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Bayesian inference is attractive for its coherence and good frequentist properties. However, eliciting a honest prior may be difficult and a common practice is to take an empirical Bayes approach, using some empirical estimate of the prior hyperparameters. Despite not rigorous, the underlying idea is that, for sufficiently large sample size, empirical Bayes leads to similar inferential answers as a proper Bayesian inference. However, precise mathematical results seem missing. In this work, we give more rigorous results in terms of merging of Bayesian and empirical Bayesian posterior distributions. We study two notions of merging: Bayesian weak merging and frequentist merging in total variation. We also show that, under regularity conditions, empirical Bayes asymptotically gives an oracle selection of the prior hyperparameters. Examples include empirical Bayes density estimation with Dirichlet process mixtures.

INTRODUCTION AND MOTIVATION

The Bayesian approach to inference is appealing in treating uncertainty probabilistically through conditional distributions. If (X 1 , . . . , X n )|θ have joint density p (n) θ and θ has prior density π(θ|λ), then the information on θ, given the data, is expressed through the conditional, or posterior, density π(θ|λ, x 1 , . . . , x n ) ∝ p (n) θ (x 1 , . . . , x n )π(θ|λ). Despite Bayes procedures are increasingly popular, it is a common experience that expressing honest prior information can be difficult and, in practice, one is often tempted to use some estimate λn ≡ λn (x 1 , . . . , x n ) of the prior hyperparameter λ and a posterior distribution π(•| λn , x 1 , . . . , x n ). This mixed approach is usually referred to as empirical Bayes in the literature (see [START_REF] Lehmann | Theory of Point Estimation[END_REF]). The underlying idea is that, when n is large, empirical Bayes should reasonably lead to inferential results similar to those of any Bayes procedure. Thus, an empirical Bayesian would achieve the goal of inference without completely specifying a prior.

From a Bayesian point of view, an empirical Bayes approach is not justified, but it is attractive as a computationally simple alternative to a more rigorous but usually analytically more complex hierarchical specification of the prior, of the kind θ|λ ∼ π(θ|λ) and λ ∼ h(λ). Thus, for a Bayesian statistician, empirical Bayes is of interest for two reasons: on one hand, when it is difficult to honestly fix λ, it is expected that a data-driven choice of λ leads to better inferential results; and, empirical Bayes could be a simple approximation of the hierarchical posterior distribution. This is possibly the reason of the wide use of empirical Bayes in practical applications of Bayesian methods. However, to be rigorously justified, it is necessary (a) to prove whether it is true that empirical Bayes and (hierarchical) Bayes will asymptotically agree and (b) to study whether empirical Bayes procedures have some optimality property (versus a fixed choice of λ). To our knowledge, precise general results about such asymptotic agreement and about general optimality property are missing. The aim of this paper is to provide some results in both these directions. First, we will give conditions for the asymptotic agreement, or merging, of empirical Bayes and Bayesian solutions; however, we will also individuate situations where empirical Bayes and Bayes diverge and thus, from a Bayesian viewpoint, require particular care. Then, we show that, in regular parametric cases, the maximum marginal likelihood selection of λ converges to a limit that is optimal, in the sense that it corresponds to an oracle choice of the prior that mostly favors the true model. Thus, for sufficiently large samples, empirical Bayes would give a solution that is close to the oracle Bayes and in this sense exploits information more efficiently than a fixed choice of λ.

Despite not rigorously justified, empirical Bayes is quite often used by practitioners and in the literature, see for instance [START_REF] George | Calibration and empirical Bayes variable selection[END_REF], in the context of variable selection in regression; [START_REF] Clyde | Flexible empirical Bayes estimation for wavelets[END_REF], for wavelets shrinkage estimation; [START_REF] Liu | Nonparametric hierarchical Bayes via sequential imputation[END_REF] and [START_REF] Mcauliffe | Nonparametric empirical Bayes for the Dirichlet process mixture model[END_REF] in Bayesian nonparametric mixture models, and [START_REF] Favaro | Bayesian nonparametric inference for species variety with a two parameter Poisson-Dirichlet process prior[END_REF], in Bayesian nonparametric inference for species diversity. Systematic comparison of empirical Bayes and Bayesian procedures appears less explored. A careful comparison of empirical Bayes and Bayesian variable selection criteria in regression is developed by [START_REF] Cui | Empirical Bayes vs. fully Bayes variable selection[END_REF]. In this context, a surprising result has been recently underlined by [START_REF] Scott | Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem[END_REF], who prove an asymptotic discrepancy between fully Bayesian and empirical Bayes inferences. Empirical Bayes and hierarchical Bayes procedures for nonparametric inverse problems are studied in a recent work by [START_REF] Knapik | Bayes procedures for adaptive inference in nonparametric inverse problems[END_REF]. In their case, the hyperparameter λ has an interpretation as a model index and a direct relation to the true parameter exists a priori. However, generally the hyperparameter merely characterizes some aspects of the prior so that there exists no notion of a true value of λ; thus, it is not immediately clear what would be a desirable limit of the sequence of λn . We will propose a notion of oracle value instead of a true value for λ, in Section 4.

The term empirical Bayes is indeed used with different meanings in the literature. Another common use refers to problems where a prior is introduced, but some frequentist interpretation of it is possible, typically in mixture models where X i |θ i ∼ p θ i (x) and the θ i are a sample from a latent distribution G(θ|λ). In these problems, maximum likelihood estimation of λ, i.e. of the latent distribution, is often referred to as empirical Bayes. A Bayesian approach would assign a prior distribution on λ. In these cases, a comparison between Bayes and empirical Bayes reduces to the interesting, but more standard, comparison between maximum likelihood and Bayes procedures, and it is not the object of this work.

The first question we address is whether it is true that the empirical Bayes and the Bayesian posterior distributions will be asymptotically close. In fact, a relevant counterexample has been recently pointed out by [START_REF] Scott | Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem[END_REF], in the special case of variable selection in regression models. They consider a Bayesian approach where variable selection is based on a vector of inclusion γ ∈ {0, 1} k which selects among k potential regressors, and the prior on γ = (γ 1 , . . . , γ k ) assumes that the γ i are independent Bernoulli with parameter λ, π(γ 1 , . . . , γ k |λ) ∝ λ kγ (1 -λ) k-kγ , λ ∈ (0, 1), where k γ = γ i is the selected number of covariates. In this framework, [START_REF] George | Calibration and empirical Bayes variable selection[END_REF] have shown that an empirical Bayes procedure that estimates the inclusion probability λ from the data, e.g. by maximum marginal likelihood, may be preferable to a Bayesian procedure that uses a fixed value of the prior hyperparameter λ. [START_REF] Scott | Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem[END_REF] compare this empirical Bayes approach with a hierarchical Bayes procedure that assigns a prior on λ. Surprisingly, they prove an asymptotic discrepancy between the two procedures. In particular, they show that the empirical Bayes posterior distribution on the set of models that can be degenerate on the null model (γ = (0, . . . , 0)) or on the full model (γ = (1, . . . , 1)). This might still lead to interesting pointwise estimates of the model or of the whole parameter, however, in terms of posterior distribution is far from being satisfactory. So we shed light on such phenomena by describing when and why marginal maximum likelihood empirical Bayes procedures will be pathological or, on the contrary, when and why they will have some good oracle property. These results have therefore the practical interest of characterizing, at least in the parametric case, those families of priors to be used with regard to empirical Bayes procedures and those to be avoided, in particular if one is not merely interested in point estimation, but in some more general characteristics of the posterior distribution.

We formalize the asymptotic comparison in terms of merging of Bayes and empirical Bayes procedures. We consider two notions of merging. First, we study Bayesian weak merging in the sense of [START_REF] Diaconis | On the consistency of Bayes estimates[END_REF].Then, we study frequentist strong merging in the sense of [START_REF] Ghosh | Bayesian Nonparametrics[END_REF], which compares posterior distributions in terms of total variation distance, P ∞ 0 -almost surely, where P ∞ 0 ≡ P ∞ θ 0 denotes the probability law of (X i ) i≥1 under θ 0 , the true value, in the frequentist sense, of the parameter θ. It is worth noting that, when strong merging holds, if Bernstein von-Mises holds in the L 1 -sense for the Bayes posterior, then it also holds for the empirical Bayes posterior.

