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Abstract

In this article we provide global subelliptic estimates for the linearized inhomogeneous Boltz-
mann equation without angular cutoff, and show that some global gain in the spatial direc-
tion is available although the corresponding operator is not elliptic in this direction. The
proof is based on a multiplier method and the so-called Wick quantization, together with
a careful analysis of the symbolic properties of the Weyl symbol of the Boltzmann collision
operator.
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1. Introduction

In this paper we are interested in giving sharp subellipitic estimates for the non-homogeneous
linearized Boltzmann operator

P = v · ∂x −L
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considered as an unbounded operator in L2(R3
x × R

3
v), where L is the linearized Boltzmann

without cutoff collision kernel whose precise expression is given in (5) in the next subsection.
Here x in R3

x and v in R3
v are respectively the space and velocity variable and ∂x denotes the

gradient in the space variable. The main result of this paper is the sharp estimate given in
Theorem 1.1. In this introduction we first present the model, then the main results including
Theorem 1.1 and bibliographic comments and we conclude by giving some general comments
about the interest of this work and the methodology we followed for the proofs.

1.1. Model and notations

Let us first recall some facts about the non-cutoff inhomogeneous Boltzmann equation.
It reads

∂tF + v · ∂xF = Q(F, F ), (1)

with F standing for a probability density function, and a given Cauchy data at t = 0, while
the position x and velocity v are in R

3, see [17, 47] and references therein for more details
on Boltzmann equation. In (1), the collision kernel Q is defined for sufficiently smooth
functions F and G by

Q(G,F )(t, x, v) =

∫

R3

∫

S2

B(v − v∗, σ) (F
′G′

∗ − FG∗) dv∗dσ

where F ′ = F (t, x, v′), F = F (t, x, v), G′
∗ = G(t, x, v′∗) and G∗ = G(t, x, v∗) for short. For

given velocities after (or before) collision v and v∗, v
′ and v′∗ are the velocities before (or

after) collision, with the following energy and momentum conservation rules, expressing the
fact that we consider elastic collisions

v′ + v′∗ = v + v∗, |v′|2 + |v′∗|2 = |v|2 + |v∗|2. (2)

where |v| denotes the canonical Euclidian norm in R3. We will choose the so-called σ
representation, for σ on the sphere S2,

{
v′ = v+v∗

2
+ |v−v∗|

2
σ

v′∗ =
v+v∗
2

− |v−v∗|
2

σ,

and define the deviation angle θ in a standard way by

cos θ =
v − v∗
|v − v∗|

· σ,

where · denotes the usual scalar product in R
3. In the case of inverse power laws, see for

example [17], the collisional cross section B looks approximatively as follows

B(v − v∗, σ) = |v − v∗|γ(
¯
cos θ), (3)

for some real parameter γ and some function b.
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Without loss of generality, we assume B(v−v∗, σ) is supported on the set (v−v∗) ·σ ≥ 0
which corresponds to θ ∈ [0, π/2], since as usual, see [11], B can be eventually replaced by
its symetrized version

B(v − v∗, σ) = B(v − v∗, σ) +B(v − v∗,−σ).

Moreover, we assume that we deal with inverse power interaction laws between particles, and
thus according to [17], we assume that b has the following singular behavior when θ ∈]0, π/2[
: there exist a constant cb > 0 such that

c−1
b θ−1−2s ≤ sin θ(

¯
cos θ) ≤ cbθ

−1−2s, as θ −→ 0+.

In the preceding formulas, we will impose the following range of parameters, coming from
the physical derivation,

s ∈ (0, 1), γ ∈ (−3,∞).

Note that the last condition on γ + 2s is weaker than in [7, 25] since we will deal only with
the linearized part of Boltzmann collisional operator.

The behavior of this singular kernel is strongly related to the following non-integrability
condition ∫ π/2

0

sin θb(cos θ)dθ = ∞,

which implies some diffusion properties of the (linearized) Boltzmann operator that we will
explain more in detail later.

In some expressions involving the integral kernels, it may therefore happen that some
non-integrability arise, and in this case these integrals have to be understood as principal
values (see the appendix or [11]).

In this work, we are interested in the linearized Boltzmann operator, around a normalized
Maxwellian distribution, which is described as follows. Let this normalized Maxwellian be

µ(v) = (2π)−3/2 e−|v|2/2.

Setting F = µ+
√
µf , the perturbation f satisfies the equation

∂tf + v · ∂xf − µ−1/2Q(µ,
√
µf)− µ−1/2Q(

√
µf, µ) = µ−1/2Q(

√
µf,

√
µf),

since ∂tF + v · ∂xF −Q(F, F ) = 0 and Q(µ, µ) = 0. Using the notation

Γ̃(g, f) = µ−1/2Q(
√
µg,

√
µf),

we may rewrite the above equation as

∂tf + Pf = Γ̃(f, f),

where the linearized Boltzmann operator P takes the form

P = v · ∂x −L (4)
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with
L = L1 + L2, L1f = Γ̃(

√
µ, f), L2f = Γ̃(f,

√
µ). (5)

The operator P acts only in variables (x, v), is non selfadjoint, and consists of a transport
part which is skew-adjoint, and a diffusion part acting only in the v variable.

The elliptic properties of this operator which is the autonomous linear part of the Boltz-
mann equation are the main subject of this work and we present them below.

1.2. Notations

Throughout the paper we shall adopt the following notations: we work in dimension
d = 3 and denote by (x, v) ∈ R3

x × R3
v the space-velocity variables. For v ∈ R3 we denote

〈v〉 = (1 + |v|2)1/2, where we recall that |v| is the canonical Euclidian norm of v in R3.
The gradient in velocity (resp. space, time) will be denoted by ∂v (resp. ∂x, ∂t). We

shall also denote Dv = 1
i
∂v ( resp. Dx = 1

i
∂x, Dt =

1
i
∂t), and denote ξ the dual variable of

x, η the dual variable of v and τ the dual variable of t.
We shall extensively use the pseudo-differential theory, for which we refer to the appendix

here and the reference therein. In particular operators (〈η〉2s)w and (〈v ∧ η〉2s)w denote
respectively the pseudo-differential operator with classical symbol 〈η〉2s and 〈v ∧ η〉2s. Recall
also that we also have (〈η〉2s)w = 〈Dv〉2s using the usual Fourier transform (Note anyway that
(〈v ∧ η〉2s)w 6= 〈v ∧Dv〉2s although these two operators have similar behavior. We postpone
to the appendix some considerations about this subject and different quantifications).

We will work througout the paper in L2(R3
v) or L

2 (R3
x × R3

v) for which we denote (without
ambiguity depending on the sections) the scalar product by (·, ·) and the norm by

∥∥ ·
∥∥. We

shall mainly work with functions in the Schwartz spaces S(R3
v) or S(R3

x × R3
v).

In all the article, the notation a ≈ b (resp. a . b) for a and b positive real means
that there is some positive constant C not depending on possible free parameters such that
C−1a ≤ b ≤ Ca (resp. a ≤ Cb).

1.3. Main results and bibliographic comments

The main theorem of this paper deals with operator P, viewed as an unbounded operator
in L2 (R3

x × R3
v). We adopt the conventions of notation given at the end of subsection 1.1

Theorem 1.1. For all l ∈ R, there exists a constant Cl such that for all f ∈ S(R3
x × R3

v),
we have

∥∥ 〈v〉γ (〈η〉2s)wf
∥∥2 +

∥∥ 〈v〉γ (〈v ∧ η〉2s)wf
∥∥2 +

∥∥ 〈v〉γ+2s f
∥∥2

∥∥ 〈v〉γ/(2s+1) (〈ξ〉2s/(2s+1))wf
∥∥2 +

∥∥ 〈v〉γ/(2s+1) (〈v ∧ η〉2s/(2s+1))wf
∥∥2

≤ Cl

(∥∥Pf
∥∥+

∥∥ 〈v〉l f
∥∥
)
.

Recall
∥∥ ·
∥∥ here stands for the norm

∥∥ ·
∥∥
L2(R6)

.
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Note carefully that we do not need to take into account the finite dimensional kernel
associated with the linearized Boltzmann operator [7, 25] which is hidden again in the term∥∥ 〈v〉l f

∥∥.
As an intermediate result, we are also able to give an explicit form of the so-called triple

norm introduced in [7]. Previous estimates from below were also given in [43] and [44], but
the following coercivity estimate measures now explicitly the global weights and regularity
gains of the diffusion kernel L. Note that we again forget in the following result the fact
that there is finite dimensional operator kernel.

Theorem 1.2. For all l ≤ γ/2+s, there exists a constant Cl such that for all f ∈ S(R3
x×R3

v),
we have

C−1
l

(∥∥ 〈v〉γ/2 (〈η〉s)wf
∥∥2 +

∥∥ 〈v〉γ/2 (〈v ∧ η〉s)wf
∥∥2 +

∥∥ 〈v〉γ/2+s f
∥∥2
)

≤ − (Lf, f) +
∥∥ 〈v〉l f

∥∥2

≤ Cl

(∥∥ 〈v〉γ/2 (〈η〉s)wf
∥∥2 +

∥∥ 〈v〉γ/2 (〈v ∧ η〉s)wf
∥∥2 +

∥∥ 〈v〉γ/2+s f
∥∥2
)
.

Theorem 1.1 can be extended to a time dependent version as follows, by considering the
time dependent operator

P̃ = ∂t + v · ∂x −L,
the functional spaces being now L2 (Rt × R3

x × R3
v) with norm denoted by

∥∥.
∥∥
L2(R7)

. With

this setting, one can show that

Theorem 1.3. For all l ∈ R, there exists a constant Cl such that for all f ∈ S (Rt × R3
x × R3

v),
we have

∥∥ 〈v〉
γ−2s
1+2s

(
〈τ〉 2s

1+2s

)w
f
∥∥
L2(R7)

+
∥∥ 〈v〉γ (〈η〉2s)wf

∥∥2
L2(R7)

+
∥∥ 〈v〉γ (〈v ∧ η〉2s)wf

∥∥2
L2(R7)

+
∥∥ 〈v〉γ+2s f

∥∥2
L2(R7)

+
∥∥ 〈v〉γ/(2s+1) (〈ξ〉2s/(2s+1))wf

∥∥2
L2(R7)

+
∥∥ 〈v〉γ/(2s+1) (〈v ∧ η〉2s/(2s+1))wf

∥∥2
L2(R7)

≤ Cl

(∥∥P̃f
∥∥2
L2(R7)

+
∥∥ 〈v〉l f

∥∥2
L2(R7)

)

The preceding results are consequences of fundamental pseudo-differential properties
of the linearized Boltzmann operator. Indeed, as we shall see in Section 3, the operator
L = L1 + L2 can be splitted as

L1 = −aw −K1, L2 = −K2

where a ≥ 0 is real, its Weyl quantization aw being a pseudo-differential operator of order
2s, and K = K1 + K2 is controlled by aw (see Proposition 1.4 below and the review about
Weyl-Hörmander calculus in the appendix, and we refer to [31, Chapter 18] and [33] for
more detail on Weyl-Hörmander calculus). Precise expressions of a and Ki will be given in
Section 3. The most significant part of L is therefore of a pseudo-differential type and by
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the next result, we have fundamental symbolic estimates for a, implying in particular that
when adding to it a large constant times 〈v〉γ+2s, it has a bounded inverse.

In the following, we denote Γ = |dv|2 + |dη|2 is the flat metric in R6
v,η (recall that η

denotes the dual variable of v). Standard notions concerning symbolic estimates and the
pseudo-differential calculus are explained at the beginning of section 4. The key Proposition
below will be proven in paragraphs 3.3 and 4.1.

Proposition 1.4. Define

ã(v, η)
def
= 〈v〉γ (1 + |η|2 + |η ∧ v|2 + |v|2)s, for all (v, η) ∈ R

6
v,η.

Then we can write L = −aw −K, where

i) ã is admissible weight for Γ and a, ã ∈ S(ã,Γ), and there exists a positive constant C
such that C−1ã(v, η) ≤ a(v, η) ≤ Cã(v, η);

ii) for all ε > 0 there exists Cε such that

∥∥Kf
∥∥ ≤ ε

∥∥awf
∥∥+ Cε

∥∥ 〈v〉γ+2s f
∥∥;

iii) for a sufficiently large constant K depending only on the dimension, we define aK by

aK
def
= a+K 〈v〉γ+2s . (6)

Then aK belongs to S(ã,Γ), is invertible as an operator in L2 and its inverse (awK)
−1

has the form
(awK)

−1 = H1

(
a−1
K

)w
=
(
a−1
K

)w
H2,

with H1, H2 belonging to B(L2), the space of bounded operators on L2 and invertible.

Recall that in Hörmander’s terminology, a ∈ S(ã,Γ) means that for all multi-indices α
and β, there exists a constant Cα,β such that

|∂αv ∂βη a(v, η)| ≤ Cα,βã(v, η).

The temperance then implies a correct definition for the associated operators. We postpone
to section 3 and the appendix a review of these standard notions of pseudo-differential
calculus.

The exponents of derivative terms and weight terms in Theorem 1.1 and Theorem 1.3
seem to be optimal, since the symbolic estimates provided by Proposition 1.4 implies that
the operator P should behave locally like a generalized Kolmogorov type operator

∂t + v · ∂x + |Dv|2s ,

for which the exponent 2s/(2s + 1) for the regularity in the time and space variables is
indeed sharp by using a simple scaling argument (see also [36]). In the particular case s = 1
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we recover formally the Landau equation and our exponents (both in regularity and weight)
match perfectly with the exponents in [28].

The main ideas of our proofs of the above theorems rely on some formal computations of
symbols in [1], on the method by multiplier used in [28, 39] and some microlocal techniques
developed by Lerner while using Wick quantization [34]. We refer to Section 1.4 for some
considerations about the methodology we used, and which comes form these previous works.
Let us note that functional estimates from a series of work of Alexandre et al. [9, 8, 7, 6] and
Gressman et al. [25] are also helpful for a clear understanding of the structure of the collision
operator, but a nice feature of our method is that we will be able to completely avoid the use
of these previous estimates. Note that there are some other methods to study the regularity
of the transport equation; for instance the average arguments used by Bouchut [15] and a
version of the uncertainty principle used by Alexandre et al. [5] to prove the regularity in the
time and space variables t, x. However, these results do not provide any optimal hypoelliptic
estimate for the spatially inhomogeneous Boltzmann equation without angular cutoff.

