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Abstract

In the presented work, a non linear effect of rubber referredas Fletcher-Gent effect or Payne effect
is investigated. It leads to a change in the rubber dynamic modulus with vibration amplitudes and,
consequently, modifies resonance frequencies of mechanical systems including non linear elastomers.
In this study a new methodology is developed to take into account Payne effect in a linear viscoelastic
rubber material. Small vibration amplitudes around a no-preloaded state are predicted by considering
frequency and amplitude dependencies of the material. Thismethodology has the advantage of using
tabular experimental data from characterization tests which avoids the development of a complex model.
In order to compute frequency responses, the non linear harmonic balance method is used and, for each
iteration, new rubber properties are affected at each element according to its strain state. An equivalent
strain measure is evaluated from the element strain energy density. This equivalent strain allows to
associate dynamic properties of a material element subjected to multiaxial strain state with experimental
dynamic properties of a material sample subjected to an uniaxial strain state. Practically, DMAP alter
procedures are developed in order to evaluate energies in models defined with MSC.Nastran and the non
linear solver is developed with Matlab. The method is applied on a satellite instrument isolator including
four non linear rubber mounts. A non homogeneous spatial distribution of element equivalent strains
is observed. Moreover, the maximum equivalent strain varies with frequency. These two observations
validate the use of a specific methodology to deal with amplitude dependency of rubber.

1 Introduction

The use of rubber mounts is a common solution in industry in order to connect two structures and to
achieve a combination of stiffness and vibration isolation. Kunz [1] applied a rubber isolator technology
on helicopters and Bruger et al. [2] optimized comfort properties of elastomeric properties for automotive
industry.
Simulations of rubber parts need to consider various complex effects and deal with properties varying
with many parameters. Indeed, elastic and damping properties are strongly influenced by temperature
and frequency (equivalence temperature-frequency), preload,... Many different experimental studies have
been performed to study all these dependencies, more particularly on carbon-filled rubber which usually
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present a more complex behaviour [3, 4]. One frequently studied dependency is the amplitude depen-
dency. Mullins effect [5] represents one of these effect where a softening effect is observed for the first
excitation cycles on a rubber sample. A second effect, referred to Fletcher-Gent or Payne effect [6, 7],
is the dependency of the dynamic properties on strain amplitude when material is submitted to small
dynamic vibrations. Origin of Payne effect is not clearly established but supposed to be a continuous
breaking and reforming Van der Waals forces between carbon-black aggregates [8].
Concerning the modelling of rubber, frequency dependent behaviour is today quite well modeled through
the use of simple models involving combinations of springs and dashpots [9, 10]. For a full three di-
mensional case, hereditary integrals are used to formulateconstitutive equations [11]. Furthermore,
fractional derivative models have also been developed to obtain a better frequency-dependent behaviour
and to reduce the number of parameters to identify [12]. Nevertheless, as regards the amplitude de-
pendent behaviour modeling, more complex models have to be established for filled rubbers. The first
one-dimensional model is the Kraus model [13] who dealt withnon linear viscous forces. Kraus consid-
ered contacts and shocks between aggregates. Later, Ulmer [14] improved this model to obtain a better
approach of experimental observations. Other models triedto represent the irreversible slip processes
occurring between filler particles by introducing frictionelements [15–17]. These models are often lim-
ited to a one-dimensional case or are difficult to use in a frequency domain. Austrell et al. [18] made use
of elastoplasticity elements to simplify implementation.The main drawback of these approaches is that
a parameter identification is needed in conjunction with specific tests and that these models are limited
to the time domain. For frequency analysis, these models arenot very well adapted. However, some
methodologies have been introduced by Gil-Negrete et al. [19] who proposed to apply a first quasi-static
step on a studied mount submitted to a given amplitude to assign adapted dynamic properties on each
element according to its strain state in order to predict in asecond time the dynamic stiffness of the
mount at this same dynamic amplitude. Then, Rabkin [20] proposed to predict the dynamic stiffness of
a rubber sample submitted to small vibrations around a preloaded state by modifying UPHI subroutine
in a Marc analysis.
This paper proposes to investigate this non linear Payne effect of rubber and develop a methodology
to predict frequency responses of a complete system including non linear rubber mounts. This method
does not include any parametric model and use tabular experimental data from a characterization test
on a rubber sample. This approach uses a non linear harmonic balance method to deal with amplitude
dependency. Only first harmonic is retained here due to practical observation [21]. However, more har-
monics may be used in case of stronger non linearities. The technique is based on the calculation on an
equivalent strain for each element and for each iteration inorder to assign appropriate rubber dynamic
properties. Indeed, each element of the rubber parts does not have the same strain state and consequently
the same rubber property. This methodology is applied for models defined with MSC.Nastran and reso-
lution is performed by the use of DMAP alter procedures and Matlab routines. Finally, it can be noted
that the use of harmonic balance for problems in which the terms depend on the frequency and amplitude
has been studied for the particular case of viscoelastic materials by Bilasse et al. : in [22], the authors
studied the nonlinear vibration of viscoelastic shell structures by coupling an approximated harmonic
balance method with one mode Galerkin’s procedure. In [23],they proposed numerical models with lin-
ear and nonlinear vibrations analyses of viscoelastic sandwich beams with various viscoelastic frequency
dependent laws.
The paper is organized as follows: method description is detailed in a first section. One application case
is presented in a second section. In this application, a satellite instrument isolator including four rubber
mounts is harmonically excited. Results are then shown to highlight the non linear behaviour of the
system and the ability of the proposed technique to represent a non homogeneous spatial distribution of
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element strains.

