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Abstract We propose and evaluate in this paper a combination of Active Learning
and Multiple Classifiers approaches for corpus annotation and concept indexing on
highly imbalanced datasets. Experiments were conducted using TRECVID 2008
data and protocol with four different types of video shot descriptors, with two
types of classifiers (Logistic Regression and Support Vector Machine with RBF
kernel) and with two different active learning strategies (relevance and uncertainty
sampling). Results show that the Multiple Classifiers approach significantly increases
the effectiveness of the Active Learning. On the considered dataset, the best
performance is achieved when 15 to 30% of the corpus is annotated for individual
descriptors and when 10 to 15% of the corpus is annotated for their fusion.

Keywords Active learning - Imbalanced datasets - Multimedia indexing

1 Introduction

Image and video databases become more and more common and large. They are
found in a variety of places including home, companies and institutions, and also in
a variety of applications. In order to keep them manageable, it is essential to create
powerful tools for searching and browsing the content of theses databases. These
tools need other means for contents indexing. This indexing can be done at the signal
level (color, texture, motion ...) or at the semantic level (concepts). For both indexing
types, the latter is by far the more useful to the users and it is also the more difficult to
extract from the contents. Due to the so-called semantic gap between the raw images
(or video contents) and the elements that make sense to human beings, indexing
concepts in image or video documents is a very hard task. This task is most often
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carried out using classifiers or networks of classifiers working on “low level feature”
vectors extracted automatically from binary multimedia contents [4, 11, 17].

Supervised learning consists in training a system from sets of positive and negative
examples. The learning system may be composed of various types of feature extrac-
tors, classifiers and fusion modules. The performance of the systems depends very
much upon the implementation choices and details but it is also strongly linked to
the size and quality of the training examples. While it is quite easy and inexpensive
to get large amounts of raw data, it is usually very costly to have them annotated
because it involves human intervention for judging the “ground truth”.

While the volume of data that can be manually annotated is limited due to the cost
of manual intervention, there remains the possibility to select the data samples that
will be annotated so that their annotation is as useful as possible [1]. Deciding which
samples will be the most useful is not trivial. Active learning is an approach in which
an existing system is used to predict the usefulness of new samples. This approach is a
particular case of incremental learning in which a system is trained several times with
a growing set of samples. The objective is to select as few sample shots as possible to
be manually indexed but still have a good classification performance (in the sense of
the Mean Average Precision measure commonly used in information retrieval).

Several strategies or heuristics can be considered to predict samples’ usefulness.
Most of them operate by selective sampling which consists in progressively adding the
samples that are expected to be the most informative to the training set. The most
popular ones include:

— Choose the most uncertain samples (uncertainty sampling, [8]). This strategy
tries to increase the sample density in the neighborhood of the frontier between
positives and negatives, therefore improves the system’s precision.

— Choose the most probable positive samples (relevance sampling). This strategy
tries to maximize the size of the positive sample set.

Relevance sampling is especially effective for highly imbalanced dataset, which
is a very frequent case in video indexing. For instance, in the TRECVID high
level features indexing task [15], the average target concept frequency is below 1%.
Finding negative samples is easy. Whatever the sampling strategy is, these generally
come numerous enough. Active learning with relevance sampling can significantly
increases the positive to negative ratio in the set of annotated samples. The imbalance
can be reduced by ratio factors of up to 5 in the early iterations [2] but usually the
highly imbalanced problem comes while increasing the annotated fraction of the
dataset.

The imbalance between positive and negative classes is a serious problem for
the classical supervised learning methods. Indeed, these often have a criterion for
internal optimization based on the balance assumption. This problem also relates
to the fact that the evaluation performance metric, usually external to the learning
method, is different from the internal criterion. Hence, the common metric used in
information retrieval is the MAP (Mean Average Precision). Simple solution such as
giving strong weight to the minority class elements usually leads to good results for
small imbalance but produces poor results with large imbalance.