We give now some bibliographical references about the hypoelliptic properties of the non
cutoff Boltzmann equation and related kinetic models. Note that the angular cross-section
b is not integrable on the sphere due to the singularity θ−2−2s, which leads to the formal
statement that the nonlinear collision operator should behave like a fractional Laplacian;
that is,

Q(g, f) ≈ −Cg(−△v)
sf + lower order terms,

with Cg > 0 a constant depending only on the physical properties of g. Initiated by
Desvillettes [20, 21], there have been extensive works around this result and regarding the
smoothness of solutions for the homogeneous Boltzmann equation without angular cutoff,
c.f. [4, 10, 18, 22, 23, 32, 40, 42]. For the inhomogeneous case the study becomes more
complicated. We remark that there have been some related works concerned with the linear
model of spatially inhomogeneous Boltzmann equation, which takes the following form

∂t + v · ∂x + e(t, x, v)(−△v)
s, inf

t,x,v
e(t, x, v) > 0.

This model equation was firstly studied by Morimoto and Xu [41], where a global but non
optimal hypoelliptic estimate was established. This study was then improved by Chen et
al. [19], and also by Lerner et al. in [36] for an optimal local result. We also mention [3]
where a simple proof of the subelliptic estimate for the above model operator is given. For
general inhomogeneous Boltzmann equation we refer to [9, 8, 7, 6] for recent progress on
its qualitative properties. Finally, let us also mention a recent global result by Lerner et al.
[37] in the radially symmetric case and the Maxwellian case (which corresponds to γ = 0
in our notations), and closely related works [25, 26, 38] where the sharp estimates for the
Boltzmann collision operator were explored.

1.4. Further comments and methodolodgy

In this subsection, we give some additional comments on this work and explain the
general strategy of the proofs.
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On the linear approach. First mention that we focus in this article on a linearized
Boltzmann operator. We note that a deep knowledge of the linear behavior is of great
interest in the study of the non-linear case, at least in a perturbative context (see for example
[7, 8, 9, 25] and the references therein for this without cutoff case). These previous works
are mainly concerned with the global existence of solutions close to equilibrium for the
the fully non-linear Boltzmann equation, and important parts of the proofs are connected
with functional properties of the linearized part of Boltzmann collisional operator. Our
main goal here is to understand the functional properties of the linearized part of the fully
inhomogeneous equation.

On the kernel of the collision operator. We emphasize the fact that we are absolutely not
interested in the (finite-dimensional) kernel N of the linearized Boltzmann collision operator.
This is an a priori independent question to establish so called hypocoercive estimates on the
orthogonal of N and related exponential return to the equilibrium of the solutions of the
Boltzmann equation. We only deal here with regularity or hypoelliptic issues.

On the interest of regularization estimates. In this article we essentially focus on global
hypoelliptic estimates concerning the linearized Boltzmann operator P defined in (4). The
main result in Theorem 1.1 just concerns the independent of time problem and implies the
following type of result. If one consider an equality Pf = g with given f, g ∈ L2, then in
fact f has a better regularity and space/velocity decay given by the inequality in Theorem
1.1 : it has some weighted H2s regularity in velocity and H2s/(2s+1) regularity in space. Note
that this kind of conclusion is not available if one only use triple norm estimates (see the
version given in remark 4.8 here) for which space regularity is not given.

Mention that estimates like in Theorem 1.1 and the careful study of the pseudo-differential
and hypoelliptic structure of diffusive inhomogeneous kinetic equations have concrete ap-
plications; for example many ideas and tools developed here lead in [29] and [30] to the
existence and uniqueness of solutions of the full non-linear inhomogeneous Boltzmann equa-
tion without cutoff with close to equilibrium initial data in large spaces (in the spirit of the
theory developed recently in [27]).

A multiplier method. In this work we make use of multiplier method to explore the
intrinsic hypoelliptic structure of operator P = v.∂x − L defined in (4). By multiplier
method we mean finding a bounded selfadjoint operator M, such that on one side the
commutator between the transport part and M

1

2
([M, v · ∂x]u, u)L2 = Re (v · ∂xu, Mu)L2

gives some “elliptic” properties in spatial variables, and on the other side we can control the
upper bound for the term

|(Lu, Mu)L2 | .
For the treatment of the latter we need to the representation of L in term of pseudo-
differential operators (see Proposition 1.4) which will be useful to estimate the commutators
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between L and M. The choice of the multiplier here is inspired by the Poisson bracket
analysis for the transport part and the collision part already done for other diffusive models
(see e.g. Fokker-Planck or Landau in [28] or [39]).

The multiplier method explained on a toy model. To clarify the choice of the multiplier
M above we consider the case when P is replaced by a Kolmogorov type operator Pkol

Pkol = v · ∂x −∆v.

(This corresponds to γ = 0 and s = 1 in a simplified case). Then a direct computation gives

[
v · ∂x,−∆v

]
= 2∂x · ∂v

[
v · ∂x,

[
v · ∂x,−∆v

] ]
= −2∆x,

and we observe that this second-commutator analysis exhibit some Laplacian in x. This
suggests that the multiplier should be similar to the first-order commutator 2∂x·∂v. Since it is
not a bounded operator on L2 we have to modify the multiplier to guarantee its boundedness.
It is then easier to see all the computation on the Fourier side : let ξ be the dual of x and
let η be the dual of v. then operator 2∂x · ∂v is represented by a multiplication by −2ξ · η
and we note that the Laplacian in velocity is a multiplication by −|η|2 on the Fourier side.
Then a good multiplier M is given by the quantization of the following bounded function

m(ξ, η) =
ξ · η
〈ξ〉4/3

χ

(
〈η〉

〈ξ〉1/3

)
,

where χ ∈ C∞
0 (R; [0, 1]) such that χ = 1 in [−1, 1] and supp χ ⊂ [−2, 2]. This function is

clearly bounded thanks to the localization induced by χ on small η frequencies, and it has
to be considered as a (truncated and weighted) modification of the fundamental stone ξ · η.
Computation of all involved commutators on the fourier side give then

−∆v + [v · ∂x,M] ≃ −∆v + (−∆x)
1/3 + errors

leading after some work to subelliptic estimates of the form

∥∥ 〈Dv〉2 f
∥∥+

∥∥ 〈Dx〉2/3 f
∥∥ ≤ C

(∥∥Pkolf
∥∥+

∥∥f
∥∥) ,

for (compactly) supported smooth functions. We refer to [28] for more developed arguments
about this method, and complete computations in some simple cases. Theorem 1.1 is of the
same form but global, with weights involving velocity and with regularity 2s or 2s/(2s+ 1)
instead of 2 or 2/3 because of the structure of the Boltzmann collision operator without
cut-off. The proof is also much more complicated than for the previous toy model.

On the use of the Wick quantization. In the example just before, M was just a stan-
dard Fourier multiplier. In the case of the Boltzmann collision operator, the corresponding
operator has a more tricky structure and has to be selected into the general family of pseudo-
differential operators. Its construction follows anyway exactly the same ideas as before (see
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Subsection 4.3 for its expression). Now in all these strategies the positivity of the symbols,
multipliers and their commutators is an important point, and it appears that one cannot
apply standard positivity result of operators having non-negative symbols (as the famous
G̊arding inequality) since they are in bad classes in the sense of Hörmander t(see e.g. [31]
chapter 18 or [33]).

Anyway by choosing the Wick quantization of symbols, we can bypass this difficulty :
recall indeed that for any symbol q ≥ 0 we directly have qWick ≥ 0 in the sense of operators.
We will use the Wick quantization here instead of the classical or the Weyl ones, and this
will simplify our arguments substantially : the computations and inequalities can be directly
stated on symbols.

1.5. Organization of the article

The paper is organized as follows. In Section 2, we provide precise estimates on the nice
terms appearing in the splitting of the collision operator L = L1 + L2, involving compact
parts and relatively bounded terms w.r.t. the operator of multiplication by 〈v〉γ+2s. In
Section 3 we deal with the main terms, which appear to be of pseudo-differential type, and
give precise symbolic estimates in the sense of the Weyl-Hörmander calculus. Section 4 is
devoted to the proof of the main theorems. An appendix is devoted to a short review of some
tools used in this work (Weyl and Wick quantization, cancellation Lemma and Carleman
representation).

2. First estimates on the linearized collision operator

In this section we study the linearized collision part L defined in (5). We cut it in many
pieces and study each of them except the two principal ones, which study is postponed in
section 3 (they are indeed of pseudo-differential type). We look here at the properties of the
non pseudo-differential parts, and write many estimates in weighted L2 spaces.

The splitting of the linearized Boltzmann operator L is as follows. We write of f ∈ S,
Lf = µ−1/2Q(µ, µ1/2f) + µ−1/2Q(µ1/2f, µ)

= µ−1/2

∫∫
dv∗dσB

(
µ′
∗(µ

′)1/2f ′ − µ∗µ
1/2f + µ′(µ′

∗)
1/2f ′

∗ − µ(µ∗)
1/2f∗

)

=

∫∫
dv∗dσB(µ∗)

1/2
(
(µ′

∗)
1/2f ′ − (µ∗)

1/2f + (µ′)1/2f ′
∗ − (µ)1/2f∗

)

=

∫∫
dv∗dσB(µ∗)

1/2
(
(µ′

∗)
1/2f ′ − (µ∗)

1/2f
)

+

∫∫
dv∗dσB(µ∗)

1/2
(
(µ′)1/2f ′

∗ − (µ)1/2f∗
)

= L1f + L2f.

(7)

We shall study more precisely each part of L. Let us immediately point out that they have
completely different behaviors. The non local term L2 behaves essentially like a convolution
term, with nice estimates, and is relatively compact w.r.t. the main part of L1 which will
appear to be of pseudo-differential type.
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2.1. Study of L2

Starting from the expression of L2 given by

L2f =

∫∫
dv∗dσB(µ∗)

1/2
(
(µ′)1/2f ′

∗ − (µ)1/2f∗
)
,

we split it into four terms which make sense even for strong singularities of B, i.e. in
particular for s ≥ 1/2. This point will be clear from the proof of Lemma 2.1 below.

L2f =

∫∫
dv∗dσB(µ∗)

1/2
(
(µ′)1/2f ′

∗ − (µ)1/2f∗
)

=

∫∫
dv∗dσB

(
(µ1/2f)′∗(µ

′)1/2 − (µ1/2f)∗µ
1/2
)
+

∫∫
dv∗dσB(µ′)1/2

(
(µ∗)

1/2 − (µ′
∗)

1/2
)
f ′
∗

=

∫∫
dv∗dσB(µ1/2f)′∗

(
(µ′)1/2 − µ1/2

)

+ µ1/2

∫∫
dv∗dσB

(
(µ1/2f)′∗ − (µ1/2f)∗

)

+ µ1/2

∫∫
dv∗dσB

(
(µ∗)

1/2 − (µ′
∗)

1/2
)
f ′
∗

+

∫∫
dv∗dσB

(
(µ′)1/2 − (µ)1/2

) (
(µ∗)

1/2 − (µ′
∗)

1/2
)
f ′
∗

= L2,rf + L2,caf + L2,cf + L2,df.

L2,ca involves essentially a convolution term and can be treated using the cancellation lemma
(see [11] and the appendix herein), and the three other ones can be estimated by hands.
Let us note that the analysis of L2 was already given by [7], Lemma 2.15, but we provide a
somewhat direct and shorter proof.

Lemma 2.1. For all α, β ∈ R there exists a constant Cα,β such that for all f ∈ S(R3
v) we

have ∥∥ 〈v〉α L2 〈v〉β f
∥∥ ≤ Cα,β

∥∥f
∥∥.

Proof. We start with L2,caf :

L2,caf = µ1/2

∫∫
dv∗dσB

(
(µ1/2f)′∗ − (µ1/2f)∗

)
.

Applying the Cancellation Lemma (see [11] or the appendix), we get, for some constant c
depending only on b:

L2,caf = cµ1/2

∫
dv∗|v − v∗|γ(µ1/2f)∗.

This is an integral operator with the kernel K(v, v∗) = cµ1/2(µ∗)
1/2|v − v∗|γ for which we

can apply Schur’s Lemma to get
‖L2,caf‖ . ‖f‖.
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Note that the assumption γ > −3 is needed at this point.
More generally, replacing L2,caf by 〈v〉α L2,ca 〈v〉β f leads to a kernel

Kα,β(v, v∗) = cµ1/2 〈v〉α (µ∗)
1/2 〈v∗〉β |v − v∗|γ

for which we can use the same argument to get

∥∥ 〈v〉α L2,ca 〈v〉β f
∥∥ ≤ Cα,β

∥∥f
∥∥.

Next, dealing with L2,cf

L2,cf = µ1/2

∫∫
dv∗dσB

(
(µ∗)

1/2 − (µ′
∗)

1/2
)
f ′
∗,

we split this term into a singular and a non-singular parts. First consider the non singular
part defined as

L2,c,nonsingf
def
= µ1/2

∫∫
dv∗dσB11|v′−v|≥1

(
(µ∗)

1/2 − (µ′
∗)

1/2
)
f ′
∗.

As noticed in [7], one has µ′
∗µ

′ = µ∗µ ≤ (µ′
∗µ)

1/5 due to the kinetic and momentum relations
in (2). Therefore

Af
def
= |L2,c,nonsingf | . µ1/10

∫∫
dv∗dσ|B|11|v′−v|≥1

∣∣(µ1/10f)′∗
∣∣

which writes in Carleman representation (see the appendix)

Af . µ1/10

∫

R3
h

dh

∫

E0,h

dα11|h|≥111|α|≥|h|
|α + h|1+γ+2s

|h|3+2s
|(µ1/10f)(α+ v)|,

where E0,h denotes the hyperplane orthogonal to h and containing 0. By duality, we get, for
all g ∈ S,

|(Af, g)| .
∫

R3
v

dv

∫

R3
h

dh

∫

E0,h

dα11|h|≥111|α|≥|h|
|α+ h|1+γ+2s

|h|3+2s
|(µ1/10f)(α + v)| · |µ1/10g(v)|

.

∫

R3
v

dv

∫

R3
h

dh

∫

E0,h

dα11|h|≥111|α|≥|h|
|α|1+γ+2s

|h|3+2s
|(µ1/10f)(α+ v)||(µ1/10g)(v)|

which upon using (A.1) yields

|(Af, g)| .
∫

R3
v

dv

∫

R3
α

dα

∫

E0,α

dh11|h|≥111|α|≥|h|
|α|γ+2s

|h|2+2s
|µ1/10f(α+ v)||µ1/10g(v)|

.

∫

R3
v

dv

∫

R3
α

dα|α|(γ+2s)+|µ1/10f(α + v)||µ1/10g(v)|.
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Therefore
|(Af, g)| .