Developing from [START_REF] Diaconis | On the consistency of Bayes estimates[END_REF], we see (Section 3) that weak merging of Bayes and empirical Bayes posterior distributions holds if and only if the empirical Bayes posterior is weakly consistent, in the frequentist sense, at θ 0 , for every θ 0 in the parameter space Θ. Thus, conditions for weak consistency of empirical Bayes posteriors are needed. Besides the Bayesian motivations in terms of merging, consistency is of autonomous interest from a frequentist viewpoint, and we consider it in a general context. Conditions for empirical Bayes consistency are generally stronger than those needed for consistency of Bayes posteriors. We provide sufficient conditions that cover both parametric and nonparametric cases. In fact, an empirical Bayes approach is even more tempting in nonparametric problems, since frequentist properties of Bayes procedures are known to crucially depend on fine details of the prior [START_REF] Diaconis | On the consistency of Bayes estimates[END_REF] and on a careful choice of the prior hyperparameters. We exhibit examples to illustrate empirical Bayes consistency for Dirichlet process mixtures, which is a commonly used nonparametric prior.

Even when consistency and weak merging hold, simple examples show that the empirical Bayes posterior can have unexpected and counterintuitive behaviors. Frequentist strong merging is a way to refine the analysis. Obtaining strong merging of Bayes posteriors in nonparametric contexts is often impossible since pairs of priors are typically singular. Thus, in tackling this issue, we concentrate on parametric models and on the specific, but important, case of the maximum marginal likelihood λn . In this setup, we find that the behavior of the empirical Bayes posterior is essentially driven by the behavior of the prior at θ 0 . Roughly speaking, if sup λ π(θ 0 |λ) is reached for a value λ 0 (here unique for simplicity) in the boundary of Λ and this is such that π(θ|λ 0 ) is degenerate on θ 0 , then the empirical Bayes posterior will not merge with any (hi-erarchical) Bayes posterior distribution. We illustrate this behavior in Bayesian regression with g-priors. Conversely, if sup λ π(θ 0 |λ) < ∞, which is the case if it is reached for λ 0 in the interior of Λ, then λn converges to λ 0 and frequentist strong merging holds. The value λ 0 can be understood as the prior oracle as it is the value of the hyperparameters such that the prior mostly favors the true θ 0 . Under this respect, the empirical Bayes posterior achieves some kind of optimality. The asymptotic selection of the oracle value λ 0 suggests that empirical Bayes may have better finite sample properties than a Bayesian solution with a fixed choice of λ. Finite sample comparisons are beyond the scope of this work, but we have a discussion at the end of the paper.

The paper is organized as follows. In Section 2, we define the context and the notation. In Section 3, we study Bayesian merging and consistency of empirical Bayes posteriors. Parametric and nonparametric examples illustrate these results. In Section 4, we study frequentist strong merging and obtain, as a by-product, that in regular cases the empirical Bayes procedure leads to an oracle choice of the prior hyperparameter. Some open issues are discussed in Section 5.

w.r.t. µ. In the sequel, we use the short notation X 1:n = (X 1 , . . . , X n ) and x ∞ = (x 1 , x 2 . . . ). Let {Π(•|λ) : λ ∈ Λ} be a family of prior probability measures on Θ. Given a prior Π(•|λ), we denote by Π(•|λ, X 1:n ) the corresponding posterior distribution of θ, given X 1:n .

The empirical Bayes approach consists in estimating the hyperparameter λ by λn ≡ λn (X 1:n ) and plugging the estimate into the posterior distribution. In general, λn takes values in the closure Λ of Λ. For λ 0 in the boundary ∂Λ of Λ, we define Π(•|λ 0 ) as the σ-additive weak limit of Π(•|λ) for λ → λ 0 , when it exists. We use the notation P n ⇒ P to mean that P n converges weakly to P , for any probabilities P n , P , and the notation f 1 for the L 1 -norm of a function f . We shall say that the empirical Bayes posterior is well defined if Π(•| λn , X 1:n ) is a probability measure for all large n, P ∞ θ -almost surely, for all θ. Then, the empirical Bayes posterior is defined, on all Borel sets B, as

Π(B| λn , X 1:n ) = B p (n) θ (X 1:n ) dΠ(θ| λn ) Θ p (n) θ (X 1:n ) dΠ(θ| λn )
.

It will also be denoted, with shorter notation, by Π n, λn . Throughout the paper, the empirical Bayes posterior is always tacitly assumed to be well defined.

Many types of estimators λn can be considered: in particular, the maximum marginal likelihood, defined as λn ∈ argsup λ m(X 1:n |λ), where m(X 1:n |λ) = Θ p (n) θ (X 1:n ) dΠ(θ|λ), is the most popular. Whenever we consider the maximum marginal likelihood estimator, we assume that sup λ m(X 1:n |λ) < ∞ for all large n, P ∞ θ -almost surely, for all θ, and write m(X 1:n ) = m(X 1:n | λn ). We shall present general results for the empirical Bayes posterior without specifying the type of estimator λn , as well as specific results for the maximum likelihood.

BAYESIAN WEAK MERGING AND CONSISTENCY 3•1. Bayesian merging of Bayes and empirical Bayes inferences

Merging formalizes the idea that two posteriors or, in a predictive setting, two predictive distributions of all future observations, given the past, will eventually be close. A well-known result by [START_REF] Blackwell | Merging of opinions with increasing information[END_REF] establishes that, for P and Q probability laws of a process (X i ) i≥1 , if P and Q are mutually absolutely continuous, then there is strong merging of the predictions of future events, given the increasing information provided by the data X 1:n . For exchangeable P and Q corresponding to priors Π and q, respectively, P and Q are mutually absolutely continuous if and only if Π and q are such. However, the empirical Bayes approach only gives a sequence of posterior distributions Π n, λn , without having a properly defined probability law of the process (X i ) i≥1 . Thus, the above result on strong merging does not apply. Furthermore, Blackwell and Dubins' result does not apply when the priors are singular, as it is often the case in nonparametric problems. [START_REF] Diaconis | On the consistency of Bayes estimates[END_REF] gave a notion of weak merging that applies even when strong merging does not. Two sequences of probability measures p n and q n are said to merge weakly if and only if | g dp n -g dq n | → 0 for all continuous and bounded functions g. Diaconis and Freedman showed that two Bayesians with different priors will merge weakly if and only if one Bayesian has weakly consistent posterior, in the frequentist sense, at θ, for every θ ∈ Θ. We show that an analogous result holds here: the empirical Bayes merges with any Bayesian if and only if the empirical Bayes posterior is weakly consistent at θ, for every θ ∈ Θ.

The results are herein restricted to the case of exchangeable sequences, thus, given θ, the X i 's are independent and identically distributed with common distribution P θ . Given a prior Π on Θ, we use Π n (•) to denote the posterior distribution Π(•|X 1 , . . . , X n ), and P Π for the exchangeable probability law of the process (X n ) n≥1 defined through Π. Recall that a posterior distribution

Π n is weakly consistent at θ if, for any weak neighborhood W of θ, Π n (W c ) → 0, almost surely- [P ∞ θ ]
, for all θ ∈ Θ, where P ∞ θ here denotes the infinite product measure on X ∞ . Let Π n, λn be the empirical Bayes posterior as described in Section 2. The following result is a straightforward consequence of Theorem A.1 in [START_REF] Diaconis | On the consistency of Bayes estimates[END_REF].

PROPOSITION 1. Let the map θ → P θ be one-to-one and Borel. Given a family of priors {Π(•|λ) : λ ∈ Λ}, the empirical Bayes posterior is consistent at any θ ∈ Θ if and only if, for any prior probability q on Θ, the empirical Bayes posterior and the Bayes posterior q n weakly merge with P q -probability 1.

The proof is immediate since it suffices to note that the proof for the equivalences (i)-(iv) in Theorem A.1 of [START_REF] Diaconis | On the consistency of Bayes estimates[END_REF], page 18, goes through to the present case: in fact, it is based on the properties of the Bayesian posterior q n , whereas, for the posterior Π n, λn , only consistency is required.

