Bilinear pairings on elliptic curves - Archive ouverte HAL
Article Dans Une Revue L'Enseignement Mathématique Année : 2015

Bilinear pairings on elliptic curves

Résumé

We give an elementary and self-contained introduction to pairings on elliptic curves over finite fields. For the first time in the literature, the three different definitions of the Weil pairing are stated correctly and proved to be equivalent using Weil reciprocity. Pairings with shorter loops, such as the ate, ate$_i$, R-ate and optimal pairings, together with their twisted variants, are presented with proofs of their bilinearity and non-degeneracy. Finally, we review different types of pairings in a cryptographic context. This article can be seen as an update chapter to A. Enge, Elliptic Curves and Their Applications to Cryptography - An Introduction, Kluwer Academic Publishers 1999.
Fichier principal
Vignette du fichier
pairings.pdf (337.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00767404 , version 1 (23-01-2013)
hal-00767404 , version 2 (14-02-2014)

Identifiants

Citer

Andreas Enge. Bilinear pairings on elliptic curves. L'Enseignement Mathématique , 2015, 61 (2), pp.211-243. ⟨hal-00767404v2⟩
906 Consultations
5352 Téléchargements

Altmetric

Partager

More