An alternative approach to the imbalanced dataset problem is to randomly select
a subset from the set of negative samples with a size comparable to that of the set
of all positive samples [5]. It is even possible to compensate the loss of information



related to the sub-sampling of the negative class by making several such selections
on this class set and by fusing the outputs of the multiple classifiers built from these
subsets. In [9] the authors applied the sub-sampling approach on the majority class
(the negative one) by multi-selections and then fused the results of different learners,
they took two identical size subsets for each class at each random selection. In
[18, 19], the authors went deeper in the sub-sampling by taking subsets from the
majority class (the negative class) in size smaller than the minority class (the positive
class), thus reversing the balance between classes for each random selection. Due
to the inverse proportion, the target class is favored; this is what is required for
the evaluation metric that gives more weight to the well-ranked positive samples.
This effect is maintained during the fusion of the multiple classifier outputs. The
efficiency of the mutli-learner approach for the imbalanced dataset problems have
been validated using a number of different descriptors and classifiers [14].

Active learning and multiple classifiers approaches are two different ways of
dealing with the imbalanced dataset problem, the former attempts to build more
balanced datasets and the latter tries to get the best from an imbalanced dataset.
In this paper, we combine both approaches and show that active learning is more
effective when combined with the multiple classifiers (or multi-learner) approach.

The outline of the paper continues as follows: the combination between the
multiple classifier and active learning approaches is presented in Section 2. Section 3
describes the experimental results including the description of the used data collec-
tion and the descriptors, while Section 4 presents concluding remarks.

2 Active learning with multiple classifiers

Active learning may be used in different ways in the context of multimedia indexing
and retrieval. We shall focus here on the development of a system for automatic
multimedia indexing. Alternatively, active learning can also be used for the produc-
tion of an annotated corpus or as part of an interactive search system (for improved
relevance feedback). In our case, the target product is the automatic indexing system
while in the two other cases, it would be the annotated corpus or the retrieval system.
We describe and evaluate here the proposed method in the context of the first case
but it could also be applied to the two others. This would just require some minor
changes in the algorithm, especially within the evaluation part. The evaluation part
is not actually part of the active learning method but it is included in the algorithm
description so that it can be better understood how the evaluations are performed.
For the evaluation, a development set Dev and an test set Test are used. The test
set comes with a fixed set of labels (or judgments) and is used for the evaluation
of classification systems while, for the development set, new labels are added
at each active learning iteration. The active learning with multiple classifiers is
actually performed only within the development set and, at each active learning
iteration, a classification system is produced using the current set of labeled data (this
classification system is actually made of multiple learners). The same classification
system is used to make predictions both on the development set for the selection
of the next samples to be annotated and on the test set for the evaluation. There is
no feedback of the predictions on the test set in the active learning system; these
predictions are only used for the evaluation of performance of the classification



system produced at each iteration. We can then monitor the evolution of this
performance with the annotated fraction of the development set. The goal is indeed
to reach the highest possible performance as fast as possible i.e. with an annotated
fraction as small as possible. Though in an actual application, the active learning
would be stopped when an optimal fraction is reached, experiments are conducted
here until the whole development set is annotated so that a complete analysis can be
made.

The general structure of the active learning algorithm with multiple classifiers
is given in Algorithm 1. This algorithm is a classical active learning algorithm in
which we have replaced the single classifier by a set of elementary classifiers. For
implementation purposes and without loss of generality, the elementary learning
algorithm A is split into two parts: Train and Predict. A global parameter, mono-
learner, can force the classical active learning mode with a single classifier.

Algorithm 1 Multiple Classifiers Active Learning Algorithm

Dev: all development data samples
Test: all test data samples
L;,U;: labeled and unlabeled subsets of Dev at iteration
A=(Train, Predict): the elementary learning algorithm
Q: the selection (or querying) function.
Initialize L; (e.g. 10 positives & 20 negatives)
while Dev \ L; # 0 do
if mono-learner then
nbLearners; = 1
else
nbLearners; = Calculate the number of Learners
end if
for all j € [1..nbLearners;] do
Select subset T;; from L; for training
Cij «+ Train(T;;)
P, + Predict(U;,C;)
P}, < Predict(Test,C;;)
end for N
P! «Fuse(P},)
Apply Q on P},
Select © € U; samples
y = Label &
Liyv1 + L; U(Z;79)
U1 < Ui\ 2
Ptiest <_Fuse(P)l‘ngst)
Evaluate Ptie s and output performance at iteration ¢
end while

