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Abstract: This paper presents an approach of diagnosis for manufacturing system considered as Discrete 
Event Systems. It uses plant decomposition and a decentralized diagnosis structure to reduce the 
combinatory explosion found in centralized structures. The local behavior is extracted using 
decentralized plant modeling. It is from this behavior that possible faults are identified to construct 
abnormal behavior models. The approach is illustrated around a manufacturing benchmark. 
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1. INTRODUCTION 

Manufacturing systems have become more and more 
complex owing to technological evolution. Moreover, each 
maintenance intervention has an important cost, as false 
removal for example in case of uncertainty. This complexity 
and the desire for improved availability, reliability and 
dependability require the development of systematic 
approaches of diagnosis to detect and isolate a fault.  

In literature, many approaches are developed and are based 
on the observability of the system (Sampath, 1995), (Qiu, 
2005), (Cordier et al., 2007). However, manufacturing 
systems are often described as dynamic systems with discrete 
states which change only by discrete events. They are 
considered as Discrete Event Systems (DES) (Cassandras and 
Lafortune, 1999). Consequently, the observable information 
present is poor because of the discrete state space. Its 
observation alone does not often allow to detect a fault 
occurrence and to isolate the responsible element. Several 
approaches have been developed to solve the Fault Detection 
and Isolation (FDI) problem (Sampath, 1995), (Su and 
Wonham, 2000), (Cordier et al., 2007). Most of them are 
based on the use of a model in order to specify the normal 
and/or faulty behaviors of the system. This model defines 
how system states change due to event occurrences. The goal 
is to compare the system model state with the real one, based 
on the system observations. A failure is detected when the 
two states do not match.  

Three structures of diagnosis decision are presented in 
literature. In centralized structure, the global diagnosis 
decision is taken by one centralized diagnoser based on one 
system model (Sampath, 1995). Decentralized structure 
comprises one system model associated with several local 
diagnosers (Wang et al., 2005). A very limited 
communication is permitted through a coordinator to solve 
the ambiguity or indecision problem between local 
diagnosers’ decisions. Distributed structure uses several local 
models associated with several local diagnosers. A pure 

concurrent communication among local diagnosers is 
necessary to realize a global diagnosis decision (Qiu, 2005), 
(Cordier et al., 2007). 

The main disadvantage of centralized approaches for DES is 
the state explosion. The approaches with decentralized 
structure constitute a solution to this drawback. But so far, 
designing a decentralized diagnoser requires the existence of 
centralized model which entails again the state explosion 
problem (Su and Wonham, 2000). In (Cordier et al., 2007), 
the authors propose an approach to realize the decentralized 
diagnosis without using a global model. This approach is 
based on the use of a merging procedure which exploits the 
independence property between sub-models. The major 
advantage of distributed diagnosis approaches is that there is 
no need for a centralized plant model. The communication 
between local diagnosers is used to solve the indecision 
problem. However, their main disadvantage is the need to 
establish a performing protocol of communication, which 
scales well with the system complexity. 

In this paper a decentralized diagnosis approach is proposed 
to realize the diagnosis of DES, specifically manufacturing 
systems with discrete sensors and actuators. Manufacturing 
systems can be represented by several models of components 
called “Plant Elements” (PEs) which describe all possible 
evolutions. From each local component, an analysis is made 
to construct local models of abnormal behavior called 
diagnosers. Each local diagnoser returns a label to the user 
and the global decision is all local decisions merged. 

The paper is organized as follow. In section 2, the proposed 
approach is presented with the different steps of modeling. 
Section 3 illustrates the approach in several aspects. 
Conclusion and prospects close the paper in section 4. 

2. DECENTRALIZED DIAGNOSIS 

In industrial processes, a manufacturing system is a 
functional chain composed of a controller which sends 



 
 

     

 

commands to a plant and receives sensor values (Fig. 1). 
Plant represents the mechanical part whereas controller is the 
logical part which describes the desired behavior. This 
exchange between controller and plant represents the only 
observable information available on line. As a diagnoser is 
defined as an observer of the system, it is necessary to use 
this information to rebuild behaviors through models. 

 

Controller Plant 

Observer 

Sensor 
values 

Commands 

 

Fig. 1. Functional chain. 

From the introduction, a centralized approach appears as 
unthinkable for complex systems. However, the difficulty of 
a decentralized approach is to determine the level of modular 
decomposition in a generic way. A manufacturing system is 
composed of mechanical components, called Plant Elements 
(PEs), which are actuators with associated sensors. 
Consequently, the proposed approach builds local diagnosers 
from each PE. Figure 2 shows the different steps to obtain 
local diagnosers. Firstly, from the real plant, PEs are defined 
from a library of models. Secondly, an expert analysis is 
made to identify the possible abnormal situations, and then to 
obtain local diagnosers. 
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Fig. 2. Steps of the proposed approach. 