2 Methodology

This methodology proposes a new procedure to consider Payneeffect for material modeling of vis-
coelastic materials in FE models with MSC.Nastran for smallamplitude harmonic vibrations. Materials
considered in this study are supposed to be isotropic, isothermal and nearly incompressible.

2.1 Viscoelasticity in MSC.Nastran for frequency analysis

For small amplitude strains, MSC.Nastran provides the ability to represent the behaviour of a viscoelas-
tic material in the frame of the linear viscoelastic theory with a complex frequency-dependent shear
modulus:

G(f) = G′(f) + iG”(f) (1)

whereG′ andG” represent respectively the shear storage and loss moduli.
A viscoelastic behaviour leads to a complex dynamic stiffness matrix for all viscoelastic elements of the
model. Stiffness matrix is computed on the basis of a representative reference modulusGref which often
corresponds to the long-term quasi-static shear modulusG0 = limω→0G(ω). Gref is independent of
frequency. Thus complex stiffness matrix for viscoelasticelements is expressed as:

K =

(

G′(f) + iG”(f)

Gref

)

Kref (2)

whereKref is the stiffness matrix withGref as shear modulus.
Additionally, a structural damping coefficientg may be affected on the whole model. A structural damp-
ing coefficientgref must also be defined on the viscoelastic element group. To combine these two
conditions, MSC.Nastran uses two tabular functionsTR(f) andTI(f) to represent the complex moduli
of all viscoelastic materials. The calculation of the complex stiffness matrix is then given by:

K = ((1 + grefTR(f)) + i (g + grefTI(f)))Kref (3)

To assure equivalence with Equation (2),TR(f) andTI(f) are expressed as:

TR(f) =
1

gref

[

G′(f)

Gref

− 1

]

(4)

TI(f) =
1

gref

[

G”(f)

Gref

− g

]

(5)

MSC.Nastran does not provide the ability to define differentdynamic properties for each particular vis-
coelastic element. When a viscoelastic material with amplitude dependent properties is subjected to a
non homogeneous strain field, it may lead to severe errors forthe dynamic stiffness matrix calculation.

2.2 Adaptation to Payne effect

The amplitude dependence of the complex shear modulus for small vibrations is referred to Payne effect
and is noticeable for filled elastomers. This complex non linear effect is often attributed to irreversible
slip processes between filler particles. Consequently, models of linear viscoelasticity are not suitable for
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frequency analysis. Based on an analogy with microplastic theory, some rheological models have been
developed which introduce friction elements [15, 16]. These models are often formulated for uniaxial
cases and are not adapted for multiaxial rubber models. Moreover a complex parameter identification
has to be lead on material samples in terms of test conditionsand parameter calculations. Up to now FE
commercial codes do not provide the possibility to easily model Payne effect for frequency analysis.
An approximate procedure has been developed for dynamic analysis. This procedure has the advantage
of using tabular experimental data from simple characterization tests (shear or compression tests) on
material specimens and does not need any parameter identification for some simplified models. The non
linear Harmonic Balance Method (HBM) is used to calculate frequency responses for a FE model inte-
grating non linear viscoelastic elements (in terms of frequency and amplitude dependent shear modulus)
subjected to an external dynamic load. Vibration amplitudes are not a priori known so equations have to
be solved iteratively.
For each iteration of the solver, strain energy density is first computed element–wise and for the previous
displacement field. Then, a local equivalent strainγeeq is deduced so that the element strain energy
density is equal to the homogeneous strain energy density ina characterization sample tested at the
same dynamic amplitudeγeeq. This energy balance enables to associate dynamic properties of a material
element subjected to multiaxial strain state with experimental dynamic properties of a material sample
subjected to an uniaxial strain state. Afterwards, shear storage and loss moduli associated with this
equivalent strain are deduced from experimental data and assembly of all elementary complex stiffness
matrices is performed. A new displacement field is finally calculated from HBM equations and a non
linear solver repeats this operation until convergence.
In the following, HBM formulation is first presented in orderto secondly detail the evaluation of non
linear forces generated by all viscoelastic elements of theFE model.