∥∥µ1/20f
∥∥∥∥µ1/20g

∥∥

from which follows that

∥∥ 〈v〉α L2,c,nonsing 〈v〉β f
∥∥ ≤ Cα,β

∥∥f
∥∥ (8)

for all real α and β.
For the singular part L2,c,sing, again using Carleman’s representation (A.2) gives

L2,c,singf = µ1/2

∫

R3
h

dh

∫

E0,h

dαb̃(α, h)11|α|≥|h|11|h|≤1

(
µ1/2(α+ v − h)− µ1/2(α + v)

) |α + h|1+γ+2s

|h|3+2s
f(α+ v).

Changing h → −h and adding the resulting two formulas (so we see that formally we
cancel higher singularities, using also that b̃(α, h) = b̃(±α,±h)) yields

L2,c,singf =
1

2
µ1/2

∫

h

dh

∫

E0,h

dαb̃11|α|≥|h|11|h|≤1×

(
µ1/2(α + v − h) + µ1/2(α + v + h)− 2µ1/2(α + v)

) |α + h|1+γ+2s

|h|3+2s
f(α+ v).

Factorizing by µ1/2(α + v) we get

L2,c,singf

=
1

2
µ1/2

∫

h

dh

∫

E0,h

dαb̃11|α|≥|h|11|h|≤1

(
e−(|h|

2−2(α+v)·h)/4 + e−(|h|
2+2(α+v)·h)/4 − 2

)

×|α + h|1+γ+2s

|h|3+2s
µ1/2(α + v)f(α+ v).

The term in parentheses is bounded by |h|2µ−1/4(α + v) thanks to the condition on the
support for h, and since |h| ≤ |α|, one has

|L2,c,singf | . µ1/2

∫

h

dh

∫

E0,h

dα11|α|≥|h|11|h|≤1
|α|1+γ+2s

|h|1+2s
µ1/4(α + v)|f(α+ v)|.

Using again (A.1) and the duality argument as in the non-singular case (now the singularity
in h is integrable), we easily get

∥∥ 〈v〉α L2,c,sing 〈v〉β f
∥∥ ≤ Cα,β

∥∥f
∥∥ (9)

for all real α and β.
As for L2,rf , recalling that
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L2,rf =

∫∫
dv∗dσB(µ1/2f)′∗

(
(µ′)1/2 − µ1/2

)

we see immediately that, using the classical pre-post velocities change of variables that

(L2,rf, g) = (f,L2,cg)

and thus we are done for this term.
It remains to study L2,df which is exactly

L2,df =

∫∫
dv∗dσB

(
(µ′)1/2 − (µ)1/2

) (
(µ∗)

1/2 − (µ′
∗)

1/2
)
f ′
∗.

Using the equality a2−b2 = (a−b)(a+b) for the Gaussian functions in the above factors, we
see again that we can put some power of a Gaussian together with f , by using the argument
of [7]: that means that for some c > 0, d > 0, one has

|L2,df | . µd

∫∫
dv∗dσB

∣∣(µ′)1/4 − (µ)1/4
∣∣ ∣∣(µ∗)

1/4 − (µ′
∗)

1/4
∣∣ (µc)′∗|f ′

∗|

and then the remaining analysis is exactly similar to the computations done for L2,c,singf .
✷

2.2. Splitting of L1

The operator L1 will also be cut into several pieces, which will require two different types
of arguments. For some of the nice parts, tools similar to the ones in the previous section
will be sufficient. The remaining pseudo-differential parts will be treated in the next Section.

Recall first that

L1f =

∫∫
dv∗dσB(µ∗)

1/2
(
(µ′

∗)
1/2f ′ − (µ∗)

1/2f
)
.

Let 0 < δ ≤ 1 be a fixed parameter in the following argument. We first split the above
integral according to whether or not |v′ − v| & δ. To this end, let ϕ be a positive radial
function supported on the unit ball and say 1 in the 1/4 ball. Consider ϕδ(v) = ϕ(|v|2/δ2),
which is therefore 0 for |v| ≥ δ and 1 for |v| ≤ δ/2. By abuse of notations we shall also
denote ϕδ(r) = ϕδ(v) when |v| = r. Set ϕ̃δ(v) = 1 − ϕδ(v), which is therefore 0 for small
values and 1 for large values.

Then L1f can decomposed as the sum of the following two terms

L̄1,δf =

∫∫
dv∗dσBϕ̃δ(v

′ − v)(µ∗)
1/2
(
(µ′

∗)
1/2f ′ − (µ∗)

1/2f
)

and

L1,δf =

∫∫
dv∗dσBϕδ(v

′ − v)(µ∗)
1/2
(
(µ′

∗)
1/2f ′ − (µ∗)

1/2f
)
.
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Note that L̄1,δ is a cutoff type Boltzmann operator. We split it into two terms since
there is no singularity any more

L̄1,δf =

∫∫
dv∗dσBϕ̃δ(v

′ − v)(µ∗)
1/2(µ′

∗)
1/2f ′

−
(∫∫

dv∗dσBϕ̃δ(v
′ − v)(µ∗)

1/2(µ∗)
1/2

)
f

= L̄1,δ,af + L̄1,δ,bf.

(10)

As for L1,δ, again we split it into four terms:

L1,δf =

∫∫
dv∗dσBϕδ(v

′ − v)(µ∗)
1/2
(
(µ′

∗)
1/2f ′ − (µ∗)

1/2f
)

=

∫∫
dv∗dσBϕδ(v

′ − v)(µ′
∗)

1/2(f ′ − f)
(
(µ∗)

1/2 − (µ′
∗)

1/2
)

+

(∫∫
dv∗dσBϕδ(v

′ − v)(µ′
∗)

1/2
(
(µ∗)

1/2 − (µ′
∗)

1/2
))

f

+

∫∫
dv∗dσBϕδ(v

′ − v)µ′
∗ (f

′ − f)

+

(∫∫
dv∗dσBϕδ(v

′ − v) (µ′
∗ − µ∗)

)
f

= L1,1,δf + L1,4,δf + L1,2,δf + L1,3,δf.

(11)

Let us immediately notice that this splitting takes into account all values of s. However,
for small singularities 0 < s < 1/2, a simpler decomposition is available and avoids some of
the issues dealt with below. We note that L1,4,δf and L1,3,δf are of multiplicative type, and
together with L̄1,δ,af , they will be studied in the next subsection. They will appear later as
relatively bounded terms with respect to L1,1,δ + L1,2,δf . These last two parts will appear
to be of pseudo-differential type, and we shall estimate them very precisely in section 3.

Remark 2.2. In the coming computations, we shall follow the dependence on parameter δ.
We point out that it could be fixed at value δ = 1. Anyway, as we shall see in the coming
sections, the explicit dependence on δ of the various estimates enlightens the fact that we
are the non cutoff case. As already mentioned, the cutoff case corresponds to the case when
L1,δ = 0. It can also be seen as the limiting case δ → 0 when looking e.g. at L1,2,δ, for which
we give in Proposition 3.1 a lower bound which would be not relevant anymore for δ = 0.

2.3. Relatively bounded terms in L1

2.3.1. Study of L1,3,δ

Using some arguments from the proof of the cancellation lemma, see for example [11],
we get the following
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Lemma 2.3. For all f ∈ S(R3
v), we have, for all s < 1

‖L1,3,δf‖2 . δ2−2s‖ < v >γ+2s−2 f‖

and L1,3,δ commutes with the multiplication by 〈v〉α for all α ∈ R.

Proof. The last assertion is trivial since L1,3,δ is a multiplication operator. In order to
prove the above inequality, recall first that

L1,3,δf(v) =

(∫∫
dv∗dσBϕδ(v

′ − v) (µ′
∗ − µ∗)

)
f.

Going back to the proof of the cancellation Lemma, it follows that

(∫∫
dv∗dσBϕδ(v

′ − v) (µ′
∗ − µ∗)

)
= S ∗v∗ µ(v)

where, writing by abuse of notation ϕδ(|z|) def
= ϕδ(z) for all z ∈ R3, S has the following

expression

S(z) =|z|γ
∫ π/2

0

sin θb(cos θ)

(
ϕδ(

|z|
cos θ

2

sin
θ

2
) cos−3−γ θ

2
− ϕδ(|z| sin

θ

2
)

)
dθ

=|z|γ
∫ π/2

0

sin θb(cos θ)ϕδ(
|z|
cos θ

2

sin
θ

2
)

(
cos−3−γ θ

2
− 1

)
dθ

+ |z|γ
∫ π/2

0

sin θb(cos θ)

(
ϕδ(

|z|
cos θ

2

sin
θ

2
)− ϕδ(|z| sin

θ

2
)

)
dθ

=S1(z) + S2(z).

For the first part S1(z), note that the integrand is now integrable in the θ variable, and we
have

|S1(z)| . |z|γ . (12)

The second part S2(z) is zero if |z| ≤ δ/2, and we can suppose therefore that |z| ≥ δ/2.
Note also that for z bounded, say for |z| ≤ C where C is sufficiently large to be fixed later,
S2(z) is also bounded. Since

|z|
cos θ

2

sin
θ

2
≥ |z| sin θ

2
,

we get that if |z| sin θ
2
≥ δ, the integrand is 0, and similarly for small values of θ. In

conclusion when |z| ≥ C, the second integral can be estimated as follows :

S2(z) = |z|γ
∫ cδ|z|−1

c′δ|z|−1

sin θb(cos θ)

(
ϕδ(

|z|
cos θ

2

sin
θ

2
)− ϕδ(|z| sin

θ

2
)

)
dθ,
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where C is a posteriori chosen so that C−1cδ ≤ π/2. Using Taylor formulae, we get

|S2(z)| . δ−1|z|γ+1

∫ cδ|z|−1

c′δ|z|−1

θ2b(cos θ)[cos−1 θ/2− 1]dθ

. δ−1|z|γ+1

∫ cδ|z|−1

c′δ|z|−1

θ4b(cos θ)dθ

. δ−1|z|γ+1

∫ cδ|z|−1

c′δ|z|−1

θ2−2sdθ ∼ δ−1|z|γ+1δ3−2s|z|−3+2s

. δ2−2s|z|γ+2s−2.

This estimate together with (12) yield the proof of the Lemma. ✷

2.3.2. Study of L̄1,δ,a

We deal now with the non singular part L̄1,δ,a of L1 for which we have the following result

Lemma 2.4. (i) For all f ∈ S(R3
v) and for all α, β ∈ R such that α + β + γ + 2s ≤ 0, we

have ∥∥ 〈v〉α L̄1,δ,a 〈v〉β f
∥∥ ≤ δ−1−2sCα,β

∥∥f
∥∥.

(ii) For all f ∈ S(R3
v) and for all α̃, β̃ ∈ R such that α̃ + β̃ + γ + s ≤ 0, we have

∥∥ 〈v〉α̃
[
L̄1,δ,a, 〈v〉β̃

]
f
∥∥ ≤ δ−2sCα̃,β̃

∥∥f
∥∥,

where
[
·, ·
]
stands for the commutator.

Proof. Recalling that

L̄1,δ,af =

∫∫
dv∗dσBϕ̃δ(v

′ − v)(µ∗)
1/2(µ′

∗)
1/2f ′,

it follows that

〈v〉α L̄1,δ,a 〈v〉β f = 〈v〉α
∫∫

dv∗dσBϕ̃δ(v
′ − v)(µ∗)

1/2(µ′
∗)

1/2(〈v〉β f)′,

and

〈v〉α̃
[
L̄1,δ,a, 〈v〉β̃

]
f = 〈v〉α̃ L̄1,δ,a 〈v〉β̃ f − 〈v〉α̃ 〈v〉β̃ L̄1,δ,af

= 〈v〉α̃
∫∫

dv∗dσBϕ̃δ(v
′ − v)(µ∗)

1/2(µ′
∗)

1/2
(
〈v′〉β̃ − 〈v〉β̃

)
f ′.
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(i) We first estimate 〈v〉α L̄1,δ,a 〈v〉β f. An application of Carleman’s representation (see the
appendix for instance) shows that

| 〈v〉α L̄1,δ,a 〈v〉β f | . 〈v〉α
∫

h

dh

∫

E0,h

dα11|α|≥|h|11|h|≥δ/2µ
1/2(α + v)µ1/2(α + v − h)

|h+ α|1+γ+2s

|h|3+2s
〈v − h〉β |f(v − h)|

. 〈v〉α
∫

h

dh

∫

E0,h

dα11|h|≥δ/2µ
1/2(α + v)µ1/2(α + v − h)

|α|1+γ+2s

|h|3+2s
〈v − h〉β |f(v − h)|,

(13)

where we used the fact that |α| ≥ |h| for the second inequality, and recalling that E0,h

denotes the vector plane containing 0 and orthogonal to h. Letting S(h) for the orthogonal
projection onto E0,h, we can write

e−|α+v|2 = e−|α+S(h)v|2e|S(h)v|
2−|v|2

and similarly

e−|α+v−h|2 = e−|α+S(h)(v)|2e|S(h)(v−h)|2−|v−h|2,

and therefore

µ1/2(α + v)µ1/2(α + v − h) = (2π)−3/2

(
e−|α+S(h)v|2

(
e2(|S(h)v|

2−|v|2)+|v|2−|v−h|2
)1/2)1/2

= (2π)−3/2

(
e−|α+S(h)v|2

(
e2(|S(h)v|

2−|v|2)+2v·h−|h|2
)1/2)1/2

.

Going back to (13), we obtain

| 〈v〉α L̄1,δ,a 〈v〉β f | . 〈v〉α
∫

R3
h

dh

∫

E0,h

dα11|α|≥|h|11|h|≥δ/2
|α|1+γ+2s

|h|3+2s
〈v − h〉β |f(v − h)|

(
e−|α+S(h)v|2

(
e2(|S(h)v|

2−|v|2)+2v·h−|h|2
)1/2)1/2

.
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Performing the integration with respect to α, it follows that

| 〈v〉α L̄1,δ,a 〈v〉β f | . 〈v〉α
∫

R3
h

dh11|h|≥δ/2 〈S(h)v〉1+γ+2s 1

|h|3+2s
〈v − h〉β |f(v − h)|

(
e2(|S(h)v|

2−|v|2)+2v·h−|h|2
)1/4

.

∫

R3
z

dz11|v−z|≥δ/2 〈v〉α 〈S(v − z)v〉1+γ+2s 1

|v − z|3+2s
〈z〉β |f |(z)

(
e2(|S(v−z)v|2−|v|2)+2v.(v−z)−|v−z|2

)1/4

def
=

∫

R3
z

Kα,β(v, z)|f |(z)dz

with

Kα,β(v, z) = 11|v−z|≥δ/2 〈v〉α 〈z〉β 〈S(v − z)v〉1+γ+2s 1

|v − z|3+2s

(
e2(|S(v−z)v|2−|v|2)+2v.(v−z)−|v−z|2

)1/4
.