2.1  Plant Elements 

Plant is divided into several components (actuator with 
associated sensors) which can be modeled in Plant Element. 

Each model Gi and corresponding language Li describes the 
logical and untimed behavior of the monitored system. It is a 
Moore automaton: M = (Σ, X, Y, δ, h) where Σ is the set of 
finite events, X is the set of states, Y is the output space, δ: Σ 
x X → X is the state transition function. δ(α, x) gives the set 
of possible next states if α occurs at x. h: Σ x X → Y is the 
output function. H(α, x) is the observed output when α occurs 
at x. 

In (Balemi et al., 1993), authors define controllable events Σc 
⊆ Σ as the control outputs (actuators) and uncontrollable 
events Σu ⊆ Σ  are defined as the control inputs (sensors). Σo 
⊆ Σ is the set of observable events where Σc ⊆ Σo. An 
automaton is used for each model. This automaton takes into 
account all the observable events. The detailed explanation of 
the construction of this model can be found in (Philippot et 
al., 2004). 

This paper is not focused on the PE modeling method. PE 
models have been validated in previous works and a library 
of common PE used in manufacturing systems has been 
established (Philippot et al., 2007). An example is given in 
section 3. 

2.2  Temporal information 

The majority of sensors and actuators in manufacturing 
systems produce constrained events since state changes are 
usually effected by a predictable flow of materials (Boufaïed, 
2003), (Holloway and Chand, 1994). To enrich Boolean 
models, a timed model centred on the notion of expected 
event sequencing and timing relationships can be used. The 
temporal information about events minimal and maximal 
durations is represented by the actuator’s minimal and 
maximal response times.  

For each state of PE a temporal relationship between input 
and output events is obtained thanks to the learning phase 
which returns a Gaussian distribution. Each prediction is 
constructed for observable correlated events and it describes 
the next events that should occur and the relative time periods 
in which they are expected. These pre-defined time periods 
are determined by experts according to system dynamic and 
to the desired behavior. An extrapolation of the Gaussian 
distribution is made to choose minimal and maximal times. 
Consequently, when an event α1 occurs at the state x1, the 
event α2 should happen at the state x2 and within the interval 
[tmin, tmax] (Fig. 3). The use of the Gaussian distribution 
instead of intervals will be a prospect. 

 

tmin 0 

↑α1 ↑α2 

tmax t 
 

Fig. 3. Temporal information. 



 
 

     

 

2.3  Diagnosers 

In industrial processes, a manufacturing system is a 
functional chain composed of a controller which sends 
commands to a plant and receives sensor values. Plant 
represents the mechanical part whereas controller is the 
logical part which describes the desired behavior. This 
exchange between controller and plant represents the only 
observable information available on line. As a diagnoser is 
defined as an observer of the system, it is necessary to use 
this information to rebuild behaviors through models. 

From the introduction, a centralized approach appears as 
unthinkable for complex systems. However, the difficulty of 
a decentralized approach is to determine the level of modular 
decomposition in a generic way. A manufacturing system is 
composed of mechanical components, called Plant Elements 
(PEs), which are actuators with associated sensors. 
Consequently, the proposed approach builds local diagnosers 
from each PE by an expert analysis to identify the possible 
abnormal situations from each normal state. 

Consequently, a diagnoser is defined as Di = (Xi ∪ XDFi, Σio, 
δi, xi0, Vi, hi, PFi, li) with: 

• Xi is the set of normal states of NBMi, 
• XDFi is the set of abnormal states, 
• Σio is the set of observables events by the PEi,  
• δi : Xi × Σi* → Xi ∪ XDFi is the transition function,  
• xi0 is the initial state,  
• Vi is an input/output vector with Vi(x) the vector of the 

state x,  
• hi : Xi ∪ XDFi → Σio is the output function where hi(x) is 

the observable event at the output of the state x, 
• PFix = {PFx, ∀x ∈ Xi} represents the set of prediction 

functions of the state x, 
• lx is the decision functions of the state x which can be the 

label N to indicate a Normal functioning or/and one fault 
label {Fj} or more.  

 

If lx = {N}, then the diagnoser can decide with certainty the 
non-presence of faults. If lx = {Fj}, then the diagnoser 
indicates with certainty the occurrence of a fault of the type 
Fj. If lx = {N, Fj}, then the diagnoser cannot decide whether a 
fault has occurred or not and the system is in ambiguity or 
indecision case. Labels are defined in subsets called partition 
ΠFj. The knowledge of all faults comes from an expert 
analysis and/or documentation such as Failure Mode and 
Effects Analysis (FMEA), a tool used in safety, dependability 
and quality management (Ashley, 1993).  