2.2.1 HBM formulation

In order to compute frequency responses of a mechanical system integrating viscoelastic elements with
amplitude dependent properties, HBM method is used. This method is able to compute periodic re-
sponses of non linear systems submitted to an external loading [24] or to self-excited vibrations [25].
HBM is also able to compute quasi-periodic responses [26] and able to conduct stability analysis [27]. In
the following, basic equations are recalled and a non linearsolver is used for convergence. More details
are given in Appendix 1 for the interested reader. Condensation techniques and continuation may also be
applied in order to accelerate calculation.
First we consider a discrete mechanical system withn degrees of freedoms (dofs) described with itsn×n

mass matrixM, stiffness matrixK and damping matrixD. The system includes non linear viscoelastic
elements andv dofs are linked to these elements. Mass of all viscoelastic elements are integrated in the
global mass matrixM. D andK include all linear parts of the model. Forces generated by the complex
dynamic stiffness of all viscoelastic elementsK

C
v = K

′

v + iK
′′

v are considered as an external non linear
forceFNL(X, Ẋ,Ω, t) which depends on degrees of freedom displacementsX, velocitiesẊ , time t and
angular frequencyΩ. Ω is the angular frequency of an external periodic forceFL(Ω, t) applied to the
system. The governing equation of motion may be written as:

MẌ +DẊ +KX = F (X, Ẋ,Ω, t) = FL(Ω, t) + FNL(X, Ẋ,Ω, t) (6)

Then, we assume that the non-linear dynamical response of the system can be approximated by finite
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Fourier series:

X(t) = B0 +

m
∑

k=1

(

Ak sin(
k

ν
Ωt) +Bk cos(

k

ν
Ωt)

)

X(t) = T(t)Z =

[

I sin(
Ω

ν
t)I cos(

Ω

ν
t)I . . . sin(

k

ν
Ωt)I cos(

k

ν
Ωt)I . . .

]

[B0 A1 B1 . . . Ak Bk . . .]T

(7)

whereI is then × n identity matrix,Z = [B0 A1 B1 . . . Ak Bk . . .]T is the(2m + 1)n × 1 vec-
tor containing Fourier coefficients,m is the number of harmonics retained for the truncation,ν is an
integer used to represent possible subharmonics, andT(t) = [I sin(Ω

ν
t)I cos(Ω

ν
t)I . . . sin(k

ν
Ωt)I

cos(k
ν
Ωt)I . . .] is then × (2m + 1)n matrix containing trigonometric functions. Finally, we assume

that the vector forceFNL(X, Ẋ,Ω, t) can be solved in finite Fourier series (see Appendix 1 for more
details). Generally, the number of harmonic coefficients isselected on the basis of the number of signif-
icant harmonics expected in the non-linear dynamical response. Concerning Payne effect in viscoelastic
materials, it has been described that, within certain strain amplitude limit, higher-order terms are not sig-
nificant in the material response. The reader is referred to Roland [21] for more details. Consequently, a
single harmonic has been retained in the HBM procedure leading to the following equation system (see
Appendix 1 for more details):

[

K− Ω2
M −ΩD

ΩD K− Ω2
M

] [

A1

B1

]

= bL(Ω) + bNL(Zv,Ω) (8)

whereM, K andD are the mass, stiffness and damping matrices.bL(Ω) defines the Fourier coefficients
from an external periodic force applied to the system.Ω is the angular frequency of the external periodic
force.bNL(Zv,Ω) defines the Fourier coefficients from the non linear forceFNL(X, Ẋ,Ω, t). It depends
only on the Fourier coefficientsZv of thev degrees of freedom linked with the viscoelastic elements.

2.2.2 Non linear force evaluation

In order to calculate Fourier coefficients of non linear forcesbNL, the non linear forceFNL has to be
detailed. Indeed, dofs are reorganized intov dofs which are linked to viscoelastic elements andnv dofs
which are not using a boolean transition matrixP:

X = P

[

Xnv

Xv

]

(9)

Thus, the complex dynamic stiffness matrix of all viscoelastic elements which is function ofXv, may be
expressed as:

K
C
v (Xv,Ω) = K

′

v(Xv,Ω) + iK
′′

v (Xv,Ω) (10)

Thus, one may write:

FNL(X, Ẋ,Ω, t) = −

[

0 0

0 K
′

v(Xv ,Ω)

] [

Xnv

Xv

]

−

[

0 0

0
K

′′

v

Ω (Xv ,Ω)

]

[

Ẋnv

Ẋv

]

