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Abstract

In the presented work, a non linear effect of rubber refemsdrletcher-Gent effect or Payne effect
is investigated. It leads to a change in the rubber dynamidutis with vibration amplitudes and,
consequently, modifies resonance frequencies of mechasyiseems including non linear elastomers.
In this study a new methodology is developed to take into aacBayne effect in a linear viscoelastic
rubber material. Small vibration amplitudes around a nelgaded state are predicted by considering
frequency and amplitude dependencies of the material. Mieihodology has the advantage of using
tabular experimental data from characterization testelwhvoids the development of a complex model.
In order to compute frequency responses, the non lineardrdobalance method is used and, for each
iteration, new rubber properties are affected at each elemxording to its strain state. An equivalent
strain measure is evaluated from the element strain enezggity. This equivalent strain allows to
associate dynamic properties of a material element sugjdotmultiaxial strain state with experimental
dynamic properties of a material sample subjected to arxiahiatrain state. Practically, DMAP alter
procedures are developed in order to evaluate energiesdelsidefined with MSC.Nastran and the non
linear solver is developed with Matlab. The method is apptie a satellite instrument isolator including
four non linear rubber mounts. A non homogeneous spati#tilnlision of element equivalent strains
is observed. Moreover, the maximum equivalent strain ganéh frequency. These two observations
validate the use of a specific methodology to deal with amnidtdependency of rubber.

1 Introduction

The use of rubber mounts is a common solution in industry deoto connect two structures and to

achieve a combination of stiffness and vibration isolatidéonz [1] applied a rubber isolator technology

on helicopters and Bruger et al. [2] optimized comfort pmbies of elastomeric properties for automotive
industry.

Simulations of rubber parts need to consider various coxnefiects and deal with properties varying

with many parameters. Indeed, elastic and damping pr@seaie strongly influenced by temperature
and frequency (equivalence temperature-frequency)oadel.. Many different experimental studies have
been performed to study all these dependencies, moreydarticon carbon-filled rubber which usually



present a more complex behaviour [3, 4]. One frequentlyistudependency is the amplitude depen-
dency. Mullins effect [5] represents one of these effectnlaesoftening effect is observed for the first
excitation cycles on a rubber sample. A second effect, iedeto Fletcher-Gent or Payne effect [6, 7],
is the dependency of the dynamic properties on strain anagitvhen material is submitted to small
dynamic vibrations. Origin of Payne effect is not clearlyaddished but supposed to be a continuous
breaking and reforming Van der Waals forces between cabeack aggregates [8].

Concerning the modelling of rubber, frequency dependemabeur is today quite well modeled through
the use of simple models involving combinations of springd dashpots [9, 10]. For a full three di-
mensional case, hereditary integrals are used to formulanstitutive equations [11]. Furthermore,
fractional derivative models have also been developed taimla better frequency-dependent behaviour
and to reduce the number of parameters to identify [12]. Nbeéess, as regards the amplitude de-
pendent behaviour modeling, more complex models have tstableshed for filled rubbers. The first
one-dimensional model is the Kraus model [13] who dealt wah linear viscous forces. Kraus consid-
ered contacts and shocks between aggregates. Later, Uldjdaniproved this model to obtain a better
approach of experimental observations. Other models tde@present the irreversible slip processes
occurring between filler particles by introducing frictielements [15—-17]. These models are often lim-
ited to a one-dimensional case or are difficult to use in auieegy domain. Austrell et al. [18] made use
of elastoplasticity elements to simplify implementatidrhe main drawback of these approaches is that
a parameter identification is needed in conjunction wittcjetests and that these models are limited
to the time domain. For frequency analysis, these modelsatreery well adapted. However, some
methodologies have been introduced by Gil-Negrete et 8].\itho proposed to apply a first quasi-static
step on a studied mount submitted to a given amplitude tgmassiapted dynamic properties on each
element according to its strain state in order to predict seeond time the dynamic stiffness of the
mount at this same dynamic amplitude. Then, Rabkin [20] @sed to predict the dynamic stiffness of
a rubber sample submitted to small vibrations around a pdeld state by modifying UPHI subroutine
in a Marc analysis.