We want to apply Schur’s Lemma. To this end, let’s first integrate w.r.t. to z, to get
∫

R3
z

dzKα,β(v, z) =

∫

R3
z

dz11|v−z|≥δ/2 〈v〉α 〈z〉β 〈S(v − z)v〉1+γ+2s 1

|v − z|3+2s

(
e2(|S(v−z)v|2−|v|2)+2v.(v−z)−|v−z|2

)1/4

=

∫

R3
h

dh11|h|≥δ/2 〈v〉α 〈v − h〉β 〈S(h)v〉1+γ+2s 1

|h|3+2s

(
e2(|S(h)v|

2−|v|2)+2v·h−|h|2
)1/4

,

so that
∫

R3
z

dzKα,β(v, z)

=

∫

R3
h

dh11|h|≥δ/2 〈v〉α
(
1 + |v|2 − |v · h|h| |

2

)(1+γ+2s)/2
1

|h|3+2s
〈v − h〉β

(
e−2|v· h

|h|
|2+2v·h−|h|2

)1/4

=

∫

R3
h

dh11|h|≥δ/2 〈v〉α
(
1 + |v|2 − |v|2

|h|2 |
v

|v| · h|
2

)(1+γ+2s)/2
1

|h|3+2s

(
1 + |v|2 − 2|v| v|v| · h + |h|2

)β/2(
e
−2

|v|2

|h|2
| v
|v|

·h|2+2|v| v
|v|

·h−|h|2
)1/4

.
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Shifting to polar coordinates, with an axis along direction v/|v|, we obtain

∫

R3
z

dzKα,β(v, z) .

∫ π

0

∫ ∞

δ

drdϕ 〈v〉α sinϕ
(
1 + |v|2 − |v|2 cos2 ϕ

)(1+γ+2s)/2 1

r1+2s

(1 + |v|2 − 2|v|r cosϕ+ r2)β/2
(
e−2|v|2 cos2 ϕ+2|v|r cosϕ−r2

)1/4
.

Note here that if |v| ≤ 1, then we directly get that
∫
R3
z
dzKα,β(v, z) . 1. Therefore we may

as well assume that |v| ≥ 1. Setting t = cosϕ, we get
∫

R3
z

dzKα,β(v, z)

.

∫ 1

−1

∫ ∞

δ

drdt 〈v〉α (1 + |v|2 − |v|2t2)(1+γ+2s)/2e(−2|v|2t2+2|v|rt−r2)/4 1

r1+2s

(1 + |v|2 − 2|v|rt+ r2)β/2

≈ 〈v〉α |v|−1

∫ |v|

−|v|

∫ ∞

δ

drdt(1 + |v|2 − t2)(1+γ+2s)/2e−(r−t)2/4 1

r1+2s
(1 + |v|2 − 2rt+ r2)β/2

≈ 〈v〉α |v|−1

∫ |v|

−|v|

∫ ∞

δ

drdt(1 + |v|2 − t2)(1+γ+2s)/2e−(r−t)2/4 1

r1+2s
(1 + |v|2 − t2 + (r − t)2)β/2.

In the inner term, note that |v|2 − t2 ≥ 0. We now use Peetre’s inequality

〈u〉β 〈u+ w〉−|β|
. 〈w〉β . 〈u〉β 〈u+ w〉|β| , β ∈ R, (14)

to get here
(1 + |v|2 − t2 + (r − t)2)β/2 . (1 + |v|2 − t2)β/2 〈r − t〉|β| .

In addition, since 0 < δ < 1, then r ≥ δ implies that r ≥ 2−1/2δ 〈r〉. Thus
∫

R3
z

dzKα,β(v, z)

. δ−1−2s 〈v〉α |v|−1

∫ |v|

−|v|

∫ ∞

−∞
drdt(1 + |v|2 − t2)(1+γ+2s+β)/2

(
〈r − t〉|β| e−(r−t)2/4

) 1

〈r〉1+2s

. δ−1−2s 〈v〉α |v|−1

∫ |v|

−|v|
dt(1 + |v|2 − t2)(1+γ+2s+β)/2 1

〈t〉1+2s

. δ−1−2s 〈v〉α−1

∫ |v|

0

dt(1 + |v|2 − t2)(1+γ+2s+β)/2 1

〈t〉1+2s .

(15)

Now for evaluating this quantity, we split the integral into two parts. First note that
∫ |v|/2

0

dt(1 + |v|2 − t2)(1+γ+2s+β)/2 1

〈t〉1+2s . 〈v〉1+γ+2s+β

∫ |v|/2

0

dt
1

〈t〉1+2s

. 〈v〉1+γ+2s+β .

(16)
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For the remaining part, we write
∫ |v|

|v|/2
dt(1 + |v|2 − t2)(1+γ+2s+β)/2 1

〈t〉1+2s

. 〈v〉−1−2s

∫ |v|

|v|/2
dt(1 + |v|2 − t2)(1+γ+2s+β)/2

. 〈v〉−1−2s

∫ |v|

|v|/2
dt(1 + (|v| − t)(|v|+ t))(1+γ+2s+β)/2

. 〈v〉−1−2s

∫ |v|

|v|/2
dt(1 + |v|(|v| − t))(1+γ+2s+β)/2

Posing s = |v|(|v| − t), ds = −|v|dt, we get

∫ |v|

|v|/2
dt(1 + |v|2 − t2)(1+γ+2s+β)/2 1

〈t〉1+2s

. 〈v〉−1−2s |v|−1

∫ |v|2/2

0

ds(1 + s)(1+γ+2s+β)/2

. 〈v〉−1−2s |v|−1 〈v〉(1+γ+2s+β)+2

. 〈v〉1+γ+β .

(17)

Putting estimates (16) and (17) in (15) we get
∫

R3
z

dzKα,β(v, z) . δ−1−2s 〈v〉α−1 〈v〉1+γ+β+2s

. δ−1−2s 〈v〉α+γ+β+2s

. δ−1−2s if α+ β + γ + 2s ≤ 0.

In conclusion, we have obtained that if α + β + γ + 2s ≤ 0, then
∫

R3
z

dzKα,β(v, z) . δ−1−2s. (18)

Now we look for the integration w.r.t. variable v of Kα,β. We have
∫

R3
v

dvKα,β(v, z) =

∫

R3
v

dv11|v−z|≥δ/2 〈v〉α 〈z〉β 〈S(v − z)v〉1+γ+2s

(
e|S(v−z)v|2−|v|2+|S(v−z)(z)|2−|z|2

)1/4 1

|v − z|3+2s
,

since by direct computation

2(|S(v − z)v|2 − |v|2) + 2v.(v − z)− |v − z|2
= |S(v − z)v|2 − |v|2 + |S(v − z)(z)|2 − |z|2.
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Taking h = v − z, dh = dv, we get

∫

R3
v

dvKα,β(v, z) =

∫

R3
h

dh11|h|≥δ/2 〈z + h〉α 〈z〉β 〈S(h)(z + h)〉1+γ+2s

(
e|S(h)(z+h)|2−|z+h|2+|S(h)(z)|2−|z|2

)1/4 1

|h|3+2s

=

∫

R3
h

dh11|h|≥δ/2 〈z + h〉α 〈z〉β 〈S(h)z〉1+γ+2s

(
e|S(h)z|

2−|z+h|2+|S(h)z|2−|z|2
)1/4 1

|h|3+2s
,

so that expanding again the brackets, we get

∫

R3
v

dvKα,β(v, z)

=

∫

R3
h

dh11|h|≥δ/2

(
1 + |z|2 + 2z.h + |h|2

)α/2 〈z〉β
(
1 + |z|2 − |z. h|h| |

2

)(1+γ+2s)/2

(
e−|z. h

|h|
|2−2z.h−|h|2e−|z. h

|h|
|2
)1/4 1

|h|3+2s
.

We shift to spherical coordinates (along axis w.r.t z) (h = rω) to get

∫

R3
v

dvKα,β(v, z)

=

∫ π

0

∫ ∞

δ

dϕ sinϕdr 〈z〉β (1 + |z|2 + 2|z|r cosϕ+ r2)α/2(1 + |z|2 − |z|2 cos2 ϕ)(1+γ+2s)/2

(
e−|z|2 cos2 ϕ−2|z|r cosϕ−r2e−|z|2 cos2 ϕ

)1/4 1

r1+2s
.

Set t = cosϕ to get

∫

R3
v

dvKα,β(v, z)

=

∫ 1

−1

dt

∫ ∞

δ

dr 〈z〉β (1 + |z|2 + 2|z|rt+ r2)α/2(1 + |z|2 − |z|2t2)(1+γ+2s)/2

(
e−|z|2t2−2|z|rt−r2e−|z|2t2

)1/4 1

r1+2s
.

We note again that if |z| ≤ 1, this integral is bounded uniformly. We therefore assume in
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the following that |z| ≥ 1 and change variable t′ = |z|t to deduce that

∫

R3
v

dvKα,β(v, z)

= |z|−1

∫ |z|

−|z|
dt

∫ ∞

δ

dr 〈z〉β (1 + |z|2 + 2rt+ r2)α/2(1 + |z|2 − t2)(1+γ+2s)/2

e−(t+r)2/4e−t2/4 1

r1+2s

. |z|−1

∫ |z|

−|z|
dt

∫ ∞

δ

dr 〈z〉β (1 + |z|2 − t2)(1+γ+2s+α)/2 〈r + t〉|α| e−(t+r)2/4e−t2/4 1

r1+2s
,

where the last inequality is a consequence of Peetre’s inequality (14). With exactly the same
argument as before for the integration w.r.t. r, for small δ, we obtain

∫

R3
v

dvKα,β(v, z) . δ−1−2s 〈z〉α+β+γ+2s

and thus
∫

R3
v

dvKα,β(v, z) . δ−1−2s
(19)

when α + β + γ + 2s ≤ 0. From (18) and (19), we use Schur’s Lemma to obtain conclusion
(i) in Lemma 2.4.

(ii) Now we prove the second estimate about the commutator in Lemma 2.4. Using the
σ representation between v, v∗ and v′, v′∗, (see Figure 2 in Subsection 5.1 of Appendix), we
have, for θ ∈]0, π[,

|v − v∗| =
|v′ − v∗|
cos θ

2

≤
√
2 |v′ − v∗| ≤

√
2 |vλ − v∗| ,

where
vλ = v + λ(v′ − v), λ ∈ [0, 1].

As a result,

〈v〉 ≤ 〈v − v∗〉+ 〈v∗〉 ≤
√
2 〈vλ − v∗〉+ 〈v∗〉 ≤ (1 +

√
2) 〈vλ〉 〈v∗〉 ,

which along with the estimate

〈vλ〉 ≤ (1 +
√
2) 〈v〉 〈v∗〉

due to the fact that |v′ − v| = |v − v∗| sin θ
2
≤

√
2
2
|v − v∗| , implies

∀ κ ∈ R, 〈vλ〉κ . 〈v〉κ 〈v∗〉|κ| .
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Therefore, we have

∣∣∣〈v′〉β̃ − 〈v〉β̃
∣∣∣ .

∫ 1

0

〈vλ〉β̃−1 dλ |v − v′|

. 〈v〉β̃−1 〈v∗〉|β̃−1| |v − v′| .

Then
∣∣∣〈v〉α̃

[
L̄1,δ,a, 〈v〉β̃

]
f
∣∣∣ =

∣∣∣∣〈v〉
α̃

∫∫
dv∗dσBϕ̃δ(v

′ − v)(µ∗)
1/2(µ′

∗)
1/2
(
〈v′〉β̃ − 〈v〉β̃

)
f ′
∣∣∣∣

. 〈v〉α̃+β̃−1

∫∫
dv∗dσBϕ̃δ(v

′ − v)(µ∗)
1/2(µ′

∗)
1/2 〈v∗〉|β̃−1| |v − v′| |f ′| .

Using Carleman’s representation (see the appendix for instance) shows that
∣∣∣〈v〉α̃

[
L̄1,δ,a, 〈v〉β̃

]
f
∣∣∣

. 〈v〉α̃+β̃−1

∫

h

dh

∫

E0,h

dα11|α|≥|h|11|h|≥ δ
2

µ
1

2 (α + v)µ
1

2 (α + v − h)

×〈α + v〉|β̃−1| |α+ h|1+γ+2s

|h|2+2s
|f(v − h)|

. 〈v〉α̃+β̃−1

∫

h

dh

∫

E0,h

dα11|h|≥ δ
2

µ
1

4 (α+ v)µ
1

4 (α + v − h)
|α|1+γ+2s

|h|2+2s
|f(v − h)|.

The last term is quite similar as the one on the right hand side of (13), with α and β there

replaced respectively by α̃+ β̃ − 1 and 0, and µ1/2, |h|−(3+2s) there replaced respectively by

µ1/4, |h|−(2+2s). Then repeating the arguments after (13), we conclude

∣∣∣〈v〉α̃
[
L̄1,δ,a, 〈v〉β̃

]
f
∣∣∣ .

∫
K̃α̃,β̃(v, z) |f | (z)dz

with

K̃α̃,β̃(v, z) = 11|v−z|≥δ/2 〈v〉α̃+β̃−1 〈S(v − z)v〉1+γ+2s 1

|v − z|2+2s

(
e2(|S(v−z)v|2−|v|2)+2v.(v−z)−|v−z|2

)1/4
.

Arguing as for the analysis of Kα,β in (i), with α = α̃+ β̃−1 and β = 0, we obtain a similar
estimate as (15), that is,

∫

R3
z

dzK̃α̃,β̃(v, z) . δ−2s 〈v〉(α̃+β̃−1)−1

∫ |v|

0

dt(1 + |v|2 − t2)(1+γ+2s)/2 1

〈t〉2s
.

It’s clear that ∫

R3
z

dzK̃α̃,β̃(v, z) . δ−2s
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for all v such that |v| ≤ 1.
We can therefore assume |v| ≥ 1 in the following. We split the integration into three

parts as follows. First

∫ 1/2

0

dt(1 + |v|2 − t2)(1+γ+2s)/2 1

〈t〉2s
. 〈v〉1+γ+2s .

Next, for any ε0 > 0,

∫ |v|/2

1/2

dt(1 + |v|2 − t2)(1+γ+2s)/2 1

〈t〉2s
. 〈v〉1+γ+2s

∫ |v|/2

1/2

dt

t2s

.