Proposition 1 shows that any Bayesian can be sure that her estimate with respect to quadratic loss of any continuous and bounded function g will asymptotically agree with the empirical Bayes estimate, if and only if the empirical Bayes posterior is consistent at any θ. If so, in particular, a Bayesian with hierarchical prior

Π h (θ) = Π(θ|λ)h(λ) d λ is sure that | g(θ) dΠ(θ| λn , X 1:n ) - g(θ) dΠ(θ|λ, X 1:n )h(λ|X 1:n )dλ| → 0, where h(λ|X 1:n ) is the posterior density of λ.
The above results show that even a minimal requirement such as weak merging is not guarantee; in fact, it holds if and only if the empirical Bayes posterior is weakly consistent. Note that consistency refers to the posterior distribution on θ, and cannot be refereed to the sequence of estimators λn , since in our context there is generally no notion of true value of λ. Besides its Bayesian motivations in terms of merging, from a frequentist viewpoint consistency is a basic property of autonomous interest. Thus, we study consistency of empirical Bayes in a more general case, for dependent sequences beyond the case of exchangeability, and covering both parametric and nonparametric problems. Clearly, consistency of the empirical Bayes posterior distributions requires more care than for standard Bayesian procedures, since the prior is datadependent through λn and one has to control the behavior of the sequence of estimators λn . We give two results, one for procedures where λn is computed by maximum likelihood and one for the case when λn is a convenient sequence of estimators.

To be more specific, let (Θ, d) be a semi-metric space. For any ǫ > 0, let

U ǫ ≡ U ǫ (θ 0 ) = {θ ∈ Θ : d(θ, θ 0 ) < ǫ} denote the open ball centered at θ 0 with radius ǫ. The empirical Bayes posterior is consistent at θ 0 if, for any ǫ > 0, Π(U c ǫ | λn , X 1:n ) → 0 almost surely-P ∞ 0 ,
where

P ∞ 0 denotes the probability measure of (X i ) i≥1 under θ 0 . For θ ∈ Θ, let R(p (n) θ ) = (p (n) θ /p (n) θ 0 )(X 1:n ) denote the likelihood ratio.
We shall use the following assumptions.

(A1) There exist constants c 1 , c 2 > 0 such that, for any ǫ > 0,

P * 0 sup θ∈U c ǫ R(p (n) θ ) ≥ e -c 1 nǫ 2 ≤ c 2 (nǫ 2 ) -(1+t)
for some t > 0, where P * 0 denotes the outer measure.

(A2) For each θ 0 ∈ Θ, there exists λ 0 ∈ Λ such that, for any η > 0, Π(B KL (θ 0 ; η)|λ 0 ) > 0, where, for KL ∞ (θ 0 ; θ) = -lim n→∞ n -1 log R(p (n) θ ), the set B KL (θ 0 ; η) = {θ ∈ Θ : KL ∞ (θ 0 ; θ) < η}.
When compared to the assumptions usually considered for posterior consistency, (A1) is quite strong; it is, however, a common assumption in the maximum likelihood estimation literature. It is verified in most parametric models, see for instance [START_REF] Schervish | Theory of Statistics[END_REF], and also in nonparametric models. For instance, [START_REF] Wong | Probability inequalities for likelihood ratios and convergence rates of sieves MLEs[END_REF] proved that, for independent and identically distributed observations with density p θ , if U ǫ is the Hellinger open ball centered at p θ 0 with radius ǫ, then a sufficient condition for (A1) to hold true is that there exist constants c 3 , c 4 > 0 such that, for each ǫ > 0,

√ 2ǫ ǫ 2 /2 8 H [ ] (u/c 3 , Θ, h) du ≤ c 4 √ nǫ 2 for n large enough, (3.1)
where the function H [ ] (•, Θ, h) denotes the Hellinger bracketing metric entropy of Θ. In some cases (A1) can be weakened into

P * 0 sup θ∈Uǫ∩Θn R(p (n) θ ) ≥ e -c 1 nǫ 2 ≤ c 2 (nǫ 2 ) -(1+t) ,
where

Θ n ⊂ Θ is such that Π(Θ c n | λn , X 1:n ) = o P 0 (1)
. Note that, contrariwise to fully Bayes approaches, the fact that the prior is data-dependent prevents the use of exponential bounds on Π(Θ c n ) to control the posterior probability of Θ c n . However, in Section 3.2.4 we provide a nonparametric example where we can prove directly that the empirical Bayes posterior probability of Θ c n goes to 0.

In this paper, (A1) is used to handle the numerator of the ratio defining the posterior probability of any neighborhood U ǫ in the following way. By the first Borel-Cantelli lemma, (A1)

implies that sup θ∈U c ǫ R(p (n)
θ ) < e -c 1 nǫ 2 for all large n, P ∞ 0 -almost surely . Thus, for all large n,

U c ǫ R(p (n) θ ) dΠ(θ| λn ) ≤ Π(U c ǫ | λn ) sup θ∈U c ǫ R(p (n) θ ) ≤ sup θ∈U c ǫ R(p (n) θ ) < e -c 1 nǫ 2 (3.2)
P ∞ 0 -almost surely. Note that the bound in (3.2) is valid for any type of estimator λn . Assumption (A2) is the usual Kullback-Leibler prior support condition, herein required to hold true for some value λ 0 ∈ Λ. It is a mild assumption considered in most results on posterior consistency and has been shown to be satisfied for various models and families of priors. The rather abstract definition of KL ∞ (•; •) is mainly considered to deal with dependent data. In the case of independent and identically distributed sequences, KL ∞ (θ 0 ; θ) is simply the Kullback-Leibler divergence between the densities p θ 0 and p θ (per observation). In the present context, it is used when λn is the maximum marginal likelihood to bound from below m(X 1:n )/p

(n) θ 0 (X 1:n ).
For other types of estimator λn , a variant of (A2) is considered, cf. conditions (ii)-(iii) of Proposition 3.

We first study consistency of the empirical Bayes posterior when λn is the maximum marginal likelihood.

3•2. Case of the maximum marginal likelihood estimator

Let λn be the maximum marginal likelihood as defined in Section 2. We have the following result.

PROPOSITION 2. Under assumptions (A1) and (A2), the posterior Π(•| λn , X 1:n ), where λn is the maximum marginal likelihood estimator, is consistent at θ 0 , i.e. for any ǫ > 0,

Π(U c ǫ | λn , X 1:n ) → 0, P ∞ 0 -almost surely.
The proof of Proposition 2 is deferred to the Appendix.

Although one could expect that the usual Kullback-Leibler prior support condition, here (A2), implies weak consistency of the empirical Bayes posterior, as it happens for Bayesian posteriors, it is, however, not the case and additional assumptions on the behavior of the likelihood ratio and/or on the prior need to be required, as illustrated in the following example. Consider Bahadur (1958)'s example, see also [START_REF] Lehmann | Theory of Point Estimation[END_REF], pages 445-447, and [START_REF] Ghosh | Bayesian Nonparametrics[END_REF], pages 29-31. Let Θ = N * . For each θ = k, a density p θ on [0, 1] is defined as follows. Let a 0 = 1 and define recursively a k by

a k-1 a k [h(x) -C] dx = 1 -C, where 0 < C < 1 is a given constant and h(x) = e 1/x 2 . Since 1 0 e 1/x 2 dx = ∞, the a k 's are uniquely determined and the sequence a k → 0 as k → ∞. For θ ∈ Θ, define p θ (x) =      h(x), if a θ < x ≤ a θ-1 , C, if x ∈ [0, 1] ∩ (a θ , a θ-1 ] c , 0, otherwise.
Let X 1 , . . . , X n |θ ∼ p θ independently. The maximum likelihood θn exists and tends to ∞ in probability, regardless of the true value θ 0 = k 0 of θ. It is, therefore, inconsistent. On the other hand, Θ being countable, by Doob's theorem, any proper prior on Θ leads to a consistent posterior at all θ ∈ Θ. Consider a family of priors {Π(•|λ) : λ ∈ Λ} such that, for each θ, there exists λ ∈ Λ for which Π(•|λ) = δ θ . It is always possible to construct such a family of priors.

For λ = (m, σ), let

Π(1|λ) = Φ((1/2 -m)/σ) -Φ((-1/2 -m)/σ), Π(θ|λ) = Φ((θ -1/2 -m)/σ) -Φ((θ -3/2 -m)/σ) + Φ((-θ -3/2 -m)/σ) -Φ((-θ -1/2 -m)/σ) for θ > 1,
where Φ is the cumulative distribution function of a standard Gaussian random variable. By taking m = θ -1 and letting σ → 0, we have as a limit the Dirac mass at θ because Π(1|λ) = 0 and Π(θ|λ) → 1. Thus, for each k 0 ∈ N * , by taking m = k 0 -1 and letting σ → 0, we have as a limit the Dirac mass at k 0 . Then, the posterior is the Dirac mass at the maximum likelihood estimator θn , which is inconsistent. To see this, note that

∀ λ ∈ Λ, m(X 1:n |λ) ≤ n i=1 p θn (X i ) and m(X 1:n ) = m(X 1:n |( θn -1, 0)) = n i=1 p θn (X i ).
Proposition 2 gives a result on consistency, however it can be easily turned into a result on posterior concentration rates by replacing ǫ by ǭn in (A1) and changing the Kullback-Leibler neighborhood in (A2) with S n = {θ : KL(p [START_REF] Ghosal | Convergence rates of posterior distributions for noniid observations[END_REF].