This paper proposes to investigate this non linear Payreetedff rubber and develop a methodology
to predict frequency responses of a complete system imgudon linear rubber mounts. This method
does not include any parametric model and use tabular erpatal data from a characterization test
on a rubber sample. This approach uses a non linear harmalsinde method to deal with amplitude
dependency. Only first harmonic is retained here due to ipeaibservation [21]. However, more har-
monics may be used in case of stronger non linearities. Tdimigue is based on the calculation on an
equivalent strain for each element and for each iteratioorder to assign appropriate rubber dynamic
properties. Indeed, each element of the rubber parts dadswme the same strain state and consequently
the same rubber property. This methodology is applied fodetodefined with MSC.Nastran and reso-
lution is performed by the use of DMAP alter procedures andldbaroutines. Finally, it can be noted
that the use of harmonic balance for problems in which thegetepend on the frequency and amplitude
has been studied for the particular case of viscoelastiematd by Bilasse et al. : in [22], the authors
studied the nonlinear vibration of viscoelastic shell stiwes by coupling an approximated harmonic
balance method with one mode Galerkin’s procedure. In 2@y proposed numerical models with lin-
ear and nonlinear vibrations analyses of viscoelasticwatdbeams with various viscoelastic frequency
dependent laws.

The paper is organized as follows: method description igiléet in a first section. One application case
is presented in a second section. In this application, dlisaiastrument isolator including four rubber
mounts is harmonically excited. Results are then shown dgbligiht the non linear behaviour of the
system and the ability of the proposed technique to reptesann homogeneous spatial distribution of



element strains.

2 Methodology

This methodology proposes a new procedure to consider Peffeet for material modeling of vis-
coelastic materials in FE models with MSC.Nastran for sraalplitude harmonic vibrations. Materials
considered in this study are supposed to be isotropic,aesamiail and nearly incompressible.

2.1 Viscoelasticity in M SC.Nastran for frequency analysis

For small amplitude strains, MSC.Nastran provides thetgtid represent the behaviour of a viscoelas-
tic material in the frame of the linear viscoelastic theorithna complex frequency-dependent shear
modulus:

G(f) = G'(f) +iG(f) (1)

whereG’ andG” represent respectively the shear storage and loss moduli.

A viscoelastic behaviour leads to a complex dynamic stfénmatrix for all viscoelastic elements of the
model. Stiffness matrix is computed on the basis of a reptasiee reference modulus,.. y which often
corresponds to the long-term quasi-static shear moddlus= lim., oG (w). G,.r is independent of
frequency. Thus complex stiffness matrix for viscoelastements is expressed as:

K — (G/(f) + z’G”(f)> K, )
Gref

whereK,.. is the stiffness matrix witldx,..; as shear modulus.

Additionally, a structural damping coefficieptmay be affected on the whole model. A structural damp-
ing coefficientg,.; must also be defined on the viscoelastic element group. Tdio@rthese two
conditions, MSC.Nastran uses two tabular functi@i®( f) andT'I(f) to represent the complex moduli
of all viscoelastic materials. The calculation of the coaxptiffness matrix is then given by:

K= ((1+g7‘efTR(f))+i(g+g7’efTI(f))) Kref (3)
To assure equivalence with Equation (2)2(f) andT'I(f) are expressed as:
1 [G'(f) ]
TR = — - 4
(f) Gref |:Gref ! ( )
ri) = L [EU ] ®)
Gref ref

MSC.Nastran does not provide the ability to define differdyriamic properties for each particular vis-
coelastic element. When a viscoelastic material with angiéi dependent properties is subjected to a
non homogeneous strain field, it may lead to severe errothéotdynamic stiffness matrix calculation.

2.2 Adaptation to Payne effect

The amplitude dependence of the complex shear modulus falt gitorations is referred to Payne effect
and is noticeable for filled elastomers. This complex noadimeffect is often attributed to irreversible
slip processes between filler particles. Consequently,etsaaf linear viscoelasticity are not suitable for
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frequency analysis. Based on an analogy with microplakgory, some rheological models have been
developed which introduce friction elements [15, 16]. Téhesodels are often formulated for uniaxial
cases and are not adapted for multiaxial rubber models. derea complex parameter identification
has to be lead on material samples in terms of test conditindgparameter calculations. Up to now FE
commercial codes do not provide the possibility to easilydel@®ayne effect for frequency analysis.

An approximate procedure has been developed for dynamigsasiaThis procedure has the advantage
of using tabular experimental data from simple characiion tests (shear or compression tests) on
material specimens and does not need any parameter idatitifidor some simplified models. The non
linear Harmonic Balance Method (HBM) is used to calculaggjfrency responses for a FE model inte-
grating non linear viscoelastic elements (in terms of fezgry and amplitude dependent shear modulus)
subjected to an external dynamic load. Vibration amplitudies not a priori known so equations have to
be solved iteratively.