(11)
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This stiffness matrix depends on the strain amplitude in thematerial and does not vary over one period.
This remark allows to calculate non linear Fourier coefficients with the relation:

bNL =
1

T

∫ T

0

T
T(t)FNL(X, Ẋ,Ω, t)dt

bNL = −









0 0 0 0

0 K
′

v(Zv,Ω) 0 0

0 0 0 0

0 0 0 K
′

v(Zv,Ω)









Z −











0 0 0 0

0
K

′′

v

Ω (Zv,Ω) 0 0

0 0 0 0

0 0 0
K

′′

v

Ω (Zv ,Ω)











∇Z









SNLnv

SNLv

CNLnv

CNLv









= −











0 0 0 0

0 K
′

v(Zv,Ω) 0 −
K

′′

v

Ω (Zv,Ω)
0 0 0 0

0
K

′′

v

Ω (Zv ,Ω) 0 K
′

v(Zv,Ω)



















A1nv

A1v

B1nv

B1v









(12)

Note thatZv = [A1vB1v]
T represents the Fourier coefficients of thev dofs in relation with all viscoelastic

elements.
Due to the amplitude-dependence of the stiffness matrix of all viscoelastic elements, a non linear solver
is used. From a displacement field(i)Z obtained after iterationi, a new value of the viscoelastic dynamic
stiffness matrix(i)Kv(

(i)Zv, f) is performed in order to deduce a new value for the non linear forces
(i)bNL.
The strain field is not necessarily homogeneous in all the viscoelastic part leading to different material
properties depending on the considered point. The new developed procedure is able to take into consid-
eration this effect by affecting different material properties for each viscoelastic element. For an element
e of the setV of all viscoelastic elements, an elementary matrix(i)

K
e
v(

(i)Ze
v , f) is calculated from the

displacement field(i)Ze
v associated to this element. All these elementary matrices are then assembled to

deduce the complete dynamic stiffness matrix(i)
Kv(

(i)Zv, f):

(i)
Kv(

(i)Zv, f) =
∑

e ∈ V

(i)
K

e
v(

(i)Ze
v , f) (13)

In the following, we detail the calculation of an elementarymatrix (i)
K

e
v(

(i)Ze
v , f) from an initial dis-

placement field(i)Ze
v .

2.2.3 Strain energy density

In the following, indexi will be remove for simplification. All relations remain valid for each iteration.
For each viscoelastic element, an equivalent strain measure γeeq is computed from an elementary dis-
placement fieldZe

v . It allows to associate dynamic propertiesG′e andG′′e coming from an uniaxial test
with the strain state in the element which combines different sollicitations.
The strain equivalent strain is deduced at each iteration from the elementary displacement fieldZe

v and
from an evaluation of the strain energy in an element calculated with a real shear modulus equal toGref .
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This strain energy may be expressed as:

Ee(t) =
1

2
TXe

v(t)KrefX
e
v(t)

Ee(t) =
1

2
TZe

v
T
T(t)T(t)NKref

Ze
v

Ee(t) =
1

2
TZe

v

[

sin2(Ωt)I sin(Ωt) cos(Ωt)I
sin(Ωt) cos(Ωt)I cos2(Ωt)I

]

NKref
Ze
v

Ee(t) =
1

2
TZe

v

[

1−sin(2Ωt)
2 I

sin(2Ωt)
2 I

sin(Ωt)
2 I

1+cos(2Ωt)
2 I

]

NKref
Ze
v (14)

Ee(t) =
1

4
TZe

vNKref
Ze
v +

1

4

[(

TBe
1vKrefB

e
1v −

TAe
1vKrefA

e
1v

)

cos(2Ωt) +
(

2TAe
1vKrefB

e
1v

)

sin(2Ωt)
]

Thus strain energy in the element is composed of a constant termEe
0 = 1

4
TZe

vNKref
Ze
v which represents

the mean value over one period and of an oscillatory term at the frequency2Ω. The amplitude of the
term is:

Ee
a =

1

4

√

(TBe
1vKrefB

e
1v −

TAe
1vKrefA

e
1v)

2 + (2TAe
1vKrefB

e
1v)

2 (15)

The peak value for each element over one period is consequently Ee
peak = Ee

0 + Ee
a. The last step

necessary for the evaluation of the equivalent strain is thecomputation of the strain energy densityρe. ρe

is classically obtained by dividingEe
peak by the element volume.

Practically, MSC.Nastran is able to provide strain energy and strain energy density for each element of the
model for a frequency analysis so strain energy density is obtained for all viscoelastic after introduction
of a complex displacement field corresponding withZv values at each iteration. An alter procedure in
DMAP language is written to perform these operations.