At each iteration i, the development set Dev is split into two parts: L;, labeled
samples and U;, unlabeled samples. A global parameter f, defines the ratio
between the negative and positive samples in all learners and for all iterations. This
defines the number of negative samples for each learner at iteration i. L; is split
into Lipos and Lineg that respectively contain the positive and negative samples of
Li. If | Linegl < fpos X | Lipos| Or if mono-learneris set, there is a single learner with
a training set T = L; = Lipos U Lineg. Otherwise a number of subsets Lipne, are



randomly selected out of Liye, S0 that |Lijneg| = fpos X | Lipos| for all j. For each
of them, there is an associated learner with a training set 7j; = Lipos U Lijneg. The
number of such sets and of associated learners is computed at each iteration so that
each negative sample appears on average a given number of times (usually once)
in the different subsets 7;;. C;; learners are then trained on the Tj; sets and applied
for prediction on the U; set for the selection of the next samples to annotate and
on the Test set for the evaluation. Predictions from the elementary classifiers are
then fuseed in both cases for producing a single prediction score per sample (any
late fusion method can be used). The predictions on the U; set are used by the
selection (or querying) function Q to produce a sorted list of the next samples to
annotate. From the top of this list, a X set is selected for annotation. The X set is then
added with the associated set of labels y obtained from their annotation to the L;
set to produce the L;;; set. The X set is also removed from the U; set to produce the
U i+1 set.

The global algorithm is determined by the A = (Train, Predict) elementary
learning algorithm (e.g. logistic regression or SVM) and by the Q selection (or
querying) function which implements the active learning strategy (e.g. relevance or
uncertainty sampling). It is also determined by some global parameters like the fyos
ratio between the number of negative and positive samples (in practice, the optimal
value for this ratio depends upon the learning algorithm and the descriptor type),
by the way of choosing the initial positive and negative samples (cold start), by how
the fusion is performed between classifier outputs (the Fuse function) and also by
the manner of how we choose the number of new samples to be integrated at each
iteration.

3 Experiments

We have evaluated the Multiple Classifiers Active Learning method in a variety
of contexts. It has been applied using four types of image descriptors, two types
of elementary classifiers that have been each evaluated in their mono- and multi-
learner versions, and with two different active learning strategies, relevance and
uncertainty sampling, completed by the random and linear scan sampling strategies
for comparison. All the elementary classifiers or learners output probability scores.
The other global parameter values or functions like the f,s ratio or the Fuse
function were determined by cross-validation using another colection with similar
contents (TRECVID 2007) and the same set of descriptors and learning algorithms.
These cross-validation experiments were conducted using a multi-learner approach
but without active learning [14]. Five fusion function variants were tried: arithmetic
mean, geometric mean, harmonic mean, minimum, and maximum, all applied to the
probability scores given by the individual learners. The harmonic mean gave the best
results and we display here the results obtained with it. We also tried again the other
variants and we found again that the harmonic mean performs better (not shown).
The cold start problem was not really explored; a random set of 10 positive and 20
negative samples was used. For the number of samples to be added at each iteration,
we chose a variable step size since we observed in previous experiments that having
small steps in the beginning of the active learning process is better for improving



performance speed. In practice, we used a logarithmic scale with 40 steps. The
evaluations were conducted using the TRECVID 2008 test collection and protocol.

3.1 TRECVID 2008 test collection

The TRECVID 2008 collection contains 43,616 video shots as training set and 35,766
shots as test set. The training set is fully annotated for 20 concepts and nothing
remains to be annotated which makes the use of active learning irrelevant but such
large fully annotated sets constitute opportunities to simulate, evaluate and compare
strategies and methods in active learning without the need of actually involving a
teacher [2]. In our experiments, active learning methods are started with very few
annotations available from the training set. Then, each time a human annotation
is needed, the corresponding subset of the full annotation is made available to the
active learner.