{
〈v〉1+γ+2s (|v|−2s+1 + 1

)
, s 6= 1/2

〈v〉1+γ+2s (ln |v|+ 1) . 〈v〉2+γ+ε0 , s = 1/2

. 〈v〉2+γ+ε0 + 〈v〉1+γ+2s

Finally, repeating the arguments used to get the estimate (17), we have

∫ |v|

|v|/2
dt(1 + |v|2 − t2)(1+γ+2s)/2 1

〈t〉2s
. 〈v〉−2s |v|−1

∫ |v|2/2

0

(1 + λ)(1+γ+2s)/2 dλ

. 〈v〉2+γ .

Combining these inequalities gives, for |v| ≥ 1,
∫

R3
z

dzK̃α̃,β̃(v, z) . δ−2s 〈v〉(α̃+β̃−1)−1 (〈v〉2+γ+ε0 + 〈v〉1+γ+2s)

. δ−2s 〈v〉α̃+β̃+γ+ε0 + δ−2s 〈v〉α̃+β̃+γ+2s−1 .

Then choosing ε0 = s and using the assumption that α̃ + β̃ + γ + s ≤ 0, we conclude
∫

R3
z

dzK̃α̃,β̃(v, z) . δ−2s.

Similarly as in (i), we can show that
∫

R3
z

dvK̃α̃,β̃(v, z) . δ−2s.

Then Schur’s Lemma applies and this completes the proof of conclusion (ii) in Lemma 2.4. ✷

2.3.3. Study of L1,4,δ

Lemma 2.5. For all f ∈ S(R3
v), we have

‖L1,4,δf‖2 . δ2−2s‖ < v >γ+2s f‖,

and L1,4,δ commutes with the multiplication by 〈v〉α for all α ∈ R.
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Proof. The last assertion is again trivial since L1,4,δ is a multiplication operator. Using
the formula 2a(b− a) = b2 − a2 − (b− a)2, we get

L1,4,δf =
1

2
f

∫∫
dv∗dσBϕδ(v

′ − v) ((µ∗)− (µ′
∗))

− 1

2
f

∫∫
dv∗dσBϕδ(v

′ − v)
(
(µ∗)

1/2 − (µ′
∗)

1/2
)2

= −1

2
L1,3,δf +D(v)f.

It suffices to estimate D(v) in view of Lemma 2.3. To do so we essentially follow the
same process, except that we don’t need to use a symmetrizing argument to kill higher
singularities. We write

|D(v)| = 1

2

∫

R3
h

dh

∫

E0,h

dα11|α|≥|h|ϕδ(h)
(
µ1/2(α+ v − h)− µ1/2(α+ v)

)2 |α+ h|1+γ+2s

|h|3+2s

.

∫

R3
h

dh

∫

E0,h

dα11|α|≥|h|ϕδ(h)
(
e(α+v)·h−h2/2 − 1

)2
µ(α + v)

|α+ h|1+γ+2s

|h|3+2s

.

∫

R3
h

dh

∫

E0,h

dα11|α|≥|h|ϕδ(h)µ
1/2(α + v)

|α|1+γ+2s

|h|1+2s

. δ2−2s 〈v〉γ+2s ,

following the same arguments as before. From the estimates on L1,3,δ and D(v), the proof
is complete. ✷

3. Pseudo-differential parts

In this section we deal with the remaining parts of L1, namely:
- a multiplicative operator L̄1,δ,b;
- the principal term L1,2,δ which will appear to be of pseudo-differential type;
- and the term L1,1,δ which is also of pseudo-differential type but with lower order (and

we therefore call it subprincipal).
Our goal in this section is to prove Proposition 1.4 about the behavior of these pseudo-
differential parts of L.
In the following, we keep the notation for ϕδ, the positive compactly supported function equal
to 1 in a δ-neighborhood of 0 as introduced previously in the definitions of the operators,
and let E0,ω = ω⊥ for the hyperplane containing 0 and orthogonal to ω. We study each
operator separately. Proposition 1.4 will be obtained as a direct consequence of Proposition
3.5 and Proposition 3.1 below and Definition 3.6.
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3.1. Study of the principal term L1,2,δ

Recall that

L1,2,δf =

∫∫
dv∗dσBϕδ(v

′ − v)µ′
∗ (f

′ − f)

where

B(v, σ) = |v − v∗|γb
(〈

v − v∗
|v − v∗|

, σ

〉)
.

This will appear to be a genuine pseudo-differential operator of order 2s for which we can
control the weights. Namely one has

Proposition 3.1. We can write

L1,2,δf = −ap(v,Dv)f,

where ap is a classical real symbol in (v, η) (see (21) below for the definition of ap) satisfying:

i) there exists C > 0 such that for all 0 < κ < 1,

C−1δ2−2s
(
−κ 〈v〉γ+2s + κ 〈v〉γ (|η|2s + |η ∧ v|2s)

)

≤ ap(v, η) ≤ C 〈v〉γ (1 + |η|2s + |η ∧ v|2s); (20)

ii) ap ∈ S (〈v〉γ (1 + |v|2s + |η|2s + |η ∧ v|2s),Γ) . Recall Γ = |dv|2 + |dη|2 is the flat metric.

Remark 3.2. The first estimates in (20) explain why we don’t have regularity estimate for
the Boltzmann equation with angular cutoff, since the regularisation operator 〈v〉γ (〈η〉2s)w+
〈v〉γ (〈v ∧ η〉2s)w is not present in this case. Observe that we exclude the case s = 1. This
case corresponds the Landau equation, which is the grazing limit of Boltzmann equation
without angular cutoff and still admits the diffusion structure.

Proof. From the expression of L1,2,δ, using Carleman’s transformation as in previous
arguments and as in [1] (see also the Appendix), we get

L1,2,δf =

∫

R3
h

dh

∫

E0,h

dαb̃(α, h)11|α|≥|h|ϕδ(h)µ(α + v)|α+ h|1+γ+2s (f(v − h)− f(v))
1

|h|3+2s
,

where b̃(α, h) is a function of α and h which is bounded from below and above by positive
constants, and satisfies that b̃(α, h) = b̃(±α,±h).

This integral is typically undefined for large values of s, and we have to use its sym-
metrized version in order to give a meaning in the principal value sense: for this purpose,
we change h to −h and add the two expressions to obtain

L1,2,δf =
1

2

∫

h

dh

∫

E0,h

dαb̃11|α|≥|h|ϕδ(h)µ(α + v)|α+ h|1+γ+2s

(f(v − h) + f(v + h)− 2f(v))
1

|h|3+2s

def
= −ap(v,Dv)f(v)

def
= −

∫

R3
η

ap(v, η)f̂(η)e
iη.vdη
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with

ap(v, η)
def
= −1

2

∫

R3
h

dh

∫

E0,h

dαb̃11|α|≥|h|ϕδ(h)µ(α+ v)|α+ h|1+γ+2s

(
e−iη·h + eiη·h − 2

) 1

|h|3+2s

=

∫

R3
h

dh

∫

E0,h

dαb̃11|α|≥|h|ϕδ(h)µ(α+ v)|α+ h|1+γ+2s

(1− cos(η · h)) 1

|h|3+2s
.

(21)

The non-negativity of ap(v, η) is clear and we shall now work on some properties of this
symbol. First recall that on the support of the integrand, we have |h| ≤ δ ≤ 1 and that
α ⊥ h, so that

0 ≤ ap(v, η) .

∫

R3h

dh

∫

E0,h

11|α|≥|h|11|h|≤δdαµ(α+ v) 〈α〉1+γ+2s (1− cos(η · h)) 1

|h|3+2s
.

Now we can shift to spherical coordinates h = rω, and (forgetting the truncation in α) we
get

ap(v, η) .

∫ δ

0

∫

S2
ω

drdω

∫

E0,ω

dαµ(α+ v) 〈α〉1+γ+2s (1− cos(rη.ω))
1

r1+2s
.

It is possible to integrate directly w.r.t. r, and use the fact that

∫ δ

0

(1− cos(rη.ω))
1

r1+2s
dr ≤ Cs|ω · η|2s. (22)

In fact, note that

∫ δ

0

(1− cos(rη.ω))
1

r1+2s
dr =

∫ δ

0

1− cos(r |η.ω|)
r1+2s

dr = |ω · η|2s
∫ δ|ω·η|

0

1− cos r

r1+2s
dr.

Next, we observe that 1− cos r ≥ r2/π if 0 ≤ r ≤ π/2.
As a consequence, if |ω · η| ≥ π/2, we get

∫ δ

0

(1− cos(rη.ω))
1

r1+2s
dr & |ω · η|2s

∫ πδ/2

0

(1− cos(r))
1

r1+2s
dr & δ2−2s|ω · η|2s,

while if |ω · η| ≤ π/2, then

∫ δ

0

(1− cos(rη.ω))
1

r1+2s
dr & |ω · η|2

∫ δ

0

r2
1

r1+2s
dr & δ2−2s|ω · η|2.

On the whole, we get

∫ δ

0

(1− cos(rη.ω))
1

r1+2s
dr & δ2−2s min{|ω · η|2, |ω · η|2s}. (23)
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This along with (22) gives

δ2−2s min{|ω · η|2, |ω · η|2s} .

∫ δ

0

(1− cos(rη.ω))
1

r1+2s
dr ≤ Cs|ω · η|2s. (24)

Next, we deal with the upper bound on ap. A crude estimate is enough and we get

ap(v, η) .

∫

S2
ω

dω

∫

E0,ω

dαµ(α+ v)|ω · η|2s 〈α〉1+γ+2s . (25)

Splitting v = S(ω)v + (ω · v)ω, we have

|α + v|2 = |α+ S(ω)v + (ω · v)ω|2 = |α + S(ω)v|2 + |(ω · v)|2 (26)

since α and ω are orthogonal. We can therefore write

µ(α + v) = (2π)−3/2
(
e−|α+S(ω)v|2e−|(ω·v)|2

)1/2

to get

ap(v, η) .

∫

S2
ω

dω

∫

E0,ω

dα
(
e−|α+S(ω)v|2e−|(ω·v)|2

)1/2
|ω · η|2s 〈α〉1+γ+2s . (27)

Next, note that

β(v, ω) =

∫

E0,ω

dα
(
e−|α+S(ω)v|2

)1/2
〈α〉1+γ+2s ∼< S(ω)v >1+γ+2s

and thus

ap(v, η) .

∫

S2
ω

dωe−|(ω·v)|2/2 < S(ω)v >1+γ+2s |ω · η|2s. (28)

We introduce polar coordinates in a coordinate system where i = S(v)η/|S(v) · η|, k =
v/|v|.
In this system, we note that (ω · k) = cos(ϕ). Besides we have η = (η.k)k + S(v)η so that

ω · η = (η · k)(k · ω) + (S(v)η) · ω
= (η · k)(k · ω) + (S(v)η) · (S(v)ω)
= (η · k)(k · ω) + (i · (S(v)ω)) |S(v)η|
= η · k cos(ϕ) + |S(v)η| sin(ϕ) cos(θ).

and in a similar way

|S(ω)v|2 = |v|2 − |(v.ω)|2 = |v|2(1− cos2(ϕ)) = |v|2 sin2(ϕ).
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ω

η

v

S(v)η

S(v)ω
i = S(v)η/|S(v)η|

k = v/|v|

ϕ

θ

Figure 1: spherical coordinates

We therefore get

ap(v, η) .

∫ π

0

dϕ

∫ 2π

0

dθ sin(ϕ)e−|v|2 cos2(ϕ) (1 + |v|2 sin2(ϕ)
)(1+γ+2s)/2

|η · k cos(ϕ) + |S(v)η| sin(ϕ) cos(θ)|2s.
Setting cosϕ = t in the preceding formula, we get

ap(v, η) .

∫ 2π

0

dθ

∫ 1

0

dte−|v|2t2 (1 + |v|2(1− t2)
)(1+γ+2s)/2

|η · kt + |S(v)η|
√
1− t2 cos(θ)|2s. (29)

If we bound roughly 1− t2 and cos(ϕ) by 1 and use the estimates that

e−|v|2t2 (1 + |v|2(1− t2)
)(1+γ+2s)/2

. e−|v|2t2 (1 + |v|2
)(1+γ+2s)/2

for 1 + γ + 2s ≥ 0 or 0 ≤ t ≤ 1/2, and that

e−|v|2t2 (1 + |v|2(1− t2)
)(1+γ+2s)/2

. e−|v|2t2 . e−|v|2t2/2 (1 + v2
)(1+γ+2s)/2

for 1 + γ + 2s < 0 and uniformly w.r.t. 1/2 ≤ t ≤ 1,
then we get

ap(v, η) .

∫ 2π

0

dθ

∫ 1

0

dt e−|v|2t2/2 (1 + |v|2
)(1+γ+2s)/2 (|η · kt|2s + |S(v)η|2s

)
.

If we set y = |v|t, we get

ap(v, η) .
1

|v| 〈v〉
1+γ+2s

∫ 2π

0

dθ

∫ |v|

0

dy e−y2/2

(
|η · k|2s y

2s

|v|2s + |S(v)η|2s
)

.
1

|v| 〈v〉
1+γ+2s

(
|η · k|2s 1

|v|2s + |S(v)η|2s
)

.
〈v〉1+γ+2s

|v|1+2s
|η|2s + 〈v〉1+γ+2s

|v| |S(v)η|2s.

(30)
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For |v| ≥ 1, we therefore get

ap(v, η) . 〈v〉γ |η|2s + 〈v〉γ+2s |S(v)η|2s,

and thus

ap(v, η) . 〈v〉γ
(
|η|2s + |v ∧ η|2s

)
,

since |v ∧ η| = |v||S(v)η|. For |v| ≤ 1, a rough estimate gives directly |a(v, η)| ≤ 〈η〉2s so
that the preceding estimate is also true. The proof of the upper bound is complete.

Now we deal with the lower bound. To this end, we shall use the formula (21)

ap(v, η) =

∫

R3
h

dh

∫

E0,h

dαb̃ϕδ(h)11|α|≥|h|µ(α+ v)|α + h|1+γ+2s (1− cos(η · h)) 1

|h|3+2s
.

As we want a lower bound we can restrict the integration range to {|α| ≥ 10} since the
integrand is non negative. We use also the facts that b̃ is bounded from below by a positive
constant and that |α+h| ∼ |α| since α ⊥ h and |h| ≤ |α| in the preceding integral. Therefore,
we have

ap(v, η) &

∫

R3
h

dh

∫

E0,h

ϕδ(h)11|α|≥10dαµ(α+ v) 〈α〉1+γ+2s (1− cos(η · h)) 1

|h|3+2s
.