2.2.4 Equivalent strain measure

Experimental data usually come from a simple shear or compression test and results in a table providing
complex dynamic modulus depending on frequency and on a single dynamic strain amplitudeγexp. The
strain energy density calculated at the previous step will allow to estimate an equivalent strain measure
for each elementγeeq. This equivalent strain is comparable with the experimental strain amplitude and
will allow to deduce appropriate storage and loss moduli to apply in each element.
A energy balance is performed for each element by equalizingthe obtained strain energy density with
the homogeneous strain energy density in a characterization sample tested at a dynamic amplitudeγeeq.
This amplitude is the equivalent strain amplitude which will be comparable with the experimental one
γexp. It has been shown in Gil-Negrete et al. [19] that, for a material element subjected to its principal
stresses, the deviatoric part of the total strain energy density may be expressed with the principal strains
namely:

ρd =
G

3

[

(ǫp1 − ǫp2)
2 + (ǫp2 − ǫp3)

2 + (ǫp3 − ǫp1)
2
]

(16)

For our study, experimental data are associated with a compression test. Consequently, for a cylinder
material element compressed with a strain amplitude ofγ and with a shear modulusGref , principal
strains may be expressed asǫp1 = γ andǫp2,3 = −νǫp1 = −

γ
2 for a quasi incompressible material. In
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this case, distortion energy becomes:

ρdTC =
Gref

3

[

(

3

2
γ

)2

+ 0 +

(

3

2
γ

)2
]

ρdTC =
3Gref

2
γ2 (17)

Energy density balance is then written for each element to deduce an equivalent strain measure:

ρedTC = ρe

3Gref

2
γeeq

2 = ρe

γeeq =

√

2ρe

3Gref

(18)

This procedure is an approximate procedure since the reference modulus is used to evaluate the equivalent
strain. This choice has been made to keep a realistic value. Moreover, it has been shown with a virtual
test on a material sample under compression that equivalentstrain measure evaluated with the above
procedure is equal to the homogeneous strain obtained in thematerial for this compression test. Then, a
purely kinematic relation is not used as in Gil-Negrete et al. [19] by convenience because MSC.Nastran
provides the possibility to directly extract strain energydensity of each element, avoiding to evaluate
principal strains and averaging strain energy densities onall Gauss points. Finally, a dynamic calculation
is performed to evaluate the equivalent strain instead of a quasi-static test in [19] which leads to a better
representativity on a larger frequency band.

2.2.5 Dynamic stiffness matrix assembly

From experimental tabular data, storageG′e(γeeq, f) and lossG′′e(γeeq, f) moduli are deduced using the
equivalent strain measure and the frequency. Quadratic andcubic interpolations are employed to deduce
approximate values for an equivalent strain and a frequencywhich do not exactly match experimental
datas. This step is performed with Matlab.
By analogy with Equation (2), each elementary matrix is calculated with the relation:

K
e
v(Z

e
v , f) = K

e
v(γ

e
eq, f)

K
e
v(Z

e
v , f) =

(

G′e(γeeq, f) + iG′′e(γeeq, f)

Gref

)

K
e
ref (19)

The final complex stiffness matrix of all viscoelastic elementsKv(Zv, f) is finally assembled and Fourier
coefficients of the non linear forcebNL is then computed according to Equation (12).
For practical convenience, calculation of stiffness complex matrix and Fourier coefficients is performed
with an alter procedure with MSC.Nastran which easily dealswith connectivity of the model.

2.2.6 Practical procedure

The complete algorithm with the different continuation steps is presented in Figure 1. The algorithm is
described in the particular case of a parameterized continuation with an curvilinear abscissa, a prediction
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Figure 1: Complete HBM algorithm with non term procedure.

with Lagrange polynomials and a Newton-Raphson correctionmethod.

This procedure deals with the specific Payne effect in the ”non linear term calculation”. These detailed
steps are then described in Figure 2. As seen previously, resolution has to be made incrementally. From
an displacement field(i)Zv obtained at the iterationi, main steps to deduce the non linear force Fourier
coefficients are synthesized here:

1. (i)Zv: displacement field of all viscoelastic elements obtained for iterationi.

2. Calculation of the strain energy density(i)ρe (peak value) for each element. Shear modulus is
equal to the reference modulusGref .

3. Calculation of an equivalent strain measure(i)γeeq =
√

2(i)ρe

3Gref
with an energy balance.
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Figure 2: Non linear force calculation for each iterationi

4. Evaluation of storage(i)G′e((i)γeeq, f) and loss moduli(i)G′′e((i)γeeq, f) with experimental data.

5. Calculation of each element complex stiffness matrix(i)
K

e
v(

(i)Ze
v , f).

6. Assembly of the complex stiffness matrix of all viscoelastic element(i)Kv(
(i)Zv, f).

7. Calculation of non linear force Fourier coefficients(i)A1v and(i)B1v.

It has also to be noted that this procedure is used for jacobian matrix calculation. Steps n◦1, 3, 4 are
performed with Matlab whereas steps n◦2, 5, 6, 7 are performed with an alter DMAP procedure using
with MSC.Nastran.
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(a) (b)

Figure 3: Elastomeric isolator: (a) Global view, (b) Zoom onone rubber part. Rubber is coloured in red.