3.2 Image representation

Concepts and Images can be represented by their vector descriptors or features.
There are many descriptors that could be used to represent a specific concept
in an image and it is a wider area of research to discover what features are the
best to represent a concept or an image. We evaluated the different methods with
descriptors of different types and sizes. These descriptors have been produced by
various partners of the IRIM project of the GDR ISIS [13].

— LIG_hgl04: early fusion with normalization of an RGB histogram 4 x 4 x 4 and
a Gabor transformation (8 orientations and 5 scales), 64 4+ 40 = 104 dimensions.

— CEALIST _global_tlep: early fusion of local descriptors of texture and of an
RGB color histogram, 512 + 64 = 576 dimensions.

— ETIS_global_qwm1x3x256: 3 histograms of 3 vertical bands of visual descriptors,
standard Quaternion wavelet coefficients at three scales, 3 x 256 = 768 dimen-
sions.

— LEAR_bow_sift_1,000: histogram of local visual descriptors, SIFT “classic” [10],
1,000 dimensions.

3.3 Elementary classifiers

Two types of classifiers were used: Logistic Regression (LR) and Support Vector
Machines (SVM) with RBF kernel. Logistic LR has proven to be efficient in multi-
learner approaches [18, 19]. SVM with RBF kernel is widely used and known to
perform very well due to its ability to model non-linear boundaries. For the imple-
mentation, we chose the TRIRLS package [7] for LR and the LIBSVM package [6]
for SVM. For LR, probabilities are the natural output. For SVM, the values of the
decision function are turned into probabilities using the Platt’s approach [12] built in
libsvm.

3.4 Optimal negative to positive ratios

Table 1 shows the values used for the f,os global parameters on the development
set for single- and multiple-learner versions of LR (SLR and MLR) and SVM-



Table 1 Optimal values of the ratio between the numbers of negative to the positive samples for the
different methods and on different descriptors

Descriptor SSVM MSVM SLR MLR
LIG_hgl04 4 2 2 0.05
CEALIST global_tlep 8 4 2 0.2
ETIS_global_qwm1x3x256 4 3 2 0.05
LEAR_bow_sift_1,000 8 4 2 0.2

RBF (SSVM and MSVM) for the four considered descriptors. The optimization
of these parameters was done using the TRECVID 2007 test collection. In the
multiple-learner versions, the results of the classifiers are fused by the harmonic
mean function.

For all cases except MLR, the optimal values for the negative subset size are a few
times more than the size of the full positive set. The values are higher for the single
learner case than for the multiple learner case. This was expected since the multiple-
learner has another way to take into account more negative samples in total. The
optimal ratio for the MLR is very low. This is probably because the LR classifier has
a linear boundary between the classes and having less negative samples increases the
chance that a linear boundary is a good one, as suggested in [18].

3.5 Processing times

Table 2 gives the total processing times (cumulated from several machines or nodes,
single-thread programs, 2.66 GHz Intel processor) for the whole active learning
process (40 iterations) on all 20 concepts, per method and per descriptor, for one
strategy (relevance sampling, processing times are similar for uncertainty sampling).
As expected, the single-learner versions are faster than the multiple-learner ones.
The ratio between both is much higher for LR than for SVM. This is due to the
much lower f,os ratio for LR that induces a much greater number of learners. This
almost compensates the fact that the elementary LR classifier is much more faster
than the SVM one. The computation time generally increases with the descriptor
dimensionality but not in a simple way and there are some exceptions.