(n) θ 0 ; p (n) θ ) ≤ nǫ 2 n , V (p (n) θ 0 , p (n) θ ) ≤ nǫ 2 n }, with V (p, p ′ ) = p(log(p/p ′ )) 2 (x)dx as in

3•3. Case of a convergent λn

In some applications, λn is chosen to be a convenient statistic, such as some moment estimator, so that the prior is centered at a plausible value for the parameter. In such cases, λn has often a known asymptotic behavior, which however does not guarantee that the empirical Bayes posterior has a stable behaviour, too. In the following proposition, we give sufficient conditions for consistency of the empirical Bayes posterior in such situations. Suppose that the parameter is Assume that (A1) is satisfied and

(i) Π(•| λn ) ⇒ Π(•|λ 0 ) P ∞ 0 -almost surely, (ii) for each η > 0, there exists a set K η ⊆ B KL (θ 0 ; η) such that Π(K η |λ 0 ) > 0, (iii) defined, for each x ∞ ∈ X ∞ and any η > 0, the set E (η) x ∞ =    (τ, ζ) ∈ K η : 1 n log p (n) (τ 0 , ζ 0 ) p (n) (τn, ζ) (x 1:n ) KL ∞ ((τ 0 , ζ 0 ); (τ, ζ)) for some τ n → τ    , E (η) 
x ∞ ∈ B(T) ⊗ B(Z) and, for

P ∞ 0 -almost every x ∞ ∈ X ∞ , Π(E (η) x ∞ |λ 0 ) = 0. (3.3) Then, for any ǫ > 0, Π(U c ǫ | λn , X 1:n ) → 0 a.s. [P ∞ 0 ].
The proof of Proposition 3 is postponed to the Appendix. Condition (i) is a natural condition when λn is an explicit estimator (as opposed to the maximum marginal likelihood). Condition (ii) is the usual Kullback-Leibler prior support condition, except for the fact that here it concerns the support of the limiting prior. Condition (iii) is more unusual. If, in the definition of E (η)

x ∞ , the τ n 's were fixed at τ , then (iii) would be a basic ergodic condition on the support of Π(•|λ 0 ), so the difficulty comes from obtaining an ergodic theorem uniformly over neighborhoods of τ . In the case of independent and identically distributed observations, the following condition implies (iii).

If ∀ η, ǫ > 0, ∀ θ ∈ K η , ∃ δ ≡ δ(θ, ǫ) > 0 : E 0 sup θ ′ ∈Θ: d(θ ′ , θ)<δ log p θ p θ ′ (X 1 ) < ǫ 2 ,
then standard strong law of large numbers arguments imply that there exists a set

X ∞ 0 ⊆ X ∞ , with P ∞ 0 (X ∞ 0 ) = 1, such that, for each x ∞ ∈ X ∞ 0 , condition (3.
3) is satisfied. We now show two examples that illustrate the above consistency results. The examples refer to nonparametric problems, where the asymptotic behavior of the empirical Bayes procedure is more delicate.

Example 1. Dirichlet process mixtures of Gaussians are popular Bayesian nonparametric priors, commonly used for density estimation and in a wide range of problems. A univariate Dirichlet process scale-location mixture of Gaussians assumes that X i |G are independently distributed according to p G (•) = φ(•|µ, σ 2 ) dG(µ, σ), where φ(•|µ, σ 2 ) denotes the Gaussian density with parameters µ and σ 2 . The mixing distribution G is given a Dirichlet process prior with parameter λᾱ(•), G ∼ DP(λᾱ), where λ is a positive scalar and ᾱ is a probability measure on R × R + * with R + * = {x ∈ R : x > 0}. The choice of the scale parameter λ has a crucial impact on inference and this has suggested to treat it as random, assigning it a hyperprior in a hierarchical Bayes approach, or to fix it by empirical Bayes [START_REF] Liu | Nonparametric hierarchical Bayes via sequential imputation[END_REF]; McAuliffe, Blei and Jordan ( 2006)), which has computational advantages. In particular, [START_REF] Liu | Nonparametric hierarchical Bayes via sequential imputation[END_REF] considers the marginal maximum likelihood estimator of λ for Dirichlet process mixtures of Binomial distributions, but his argument remains valid for more general kernels [START_REF] Petrone | A note on the Dirichlet process prior in Bayesian nonparametric inference with partial exchangeability[END_REF]. Liu shows that the marginal maximum likelihood λn is the solution of

n j=1 λ λ + j -1 = E[K n |λ, X 1:n ], (3.4) 
where E[K n |λ, X 1:n ] is the expected number of occupied clusters under the conditional posterior distribution, given λ. Note that, even if the model is parametrized in the mixing distribution G, Dirichlet Process mixtures of Gaussians are usually thought as priors on the space of densities p on X . Let U ǫ = {p : h(p, p 0 ) < ǫ} where h is the Hellinger metric and p 0 the true density. 

If we assume that ᾱ has support

A × [σ, σ], with A a compact interval of R, 0 < σ < σ < ∞ and Θ = {G : supp(G) ⊆ A × [σ, σ]},
= p G 0 , with support(G 0 ) ⊆ A × [σ, σ], then also condition (A2) is satisfied.
The existence of a solution of (3.4) implies that the empirical Bayes posterior for the unknown density is well defined, and, using Proposition 2, we get consistency.

Example 2. Let us now consider a Dirichlet Process location mixture of Gaussians:

X i |(F, σ) independently distributed according to p F, σ (•) = φ(•|µ, σ 2 ) dF (µ), with F ∼ DP(α R N(λ, τ 2 ))
, where α R is a positive constant and N(λ, τ 2 ) denotes the Gaussian distribution with mean λ and variance τ 2 , and σ having prior distribution H with support [σ, σ], 0 < σ < σ < ∞. We consider empirical Bayes selection of λ and a natural candidate is λn = Xn . The prior on F is then a DP(α R N( Xn , τ 2 )).

We prove consistency of the empirical Bayes posterior for the unknown density of the data with respect to the Hellinger or the L 1 -distance. Let the true density be a mixture p F 0 , σ 0 , with σ 0 ∈ [σ, σ] and F 0 satisfying F 0 ([-a, a] c ) e -c 0 a 2 for all large a and a constant c 0 > 0, and let m 0 = E 0 [X 1 ] be the mean of X 1 under p F 0 , σ 0 . For fixed ǫ > 0, choose 0 < δ < ǫ 2 small enough and a n = n q , with 1/4 < q < 1. Consider the sieve set [START_REF] Ghosal | Posterior convergence rates of Dirichlet mixtures at smooth densities[END_REF], combined with the proof of Theorem 7 in [START_REF] Ghosal | Posterior convergence rates of Dirichlet mixtures at smooth densities[END_REF]

Θ n = {(F, σ) : F ([-a n , a n ]) > 1 -δ, σ ∈ [σ, σ]}. From Theorem 6 in
, if Θn = {(F, σ) : F ([-a n , a n ]) = 1, σ ∈ [σ, σ]}, for all ǫ 2 /2 8 < u < √ 2ǫ, H [ ] (u/c 3 , Θ n , h) a n (log a n + log(1/ǫ)) 2 . Thus,
for n large enough,

√ 2ǫ ǫ/2 8 (H [ ] (u/c 3 , Θ n , h)) 1/2 du ǫ √ a n (log a n ) < ǫ 2 √ n, since a n = n q with 1/4 < q < 1. By (3.2), P ∞ 0 -almost surely, H c ǫ ∩Θn R(p (n) F, σ ) dΠ(F, σ| λn ) < e -c 1 nǫ 2 for all large n. We now show that E 0 [ Θ c n R(p (n) F, σ ) dΠ(F, σ| λn )] = o(1). Since Xn a.s.
-→ m 0 , we have N( Xn , τ 2 ) a.s.

=⇒ N(m 0 , τ 2 ). By Theorem 3.2.6 in [START_REF] Ghosh | Bayesian Nonparametrics[END_REF], pages 105-106, DP(α R N( Xn , τ 2 )) a.s.