3 Application Case

3.1 Elastomeric isolator

An application is carried out on an elastomeric isolator from space industry. This system is designed
to isolate a satellite instrument. Four rubber mounts are inserted between four metallic (aluminium)
blocks clamped on the satellite and a circular part referredas ”cross part” on which specific instrument
is mounted. Figure 3 shows a detailed view of the considered structure. Satellite instrument is only
represented here by a concentrated mass and does not appear on the figure. Weight of mounted instrument
is approximatively16kg. The global weight of the structure including isolator and instrument is nearly
20kg. Height of the structure is180mm and cross diameter is200mm. The four rubber mounts integrates
two plane-parallel areas whom dimensions are20× 10× 3.5 mm.
Elastomeric parts are made of a rubber which presents a pronounced amplitude dependency. Material
characterization has been performed for dynamic strain amplitudes of±0.1%, ±0.25%, ±1%, ±2% and
±5%. Tested frequency bands are1 − 185Hz for ±5%, 1 − 395Hz for ±2%, 1 − 500Hz for ±0.1%,
±0.25% and±1%. For simulations, only experimental data for a frequency band of 1− 185Hz will be
considered in order to have material data for all dynamic amplitudes. In order to illustrate frequency and
amplitude dependencies, experimental storage modulus is shown in Figure 4. Values have been removed
for confidentiality.
Isolator performance will be quantified with a force transmissibility. Indeed, for a given excitation force
amplitude applied on the satellite instrument, reaction forces at the base of the four metallic blocks are
observed. These blocks are clamped on the primary structure. For simulation, they are fixed. Force
transmissibility is then deduced for different excitationconfigurations and maximum is observed for
resonances. The main difficulty is the ability to predict resonance frequency and vibration amplitude
due to the non linear stiffness of rubber mounts. This study focuses on the pumping mode so exci-
tation is applied vertically on the satellite instrument. Consequently, rubber mounts are submitted to
tension/compression.
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Figure 4: Storage modulus: (a) Amplitude dependency; – (1Hz); - - (45Hz); -.- (115Hz); ... (185Hz)
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3.2 Numerical model

A numerical model of the system is built with MSC.Nastran andis shown in Figure 3. This model is
not initially submitted to a static preload. The satellite instrument is modelled as a single concentrated
mass and an inertia matrix located at its center of gravity. This mass is rigidly connected to the upper
surface of the cross part through rigid body elements which are not represented on Figure 3. Cross part
and blocks are discretized with10739 four-sided CTETRA and six-sided CHEXA solid elements.
The geometry of elastomeric parts has been simplified in order to neglect elastomeric areas which are not
significantly deformed. It has been checked that the change in the first six frequencies does not exceed
0.1%. Then a simplified mesh including only 192 CHEXA elements is created. A compromise has been
established to keep a satisfying dynamic behaviour and a reasonable number of dofs. Change in the
first six frequencies does not exceed3% and the simplified mesh is sufficiently fine to avoid shear and
volumetric mesh locking due to incompressibility. Consequently reduced integration elements or hybrid
elements are not necessary.
Moreover, condensation is applied on the cross part and on the four metallic blocks in order to reduce
the number of dofs for simulation. First free mode of cross part and of each metallic block is higher
than1kHz and exceeds frequency band for simulation (10 − 120Hz). This observation allows to carry
out a Guyan condensation [28] for these metallic parts on interfaces with rubber parts. After reduction,
the model integrates1662 dofs and192 rubber elements.6 dofs are used to represent the rigid body
movement of the satellite instrument.
Finally, an excitation force is applied on the single concentrated mass in order to obtain a significant non
linear behaviour of the rubber mounts. A value of145N is chosen in order to assure that the equivalent
strain does not exceed4% so that mechanical rubber properties remain in the range of experimental data.
Indeed, for homogeneous rubber properties corresponding to an experimental dynamic amplitude of5%
(respectively0.1%), a linear simulation with MSC.Nastran shows that the maximum equivalent strain
obtained among all rubber elements (and for all the frequency band) is of4% (respectively2.41%). A
value of145N will consequently lead to a maximum equivalent strain measure included in this range of
2.41 − 4% as desired.
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Figure 5: (a) Displacement of concentrated mass (b) Force Transmissibility along z-axisRz
F

: – homo-
geneous properties of rubber without amplitude dependency); – non linear procedure with amplitude
dependency.