For an input/output vector of 3 variables (e1 e2 e3) with 
labels {N, F1, F2, F3} for a normal or an abnormal behavior 
respectively on e1, e2 or e3: 

From a normal state x0, h(x0) = ↑e1 is the only one normal 
evolution possible to attempt normal state x1 with label N. 
Consequently, possible faults which can be detected and 
isolated from x0 are: 

• h(x0) = ↑e2: observable fault on e2 associated to label F1 
(state x2),  

• h(x0) = ↑e3: observable fault on e3 associated to label F2 
(state x3), 

• PFx0 = 1: non observable fault on e1 corresponding to a 
non-satisfaction of the temporal constraint. Diagnoser 
goes to state x4 with a label F3 by an internal event 
ePFx0.  
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Fig. 4. Construction of a Diagnoser. 

Remarks: non observable faults on e2 and e3 (stuck to 0) 
cannot be detected from x0 and need new events. Normal 
behavior on x0 cannot be guaranteed Label on this state is not 
only {N} but must be {N, F2, F3}.  

Consequently, for a diagnoser with p variables, it is possible 
from each normal state to detect p-1 observable faults and 1 
non observable faults. 

3. ILLUSTRATION ON A BENCHMATK 

3.1  Presentation 

All of the proposed methodology will be illustrated by means 
of a virtual system from the ITS PLC collection, proposed by 
the Portuguese company Real Games. ITS PLC collection is 
a set of simulation software dedicated to automation training 
(Riera et al. 2009). Demos and technical descriptions of the 
five virtual industrial systems are available and freely 
downloadable at web address www.realgames.pt. As part of 
the work presented in this paper, the “sorting system” is used. 
The objective of this system is to bring boxes of entry 
conveyor to exit conveyor by sorting them according to for 
instance their height (Fig. 5). 



 
 

     

 

  

Fig. 5. Sorting system. 

The system is instrumented using 11 sensors to determine the 
size of the boxes (small or large) and the entry or exit of a 
box in different conveyors (feeding, intermediate, 
evacuation) or turntable. The seven outputs of the 
Programmable Logic Controller (PLC) (IEC 61131-3, 1993) 
can activate the various conveyors and the turntable.  

Inputs (Sensors): c0: Feeder belt exit detector, c1: Lower 
case detector, c2: Higher case detector, c3 Exit detector of the 
entry conveyor, c4-c5: Detectors of the turntable position, c6: 
Turntable pallet detector, c7: Entry detector of the left exit 
conveyor, c9: Exit detector of the left exit conveyor, c8: 
Entry detector of the right exit conveyor, c10: Exit detector of 
the right exit conveyor 

Outputs (Actuators): A0: Feeder belt, A1: Entry conveyor, 
A2: Turntable rollers (loading), A3: Turntable rollers, A4: 
Turntable, A5: Left exit conveyor, A6: Right exit conveyor 

The specification used is as follows: after pressing the “start” 
button, the boxes are sent successively one to the left elevator 
and one to the right elevator. After pressing the “stop” button, 
boxes in transit are evacuated. In order to not overload the 
paper, the output conveyors are always on (A5 = A6 = 1) and 
the management of the buttons “start” and “stop” is not 
presented. 

3.2  Turntable diagnoser 

All PEs models are not shown in the paper. In this paragraph, 
only turntable is described, from PE model to diagnoser 
model.  

The turntable PE is a monostable actuator and then is driven 
by only one output (Fig. 6). At the initial state x0, the 
turntable is at the loading position c4. When output A4 is 
activated by the controller, then the turntable is in movement 
and sensor c4 is deactivated (state x1 to x2). From here, if the 
command is always activated, the turntable goes to unloading 
position c5 (state x3) and awaits the deactivation of A4 to go 
back at the initial position (states x4, x5 and x0). From state x2, 
during the movement, if controller sends the deactivation of 
A4 (state x5), then the turntable comes back to state x0 without 

having achieved sensor c5. And from state x5, then during the 
movement back, it is possible to reactivate A4. This 
automaton with 6 states and 10 transitions represents all 
possible evolutions of the turntable PE. The others PEs have 
been modeled in the same way and are present in a library 
(Philippot, 2006). 
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Fig. 6. Turntable Plant Element Model. 