=⇒ DP(α R N(m 0 , τ 2 )) and condition (i) of Proposition 3 is fulfilled with λ 0 = m 0 . Denote by Π(•|λ 0 ) the overall limiting prior DP(α R N(m 0 , τ 2 )) × H.

When F ∼ DP(α R N( Xn , τ 2 )), using the stick-breaking representation, we have p F, σ (•)

a.s. = ∞ j=1 p j φ(•|ξ j , σ 2 ), with ξ j ∼ N( Xn , τ 2 ) and independent. As φ(•|ξ j , σ 2 ) = φ(•|( Xn - m 0 ) + ξ ′ j , σ 2 ), with ξ ′ j ∼ N(m 0 , τ 2 ), we have p F, σ (•) = p F ′ , σ (• -( Xn -m 0 )), with F ′ ∼ DP(α R N(m 0 , τ 2 )). Let A n be the set wherein the inequality | Xn -m 0 | ≤ L/
√ n holds for some constant L > 0. Note that P

(n) θ 0 (A c n ) can be made as small as needed by choosing L large enough. Using the above representation of the Dirichlet prior,

p (n) F ′ , σ (X 1:n -( Xn -m 0 )) ≤ n i=1 φ(X i |ξ, σ 2 )e L|X i -ξ| √ nσ 2 dF ′ (ξ) = c n n, σ n i=1 g σ (X i -ξ) dF ′ (ξ),
where g σ is the probability density proportional to φ(y|0, σ 2 )e L|y|/( √ nσ 2 ) and

c n, σ = φ(y|0, σ 2 )e L|y|/( √ nσ 2 ) dy ≤ e L 2 /(2nσ 2 ) 1 + 2L σ √ n , which implies that E 0 I An (X 1:n ) Θ c n R(p (n) F, σ ) dΠ(F, σ| λn ) 1 + 2L σ √ n n Π(Θ c n |λ 0 ) e -c 1 a 2 n +c 2 √ n ≤ e -c 1 a 2 n /2 ,
for n large enough, by definition of a n . Next, we bound from below the denominator of the ratio defining the empirical Bayes posterior probability of the set H c ǫ . Using similar computations to those above, on

A n , Θ R(p (n) F, σ ) dΠ(F, σ| λn ) e -L 2 2σ 2 c n n, σ Θ R(g (n) F ′ , σ ) dΠ(F ′ , σ|λ 0 ), with gF ′ , σ (•) = c -1 n, σ φ(•|ξ, σ 2 )e -L |•-ξ| √ nσ 2 dF ′ (ξ)
, where, with abuse of notation, we still denote by c n, σ the normalizing constant. Using computations similar to those in the proof of (5.21) in [START_REF] Ghosal | Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities[END_REF], we obtain that, for any η > 0, Θ R(g

(n)
F ′ , σ ) dΠ(F ′ , σ|λ 0 ) ≥ e -nη for n large enough. Consistency of the empirical Bayes posterior for the unknown density follows.

We conclude this section with a parametric example which, while very simple, is illuminating in showing that, even when consistency and weak merging hold, the empirical Bayes posterior distribution may exhibit very different behaviour and in fact can diverge from any Bayesian posterior and underestimate the uncertainty on θ.

Example 3. Consider X i | θ ∼ N(θ, σ 2 ) independently, with σ 2 known; this model satisfies condition (A1). Let θ ∼ N(m, τ 2 ).
Case 1. If τ 2 is fixed, and m = λ is estimated by maximum marginal likelihood, then λn = Xn and the resulting empirical Bayes posterior distribution is N( Xn , (1/τ 2 + n/σ 2 ) -1 ), a completely regular density. This sequence of posteriors can be seen to be consistent by direct computations, thus it merges weakly with any Bayesian posterior distribution.

Case 2. Let us now consider empirical Bayes inference when the prior variance λ = τ 2 is estimated by maximum marginal likelihood, while m is fixed. Then (see e.g. [START_REF] Lehmann | Theory of Point Estimation[END_REF], page 263)

σ 2 + nτ 2 n = max{σ 2 , n( Xn -m) 2 }, so that τ 2 n = σ 2 n -1 max n( Xn -m) 2 /σ 2 -1, 0 . The resulting posterior Π(•|τ 2 n , X 1:n ) is Gaussian with mean m n = (σ 2 /n)/(τ n + σ 2 /n)m + τ 2 n /(τ n + σ 2 /n)x n and variance (1/τ n + n/σ 2 ) -1 .
A hierarchical Bayes approach would assign a prior on τ 2 such as 1/τ 2 ∼ Gamma(a, b). This leads to a Student's-t prior distribution for θ, with flatter tails, that may give better frequentist properties, see, for example, [START_REF] Berger | Subjective hierarchical Bayes estimation of a multivariate normal mean: on the frequentist interface[END_REF], [START_REF] Berger | Choice of hierarchical priors: admissibility in estimation of normal means[END_REF]. However, the Student's-t prior is no longer conjugate and the empirical Bayes posterior is simpler to compute. Yet, in this example, the empirical Bayes posterior is only partially regular, in the sense that τ 2 n can be equal to zero so that Π(•|τ 2 n , X 1:n ) can be degenerate at m. Simple computations show that the probability that τn = 0 goes to zero if the true θ 0 = m, but it remains strictly positive if θ 0 = m. This suggests that if θ 0 = m, the hierarchical and the empirical Bayes posterior densities can be asymptotically close; however, if θ 0 = m, there is a positive probability that the empirical Bayes and the Bayesian posterior distributions are singular. From a Bayesian perspective, the possible degeneracy of the empirical Bayes posterior is a pathological behaviour.

Case 3. One could object that, despite unsatisfactory from a Bayesian viewpoint, the empirical Bayes posterior would be degenerate on the true value of θ. However, the case where λ = (m, τ 2 ) shows that empirical Bayes may dramatically underestimate the posterior uncertainty. In this case, the maximum marginal likelihood for λ is λn = ( Xn , 0). The posterior is then completely irregular in the sense that it is always degenerate at Xn . This is clearly an extreme example, but it is more general than the Gaussian case and applies, in particular, to any location-scale family of priors. Indeed, if the model p (n) θ admits a maximum likelihood θn and π(•|λ) is of the form σ -1 g((• -µ)/σ), with λ = (µ, σ), for some unimodal density g which is maximum at 0, then λn = ( θn , 0) and the empirical Bayes posterior is the point mass at θn . This shows that such families of priors should not be used in combination with maximum marginal likelihood empirical Bayes procedures.

FREQUENTIST STRONG MERGING AND ASYMPTOTIC BEHAVIOR OF λn

As illustrated in the simple Gaussian example above, stronger forms of merging are needed to capture and explain possible divergent behavior. In this section we study frequentist strong merging [START_REF] Ghosh | Bayesian Nonparametrics[END_REF] of empirical Bayes and Bayesian posterior distribu-tions. We recall that two sequences Π n and q n of probability measures on Θ are said to merge strongly if their total variation distance converges to zero P ∞ 0 -almost surely. We limit here our attention to the parametric case, thus Θ ⊆ R k for finite k, and we suppose that the prior probability measure Π(θ|λ) has density π(θ|λ) with respect to Lebesgue measure for all λ ∈ Λ ⊆ R ℓ . Before formally stating a general result which describes the asymptotic behaviour of empirical Bayes posteriors, we present an informal argument to explain the heuristics behind it. Under usual regularity conditions on the model, the marginal likelihood, given λ, can be approximated as

m(X 1:n |λ) = π(θ 0 |λ) p (n) θn (X 1:n ) n k/2 × O P θ 0 (1)
If we could interchange the maximization and the limit, we would have

argsup λ m(X 1:n |λ) = argsup λ π(θ 0 |λ) + o p (1).
An interesting phenomenon occurs: assuming the above argument is correct, the maximum marginal likelihood estimate is asymptotically maximizing the value π(θ 0 |λ) of the prior density at true value θ 0 of the parameter. In other words, it selects the most interesting value of the hyperparameter λ in the prior. We call the set of values of λ maximizing π(θ 0 |λ) the prior oracle set of hyperparameters and denote it by Λ 0 . In terms of (strong) merging, however, Λ 0 may correspond to unpleasant values, typically if the supremum is reached for values of λ on the boundary of Λ and these correspond to a prior Dirac mass at θ 0 ; for continuous θ, this may happen if sup λ∈Λ π(θ 0 |λ) = ∞. Then, the empirical Bayes posterior is degenerate. This is what happens in case 2 of Example 3 or, more generally, when π(•|λ) is a location-scale family and λ contains the scale parameter. Obviously, in such cases, we cannot interchange the limit and the maximization. We now present these ideas more rigorously. The map g : θ → sup λ∈Λ π(θ|λ) from Θ to R + induces a partition {Θ 0 , Θ c 0 } of Θ, with Θ 0 = {θ ∈ Θ : g(θ) < ∞} and Θ c 0 = {θ ∈ Θ : g(θ) = ∞}. As illustrated in the above heuristic discussion and proved in Sections 4•1 and 4•2 below, if θ 0 ∈ Θ 0 , then the empirical Bayes posterior is regular; thus we refer to the case θ 0 ∈ Θ 0 as the non-degenerate case. Instead, if θ 0 ∈ Θ c 0 , referred as the degenerate case, the empirical Bayes posterior may be degenerate and fail to merge strongly with any regular Bayes posterior.