4 Results

Simulations are performed on a frequency band of[10− 120Hz] in order to capture the pumping mode.
In conjunction with the proposed non linear procedure, linear frequency analyses are carried out with
MSC.Nastran with SOL108 algorithm. These calculations consider only frequency dependency on the
viscoelastic material and affect homogeneous properties to rubber mounts corresponding to a fixed ex-
perimental dynamic amplitude.

4.1 Displacements

First results show that resonance of the pumping mode may vary on the frequency band of[75−100]Hz if
homogeneous properties are considered. Indeed, Figure 5(a) describes the evolution of the displacement
along z-axis of the concentrated mass for the six different dynamic amplitudes for linear simulations.
Unsurprisingly, resonance frequency decreases for largerdynamic amplitude. The maximum value of
100Hz is obtained for an amplitude of0.1% while the minimum of75Hz is obtained for5%. This
decrease is associated with the rubber softening observed on experimental data in Figure 4. Maximum
displacement also increases for larger dynamic amplitudesand varies between67 and111µm. Concern-
ing the non linear procedure, resonance frequency is83Hz which is an intermediary value showing that
rubber is working in its non linear domain. The maximum displacement is87µm and is coherent with
linear calculations. Around resonance, this result is really close to the curve obtained with a homoge-
neous modulus chosen for an amplitude of2%. However, it can also be noted that the curve shape is
lightly different from linear calculations.

4.2 Transmissibility

A short analysis on the force transmissibility on the z-axisshows that the maximum value is around3 for
all simulations. The seven results vary between2.96 and3.37. This transmissibility is not constant and
reaches a minimum value for a dynamic amplitude of nearly2%. The non linear procedure is also very
close to this value.
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Figure 6: Equivalent Deformation: (a) Equivalent strain for element id 50099 (b) Deformed rubber mount
and equivalent strain distribution at83Hz (figures correspond to equivalent strains and colours to strain
energy densities).

4.3 Equivalent strain

The proposed procedure is able to deal with non homogeneous properties of rubber and evaluates a
different equivalent strain for each element allowing to affect different dynamic properties. This ability
is illustrated on Figure 6(b) where a deformed view of a lowerpart of a rubber mount is shown. It
corresponds to a compression phase. On each element, the equivalent strain is written so the spatial
distribution is highlighted. Displayed colours do not correspond to a representation of the equivalent
strain but to strain energy density of element surfaces. This view is a typical view from Patran. The
maximum strain value of3.21% is obtained for element50099 and for a frequency of83Hz, ie for
resonance. As expected, this value is included in the range of 2.41 − 4%. The rubber behaves in its non
linear domain. The presented mesh is a simplified mesh and could be improved in order to increase the
result precision. However, deformed shape shows that proposed mesh is sufficient to give a satisfactory
behaviour of a nearly incompressible material and to avoid volumetric locking. Moreover, the equivalent
strain is spatially distributed but also modified for each frequency. Figure 6(a) shows the evolution of the
equivalent strain for the element50099. The maximum value is obtained at resonance.

5 Conclusion

The main goal of this study is to propose a new approach in order to take into account Fletcher-Gent
effect or Payne effect in a linear viscoelastic rubber material. It allows to perform dynamic simulations
of systems integrating rubber parts to predict small vibration amplitude and resonances. No preload are
considered here. The proposed methodology provides the ability to consider frequency and amplitude
dependency by affecting a different material property to each different rubber material element. It allows
to use tabular experimental data from characterization tests which avoids the development of a complex
model. Due to the amplitude dependency, a non linear procedure called the harmonic balance method is
used to calculate frequency responses. Consequently, an iterative procedure is applied at each frequency
to determine vibration amplitudes which are not a priori known. In order to assign an adapted property
to each element, an equivalent strain measure is evaluated from an energy balance. This energy balance
enables to associate dynamic properties of a material element subjected to multiaxial strain state with
experimental dynamic properties of a material sample subjected to an uniaxial strain state. Afterward,
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shear storage and loss moduli associated with this equivalent strain are deduced from experimental data.
Then, the non linear stiffness of rubber elements may be calculated at each iteration. The non linear
solver repeats this operation until convergence. Practically, the methodology is developed to deal with
models defined with MSC.Nastran. DMAP alter procedures are developed in order to evaluate energies
in the model and non linear solver is developed with Matlab.
The method is then applied on a satellite instrument isolator including four non linear rubber mounts.
Results show a non homogeneous distribution of rubber properties since the equivalent strain differs
from one element to another. Moreover, it has been shown thatthe maximum equivalent strain varies
between1.5% and3.21% on a frequency band of[50−110]Hz. The Payne effect also strongly influences
resonance frequency. Indeed, the pumping mode is located atnearly83Hz while a procedure considering
homogeneous properties may yield a resonance in the band[75− 110]Hz.
Finally, the methodology can deal with any configurations ofexcitation (combination of torsion, shear...).
In the case of a more pronounced non linearity, more than one harmonic may be chosen for simulations.