For each iteration of the solver, strain energy density & §omputed element—wise and for the previous
displacement field. Then, a local equivalent straf is deduced so that the element strain energy
density is equal to the homogeneous strain energy density dharacterization sample tested at the
same dynamic amplitudgf,. This energy balance enables to associate dynamic prepefta material
element subjected to multiaxial strain state with expentakdynamic properties of a material sample
subjected to an uniaxial strain state. Afterwards, sheatage and loss moduli associated with this
equivalent strain are deduced from experimental data asehasy of all elementary complex stiffness
matrices is performed. A new displacement field is finallyjcaldted from HBM equations and a non
linear solver repeats this operation until convergence.

In the following, HBM formulation is first presented in ordir secondly detail the evaluation of non
linear forces generated by all viscoelastic elements oFtaenodel.

2.2.1 HBM formulation

In order to compute frequency responses of a mechanicamyisttegrating viscoelastic elements with
amplitude dependent properties, HBM method is used. Thihadeis able to compute periodic re-
sponses of non linear systems submitted to an externaligd@#] or to self-excited vibrations [25].
HBM is also able to compute quasi-periodic responses [26}dnhe to conduct stability analysis [27]. In
the following, basic equations are recalled and a non liseber is used for convergence. More details
are given in Appendix 1 for the interested reader. Cond@ns&téchniques and continuation may also be
applied in order to accelerate calculation.

First we consider a discrete mechanical system witlegrees of freedoms (dofs) described withitsn
mass matrixM, stiffness matrixiK and damping matridD. The system includes non linear viscoelastic
elements ana dofs are linked to these elements. Mass of all viscoelatgiments are integrated in the
global mass matriMl. D andK include all linear parts of the model. Forces generated byctimplex
dynamic stiffness of all viscoelastic elemel€§ = K| + /K, are considered as an external non linear
force Fvr (X, X, Q, t) which depends on degrees of freedom displacem&ntgelocities X, time¢ and
angular frequency2. Q) is the angular frequency of an external periodic fofgg(2,¢) applied to the
system. The governing equation of motion may be written as:

MX + DX + KX = F(X,X,Q,t) = Fr,(Q,t) + Fyp(X, X,Q,1) (6)

Then, we assume that the non-linear dynamical responseeafytitem can be approximated by finite



Fourier series:

“ k k
X(t) = B Apsin(=Qt) + B ule)
(t) 0+;< ksin(=Qt) + By cos(— t))

v v

X(t) = T)Z= [I sin(gt)I cos(gt)l sin(EQt)I COS(EQt)I ...|[Bo A1 By ... Ap By ...
v v

wherel is then x n identity matrix,Z = [By A1 By ... Ay By ...]T is the (2m + 1)n x 1 vec-
tor containing Fourier coefficientsy is the number of harmonics retained for the truncatiens an
integer used to represent possible subharmonics, &g = |1 sin(%t)l cos(%t)l ... sin(EO#)I
cos(EQ#)I ..] is then x (2m + 1)n matrix containing trigonometric functions. Finally, wesasne
that the vector forcdy, (X, X, 9, ¢) can be solved in finite Fourier series (see Appendix 1 for more
details). Generally, the number of harmonic coefficienteigcted on the basis of the number of signif-
icant harmonics expected in the non-linear dynamical nespoConcerning Payne effect in viscoelastic
materials, it has been described that, within certainrsaaiplitude limit, higher-order terms are not sig-
nificant in the material response. The reader is referredolail [21] for more details. Consequently, a
single harmonic has been retained in the HBM procedure gatmi the following equation system (see
Appendix 1 for more details):

K - O’°M —QD Ay
o Ko || B | =+ oz ®
whereM, K andD are the mass, stiffness and damping matriégé(2) defines the Fourier coefficients
from an external periodic force applied to the systéhis the angular frequency of the external periodic
force. by (Zy,2) defines the Fourier coefficients from the non linear fafgg, (X, X, 2, ¢). It depends
only on the Fourier coefficients,, of thewv degrees of freedom linked with the viscoelastic elements.

2.2.2 Non linear force evaluation

In order to calculate Fourier coefficients of non linear &6, the non linear force’y;, has to be
detailed. Indeed, dofs are reorganized intdofs which are linked to viscoelastic elements andlofs
which are not using a boolean transition maiifix

X:P{f&”] )

Thus, the complex dynamic stiffness matrix of all viscogtaslements which is function oX,,, may be
expressed as:
K (X,,Q) = K, (X,,Q) +iK,(X,, Q) (10)

Thus, one may write:

. 0 0 X 0 0 Xy

]T

(7)



This stiffness matrix depends on the strain amplitude imtlagerial and does not vary over one period.
This remark allows to calculate non linear Fourier coeffitsewith the relation:

1 [T )
v = 7 / T () Fyy (X, X, Q, )t
0
"o 0 0 0 o 0 0 0
B 0 K,(Z,,Q) 0 0 o %.(z,0) o 0
by = 0 0 0 0 4 0 0 0 0 vz
_0 0 0 KU(ZU,Q) 0 0 0 I?)’U(ZU’Q)
SNLnU 0 , 0 0 K,,O Alnv
SNLv _ 10 K,(Z,,Q) 0 _ﬁ(ZwQ) Aqy (12)
CNLnU N 0 . 0 0 0 Blnv
CNLv Lo X(2,0) o K,(2,9 By

Note thatZ, = [A1, B! represents the Fourier coefficients of theofs in relation with all viscoelastic
elements.