We can use some of the previous computations, and from (23)-(24) we get as in (27),

ap(v, η) & δ2−2s

∫

S2
ω

dω

∫

E0,ω

dα11|α|≥10e
−|α+S(ω)v|2/2e−|(ω·v)|2/2min{|ω · η|2, |ω · η|2s} 〈α〉1+γ+2s .

Note that

β10(v, ω)
def
=

∫

E0,ω

dα1|α|≥10e
−|α+S(ω)v|2/2 〈α〉1+γ+2s ∼< S(ω)v >1+γ+2s .

Therefore

ap(v, η) & δ2−2s

∫

S2
ω

dωe−|(ω·v)|2/2 < S(ω)v >1+γ+2s min{|ω · η|2, |ω · η|2s}. (31)

We now consider an arbitrary real 0 < κ < 1. Using the fact that

min{|ω · η|2, |ω · η|2s} ≥ |ω · η|2s − 1,
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and that the right member in (31) is non-negative, we get that

ap(v, η) & κδ2−2s

∫

S2
ω

dωe−|(ω·v)|2/2 < S(ω)v >1+γ+2s min{|ω · η|2, |ω · η|2s}

& κδ2−2s

∫

S2
ω

dωe−|(ω·v)|2/2 < S(ω)v >1+γ+2s (|ω · η|2s − 1)

& κδ2−2s

∫

S2
ω

dωe−|(ω·v)|2/2 < S(ω)v >1+γ+2s |ω · η|2s

− κδ2−2s

∫

S2
ω

dωe−|(ω·v)|2/2 < S(ω)v >1+γ+2s

def
= κδ2−2sapp − κδ2−2sapr.

(32)

We split the study of the two terms app and apr. For app, we can use previous computa-
tions yielding to (28). More precisely, we have

app(v, η) =

∫ 2π

0

dθ

∫ 1

0

dte−|v|2t2 (1 + |v|2(1− t2)
)(1+γ+2s)/2

∣∣∣η · kt + |S(v)η|
√
1− t2 cos(θ)

∣∣∣
2s

. (33)

Now an easy remark is that the symbol app has the following parity properties:

app(±v,±η) = app(v, η).

We can therefore assume that η · k ≥ 0 in all the computations. Moreover we can restrict
the above integration to the following subsets

t ∈ [0,
√
3/2], θ ∈ [0, π/3], (34)

which implies that all terms inside the absolute value

|η · kt + |S(v)η|
√
1− t2 cos(θ)|

are non-negative. We therefore get, when (34) is fulfilled, that

(
1 + |v|2(1− t2)

)(1+γ+2s)/2 ≥
(
1 +

|v|2
4

)(1+γ+2s)/2

≥ cs,γ 〈v〉1+γ+2s

and

|η · kt + |S(v)η|
√
1− t2 cos(θ)|2s ≥ 4−2s|η · kt + |S(v)η||2s

≥ cs
(
|η · kt|2s + |S(v)η|2s

)
.

Therefore putting the above estimate into (33) gives

app(v, η) &

∫ π/3

0

dθ

∫ √
3/2

0

dt e−|v|2t2 〈v〉1+γ+2s (|η · kt|2s + |S(v)η|2s
)
.

32



As in the case of the upper bound, we set y = |v|t, and get for |v| ≥ 1 that

app(v, η) &
1

|v| 〈v〉
1+γ+2s

∫ π/3

0

dθ

∫ √
3|v|/2

0

dy e−y2
(
|η · k|2s y

2s

|v|2s + |S(v)η|2s
)

&
1

|v| 〈v〉
1+γ+2s

∫ π/3

0

dθ

∫ √
3/2

0

dy e−y2
(
|η · k|2s y

2s

|v|2s + |S(v)η|2s
)

&
1

|v| 〈v〉
1+γ+2s

(
|η · k|2s 1

|v|2s + |S(v)η|2s
)

&
(
〈v〉γ |η|2s + 〈v〉γ+2s |S(v)η|2s

)
,

where in the last inequality we use that η · k ≥ 0 and the fact that if η · k ≤ |η|/2 then

|S(v)η| ≥
√
3|η|/2.

Since |v ∧ η| = |v||S(v)η| we get for |v| ≥ 1 the desired result

app(v, η) & 〈v〉γ
(
|η|2s + |v ∧ η|2s

)
. (35)

For |v| ≤ 1, a direct check, without the change of variables |v| t→ y, gives

app(v, η) &

∫ π/3

0

dθ

∫ √
3/2

0

dte−t2
(
|η · kt|2s + |S(v)η|2s

)
& |η · k|2s + |S(v)η|2s

& |η|2s + |v ∧ η|2s.

So the preceding estimate (35) is also true for |v| ≤ 1.
For the remainder term in (32), we can use similar computations as the ones done for

the upper bound for ap, and we easily get

apr . 〈v〉γ+2s .

Putting this estimate and (35) together into (32) completes the proof of the lower bound in
(20).

Now we deal with estimates on the derivatives in η and v of ap. Recall that

ap(v, η) =

∫

R3
h

dh

∫

E0,h

dαb̃11|α|≥|h|ϕδ(h)µ(α + v)|α+ h|1+γ+2s (1− cos(η · h)) 1

|h|3+2s

which is clearly smooth with respect to v and η. Let us consider for ν1, ν2 ∈ N
3 the derivative

∂ν1v ∂
ν2
η ap(v, η) =

∫

h

dh

∫

E0,h

dαb̃11|α|≥|h|ϕδ(h) (∂
ν1
v µ(α+ v)) |α+ h|1+γ+2s

(
∂ν2η (1− cos(η · h))

) 1

|h|3+2s
.
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Setting again h = rω, and (forgetting the truncation in α) we get

∣∣∂ν1v ∂ν2η ap(v, η)
∣∣ .

∫ δ

0

∫

S2
ω

drdω

∫

E0,ω

dα|∂ν1v µ(α + v)| 〈α〉1+γ+2s
∣∣∂ν2η (1− cos(rη.ω))

∣∣ 1

r1+2s
.

(36)

Since r ∈ [0, δ] we claim that we have the following rough estimate

Lemma 3.3. Let 0 < s, δ < 1, and let ω ∈ S2 and η ∈ R3 be given. Then ∀ ν2 ∈ N3,∫ δ

0
dr
∣∣∂ν2η (1− cos(rω · η))

∣∣ 1
r1+2s ≤ Cδ,s 〈ω · η〉2s .

Proof of the Lemma. This is clear for ν2 = 0 from the previous upper bound
computation.

For |ν2| = 1 we have to estimate

I(ν2) =

∫ δ

0

dr
∣∣(∂ν2η (1− cos(rω · η))

)∣∣ 1

r1+2s
≤
∫ δ

0

dr |sin(rω · η)| 1

r2s
.

Firstly, when 0 < s < 1/2, we directly get

I(ν2) ≤
∫ δ

0

dr
1

r2s
≤ Csδ ≤ Csδ 〈ω · η〉2s .

When s = 1/2 then

I(ν2) ≤
∫ δ|ω·η|

0

| sin t|
t

dt ≤
∫ 〈δω·η〉

0

| sin t|
t

dt ≤
∫ 1

0

| sin t|
t

dt+

∫ 〈δω·η〉

1

1dt

≤ 1 + Cδ 〈ω · η〉 = Cs 〈ω · η〉2s

When 1/2 < s < 1 we have

I(ν2) ≤ |ω · η|2s−1

∫ ∞

0

| sin t|
t2s

dt ≤ Cs|ω · η|2s−1 ≤ Cs 〈ω · η〉2s .

Thus we obtain the estimate for |ν2| = 1.
It remains to consider the case when |ν2| ≥ 2. Observe 0 < s < 1, and thus

I(ν2) =

∫ δ

0

dr
∣∣(∂ν2η (1− cos(rω · η))

)∣∣ 1

r1+2s
≤
∫ δ

0

dr

r2s−1
≤ Csδ ≤ Csδ 〈ω · η〉2s .

The proof of the lemma is complete. ✷

End of the proof of Proposition 3.1 Now we go back to (36). We have also to estimate
the term (∂ν1v µ(α+ v)) in this integral. For this purpose, we directly use the fact that for
all ν1,

|∂ν1v µ(α+ v)| ≤ Cν1µ
1/2(α + v). (37)

34



Thanks to Lemma 3.3 and the preceding estimate, we get from (36) that

∣∣∂ν1v ∂ν2η ap(v, η)
∣∣ .

∫

ω

dω

∫

E0,ω

dαµ1/2(α + v) 〈α〉1+γ+2s 〈ω · η〉2s .

For the final estimates, we can repeat exactly the proof of the case ν1 = ν2 = 0, to get the
desired result. The proof of Proposition 3.1 is complete. ✷

For further use, we shall also need the following estimate

Proposition 3.4. The symbol ap also satisfies the following estimate: for any 0 < ε < 1,

∂ηap ∈ S
(
ε 〈v〉γ (1 + |η|2s + |η ∧ v|2s) + ε−1 〈v〉γ+2s ,Γ

)
,

with semi-norms (see Subsection Appendix A.3 for the definition of semi-norms) indepen-
dent of ε.

Proof. We can again rely on the preceding arguments. We begin with (36) and we can
write for |ν2| ≥ 1,

∣∣∂ν1v ∂ν2η ap(v, η)
∣∣ ≤ C

∫ δ

0

dr

∫

S2
ω

dω

∫

E0,ω

dα (∂ν1v µ(α + v)) |

〈α〉1+γ+2s (∂ν2η (1− cos(rη.ω))
) 1

r1+2s
.

Suppose that |ν2| ≥ 2. We can verify directly that, observing 0 < s < 1 and |ω| = 1,

∫ δ

0

dr
∣∣(∂ν2η (1− cos(rω · η))

)∣∣ 1

r1+2s
≤
∫ δ

0

dr

r2s−1
≤ Cδ,s.

Therefore, using also (37),

|∂ν1v ∂ν2ap(v, η)| .
∫

S2
ω

dω

∫

E0,ω

dαµ1/2(α + v) 〈α〉1+γ+2s
. 〈v〉γ+2s ,

the last inequality following the same computation as that after (25) with |ω · η|2s there
replaced here by 1.

Consider the case when |ν2| = 1. Then we have

∫ δ

0

dr
∣∣(∂ν2η (1− cos(rω · η))

)∣∣ 1

r1+2s
≤
∫ δ

0

|sin(rω · η)|
r2s

dr.

Furthermore if 0 < s < 1/2 then

∫ δ

0

|sin(rω · η)|
r2s

dr ≤ Cδ,s,
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and if 1/2 < s < 1 then

∫ δ

0

|sin(rω · η)|
r2s

dr ≤ |ω · η|2s−1

∫ δ|ω·η|

0

|sin θ|
θ2s

dθ ≤ Cδ,s(1 + 〈ω · η〉2s−1)

. ε 〈ω · η〉2s + ε−(2s−1) . ε 〈ω · η〉2s + ε−1

for any 0 < ε < 1, and finally if s = 1/2 then

∫ δ

0

|sin(rω · η)|
r2s

dr ≤
∫ δ|ω·η|

0

|sin θ|
θ

dθ ≤ Cδ,s(1 + ln 〈ω · η〉) ≤ Cδ,s(1 + 〈ω · η〉s)

. ε 〈ω · η〉2s + ε−1

for any ε > 0. Thus combining the above estimates we conclude, for 0 < s < 1 and for any
0 < ε < 1,

∫ δ

0

dr
∣∣(∂ν2η (1− cos(rω · η))

)∣∣ 1

r1+2s
. ε 〈ω · η〉2s + ε−1.

Therefore we get that, using again (37) the arguments after (25),

|∂ν1v ∂ν2ap(v, η)| .
∫

S2
ω

dω

∫

E0,ω

dαµ1/2(α + v) 〈α〉1+γ+2s (ε 〈ω · η〉2s + ε−1
)

. ε 〈v〉γ
(
1 + |η|2s + |v ∧ η|2s

)
+ ε−1 〈v〉γ+2s ,

with |ν2| = 1.
Combining the estimates for |ν2| ≥ 2 and for |ν2| = 1 we obtain the statement in

Proposition 3.4, completing the proof. ✷

3.2. Study of the multiplicative term L̄1,δ,b

Recall that the multiplicative part L̄1,δ,b has the following form

L̄1,δ,bf = −
(∫∫

dv∗dσBϕ̃δ(v
′ − v)µ∗

)
f.

A nice feature of the multiplicative function defining L̄1,δ,b is its good symbolic properties.

Proposition 3.5. We can write

L̄1,δ,bf = −am(v)f,

where am is a function in v satisfying the following symbolic estimates:

i) there exists C > 0 such that C−1 〈v〉γ+2s ≤ am(v, η) ≤ C 〈v〉γ+2s;

ii) am ∈ S(〈v〉γ+2s ,Γ).
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Proof. Let us again use Carleman’s representation. We get

am(v) =

∫

R3
h

dh

∫

E0,h

dαb̃11|α|≥|h|ϕ̃δ(h)µ(v + α− h)|α+ h|1+γ+2s 1

|h|3+2s
. (38)

In this integral h ⊥ α and |α| ≥ |h| so that there exists Cs such that

C−1
s |α|1+γ+2s ≤ |α + h|1+γ+2s ≤ Cs|α|1+γ+2s. (39)

Therefore, shifting to spherical coordinates, and recalling that we write ϕδ(h) = ϕδ(r) for
r = |h| by abuse of notation, we have

am(v) .

∫∫
dωdr

∫

E0,ω

dα1|α|≥rϕ̃δ(r)µ(v + α− rω)|α|1+γ+2s 1

r1+2s

.

∫∫
dωdr

∫

E0,ω

dα1|α|≥rϕ̃δ(r)µ(v + α− rω)|α|1+γ+2s 1

r1+2s
.

Note that
|v + α− rω|2 = |α + S(ω)v|2 + |(ω · v)− r|2

exactly as in (26) so that

e−|v+α−rω|2 = e−|α+S(ω)v|2e−|(ω·v)−r|2 .

Moreover, we have

∫

E0,ω

dα|α|1+γ+2sµ(α+ S(ω)v) ∼ 〈S(ω)v〉1+γ+2s ,

and we get (forgetting the truncation function in α)

am(v) .

∫∫
dωdrϕ̃δ(r) 〈S(ω)v〉1+γ+2s e−|(ω·v)−r|2 1

r1+2s
.