3.6 Active learning effectiveness

Figure 1 compares the effectiveness of the relevance and uncertainty sampling strate-
gies for the four classifier types (SLR, MLR, SSVM and MSVM). The performance
of the linear scan and random sampling strategies are also shown as baselines. The
results presented here are for the LIG_hg104 descriptor only but a similar behavior is
observed with the other descriptors. For the multiple-learner experiments, the fusion

Table 2 Processing times with relevance sampling strategy (hours)

Descriptor Dims SSVM MSVM SLR MLR

LIG_hgl04 104 3.246 21.118 0.2948 14.152
CEALIST_global_tlep 576 58.283 232.016 0.766 13.960
ETIS_global_qwm1x3x256 768 28.333 377.278 0.775 66.469

LEAR_bow_sift_1,000 1,000 119.8 437.5 0.618 27.499




Fig.1 Linear, random,
relevance and uncertainty
sampling strategies with the
LIG_hgl104 descriptor.
Classification methods: top:
LR mono-learner, top middle:
LR multi-learner, bottom
middle: SVM-RBF
mono-learner and bottom:
SVM-RBF multi-learner,
fusion method for
multi-learners: harmonic mean
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by harmonic mean has been used. These plots show the evolution of the indexing
performance measured by the Mean Average Precision (MAP) measure with the
number of annotated samples. The faster it grows, especially in the beginning, the
better. The higher it goes, the better also.



Unsurprisingly, the SLR method leads to a much lower performance than the
MLR or SVM methods indicating that a single linear boundary is not appropriate
for the considered type of data. The MSVM is the best method with the uncertainty
strategy being the best one. The SSVM method is almost as good for both strategies:
it goes almost as high but it grows more slowly while we can see in Table 2
that it is significantly faster. The MLR method is almost as good also but only
with the relevance sampling strategy: it grows as fast as the MSVM but it goes
a little bit lower while being also significantly faster (on average, considering all
descriptors). For all classifier types and strategies (excluding the baselines), the
maximum performance value is achieved when a small fraction (typically between
10% and 25%) of the training set is annotated. The (small) performance drop can be
attributed to the fact that the imbalance between the positive and negative sample
sets increases significantly: few new positive samples are discovered while no new
useful information is found in the next negative samples.

The overall absolute MAP performance is low (about 0.075 for the best descriptor)
but it is quite good for individual descriptors considering that a classifier with a
significantly higher performance can be built by fusing the outputs of several such
classifiers, that this performance can be further improved by using multiple frames
in the candidate shots, and that the performance of the best classification system at
TRECVID 2008 was of 0.167 (type A run).

Figure 2 compares the effectiveness of the four classifier types for the four
considered descriptors. The results are presented here for the relevance sampling
strategy. For the multiple-learner experiments, the fusion by harmonic mean has
been used.

These plots show a significant variability according to the descriptor type. SLR
is always the worst method. MLR is competitive with SVM only for two types of
descriptors. MLR increases the imbalance problem between positives to negatives,
this can be seen from the figures after annotating 25% of the dataset, which decreases
the MAP performance. MSVM is consistently the best method. SSVM is often almost
as good as MSVM except for one descriptor. Despite the variability according to the
descriptor type, it is a general rule that the slowest method leads to the best result
with often a small difference in performance with a large decrease in processing
time. This allows to tune the speed versus quality compromise over a wider useful
range. Some combination of methods and strategies could also be used like MLR
with relevance sampling in the early iterations followed by MSVM with uncertainty
sampling. The total processing time of the worst case (437.5 h) is comparable to
the total annotation time with a single annotator assigning one label to one video
shot on an average of 2 s (485 h). The experiments were conducted here until the
whole set is annotated for evaluation purposes. In practice, the annotation would be
stopped after only a fraction (e.g. 20%) of the training set is annotated and both the
processing time and annotation times would be reduced accordingly.

The actual number of learners involved is very variable and depends upon the
imbalance between positive and negative samples, the descriptor type, the learning
algorithm and the f;,s factor. For MSVM, it ranges from 2 to 471 and for MLR, it
ranges from 55 to 18,868. Values are much higher for MLR since the optimal fjs
factors are much lower in this case, forcing much less negative samples than positive
ones and therfore a very large number of learners if the number of positive samples
is quite low.