Due to the amplitude-dependence of the stiffness matriXl efscoelastic elements, a non linear solver
is used. From a displacement fiéitiZ obtained after iteration, a new value of the viscoelastic dynamic
stiffness matrix?VK, () Z,, f) is performed in order to deduce a new value for the non linesek
Dby

The strain field is not necessarily homogeneous in all theo@kstic part leading to different material
properties depending on the considered point. The new olggdlprocedure is able to take into consid-
eration this effect by affecting different material profes for each viscoelastic element. For an element
e of the setV of all viscoelastic elements, an elementary maltii¢ () Z¢, f) is calculated from the
displacement field) Z¢ associated to this element. All these elementary matrigethan assembled to
deduce the complete dynamic stiffness maltrik, () Z,,, f):

UK, (V7Z,, 1) =Y DK (VZg, f) (13)
eeV

In the following, we detail the calculation of an elementamgtrix (VK¢ () z¢, f) from an initial dis-
placement field”) Z¢.

2.2.3 Strain energy density

In the following, index; will be remove for simplification. All relations remain velfor each iteration.
For each viscoelastic element, an equivalent strain meagyris computed from an elementary dis-
placement fieldZ¢. It allows to associate dynamic properti&§ andG”¢ coming from an uniaxial test
with the strain state in the element which combines diffesatiicitations.

The strain equivalent strain is deduced at each iteratiom fihe elementary displacement figld and
from an evaluation of the strain energy in an element caledlaith a real shear modulus equalkig, ;.



This strain energy may be expressed as:

1
E¢(t) = §TX5(t)KTefX§(t)
1
ES(t) = §TZ§TT(t)T(t)NKTefZ§
1 sin?(Q4)I sin(Qt) cos(Qt)1
e _ ~—Tre e
E5®) = 2 Y [ sin(t) cos(Q2t)I cos?(Qt)1 NK,.; 20
1 - 1—sin(2Q2t) I sin(2Q¢t) I
Ee(t) = 5 ZS sin(Qt)I 1+Cos(2Qt)I NKrefZS (14)
2 2
1 1
E¢(t) = ZTZSNKTEfZﬁ—FZ (T B§,Kep Bf, — TA Ko p AS,) cos(20) + (27 AS, K, r Bf,) sin(20t)]

Thus strain energy in the element is composed of a constantdg = %TZSNKM Z¢ which represents
the mean value over one period and of an oscillatory termefrdquency22. The amplitude of the
term is:

1
B = 1B Ky B, = T3, Kreg A+ (2 A5, Koy B, ) (15)

The peak value for each element over one period is consdﬂuEank = E§ + ES. The last step
necessary for the evaluation of the equivalent strain istimeputation of the strain energy density p°¢

is classically obtained by dividing’;,,,. by the element volume.

Practically, MSC.Nastran is able to provide strain energy strain energy density for each element of the
model for a frequency analysis so strain energy density taioed for all viscoelastic after introduction
of a complex displacement field corresponding withvalues at each iteration. An alter procedure in
DMAP language is written to perform these operations.

2.24 Equivalent strain measure

Experimental data usually come from a simple shear or cossjoe test and results in a table providing
complex dynamic modulus depending on frequency and on é&sitymamic strain amplitude.,,. The
strain energy density calculated at the previous step Wihato estimate an equivalent strain measure
for each element,. This equivalent strain is comparable with the experimiestiain amplitude and
will allow to deduce appropriate storage and loss modulpohain each element.