4•1. Non-degenerate case

In the non-degenerate case, we give sufficient conditions for the EB posterior Π(•| λn , X 1:n ), where λn is the maximum marginal likelihood, to merge strongly with any posterior Π(•|λ, X 1:n ), λ ∈ Λ. In fact, the ultimate goal is to establish strong merging with hierarchical Bayes, as empirical Bayes is commonly used as an approximation of a hierarchical Bayes posterior. We make the comparison with a Bayesian posterior corresponding to a fixed choice of λ only for technical reasons, but note that, if both the prior π(•|λ) and the hierarchical prior π(θ|λ)h(λ)dλ are positive and continuous at θ 0 , and the corresponding posteriors are consistent, then, by Theorem 1.3.1 of [START_REF] Ghosh | Bayesian Nonparametrics[END_REF], pages 18-20, the latter merge strongly. Thus, strong merging of Π(•| λn , X 1:n ) and Π(θ|λ, X 1:n ) implies strong merging of the EB posterior with any hierarchical Bayes posterior satisfying the above conditions. Let θ 0 ∈ Θ 0 , and define the set

Λ 0 = {λ 0 ∈ Λ : π(θ 0 |λ 0 ) = g(θ 0 )}.
THEOREM 1. Suppose that θ 0 ∈ Θ 0 . Assume that (A1) is satisfied and (i) the map g : θ → sup λ∈Λ π(θ|λ) is positive and continuous at θ 0 ;

(ii) there exists a non-empty subset Λ of Λ 0 such that, for any λ 0 ∈ Λ, Π(U ǫ ∩ B KL (θ 0 ; η)|λ 0 ) > 0 for all ǫ, η > 0.

Then, for each

λ 0 ∈ Λ0 , m(X 1:n ) m(X 1:n |λ 0 ) → 1 a.s. [P ∞ 0 ]. (4.1)
If, in addition to (i) and (ii), the following assumption is satisfied (iii) Λ0 = Λ 0 is included in the interior of Λ and, for any δ > 0, there exist ǫ, η > 0 so that

sup θ∈Uǫ sup λ∈Λ: d(λ, Λ 0 )>δ π(θ|λ) g(θ) ≤ 1 -η, where d(λ, Λ 0 ) = inf λ 0 ∈Λ 0 d(λ, λ 0 ), then d( λn , Λ 0 ) → 0 and π(•| λn , X 1:n ) -π(•|λ 0 , X 1:n ) 1 → 0 a.s. [P ∞ 0 ]. (4.2)
The proof of Theorem 1 is presented in the Appendix. Equation (4.2) shows that, if θ 0 ∈ Θ 0 , the maximum marginal likelihood λn converges to the oracle sets of hyperameters Λ 0 , almost surely-P ∞ 0 ; thus, asymptotically it gives the best selection of the prior hyperparameter. Furthermore, strong merging holds. Roughly speaking, this means that, in the limit, the differences between the empirical Bayes and the Bayesian posterior densities tend to disappear; yet, the asymptotic oracle selection of λ is still of interest, suggesting more efficient finite sample properties of empirical Bayes with respect to a fixed choice of λ.

4•2. Degenerate case and extension to the model choice framework

Example 3 in Section 3 suggests that strong merging may fail when g(θ 0 ) = ∞. We generalize this finding and show that such pathological behaviours are not so much related to strange behaviours of the sampling model p THEOREM 2. Suppose that θ 0 ∈ Θ c 0 . Assume that (A1) is satisfied and

(i) there exists λ 0 ∈ ∂Λ 0 such that Π(•|λ 0 ) = δ θ 0 , (ii) with P (n) θ 0 -probability going to 1, m(X 1:n ) ≥ p (n) θ 0 (X 1:n ),
(iii) the model admits a local asymptotic normality expansion in the following form: for each ǫ > 0, there exists a set, with

P (n) θ 0 -probability going to 1, wherein, uniformly in θ ∈ U ǫ , l n (θ) -l n ( θn ) ∈ - n(θ -θn ) ′ I(θ 0 )(θ -θn ) 2 (1 ± ǫ),
θn denoting the maximum likelihood estimator and l n (θ) = log(p

(n) θ (X 1:n )). (iv) l n ( θn ) -l n (θ 0 ) converges in distribution to a χ 2 -distribution with k degrees of freedom.
Then, the empirical Bayes posterior cannot merge strongly with any Bayes posterior Π(•|λ, X 1:n ), with λ ∈ Λ such that the prior density π(•|λ) is positive and continuous at θ 0 .

Thus, under regularity assumptions, if θ 0 ∈ Θ c 0 and there exists λ 0 ∈ ∂Λ such that Π(•|λ 0 ) = δ θ 0 , the empirical Bayes posterior cannot merge strongly with Π(•|λ, X 1:n ), neither, by Theorem 1.3.1 of [START_REF] Ghosh | Bayesian Nonparametrics[END_REF], with any consistent posterior Π(•|X 1:n ) associated to a prior Π which is positive and continuous at θ 0 . This includes in particular any smooth hierarchical prior.

Interestingly, [START_REF] Scott | Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem[END_REF] also encounter an analogous phenomenon in their comparison between fully Bayes and empirical Bayes approaches for variable selection in regression models. We believe this is due to the same reasons as described above, although it does not completely fit our setup because we have restricted ourselves to priors that are absolutely continuous with respect to Lebesgue measure. However, this is not a crucial difference. We describe in an informal way the link between our explanation above and their findings. First, we briefly recall their setup. They consider a regression model Y i = x T i β + ǫ i , with ǫ i ∼ N(0, φ -1 ) and independent, where x i is the k × 1 vector of possible regressors; their aim is to select the best set of covariates among the k candidates. Variable selection is based on an inclusion vector γ = (γ 1 , . . . , γ k ) ∈ {0, 1} k , where γ j = 1 means that jth covariate has to be included. The prior on θ = (β, φ, γ) is defined as π(θ|λ) = π(β, φ|γ) π(γ|λ), where π(β, φ|γ) is degenerate on a space determined by γ, say of values (β γ , φ) where β γ has dimension k γ = k j=1 γ j . Given λ, the γ j are independent Bernoulli, π(γ|λ) = λ kγ (1 -λ) k-kγ . A crucial issue is how to fix the probability of inclusion λ. An empirical Bayes selection of λ based on the maximum marginal likelihood estimator considers

λn = argsup m(Y 1:n |λ) = argsup γ m(Y 1:n |γ)λ kγ (1 -λ) k-kγ .
Here m(Y 1:n |γ) acts as the likelihood. Each model is regular so that, under P as n goes to infinity. We can thus apply our notion of oracle value for λ, which is λ 0 = argsup π(γ 0 |λ) = k γ 0 /k. If γ 0 = (0, . . . , 0), then λ 0 = 0, and if γ 0 = (1, . . . , 1), λ 0 = 1, which correspond to degenerate distributions on γ. Note that in the case of model selection, the discrete nature of problem does not prevent the merging of the empirical Bayes posterior with a posterior associated to a fixed λ or with a hierarchical prior. This is not merely specific of the linear regression example, and, in a general model choice framework with competing models M j , j = 1, . . . , J, where θ = (β j , M j ) is decomposed into a model indicator M j and the parameter β j within the model M j , with prior of the kind P (M j |λ)π j (β j |M j ), the behaviour of marginal maximum likelihood estimator λn is driven by the asymptotic behaviour of m(Y 1:n |M j ). In many model selections procedures m(Y 1:n |M 0 )/m(Y 1:n |M j ) converges to infinity for all M j = M 0 under P (n) θ 0 , with M 0 denoting the true model so that (4.3) remains valid and λn asymptotically maximizes P (M 0 |λ). Depending on the form of P (M 0 |λ), the empirical Bayes prior distribution can be degenerate or not.