Turntable diagnoser is obtained after identification of all 
possible faults on the PE. It is an expert analysis which 
allows to define the following faults associated to a label: 

• F1: Sensor c4 stuck-off to 0 
• F2: Sensor c4 stuck-on to 1 
• F3: Sensor c5 stuck-off to 0 
• F4: Sensor c5 stuck-on to 1 
• F5: Cylinder stuck to c4 position 
• F6: Cylinder stuck to c5 position 
• F7: Unexpected c4 from 0 to 1 
• F8: Unexpected c4 from 1 to 0 
• F9: Unexpected c5 from 0 to 1 
• F10: Unexpected c5 from 1 to 0 
• F11: Unexpected movement from c4 to c5 
• F12: Unexpected movement from c5 to c4 
• F13: Cylinder blocked from c4 to c5 
• F14: Cylinder blocked from c5 to c4  
 

Three fault partitions can be defined: 

• To sensor c4 : Πc4 = {F1, F2, F7, F8} 
• To sensor c5 : Πc5 = {F3, F4, F9, F10} 
• To actuator A4 : ΠA4 = {F5, F6, F11, F12, F13, F14} 
 

The assumption that only one fault can occur at the same time 
in a PE is kept. For each state of PE, an expert must analyse 
the possibility of fault occurrence and especially the 
possibility to detect and isolate a fault. It returns a model with 
faulty states labelled (Fig. 7). « ? » symbol corresponds to a 
floating time which depends to previous state. The diagnoser 
is initialized from a normal state according to the input/output 
vector.  



 
 

     

 

From the analysis, a first conclusion is that one fault can 
occur from any normal state without being directly detected. 
Consequently, all normal states (from x0 to x5) cannot be 
considered as dependable with certainty and then cannot have 
only label {N}. These states must have multi labels {N, F1, 
F2, …}. These labels are not marked to improve legibility.  
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Fig. 7. Turntable Diagnoser. 

From state x1, if ↓c4 does not appear in the defined interval 
]0, 1], an event is generated (ePFx1 = 1). The turntable is then 
considered in an abnormal situation and a fault is detected. 
From the expert analysis, 2 candidates can be responsible for 
this fault, F2 or F5. To isolate the fault, diagnoser waits for a 
new observation or not to help it in its decision. If sensor c5 
is activated in an interval ]tmin↓c4 + tmin↑c5, tmax↓c4 + tmax↑c5], 
consequently ]0, 5], then a movement has been realized by 
the turntable and the faulty event is F2, sensor c4 stuck-on to 
1. By contrast, if ↑c5 does not appear after (tmax↓c4 + tmax↑c5), 
consequently 5 units of time, the turntable is considered as 
stuck on the position c4 and the label is F5. This deduction 
can be realized thanks to the single fault assumption. All 
abnormal states are defined in the same way and finally the 
turntable diagnoser is composed of 6 normal states and 12 
final abnormal states (8 intermediate states). All turntable 
faults can be detected but it is not possible to isolate with 
certainty states {F1, F14} and {F3, F13}. 

3.3  Discussion 

A first discussion from the turntable diagnoser can be quickly 
made. As each label is detected in a bounded delay and with 
certainty in one state, the turntable is then detectable 

according to the partition of faults defined. However, the 
turntable is not diagnosable because all faults cannot be 
isolated. Consequently, another rule must be present to 
guarantee diagnosability notion (Lin, 1994). 

Concerning the delay of detection and isolation, it depends on 
the numbers of states of each local diagnoser. Here, delays 
are counted in terms of events due to the controller. For the 
turntable diagnoser, maximum delay to detect and isolate a 
fault is 3 events. For example, c5 can be stuck-off to 0 from 
state x5, as soon as it was deactivated, and it will be isolated 
from state x2, after events (↑c4, ↑A4, ↓c4). 

Thanks to failures simulation mode of ITS PLC, it is 
interesting to see that if the diagnosis information is returned 
to the controller, it is possible to establish a fault tolerant 
controller and avoid mechanical and/or products failures (F2, 
F4, F7, F9). In contrast, some failures (F11 and F12) are 
unavoidable. 

4. CONCLUSIONS 

The paper presents an approach for diagnosis of discrete 
manufacturing systems based on the plant decomposition. A 
decentralized structure is used to diminish combinatory 
explosion found in centralized structure. From Plant 
Elements Models, all possible faults are identified to 
construct abnormal behavior models called diagnosers. The 
approach is illustrated using a benchmark. 

However, only the faults related to components (actuators 
and sensors) are considered. To take into account the product 
faults, a product model is necessary. This model depends on 
the product nature and on the production objective. Thus, a 
future work is to extend this approach to include the faults 
related to product.  

Another prospect is to use diagnosers with filter approach to 
be dependable regardless the controller. This filter is a set of 
constraints which must be verify the safety and liveness 
properties of the system (Marangé et al., 2009). Finally, the 
approach must be implemented into a Programmable Logic 
Controller for a real, and not simulated, system such as the 
flexible manufacturing system platform Cellflex of university 
of Reims (http://meserp.free.fr/) or the CISPI installation of 
university of Nancy. 
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