A energy balance is performed for each element by equalitisgpbtained strain energy density with
the homogeneous strain energy density in a charactenizaéimple tested at a dynamic amplituge.
This amplitude is the equivalent strain amplitude whichl Ww# comparable with the experimental one
Yexp- It has been shown in Gil-Negrete et al. [19] that, for a mat&lement subjected to its principal
stresses, the deviatoric part of the total strain energgitdemay be expressed with the principal strains

namely:
G
pa=3 |:(€p1 —&2)” + (62 — €p3)” + (€p3 — €p1)° (16)
For our study, experimental data are associated with a cesajun test. Consequently, for a cylinder
material element compressed with a strain amplitude; @nd with a shear modulus,.. ¢, principal

strains may be expressed@s = v andey2 3 = —ve,1 = —4 for a quasi incompressible material. In



this case, distortion energy becomes:

_ G 13 on (B
pdrc = 3 27 2’7

3G,
parc = —5 2R 17)

Energy density balance is then written for each element doicke an equivalent strain measure:

Parc = pP°
3G7=ef 2
5 Veg = P
2p¢
€ = 18
’qu SGTef ( )

This procedure is an approximate procedure since the refen@modulus is used to evaluate the equivalent
strain. This choice has been made to keep a realistic valwged¥er, it has been shown with a virtual
test on a material sample under compression that equivateih measure evaluated with the above
procedure is equal to the homogeneous strain obtained im#erial for this compression test. Then, a
purely kinematic relation is not used as in Gil-Negrete efl#] by convenience because MSC.Nastran
provides the possibility to directly extract strain enepnsity of each element, avoiding to evaluate
principal strains and averaging strain energy densitieglid@auss points. Finally, a dynamic calculation
is performed to evaluate the equivalent strain instead afasigstatic test in [19] which leads to a better
representativity on a larger frequency band.

2.25 Dynamic gtiffness matrix assembly

From experimental tabular data, stora@é(v¢,, f) and lossG"(v¢,, f) moduli are deduced using the
equivalent strain measure and the frequency. Quadraticanid interpolations are employed to deduce
approximate values for an equivalent strain and a frequevitgh do not exactly match experimental
datas. This step is performed with Matlab.

By analogy with Equation (2), each elementary matrix is @alied with the relation:

Ki(Zy, /) = Ky(ve: f)

(G’e(’yiq,f) +z’G”6<vsqaf>> :

Kv(Zm f) = Gref ref (19)

The final complex stiffness matrix of all viscoelastic elens¥, (Z,, f) is finally assembled and Fourier
coefficients of the non linear fordey, is then computed according to Equation (12).

For practical convenience, calculation of stiffness carphatrix and Fourier coefficients is performed
with an alter procedure with MSC.Nastran which easily death connectivity of the model.

2.2.6 Practical procedure

The complete algorithm with the different continuationpstés presented in Figure 1. The algorithm is
described in the particular case of a parameterized caatiimuwith an curvilinear abscissa, a prediction



Initialization

n 0, ASU', [ZO 520]

Prediction (Lagrange)
[ij)jl, szm] = P(sn + As)

Dofs separation
(2) (@) (i
Z7Ll+l = [Z’ILL'U Zbl>:|

- Evaluation of non linear terms
New point

0

[Znt1, Lyl v ., ()
1+—1+1 bNL(ZI()'L)) _ SNL’UO(ZL' )
Update Step As . )

CNLU(ZU )

Evaluation of function H
X ; ) - ]
H(ZY ) = AZY), — b, — by (Z) E’ +

Evaluation of residue
i
IH(ZL)I < e

Correction
(%i = *2]>ZH(Z,(31)H(Z7<L21
Zn+l = Z’H’l + AZ

Figure 1. Complete HBM algorithm with non term procedure.

with Lagrange polynomials and a Newton-Raphson correctiethod.

This procedure deals with the specific Payne effect in the limear term calculation”. These detailed
steps are then described in Figure 2. As seen previoushutean has to be made incrementally. From
an displacement field) Z, obtained at the iteratiofy main steps to deduce the non linear force Fourier
coefficients are synthesized here:

1. Wz, displacement field of all viscoelastic elements obtairwdtérations.

2. Calculation of the strain energy densityp¢ (peak value) for each element. Shear modulus is
equal to the reference modulds. ;.

3. Calculation of an equivalent strain measﬁ}egq =4/ §G pf with an energy balance.



Iteration ¢
Displacement field Z, = [A1,B1.]?, Frequency f

Element strain cnergy
density p® calculation

Equivalent element strain calculation

~€ — _LQ ‘
leq V 3Gres

Dynamic shear modulus evaluation
e (e 3 aus € F
G (veq: ) +1iG" (v, )

Element stiffness matrix calculation
Coerrme G (v, )G (v f) ,
by € € . Liegrd ) legrd ) €

K«u (Z‘»u? j) - ( Crer = K-,-ef

) Assembly
KS(Zo, f) =3, c v KSo(Z2, f)

Non lincar force calculation
{ 'S(I\“’Lv = KU(Z’U*, f)fllv + K'U (Z‘L‘s j)BlL
Cnrv = K, (2o, A, — K (Zy, f)B1

Figure 2: Non linear force calculation for each iteration

4. Evaluation of storagd) G"*()~¢,, f) and loss moduli?) G"*()~¢,, f) with experimental data.
5. Calculation of each element complex stiffness mattKe () z¢, f).