Appendix 1: HBM formulation
In this appendix, the HBM formulation is explained in details with application to the proposed study.

We consider the previous governing equation of motion

MẌ +DẊ +KX = F (X, Ẋ,Ω, t) = FL(Ω, t) + FNL(X, Ẋ,Ω, t) (20)

whereM, K andD are the mass, stiffness and damping matrices.Ω is the angular frequency of an
external periodic forceFL(Ω, t) applied to the system.FNL(X, Ẋ,Ω, t) concerns the nonlinear terms of
the mechanical system.

As previously explianed, the non-linear periodic responseX(t) of the system can be approximated
by finite Fourier series :

X(t) = B0 +

m
∑

k=1

(

Ak sin(
k

ν
Ωt) +Bk cos(

k

ν
Ωt)

)

X(t) =

[

I sin(
Ω

ν
t)I cos(

Ω

ν
t)I . . . sin(

k

ν
Ωt)I cos(

k

ν
Ωt)I . . .

]

[B0 A1 B1 . . . Ak Bk . . .]T

X(t) = T(t)Z (21)

whereI is then × n identity matrix,Z = [B0 A1 B1 . . . Ak Bk . . .]T is the(2m + 1)n × 1 vec-
tor containing Fourier coefficients,m is the number of harmonics retained for the truncation,ν is an
integer used to represent possible subharmonics, andT(t) = [I sin(Ω

ν
t)I cos(Ω

ν
t)I . . . sin(k

ν
Ωt)I

cos(k
ν
Ωt)I . . .] is then× (2m+ 1)n matrix containing trigonometric functions.

The same work is then accomplished for the global forceF :

F (X, Ẋ,Ω, t) = T(t) [C0 S1 C1 . . . Sk Ck . . .]T = T(t)b (22)

In order to compute velocities and accelerations, a frequential derivative operator is defined:

∇ = diag(0n×n,∇1, . . . ,∇m) with ∇k =
k

ν
Ω

[

0 −I

I 0

]

(23)

Thus one may write:
Ẋ(t) = T(t)∇Z and Ẍ(t) = T(t)∇2Z (24)
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By replacing Eqn. (21) and Eqn. (24) into Eqn. (20), one obtains:

MT(t)∇2Z +DT(t)∇Z +KT(t)Z = T(t)b (25)

Considering that for an× n matrixW and a(2m+ 1)n × 1 vectorY :

WT(t)Y = T(t)NWY = T(t)diag(W,W, . . .) (2m+ 1)n
×(2m+ 1)n

Y (26)

Equation (25) becomes:

T(t)
(

NM∇
2 +ND∇+NK

)

Z = T(t)b (27)

Time dependency may be suppressed and a frequency algebraicequation linking Fourier coefficient may
be obtained using a Galerkin method which is a projection of the equation on trigonometric functions.
Indeed these trigonometric functions define a scalar product:

< f, g >=
1

T

∫ T

0
f(t)g(t)dt (28)

Thus one may write:

1

T

∫ T

0

T
T(t)T(t)dt =

1

2











2I 0

I

I

0
. . .











= L (2m+ 1)n
×(2m+ 1)n

(29)

Applying this scalar product on Eqn. (27) leads to a(2m+ 1) ∗ n equation system:

AZ = b with A = NM∇
2 +ND∇+NK (30)

A may be expressed in a simpler manner:

A =
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




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K−
(

k
ν
Ω
)2

M −
k
ν
ΩD

k
ν
ΩD K−

(

k
ν
Ω
)2

M

. ..



























(31)

This system is equivalent of finding zeros of a functionH : IR(2m+1)×n
→ IR(2m+1)×n:

H(Z) = A(Ω)Z − b(Z,Ω) = A(Ω)Z − bL(Ω)− bNL(Zv ,Ω) (32)

We note thatb is dependent onZ andΩ becauseb corresponds to the Fourier coefficients ofF (X, Ẋ,Ω, t).
b is a sum of Fourier coefficients from the linear excitation forcebL and from non linear forcebNL. bNL

depends only on the Fourier coefficientsZv of thev dofs linked with the viscoelastic elements.
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In the case where no analytical expression may be written betweenbNL andZv, an evaluation of the
approximate temporal termsX(t) andFNL(t) combining FFT procedures allows to numerically evaluate
the Fourier coefficientsbNL for each iteration.
Concerning Payne effect in viscoelastic materials, it has been described that, within certain strain ampli-
tude limit, higher-order terms are not significant in the material response [21]. Consequently, a single
harmonic has been retained in the HBM procedure andν = 1 leading to a2n× 2n equation system:

[

K− Ω2
M −ΩD

ΩD K− Ω2
M

] [

A1

B1

]

= bL(Ω) + bNL(Zv,Ω) (33)
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