4•3. Example: Regression with g-priors

As a final example, we consider the canonical Gaussian regression model Y = 1α + Xβ + ε, with ε ∼ N(0, σ 2 I), where Y = (Y 1 , . . . , Y n ) T is the response vector, X is the (n × k) fixed design matrix of full rank and I denotes the n-dimensional identity matrix. With abuse of notation, we denote by X also the design matrix whose columns have been re-centered so that 1 T X = 0 T , in which case β can be estimated separately from α using OLS estimators. We assume that the matrix n -1 (X T X) is positive definite and converges to a positive definite matrix V as n → ∞. A popular prior for θ = (α, β, σ 2 ), especially in the variable selection literature, see for instance [START_REF] Clyde | Flexible empirical Bayes estimation for wavelets[END_REF], [START_REF] George | Calibration and empirical Bayes variable selection[END_REF], [START_REF] Liang | Mixtures of g-priors for Bayesian variable selection[END_REF], is

π(α, σ 2 ) ∝ σ -2 , β|σ 2 ∼ N(0, gσ 2 (X T X) -1 ), g > 0, (4.4)
which is a modified version of the original Zellner (1986)'s g-prior. Since the choice of g has a crucial impact on the shrinking effect in estimation, data-driven choices of g have been suggested. An empirical Bayes selection of g based on the maximum marginal likelihood estimate gives (see [START_REF] Liang | Mixtures of g-priors for Bayesian variable selection[END_REF], equation ( 9) page 413), ĝn = max{F n -1, 0},

F n = R 2 (n -1 -k)/[k(1 -R 2 )],
R 2 being the ordinary coefficient of determination. Thus, ĝn = 0 if F n ≤ 1. Suppose that Y is generated by the model with parameter values α 0 , β 0 , σ 2 0 . It turns out that

lim n→∞ P(ĝ n = 0) = lim n→∞ P(F n ≤ 1) ≥ γ > 0, if β 0 = 0, lim n→∞ P(ĝ n > 0) = lim n→∞ P(F n > 1) = 1, if β 0 = 0. (4.5)
Interestingly, when β 0 = 0, the probability that the ĝn takes the value zero in the boundary does not asymptotically vanish. Conversely, when β 0 = 0, the probability that the empirical Bayes posterior is non-degenerate tends to 1, as n → ∞. To prove (4.5), let β be the ordinary least squares estimators and

Fn = ( β -β 0 ) T (X T X)( β -β 0 )/k SSE/(n -1 -k) . If β 0 = 0, then F n ≡ Fn a.s. -→ χ 2 k /k, because SSE/(n -k -1) a.s.
-→ σ 2 0 , and

lim n→∞ P(ĝ n = 0) ≥ P(χ 2 k /k ≤ 1) =: γ > 0. If β 0 = 0, from consistency of β, R n = n -1 [(β 0 -2 β) T (X T X)β 0 ]/k SSE/(n -1 -k) a.s. -→ - (β T 0 V β 0 )/k σ 2 0 < 0, which implies that 1 + nR n → -∞. Consequently, P(ĝ n > 0) = P(F n > 1) = P Fn > 1 + [(β 0 -2 β) T (X T X)β 0 ]/k SSE/(n -1 -k) = P( Fn > 1 + nR n ) → 1.
The consequences of (4.5) on strong merging are clear. By direct computations, whatever

β 0 ∈ R k , for each g > 0, the Bayesian posterior Π(•|g, Y ) is consistent: Π(•|g, Y ) a.s. =⇒ δ β 0 . Let Ω n = {ĝ n = 0}. Clearly, Ω n ⊆ {Π(•|ĝ n , Y ) = δ 0 }. Then, if β 0 = 0, for each g > 0, lim n→∞ P(d TV (Π(•|g, Y ), Π(•|ĝ n , Y )) = 1) > 0,
where d TV denotes the total variation distance. Therefore, there is a set of positive probability wherein strong merging cannot take place. If β 0 = 0, for each g > 0, by direct computations, P( π(•|g, Y ) -π(•|ĝ n , Y ) 1 → 0) → 1. Thus, in this case strong merging takes place on a set with probability tending to 1.

FINAL REMARKS

In this paper, we formalized some common knowledge about the asymptotic equivalence of Bayes and empirical Bayes methods. Our aim was not to encourage the use of empirical Bayes; of course, when honest prior information is available, the Bayesian approach is the natural way of incorporating it in the analysis. Yet empirical Bayes is commonly used when a data-driven choice of the prior hyperparameters is desirable, as a computationally simpler alternative to a Bayesian hierarchical specification of the prior. We gave a more rigorous justification of this common practice. Further finite sample comparison of empirical and hierarchical Bayes is a natural development. Our results about the empirical Bayes asymptotic oracle selection of the prior hyperparameters suggest more efficient use of the information than a Bayesian solution based on a fixed choice of λ, when honest information for a subjective selection of λ is not available. Similar asymptotic oracle selection of λ can be envisaged for hierarchical Bayes procedures. These issues are beyond the scope of this work, but our results underline some key aspects that we believe provide the ground for further general finite sample comparisons. the fact that g(θ 0 ) = π(θ 0 |λ 0 ), together with the continuity of π(θ|λ 0 ) at θ 0 . By the first Borel-Cantelli lemma, for any δ > 0, there exists ǫ > 0 so that for all large n, ∀ λ ∈ Λ, m(X 1:n |λ)/p (6.3) Therefore, for any δ > 0, on a set of P ∞ 0 -probability 1, for each λ ∈ Λ, m(X 1:n |λ) ≤ (1 + δ)m(X 1:n |λ 0 ) for all large n, which, combined with (6.2), proves (4.1).

(n) θ 0 (X 1:n ) < e -c 1 nǫ 2 + (1 + 2δ/3) Uǫ R(p (n) θ )π(θ|λ 0 ) dν(θ), P ∞ 0 -
We now prove the convergence of λn . Recall that, by assumption (A1), for any ǫ > 0, on a set of P ∞ 0 -probability 1, ∀ λ ∈ Λ, for all large n, m(X 1:n |λ)/p Thus, (4.2) is proved and the proof is complete. Define, for any δ > 0, the set Ω n, δ of x 1:n 's such that e ln( θn)-ln(θ0) ≤ 1 + δ. From assumption (iv), for every δ > 0, lim n→∞ P (n) θ 0 (Ω n, δ ) > 0. From assumption (ii), m(X 1:n )/p (n) θ 0 (X 1:n ) ≥ 1. We now study the reverse inequality. Using (A1), for any ǫ > 0, on a set A n with P (n) θ 0probability going to 1, m(X 1:n )/p (n) θ 0 (X 1:n ) = Uǫ e ln(θ)-ln(θ 0 ) dΠ(θ| λn ) + O(e -nδ ). Moreover, using the LAN condition (iii), for every θ ∈ U ǫ , l n (θ) -l n (θ 0 ) = l n ( θn ) -l n (θ 0 ) + -n(θ -θn ) ′ I(θ 0 )(θ -θn ) 2 (1 + o p (1)), so that, if M n = M (log n)/n, with M > 0, on a set of P U Mn e -n(θ-θn) ′ I(θ 0 )(θ-θn)/2 dΠ(θ| λn ) + O(n -H ),

where U Mn = {θ : θ -θn ≤ M n }. With abuse of notation, we still denote by A n the set hav-600 ing P (n) θ 0 -probability going to 1 wherein the above computations are valid, so that, on A n ∩ Ω n, δ , n large enough. m(X 1:n )/p (1 + o p (1)), so that m(X 1:n |λ)/ m(X 1:n ) = o p (1). We now study the L 1 -distance between the two posteriors. 605 If Π(•| λn ) is degenerate, that is it is not absolutely continuous w.r.t. Lebesgue measure, which plays here the role of ν), then the L 1 -distance between the empirical Bayes posterior and the

  split into θ = (τ, ζ), where τ ∈ T and ζ ∈ Z and, given λ ∈ Λ ⊆ R ℓ , τ ∼ Π(•|λ) while ζ ∼ Π. In other words, the hyperparameter λ only influences the prior distribution of τ . The overall prior is Π(•|λ) = Π(•|λ) × Π(•). Let θ 0 = (τ 0 , ζ 0 ) be the true value of θ = (τ, ζ). PROPOSITION 3. Let Π(•| λn ), n = 1, 2, . . ., and Π(•|λ 0 ) be probability measures on B(T).