6. Assembly of the complex stiffness matrix of all viscodtaelement(i)Kv((i)Zv, f).

7. Calculation of non linear force Fourier coefficiefitsd;,, and® By,,.

It has also to be noted that this procedure is used for janotmatrix calculation. Steps°h, 3,4 are
performed with Matlab whereas step®n5, 6,7 are performed with an alter DMAP procedure using
with MSC.Nastran.
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Figure 3: Elastomeric isolator: (a) Global view, (b) Zoomanre rubber part. Rubber is coloured in red.

3 Application Case

3.1 Elastomericisolator

An application is carried out on an elastomeric isolatorrfrepace industry. This system is designed
to isolate a satellite instrument. Four rubber mounts aseried between four metallic (aluminium)
blocks clamped on the satellite and a circular part refeagtcross part” on which specific instrument
is mounted. Figure 3 shows a detailed view of the considenedtare. Satellite instrument is only
represented here by a concentrated mass and does not appleafigure. Weight of mounted instrument
is approximativelyl6kg. The global weight of the structure including isolator andtiument is nearly
20kg. Height of the structure i880mm and cross diameter 2)0mm. The four rubber mounts integrates
two plane-parallel areas whom dimensions Zre< 10 x 3.5 mm.

Elastomeric parts are made of a rubber which presents a pnaed amplitude dependency. Material
characterization has been performed for dynamic strainiamdps of+0.1%, +0.25%, +1%, £2% and
+5%. Tested frequency bands are- 185H =z for £5%, 1 — 395H z for +2%, 1 — 500H z for +0.1%,
+0.25% and+1%. For simulations, only experimental data for a frequenaydaf 1 — 185 H = will be
considered in order to have material data for all dynamiclaoges. In order to illustrate frequency and
amplitude dependencies, experimental storage modulb®vgrsin Figure 4. Values have been removed
for confidentiality.

Isolator performance will be quantified with a force transsibility. Indeed, for a given excitation force
amplitude applied on the satellite instrument, reactioede at the base of the four metallic blocks are
observed. These blocks are clamped on the primary structooe simulation, they are fixed. Force
transmissibility is then deduced for different excitatioonfigurations and maximum is observed for
resonances. The main difficulty is the ability to predictomsnce frequency and vibration amplitude
due to the non linear stiffness of rubber mounts. This stubus$es on the pumping mode so exci-
tation is applied vertically on the satellite instrumentornSequently, rubber mounts are submitted to
tension/compression.
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3.2 Numerical mode

A numerical model of the system is built with MSC.Nastran @dhown in Figure 3. This model is
not initially submitted to a static preload. The satellibstrument is modelled as a single concentrated
mass and an inertia matrix located at its center of gravityis hass is rigidly connected to the upper
surface of the cross part through rigid body elements whiehmat represented on Figure 3. Cross part
and blocks are discretized wifl®739 four-sided CTETRA and six-sided CHEXA solid elements.

The geometry of elastomeric parts has been simplified inrdcdeeglect elastomeric areas which are not
significantly deformed. It has been checked that the chamgjeei first six frequencies does not exceed
0.1%. Then a simplified mesh including only 192 CHEXA elementséated. A compromise has been
established to keep a satisfying dynamic behaviour and sonedle number of dofs. Change in the
first six frequencies does not exce#d and the simplified mesh is sufficiently fine to avoid shear and
volumetric mesh locking due to incompressibility. Consanfly reduced integration elements or hybrid
elements are not necessary.

Moreover, condensation is applied on the cross part and effotir metallic blocks in order to reduce
the number of dofs for simulation. First free mode of crosd pad of each metallic block is higher
than1kH z and exceeds frequency band for simulatio® ¢ 120H z). This observation allows to carry
out a Guyan condensation [28] for these metallic parts arfates with rubber parts. After reduction,
the model integrate$662 dofs and192 rubber elements6 dofs are used to represent the rigid body
movement of the satellite instrument.

Finally, an excitation force is applied on the single corgied mass in order to obtain a significant non
linear behaviour of the rubber mounts. A valueldbN is chosen in order to assure that the equivalent
strain does not exceeld; so that mechanical rubber properties remain in the rangepsfrenental data.
Indeed, for homogeneous rubber properties correspondiag experimental dynamic amplitude 5%
(respectively0.1%), a linear simulation with MSC.Nastran shows that the maxmequivalent strain
obtained among all rubber elements (and for all the freguérand) is 0of4% (respectively2.41%). A
value of 145N will consequently lead to a maximum equivalent strain measgwluded in this range of
2.41 — 4% as desired.
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Figure 5: (a) Displacement of concentrated mass (b) Foraasmissibility along z-axié}—z: — homo-
geneous properties of rubber without amplitude dependercy non linear procedure with amplitude
dependency.