We can now integrate w.r.t. r and compute by virtue of Peetre’s inequality (14) (forgetting
now the dependence on δ for the constants)

∫
drϕ̃δ(r)e

−|(ω·v)−r|2 1

r1+2s
.

∫
drϕ̃δ(r)e

−|(ω·v)−r|2 〈r − ω · v〉1+2s 〈ω · v〉−(1+2s)

. 〈ω · v〉−(1+2s) ,

and thus

am(v) .

∫

S2
ω

dω 〈ω · v〉−(1+2s) 〈S(ω)v〉1+γ+2s .
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We therefore have a similar integral as in (28) and using exactly the same change of polar

coordinates and computations as therein with e−|(ω·v)|2 replaced by 〈ω · v〉−(1+2s) (see Figure
1), we get, just repeating the arguments between (28) and (29),

am(v) .

∫ π

0

dϕ

∫ 2π

0

dθ 〈|v| cosϕ〉−(1+2s) sinϕ
(
1 + |v|2 sin2 ϕ

)(1+γ+2s)/2

.

∫ 1

0

dt

∫ 2π

0

dθ 〈t |v|〉−(1+2s) (1 + |v|2(1− t2)
)(1+γ+2s)/2

.

∫ 1/2

0

dt 〈t |v|〉−(1+2s) (1 + |v|2(1− t2)
)(1+γ+2s)/2

+

∫ 1

1/2

dt 〈t |v|〉−(1+2s) (1 + |v|2(1− t2)
)(1+γ+2s)/2

def
= am,1 + am,2.

One has

am,1 .

∫ 1/2

0

dt 〈t |v|〉−(1+2s) (1 + |v|2
)(1+γ+2s)/2

. 〈v〉γ+2s ,

and for the term am,2 we have, by changes of variables and using the fact that γ > −3,

am,2 .

∫ 1

1/2

dt 〈v〉−(1+2s) (1 + |v|2(1− t)
)(1+γ+2s)/2

. 〈v〉−(1+2s) |v|−2

∫ |v|2/2

0

dt̃
(
1 + t̃

)(1+γ+2s)/2

. 〈v〉−(1+2s) |v|−2

∫ |v|2/2

0

dt̃
(
1 + t̃

)−(1+s) (
1 + t̃

)(3+γ+4s)/2

. 〈v〉−(1+2s) 〈v〉−2 〈v〉3+γ+4s

∫ |v|2/2

0

dt̃
(
1 + t̃

)−(1+s)

. 〈v〉γ+2s .

Combining these inequalities we conclude

am . 〈v〉γ+2s .

For the lower bound we can do essentially the same computations : because of the non-
negative sign of am we can restrict the computations to the following subdomains in (α, h)

{|α| ≥ 10} and {|h| ≤ 10} ,
and following (38) and using (39) we get

am(v) &

∫∫
dωdr

∫

E0,ω

dα11|α|≥10111≤r≤10µ(v + α− rω)|α|1+γ+2s 1

r1+2s

&

∫∫
dωdr

∫

E0,ω

dα11|α|≥10111≤r≤10µ(α + S(ω)v)e−|ω·v|2/2|α|1+γ+2s 1

r1+2s
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since ϕ̄δ = 1 in the set {1 ≤ r ≤ 10} (recall 0 < δ < 1), and

|v + α− rω|2 = |S(ω)v + α|2 + |ω · v − r|2 ≤ |S(ω)v + α|2 + |ω · v|2 + 100

for r ≤ 10. Then as before we can use the fact that
∫
dα11|α|≥10|α|1+γ+2sµ(α+ S(ω)v) ∼ 〈S(ω)v〉1+γ+2s

and ∫
dr111≤r≤10

1

r1+2s
∼ C

and we get for a new constant C that

am(v) ≥ C−1

∫
dω 〈S(ω)v〉1+γ+2s e−|(ω·v)|2/2,

and again we can follow the computations as in (31) and thereafter to get

am(v) ≥ C−1 〈v〉γ+2s .

The proof of i) is thus complete.
As for the proof of ii), we use (38) to get

∂αv am(v) =

∫

R3
h

dh

∫

E0,h

dαb̃11|α|≥|h|ϕ̃δ(h) (∂
α
v µ(v + α− h)) |α+ h|1+γ+2s 1

|h|3+2s
,

which gives

|∂αv am(v)| .
∫

R3
h

dh

∫

E0,h

dαb̃11|α|≥|h|ϕ̃δ(h)µ

(
v + α− h

2

)
|α + h|1+γ+2s 1

|h|3+2s
.

Then repeating the arguments as in i), we conclude that

|∂αv am(v)| . 〈v〉γ+2s .

This completes the proof of ii). ✷

3.3. Proof of Proposition 1.4 i)

In this subsection we prove part i) of Proposition 1.4 concerning the so-called symbol
a. We first give its definition, then prove the Proposition, and we shall end this section by
giving additional properties of a which will be needed in the sequel.

Definition 3.6. We define a to be the following real symbol:

a = ap + am,

where ap is defined in Proposition 3.1 and am is defined in Proposition 3.5.
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We now give the proof of Proposition 1.4 i). From Proposition 3.1 and Proposition 3.5
we know respectively that

C−1 〈v〉γ+2s ≤ am(v, η) ≤ C 〈v〉γ+2s

and for all 0 < κ ≤ 1,

C−1
(
−κ 〈v〉γ+2s + κ 〈v〉γ (1 + |η|2s + |η ∧ v|2s)

)
≤ ap(v, η) ≤ C 〈v〉γ (1 + |η|2s + |η ∧ v|2s),

where in both cases C denotes a constant independent of κ (but depending on δ, s). Choosing
κ sufficiently small and fixed from now on, and adding the two inequalities gives

C−1
(
〈v〉γ+2s + 〈v〉γ (|η|2s + |η ∧ v|2s)

)
≤ a(v, η) ≤ C 〈v〉γ+2s + C 〈v〉γ (1 + |η|2s + |η ∧ v|2s).

so that

C−1 〈v〉γ
(
1 + |v|2 + |η|2 + |η ∧ v|2

)s ≤ a(v, η) ≤ C 〈v〉γ
(
1 + |v|2 + |η|2 + |η ∧ v|2

)s

for a new constant C. This proves the lower and upper bounds for a. Using the definition
of ã

ã(v, η) = 〈v〉γ
(
1 + |v|2 + |η|2 + |η ∧ v|2

)s
(40)

we get
C−1ã ≤ a ≤ Cã. (41)

From Proposition 3.1 and Proposition 3.5, we also directly get by addition that

a ∈ S(ã,Γ).

Moreover, we claim that
ã ∈ S(ã,Γ). (42)

To see this we use induction on |α + β| to prove that for any κ ∈ R and any |α + β| ≥ 0,

∣∣∣∂αv ∂βη
(
1 + |v|2 + |η|2 + |η ∧ v|2

)κ∣∣∣ .
(
1 + |v|2 + |η|2 + |η ∧ v|2

)κ
, (43)

which obviously holds for |α + β| = 0. Now suppose |α + β| ≥ 1 then we have either |α| ≥ 1

or |β| ≥ 1, and suppose |β| ≥ 1 without loss of generality. So we can write ∂βη = ∂β̃η ∂ηj with

|β̃| = |β| − 1 and thus

∂αv ∂
β
η

[ (
1 + |v|2 + |η|2 + |η ∧ v|2

)κ ]

= ∂αv ∂
β̃
η

[
κ
(
1 + |v|2 + |η|2 + |η ∧ v|2

)κ−1 (
2ηj + 2 (η ∧ v) ∂ηj (η ∧ v)

) ]
,
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which along with Leibniz’ formula and the induction assumption yields
∣∣∣∂αv ∂βη

[ (
1 + |v|2 + |η|2 + |η ∧ v|2

)κ ]∣∣∣

.
(
1 + |v|2 + |η|2 + |η ∧ v|2

)κ−1 (
1 + |η|+ |η ∧ v| |v|+ |η ∧ v|+ |η| |v|+ |v|2

)

.
(
1 + |v|2 + |η|2 + |η ∧ v|2

)κ
.

We have proven (43). Now using (43) and Leibniz’ formula we conclude
∣∣∣∂αv ∂βη

[
〈v〉γ

(
1 + |v|2 + |η|2 + |η ∧ v|2

)s ]∣∣∣ ≤ Cα,β 〈v〉γ
(
1 + |v|2 + |η|2 + |η ∧ v|2

)s
.

This gives the statement in (42).
It only remains to check the temperance of a and ã. From (41) it is sufficient to verify

that there exist two constants N and C, both depending only on s and γ, such that for all
Y = (y, η), Y ′ = (y′, η′) we have

ã(Y ) ≤ Cã(Y ′)(1 + Γ(Y − Y ′))N .

This is a direct consequence of Peetre’s inequality (14) since we have powers of polynomial
type quantities. Indeed, we have

ã(Y )

ã(Y ′)
≤ 〈y〉γ

〈y′〉γ
(

〈y〉2 + 〈η〉2 + |y ∧ η|2

1 + |y′|2 + |η′|2 + |y′ ∧ η′|2

)s

.

On the other hand,

〈y〉γ
〈y′〉γ ≤ 2|γ| 〈y − y′〉|γ|

due to Peetre’s inequality (14). Similarly,

〈y〉2 + 〈η〉2

1 + |y′|2 + |η′|2 + |y′ ∧ η′|2
≤ 4 〈y − y′〉2 + 4 〈η − η′〉2 .

Moreover using the relation

y ∧ η = (y − y′) ∧ (η − η′) + (y − y′) ∧ η′ + y′ ∧ (η − η′) + y′ ∧ η′,

we compute

|y ∧ η|2

1 + |y′|2 + |η′|2 + |y′ ∧ η′|2

≤ 4 |y − y′|2 |η − η′|2 + 4 |y − y′|2 |η′|2 + 4 |y′|2 |η − η′|2 + 4 |y′ ∧ η′|2

1 + |y′|2 + |η′|2 + |y′ ∧ η′|2

≤ 4 |y − y′|2 |η − η′|2 + 4 |y − y′|2 + 4 |η − η′|2 + 4

≤ 10 (〈y − y′〉+ 〈η − η′〉)4 .
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Thus,

〈y〉2 + 〈η〉2 + |y ∧ η|2

1 + |y′|2 + |η′|2 + |y′ ∧ η′|2
≤ 18 (〈y − y′〉+ 〈η − η′〉)4 .

Combining the above inequalities, we get

ã(Y )

ã(Y ′)
≤ Cs,γ (〈y − y′〉+ 〈η − η′〉)4s+|γ| ≤ C̃s,γ (1 + Γ(Y − Y ′))

4s+|γ|

with Cs,γ and C̃s,γ two constants depending only on s and γ. The temperance of ã follows.
The proof is complete. ✷

For further use we also give here two propositions concerning a and ã, which will be of
great interest in the next section.

Proposition 3.7. Recall ã(v, η) = 〈v〉γ
(
1 + |v|2 + |η|2 + |η ∧ v|2

)s
. We have

i) for any |α| ≥ 0 and any |β| ≥ 1 , there exist two constants Cα,β > 0 and Cβ such that

∣∣∂αv ∂βη a
∣∣ ≤ Cα,β

(
εã+ ε−1 〈v〉2s+γ)

and ∣∣∂βη ã
∣∣ ≤ Cβ 〈v〉γ+1 (1 + |v|2 + |η|2 + |η ∧ v|2

)s−1/2
;

ii) the following estimate is true for any 0 < ε ≤ 1, with semi-norms (see Subsection
Appendix A.3 for the definition of semi-norms) independent of ε:

∂ηã, ∂ηa ∈ S(εa+ ε−1 〈v〉2s+γ , Γ); (44)

iii) we have

|ξ · ∂ηã| . 〈v〉γ
(
1 + |v|2 + |η|2 + |η ∧ v|2

)s− 1

2
(
|ξ|2 + |v ∧ ξ|2

)1/2
. (45)

Proof. The point i) for a is just an immediate consequence of Proposition 3.4. Now we
check for ã. Recall

ã(v, η) = 〈v〉γ
(
1 + |v|2 + |η|2 + |η ∧ v|2

)s
.

We claim, for any κ ∈ R and any |β| ≥ 1,

∣∣∣∂βη
[
〈v〉γ

(
1 + |v|2 + |η|2 + |η ∧ v|2

)κ ]∣∣∣ . 〈v〉γ+1 (1 + |v|2 + |η|2 + |η ∧ v|2
)κ− 1

2 ,

42



which can be deduced by induction on |β| . Indeed, by direct computation we see the above
estimate holds for |β| = 1, since

∣∣∣∂ηj
[
〈v〉γ

(
1 + |v|2 + |η|2 + |η ∧ v|2

)κ ]∣∣∣

=
∣∣∣κ 〈v〉γ

(
1 + |v|2 + |η|2 + |η ∧ v|2

)κ−1 (
2ηj + 2 (η ∧ v) ∂ηj (η ∧ v)

)∣∣∣

. 〈v〉γ
(
1 + |v|2 + |η|2 + |η ∧ v|2

)κ−1
(|η|+ |η ∧ v| |v|)

. 〈v〉γ+1 (1 + |v|2 + |η|2 + |η ∧ v|2
)κ− 1

2 .

Moreover for any |β| ≥ 2, we may write ∂βη = ∂β̃η ∂ηj with |β̃| = |β| − 1 and thus

∂βη

[
〈v〉γ

(
1 + |v|2 + |η|2 + |η ∧ v|2

)κ ]

= ∂β̃η

[
κ 〈v〉γ

(
1 + |v|2 + |η|2 + |η ∧ v|2

)κ−1 (
2ηj + 2 (η ∧ v) ∂ηj (η ∧ v)

) ]
.

As a result, by Leibniz’s formula and the induction assumption on |β|, we obtain

∣∣∣∂βη
[
〈v〉γ

(
1 + |v|2 + |η|2 + |η ∧ v|2

)κ ]∣∣∣

.

[
〈v〉γ+1 (1 + |v|2 + |η|2 + |η ∧ v|2

)κ−1− 1

2

] (
1 + |η|+ |η ∧ v| · |v|+ |v|2

)

. 〈v〉γ+1 (1 + |v|2 + |η|2 + |η ∧ v|2
)κ−1− 1

2
(
1 + |η|2 + |η ∧ v|2 + |v|2

)

. 〈v〉γ+1 (1 + |v|2 + |η|2 + |η ∧ v|2
)κ−1/2

.

Applying the above inequalities for κ = s, we obtain the desired estimate for ã.
Next we prove Point ii). The conclusion for ∂ηa follows from the estimates in i). And we

have to check ∂ηã, and we have shown in i) that

|∂ηã| . 〈v〉γ+1 (1 + |v|2 + |η|2 + |η ∧ v|2
)s−1/2

. 〈v〉γ/2+s ã1/2.