  rather to the choice of the family of priors {Π(•|λ), λ ∈ Λ}.

  with θ 0 = (β 0 , φ 0 , γ 0 ), β 0 denoting the true k-dimensional vector of regression coefficient, with some elements possibly equal to zero, which also gives the indicators γ 0 associated to the true model, and writing β 0,γ the restriction of the β 0 to the coefficients present in model γ:m(Y 1:n |γ) p (n) θ 0 ≈ c γ π(φ 0 ,β 0,γ |γ) e ln( θγ )-ln(θ 0 ) n (kγ +1)/2 , c γ = O P θ 0 (1) Hence the marginal likelihood m(Y 1:n |γ) concentrates asymptotically at γ = γ 0 , in the sense that m(Y 1:n |γ 0 )/m(Y 1:n |γ) goes to infinity under P θ 0 for any γ = γ 0 and m(Y 1:n |λ) ≈ m(Y 1:n |γ 0 )π(γ 0 |λ) (4.3)

  almost surely. The Kullback-Leibler condition on Π(•|λ 0 ) implies that, on a set of P ∞ 0 -probability 1, for all large n θ|λ 0 ) dν(θ) > e -an .

  θ|λ) dν(θ). For δ > 0, define N δ = {λ ∈ Λ : d(λ, Λ 0 ) ≤ δ}. For any fixed δ > 0, by assumption (iii), there exist ǫ 1 , η > 0 so that, on a set of P ∞ 0 θ )g(θ) dν(θ), whence, using (i) and (ii) on the continuity of g and π(•|λ 0 ), λ 0 ∈ Λ0 , at θ 0 , we finally get that sup λ∈N c δ m(X 1:n |λ) < (1 -η/4)m(X 1:n |λ 0 ) for all large n, P ∞ 0 -almost surely. The fact that η is fixed implies that, for n large enough, λn ∈ N δ , a.s. [P ∞ 0 ]. Since Λ 0 is included in the interior of Λ, with P ∞ 0 -probability 1, λn belongs to the interior of Λ and Π(•| λn ) ≪ ν for all large n. This fact, combined with consistency of both the empirical Bayes posterior and Π(•|λ 0 , X 1:n ), and the convergence in (4.1), yields that, P ∞ 0 -almost surely, for any ǫ > 0,π(•| λn , X 1:n ) -π(•|λ 0 , X 1:n ) 1 ≤ ǫ + Uǫ p λn ) -π(θ|λ 0 )| dν(θ) for n large enough. We split U ǫ into D ǫ = {θ ∈ U ǫ : π(θ| λn ) ≥ π(θ|λ 0 )} and D c ǫ = {θ ∈ U ǫ : π(θ| λn ) < π(θ|λ 0 )}. Since, for any δ > 0, if ǫ is small enough, π(θ| λn ) ≤ π(θ|λ 0 )(1 + δ/3), 1:n )[π(θ| λn ) -π(θ|λ 0 )] dν(θ) 1:n )π(θ|λ 0 ) dν(θ) ≤ m(X 1:n ) < Uǫ p (n) θ (X 1:n )π(θ| λn ) dν(θ) + (ǫ + δ/3) m(X 1:n ), 1:n )[π(θ|λ 0 ) -π(θ| λn )] dν(θ) ≤ Dǫ p (n) θ (X 1:n )[π(θ| λn ) -π(θ|λ 0 )] dν(θ) + (ǫ + δ/3) m(X 1:n ) 1:n )[π(θ|λ 0 ) -π(θ| λn )] dν(θ) ≤ (ǫ + 2δ/3) m(X 1:n ),which implies that for all large n Uǫ p (n) θ (X 1:n ) m(X 1:n ) |π(θ| λn ) -π(θ|λ 0 )| dν(θ) ≤ (ǫ + δ).
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  probability going to 1, for all H > 0, θ-θn >Mn e ln(θ)-ln( θn) dΠ(θ| λn ) = O(n -H ) provided M is large enough. This leads tom(X 1:n ) p (n) θ 0 (X 1:n ) = e ln(θn)-ln(θ0) 

  X 1:n ) ≤ 1 + 2δ Let λ ∈ Λ be such that the prior density π(•|λ) is positive and continuous at θ 0 . Under assumptions (iii) and (A1), usual Laplace expansion of the marginal distribution of X 1:n yields m(X 1:n |λ) 0 |λ)e ln( θn)-ln(θ0) (2π) k/2 n k/2 |I(θ 0 )| 1/2

  then, from Theorem 3.2 of[START_REF] Ghosal | Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities[END_REF], page 1244, {p G : G ∈ Θ} has bracketing Hellinger metric entropy satisfying condition (3.1), so that assumption (A1) is fulfilled. Moreover, if the true density is a mixture of Gaussian distributions, p 0
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APPENDIX 6•1. Proof of Proposition 2

Fix ǫ > 0. The posterior probability Π(U c ǫ | λn , X 1:n ) can be written as

By definition of m(X 1:n ), with P ∞ 0 -probability 1, D n ≥ m(X 1:n | λ 0 )/p (n) θ 0 (X 1:n ) ≡ D n (λ 0 ) for all large n, where λ 0 is as required in (A2). Thus, Π(U c ǫ | λn , X 1:n ) ≤ N n /D n (λ 0 ). Under (A1), by (3.2), N n < e -c 1 nǫ 2 for all large n, P ∞ 0 -almost surely. Reasoning as in Lemma 10 of [START_REF] Barron | The exponential convergence of posterior probabilities with implications for Bayes estimators of density functions[END_REF], page 23, for any η > 0, D n (λ 0 ) > e -nη for all large n, P ∞ 0 -almost surely. Choosing

for all large n, P ∞ 0 -almost surely. The assertion follows.

θ ) dΠ(θ| λn ). In order to bound from below D n , it is convenient to refer to the probability space, say (Ω, F, P), wherein the X i 's are defined. Let

By assumption (i), P(Ω 0 ) = 1. For any ω ∈ Ω 0 , by Skorohod's theorem (cf. Theorem 1.8 in [START_REF] Ethier | Markov Processes: Characterization and Convergence[END_REF], pages 102-103), there exists a probability space (Ω ′ , F ′ , ρ) on which

By Fubini's theorem, a change of measure and Fatou's lemma,

because the integrand is equal to ∞ over a set of positive probability, see (6.1). Thus, D n > e -nη for all large n, P ∞ 0 -almost surely. Choosing

for all large n, P ∞ 0 -almost surely. The assertion follows.

6•3. Proof of Theorem 1 We begin by proving (4.1). From (ii), for each λ 0 ∈ Λ0 , P ∞ 0 -almost surely, m(X 1:n |λ 0 ) > 0 for all large n. By definition of λn , 0 < m(X 1:n |λ 0 ) ≤ m(X 1:n ) < ∞ for all large n, whence for all large n 565 m(X 1:n ) m(X 1:n |λ 0 ) ≥ 1, (6.2) P ∞ 0 -almost surely. We prove the reverse inequality. Using (A1), (i) and (ii), for any δ > 0, there exists ǫ > 0 (depending on δ, θ 0 and g(θ 0 )) so that, with probability greater than or equal to

where the second inequality descends from the definition of g, because π(θ|λ) ≤ g(θ) for all θ ∈ U ǫ , the third one from the positivity and continuity of g at θ 0 and the last one from 570 posterior corresponding to Π(•|λ) is 1. Thus, we only need to consider the case where Π(•| λn ) is absolutely continuous w.r.t. Lebesgue measure. On a set of P (n) θ 0 -probability going to 1, which we still denote by A n , intersected with Ω n, δ , for each θ ∈ U Mn , 610 π(θ| λn , X 1:n ) -π(θ|λ, X 1:n ) = e ln(θ)-ln( θn) e ln( θn)-ln(θ0) π(θ| λn ) -

To simplify the notation, we also denote by

Then, for all c > 0,

and we can bound from below the L 1 -distance between the two posteriors: on

for some c > 0, since I(θ 0 ) is positive definite and where φ(•) is the density of a standard Gaussian distribution on R k . By choosing L > 0 large enough and using (6.5),

which completes the proof.