4 Results

Simulations are performed on a frequency banflof- 120H z] in order to capture the pumping mode.
In conjunction with the proposed non linear procedure,dmigequency analyses are carried out with
MSC.Nastran with SOL108 algorithm. These calculationssasr only frequency dependency on the
viscoelastic material and affect homogeneous propemieslber mounts corresponding to a fixed ex-
perimental dynamic amplitude.

4.1 Displacements

First results show that resonance of the pumping mode mayovethe frequency band ¢f5—100] H z if
homogeneous properties are considered. Indeed, Figureégearibes the evolution of the displacement
along z-axis of the concentrated mass for the six differgmiachic amplitudes for linear simulations.
Unsurprisingly, resonance frequency decreases for latgeamic amplitude. The maximum value of
100H z is obtained for an amplitude @f.1% while the minimum of75H = is obtained for5%. This
decrease is associated with the rubber softening observeaerimental data in Figure 4. Maximum
displacement also increases for larger dynamic amplitadesvaries betweefir and111um. Concern-
ing the non linear procedure, resonance frequen&y i$z which is an intermediary value showing that
rubber is working in its non linear domain. The maximum diggiment i87um and is coherent with
linear calculations. Around resonance, this result islyeabse to the curve obtained with a homoge-
neous modulus chosen for an amplitude2&f. However, it can also be noted that the curve shape is
lightly different from linear calculations.

4.2 Transmissibility

A short analysis on the force transmissibility on the z-akisws that the maximum value is arouhtbr

all simulations. The seven results vary betw@ed6 and3.37. This transmissibility is not constant and
reaches a minimum value for a dynamic amplitude of ne2lfly The non linear procedure is also very
close to this value.
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Figure 6: Equivalent Deformation: (a) Equivalent straindement id 50099 (b) Deformed rubber mount
and equivalent strain distribution & H z (figures correspond to equivalent strains and colours &irstr
energy densities).

4.3 Equivalent strain

The proposed procedure is able to deal with hon homogenemyenties of rubber and evaluates a
different equivalent strain for each element allowing tfeetf different dynamic properties. This ability
is illustrated on Figure 6(b) where a deformed view of a lowart of a rubber mount is shown. It
corresponds to a compression phase. On each element, thvalegustrain is written so the spatial
distribution is highlighted. Displayed colours do not @spond to a representation of the equivalent
strain but to strain energy density of element surfaces.s Viaw is a typical view from Patran. The
maximum strain value 08.21% is obtained for elemen0099 and for a frequency o83H z, ie for
resonance. As expected, this value is included in the rahgeld — 4%. The rubber behaves in its non
linear domain. The presented mesh is a simplified mesh arid beumproved in order to increase the
result precision. However, deformed shape shows that gexpmesh is sufficient to give a satisfactory
behaviour of a nearly incompressible material and to avoldmetric locking. Moreover, the equivalent
strain is spatially distributed but also modified for eaayfirency. Figure 6(a) shows the evolution of the
equivalent strain for the elemeb®099. The maximum value is obtained at resonance.

5 Conclusion

The main goal of this study is to propose a new approach inrdadtake into account Fletcher-Gent
effect or Payne effect in a linear viscoelastic rubber maltelt allows to perform dynamic simulations
of systems integrating rubber parts to predict small vibraamplitude and resonances. No preload are
considered here. The proposed methodology provides thigyabi consider frequency and amplitude
dependency by affecting a different material property tthedifferent rubber material element. It allows
to use tabular experimental data from characterizatiots tehich avoids the development of a complex
model. Due to the amplitude dependency, a non linear praoeeathlled the harmonic balance method is
used to calculate frequency responses. Consequentherativie procedure is applied at each frequency
to determine vibration amplitudes which are not a priorivwno In order to assign an adapted property
to each element, an equivalent strain measure is evaluatedan energy balance. This energy balance
enables to associate dynamic properties of a material elesubjected to multiaxial strain state with
experimental dynamic properties of a material sample stdjeto an uniaxial strain state. Afterward,
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shear storage and loss moduli associated with this equivstigin are deduced from experimental data.
Then, the non linear stiffness of rubber elements may beulzdxd at each iteration. The non linear
solver repeats this operation until convergence. Prditidhe methodology is developed to deal with
models defined with MSC.Nastran. DMAP alter procedures aweldped in order to evaluate energies
in the model and non linear solver is developed with Matlab.

