M. Montemurro, A. Vincenti, P. Vannucci, and A. Makradi. Design of
laminate’s elastic properties with minimum number of plies. Composites
Part A, (Submitted), 2010.

[4] M. Montemurro, P. Vannucci, and A. Vincenti. A genetic algorithm
with cross-over on species for structural optimisation. Computers and
Structures, (Submitted), 2010.

[5] D.E. Goldberg. Genetic algorithms. New York: Addison and Wesley,
1994.

[6] Z. Michalewicz. Genetic algorithms + data structures = evolutionary
programming. Berlin: Springer, 1994.

[7] P. Vannucci. Designing the elastic properties of laminates as an opti-
misation problem: a unified approach based on polar tensor invariants.
Structural and Multidisciplinary Optimisation, 31(5):378–387, 2006.

87