Fig. 2 The four classifiers
using relevance sampling
strategy. Descriptors: top:
LIG_hgl04, top middle:
CEALIST _global_tlep, bottom
middle:
ETIS_global_qwm1x3x256,
and bottom:
LEAR_bow_sift_1,000
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3.7 Descriptor fusion

Until now, we have studied the combination of multiple learners and active learning
approaches only using individual descriptors. The most efficient methods for concept
classification actually use a number of descriptors. This can be done with a number



of fusion strategies, among early and late fusion [16] or kernel fusion [3]. The perfor-
mance of a system combining several individual descriptors is generally significantly
higher than the performance of a system using a single descriptor used for the fusion.
The gain is more important when individual descriptors are of different origin, for
instance color, texture and SIFT and, in this case, a gain can be obtained relatively to

Fig. 3 Combination of fusion
and active learning with mono-
and multi-learner approaches:
top: LR mono-learner, top
middle: LR multi-learner,
bottom middle: SVM-RBF
mono-learner and bottom:
SVM-RBF multi-learner
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the best individual descriptor even if there is a large disparity among the performance
of the individual descriptors.

Late fusion has been successfully combined with the multi-learner approach. We
used again the harmonic mean function applied to the scores given by the classifiers
assosiated to the individual descriptors [14]. We have evaluated it here in combi-
nation with the multi-learner and the active learning approaches simultaneously.
Figure 3 shows the behavior of active learning using the late fusion of the four studied
descriptors with mono- and multi-learner approaches and with the two considered
classifiers. We observe that:

— in all cases, the fusion significantly improves the performance of the active
learning as in classical learning;

— as for individual descriptors, the SVM-RBF classifier is better that the LR one
and the multi-learner version is better than the mono-learner one;

— the maximum performance is obtained when 10 to 15% of the dataset is anno-
tated which is less than individual descriptors; this absolute value is probably
dependent upon the size of the dataset as observed in [2].

Figure 4 shows the behavior of active learning when fusion is done within the
active learning or separately. In the second case, active learning is performed
separately for each descriptor and the fusion is done one the resulting classifiers. We
observe that the inclusion of the fusion within the active learning improves both the
speed at which the maximum performance is reached and the level of this maximum
performance. The effect is more significant in the case of the SVM-RBF classifier.

Fig. 4 Performnce of active 0.12 . . T .
learning when the fusion is
done within the active learning g 01 r e e i
process or separately: top: LR 5 008 | g \
multi-learner and bottom: *3 f\r(
SVM-RBF multi-learner £ 006 ;f .
= ;
o !
o 0.04 ff e
= L
0.02 MLR-FUSION-AL —+
MLR-FUSION
0 £ 1 1 I
0 5 10 15 20
Labeled Samples from the dev set x 10°
0.12 : . T T
e 01F
()
(2]
% 0.08 | i
2
]
2 o006 [ -
= ¥
c #
o b ]
o 0.04 g
0.02¢ MSVM-FUSION-AL ——+
0 | | MSVIM-FUSION
0 5 10 15 20

Labeled Samples from the dev set x 10°



4 Conclusion

We have proposed and evaluated in this paper a combination of Active Learning
and Multiple Classifiers approaches for corpus annotation and concept indexing on
highly imbalanced datasets. Experiments were conducted using TRECVID 2008
data and protocol with four different types of video shot descriptors, with two
types of classifiers (Logistic Regression and Support Vector Machine with RBF
kernel) and with two different active learning strategies (relevance and uncertainty
sampling). Results show that the Multiple Classifiers approach significantly increases
the effectiveness of the Active Learning. On the considered dataset, the best
performance is reached when 15 to 30% of the corpus is annotated for individual
descriptors and when 10 to 15% of the corpus is annotated for their fusion.

This work was mostly experimental and it would have been very interesting to
complete it with theoretical studies about the convergence of the method. Unfortu-
nately, its algorithmic complexity is very high and it seems very unlikely to us that
any theoretical result can be produced, even just for guaranteeing a convergence, not
mentionning an upper bound about its speed. Our results shows the effectiveness of
the proposed method in a number of contexts and some empirical rules have also
been deduced from them about its actual convergence and its speed of convergence
in relation with the problem parameters (e.g. the collection size). Further work needs
be done to confirm and refines these results using other types of data, of descriptors
and of learning algorithms. Especially, general and accurate rules for the selection of
the best active learning system configuration and the determination of the optimal
annotation fraction should be obtained.
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