The method is then applied on a satellite instrument ispiauding four non linear rubber mounts.
Results show a non homogeneous distribution of rubber pliepesince the equivalent strain differs
from one element to another. Moreover, it has been shownthleamaximum equivalent strain varies
betweenl.5% and3.21% on a frequency band ¢50—110] H z. The Payne effect also strongly influences
resonance frequency. Indeed, the pumping mode is locatezhdt83 H = while a procedure considering
homogeneous properties may yield a resonance in the [lFand 110] H z.

Finally, the methodology can deal with any configurationsexafitation (combination of torsion, shear...).
In the case of a more pronounced non linearity, more than anadnic may be chosen for simulations.

Appendix 1: HBM for mulation
In this appendix, the HBM formulation is explained in dedailith application to the proposed study.
We consider the previous governing equation of motion

MX + DX + KX = F(X,X,Q,t) = Fr,(Q,t) + Fyp(X, X,Q,1) (20)

whereM, K andD are the mass, stiffness and damping matricesis the angular frequency of an
external periodic forcé?, (€, t) applied to the systemFy 1, (X, X, 2, ) concerns the nonlinear terms of
the mechanical system.

As previously explianed, the non-linear periodic respoAge) of the system can be approximated
by finite Fourier series :

X(t) = By+Y) <Ak sin(%Qt) 4 By cos(%Qt))

k=1
X(t) = [I sin(%t)I cos(%t)l sin(%Qt)I cos(%Qt)I ] [By Ay By ... Ay By, ..
X(t) = THZ (21)

wherel is then x n identity matrix,Z = [By A1 By ... Ay Bg ...]T is the (2m + 1)n x 1 vec-
tor containing Fourier coefficientsy is the number of harmonics retained for the truncatiens an

integer used to represent possible subharmonics, &g = |1 sin(%t)l cos(%t)I sin(%Qt)I
cos(EQN)I .. .]is then x (2m + 1)n matrix containing trigonometric functions.

The same work is then accomplished for the global fdrce
F(X,X,Q,t)=T(t)[Co S1 C1 ... Sp Cp ...]" =T(t)b (22)

In order to compute velocities and accelerations, a fretijpletterivative operator is defined:

k _
V = diag(Ouen, Vi, Vin) with Vi = =9 { (1) OI ] 23)

Thus one may write: . )
X(t)=T{#)VZ and X(t) = T(t)V?Z (24)
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By replacing Eqn. (21) and Egn. (24) into Egn. (20), one oistai
MT(t)V?Z + DT(t)VZ + KT(t)Z = T(t)b (25)

Considering that for @ x n matrix W and a(2m + 1)n x 1 vectorY’:

WT(t)Y = T(t) NwY = T(t)diag(W,W,...) (2m + D)n Y (26)
x(2m+ 1)n
Equation (25) becomes:
T(t) (NmMV?>+NpV+Nk)Z = T(t)b (27)

Time dependency may be suppressed and a frequency algeftaition linking Fourier coefficient may
be obtained using a Galerkin method which is a projectiorhefgquation on trigonometric functions.
Indeed these trigonometric functions define a scalar ptoduc

1 T
<fg>=7 [ @ (29
0
Thus one may write:
21 0
1 [T 1 I
T/ TT()T(t)dt = 3 I =L omyin (29)
0
0 x(2m+ 1)n

Applying this scalar product on Eqn. (27) leads t@a: + 1) x n equation system:
AZ =b with A = NuV? + NpV + Nk (30)
A may be expressed in a simpler manner:
[ K
2¥mM  -92p

v

K —

NifePEN
=~
|
—

A = (31)

This system is equivalent of finding zeros of a functign R(Zm+1)xn _y REm+1)xn.
H(Z)=A()Z - b(Z,Q) = A(Q)Z — b (Q2) — bni(Zy, Q) (32)

We note thab is dependent o and(2 becauseé corresponds to the Fourier coefficientstofX, X, Q, t).
b is a sum of Fourier coefficients from the linear excitatiorcéb;, and from non linear forcéyy,. by,
depends only on the Fourier coefficieris of the v dofs linked with the viscoelastic elements.
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In the case where no analytical expression may be writtewdsstby; and Z,, an evaluation of the
approximate temporal term?s(¢) and Fy 1, (¢t) combining FFT procedures allows to numerically evaluate
the Fourier coefficients, ;, for each iteration.

Concerning Payne effect in viscoelastic materials, it lgentdescribed that, within certain strain ampli-
tude limit, higher-order terms are not significant in the emi@ response [21]. Consequently, a single
harmonic has been retained in the HBM procedure:ardl leading to &n x 2n equation system:

K — O*M -QD Ay
QD K — O*M By

} = br(Q) + by (Z,, Q) (33)
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