Then arguing as above we can use induction on |α|+ |β| to obtain, for |α|+ |β| ≥ 0,

∣∣∂αv ∂βη ∂ηã
∣∣ . 〈v〉γ/2+s ã1/2.

This gives the conclusion for ∂ηã.
Point iii) in Proposition 3.7 is a direct consequence of the computation on ã, since

ξ · ∂ηã = s 〈v〉γ
(
1 + |v|2 + |η|2 + |η ∧ v|2

)s−1
(2ξ · η + 2(v ∧ ξ) · (v ∧ η)) .

The proof is complete. ✷
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3.4. Study of the subprincipal term L1,1,δ

Proposition 3.8. We can write

L1,1,δf = −as(v,Dv)f,

where as, defined by (47) below, is a (complex valued) classical symbol in (v, η) satisfying
that for all 0 < s < 1 and any 0 < ε < 1, we have, with semi-norms independent of ε,

as(v, η) ∈ S
(
εa+ ε−1 〈v〉γ+2s ,Γ

)
. (46)

Proof. We recall that

L1,1,δf =

∫∫
dv∗dσBϕδ(|v′ − v|)(µ′

∗)
1/2[f ′ − f ]

(
(µ∗)

1/2 − (µ′
∗)

1/2
)
.

We shift to Carleman’s representation and get

L1,1,δf =

∫

R3
h

dh

∫

E0,h

dαb̃1|α|≥|h||α+ h|1+γ+2sϕδ(|h|)µ
1

2 (α+ v)[f(v − h)− f(v)]

(
µ

1

2 (α + v − h)− µ
1

2 (α + v)
) 1

|h|3+2s

= −
∫

R3
η

f̂(η)eiv.ηas(v, η)dη

with

as(v, η) = −
∫

R3
h

dh

∫

E0,h

dαb̃1|α|≥|h||α + h|1+γ+2sϕδ(|h|)µ
1

2 (α + v)[e−ih·η − 1]

(
µ

1

2 (α + v − h)− µ
1

2 (α + v)
) 1

|h|3+2s
. (47)

For the study of this symbol, we shall essentially follow the same computations as in the
L1,2,δ case. We first note that we have the following bound for all h 6= 0

∣∣∣∣
(
µ

1

2 (α + v − h)− µ
1

2 (α+ v)
) 1

|h|

∣∣∣∣ ≤ C.

So that using also that |α| ≤ |α+ h| ≤ 2|α| due to the fact that α ⊥ h, we get

|as(v, η)| .
∫

R3
h

dh

∫

E0,h

dα |α|1+γ+2s µ
1

2 (α+ v)ϕδ(|h|)
|e−ih·η − 1|
|h|2+2s

.

Now we shift to spherical coordinates taking h = rω and we get

|as(v, η)| .
∫ +∞

0

∫

S2
ω

dωdr

∫

E0,ω

dα |α|1+γ+2s µ
1

2 (α + v)ϕδ(r)
|e−irω·η − 1|

r2s
. (48)
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We can directly integrate w.r.t. r and this gives

∫ ∞

0

ϕδ(r)
|e−irω·η − 1|

r2s
dr .

∫ δ

0

| cos (rω · η)− 1|
r2s

dr +

∫ δ

0

| sin (rω · η) |
r2s

dr.

We have proven in the proof of Proposition 3.4 (see the treatment of the case |ν2| = 1
threein) that

∫ δ

0

| sin (rω · η) |
r2s

dr . ε |ω · η|2s + ε−1

for any 0 < ε < 1. Furthermore if 0 < s < 1/2 then

∫ δ

0

| cos (rω · η)− 1|
r2s

dr .

∫ δ

0

1

r2s
dr ≤ Cδ,s,

and if 1/2 < s < 1 then

∫ δ

0

| cos (rω · η)− 1|
r2s

dr . |ω · η|2s−1

∫ δ|ω·η|

0

| cos θ − 1|
θ2s

dθ

. |ω · η|2s−1

∫ min{1,δ|ω·η|}

0

| cos θ − 1|
θ2s

dθ + |ω · η|2s−1

∫ δ|ω·η|

min{1,δ|ω·η|}

| cos θ − 1|
θ2s

dθ

. |ω · η|2s−1

∫ 1

0

1

θ2s−1
dθ + |ω · η|2s−1

∫ +∞

1

1

θ2s
dθ

. |ω · η|2s−1
. ε |ω · η|2s + ε−(2s−1) . ε |ω · η|2s + ε−1,

and finally if s = 1/2 then

∫ δ

0

| cos (rω · η)− 1|
r2s

dr ≤
∫ min{ε,δ}

0

| cos (rω · η)− 1|
r

dr +

∫ δ

min{ε,δ}

| cos (rω · η)− 1|
r

dr

. |ω · η|
∫ min{ε,δ}

0

dr + ε−1 . ε |ω · η|+ ε−1 = ε |ω · η|2s + ε−1.

Combining the above estimate we have

∫ ∞

0

ϕδ(r)
|e−irω·η − 1|

r2s
dr . ε |ω · η|2s + ε−1,

and thus, in view of (48),

|as(v, η)| . ε

∫

S2
ω

dω

∫

E0,ω

dα |α|1+γ+2s µ
1

2 (α+ v)|ω · η|2s

+ ε−1

∫

S2
ω

dω

∫

E0,ω

dα |α|1+γ+2s µ
1

2 (α + v).
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This enables us to do exactly the same computations as in the L1,2,δ case, with the factors
µ(α+ v) in formula (25) replaced respectively by µ1/2(α+ v) here and the factor |ω · η|2s by
1. We directly get, following the computations after (25) , that

|as(v, η)| . ε 〈v〉γ (1 + |η|2s + |v ∧ η|2s) + ε−1 〈v〉γ+2s
. εa+ ε−1 〈v〉γ+2s ,

the last inequality using (41).
Again the proof of the estimates for higher order derivatives of as is similar to the one of

order 0, and we skip this part of the proof for brevity. This completes the proof of Proposi-
tion 3.8. ✷

4. Proof of the main results

This section is devoted to the proof of the main results mentionned in the introduction,
including in particular Theorems 1.1 and 1.3. We shall use extensively properties of the
classical Weyl and Wick quantizations, and a brief review of these properties is given in
the Appendix. In Subsection 4.1 we make the reduction to the hypoelliptic problems for
a simplified operator, by virtue of Proposition 1.4 whose proof is also presented in this
subsection. In Subsection 4.2, we give some coercivity estimates, and recover a result of
coercivity of [7] implying the so-called triple norm. The proof of the main results is then
achieved in the last subsection 4.3.

4.1. Proof of Proposition 1.4 ii) and iii) and related results

In the previous sections, we splitted operator L into several pieces in the following way,
with a = ap+am defined in Proposition 3.1 and Proposition 3.5, and as defined in Proposition
3.8,

L = L1 + L2 = −a(v,Dv) + L2 + L̄1,δ,a + L1,3,δ + L1,4,δ − as(v,Dv)

= −aw −
(
−L2 − L̄1,δ,a − L1,3,δ − L1,4,δ + as(v,Dv) + (a(v,Dv)− aw)

)
︸ ︷︷ ︸

K

,

recalling that L1,L2 are defined by (7), a(v,Dv) = −L1,2,δ − L̄1,δ,b and as(v,Dv) = −L1,1,δ,
and L̄1,δ,a, L̄1,δ,b and L1,j,δ, 1 ≤ j ≤ 4, are given by (10)-(11). Thus we can write

P = v · ∂x + aw +K.

Notice that the diffusion term aw +K above is only an operator with respect to the velocity
variable v. So we only work on the resulting operator after performing partial Fourier
transform in the x variables, considering the dual variables ξ of x as parameter. More
precisely we will study the operator

P̂K = i (v · ξ) + awK , (49)
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where aK is given by (6), i.e.,
aK = a+K 〈v〉2s+γ .

with K a fixed number, constructed in Lemma 4.3 and Lemma 4.9 below, depending only
on the integer N in (A.4). Accordingly we also introduce the weight function

ãK = ã+K 〈v〉2s+γ ,

where ã is the weight function given in Proposition 1.4. We claim that ãK is temperate
uniformly with respect toK. Indeed, by Proposition 1.4 i), whose proof is given in Subsection
3.3, we see ã is temperate weight with respect to Γ, i.e., there exist two constants C and N ,
both depending only on γ, s, such that

∀ (v, η), (w, ζ) ∈ R
6,

ã(v, η)

ã(w, ζ)
≤ C (〈v − w〉+ 〈η − ζ〉)N .

Thus for any (v, η), (w, ζ) ∈ R6,

ãK(v, η)

ãK(w, ζ)
=

ã(v, η)

ã(w, ζ) +K 〈w〉2s+γ +
K 〈v〉2s+γ

ã(w, ζ) +K 〈w〉2s+γ

≤ ã(v, η)

ã(w, ζ)
+
K 〈v〉2s+γ

K 〈w〉2s+γ

≤ C (〈v − w〉+ 〈η − ζ〉)N + 2|2s+γ| 〈v − w〉|2s+γ|

≤
(
C + 2|2s+γ|) (〈v − w〉+ 〈η − ζ〉)N+|2s+γ| ,

the second inequality using peetre’s inequality (14). This gives ãK is temperate uniformly
with respect to K, since the constant C above is independent of K.

We note that aK ∈ S(ãK ,Γ) uniformly in K, since for any multi-index α, β ∈ Z3
+, we

have
∣∣∂αv ∂βη aK(v, η)

∣∣ ≤
∣∣∂αv ∂βη a(v, η)

∣∣+
∣∣∂αv ∂βη

(
K 〈v〉2s+γ)∣∣

≤ Cα,β a(v, η) +KCα,β 〈v〉2s+γ

≤ 2Cα,β aK(v, η) ≤ Cα,β,γ,s ãK(v, η),

with Cα,β a constant depending only on α, β, and Cα,β,γ,s a constant depending only on α, β, γ
and s. Thus aK ∈ S(ãK ,Γ) uniformly in K. More generally we can show, for r ∈ [−1, 1],

∀ α ∈ Z
6
+, |∂αarK | ≤ Cαa

r
K ≤ C̃αã

r
K

by induction on |α| , which gives arK ∈ S(ãrK ,Γ) uniformly w.r.t. K for all r ∈ [−1, 1]. Work-
ing with awK instead of aw will enable us to construct the inverse of the former, see Lemma
4.3 below. This is of big importance in the following analysis of hypo-elliptic estimates.

Notations 4.1. In the following, let K be fixed, satisfying the assumptions in Lemma 4.3
and Lemma 4.9 below, and let ℓ ∈ R be an arbitrary number, fixed and as small as we want.
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To simplify the notation, by A . B we mean there exists a positive constant C, which may
depend on K and ℓ but is independent of the parameters ξ, such that A ≤ CB, and similarly
for A & B. While the notation A ≈ B means both A . B and B . A hold. Given a symbol
q and a weight function M , by q ∈ S(M,Γ) we alway mean, in the following discussion, q
lies in S(M,Γ) uniformly w.r.t. K and ξ.

Now we state the main result of this subsection, which shows that it is sufficient to study
the operator P̂K instead of the original one.

Proposition 4.2. The conclusion in Theorem 1.1 holds true if the estimate

∥∥ã(v, ξ) 1

1+2s f
∥∥+

∥∥awKf
∥∥ .

∥∥P̂Kf
∥∥
L2

+
∥∥f
∥∥
L2
ℓ

(50)

holds uniformly with respect to ξ. Recall aK is given by (6).

We proceed to prove the above proposition through several lemmas. Firstly we begin
with the construction of the inverses of operators.

Lemma 4.3. There exists a K0 sufficiently large, depending only on a fixed finite number
of semi-norms of a, such that for all K ≥ K0 we have

(i) awK, with aK defined by (6), is invertible and its inverse (awK)
−1 has the form

(awK)
−1 = H1

(
a−1
K

)w
=
(
a−1
K

)w
H2,

with H1, H2 invertible, belonging with their inverse to B(L2), the space of bounded
operators on L2, and

∥∥H±1
j

∥∥
B(L2)

bounded by some constant independent of K for

j = 1, 2;

(ii)
(
a
1/2
K

)w
is invertible and its inverse

[(
a
1/2
K

)w]−1
has the form

[(
a
1/2
K

)w]−1
= G1

(
a
−1/2
K

)w
=
(
a
−1/2
K

)w
G2

with G1, G2 invertible, belonging with their inverse to B(L2) and
∥∥G±1

j

∥∥
B(L2)

bounded

by some constant independent of K for j = 1, 2;

(iii)
(
ã
1/2
K a

1/2
K

)w
is invertible and its inverse

[(
ã
1/2
K a

1/2
K

)w]−1
has the form

[(
ã
1/2
K a

1/2
K

)w]−1
= Q1

(
ã
−1/2
K a

−1/2
K

)w
=
(
ã
−1/2
K a

−1/2
K

)w
Q2

with Q1, Q2 invertible, belonging with their inverse to B(L2) and
∥∥Q±1

j

∥∥
B(L2)

bounded

by some constant independent of K for j = 1, 2.

48



Proof. Note first that in all what follows, we shall crucially use the fact that only a
finite number N (depending only on the dimension n = 3 here) of seminorms of a symbol
is needed to control the norm of the corresponding pseudo-differential operator (see (A.4)
here and e.g. [33, Lemma 2.5.2]).

Let us now prove the conclusion in (i). Using (A.5) and (A.6), we may write

awK(a
−1
K )w = Id−Rw

K , (51)

where

RK = −
∫ 1

0

(∂ηaK) ♯θ
(
∂v(a

−1
K )
)
dθ +

∫ 1

0

(∂vaK) ♯θ
(
∂η(a

−1
K )
)
dθ

with g♯θh defined by

g♯θh(Y ) =

∫∫
e−2iσ(Y −Y1,Y−Y2)/θ

1

2i
g(Y1)h(Y2)dY1dY2/(πθ)

6. (52)

Let now N be the integer which is given in (A.4) (and therefore depending only on the
dimension n = 3 here). By [14, Proposition 1.1] (see also Appendix A.3) we can find a
constant CN and a positive integer ℓN , both depending only on N but independent of K
and θ, such that

∥∥ (∂ηaK) ♯θ
(
∂v(a

−1
K )
) ∥∥

N ;S(1,Γ)
≤ CN

∥∥∂ηaK
∥∥
ℓN ;S(ãK ,Γ)

∥∥ (∂v(a−1
K )
) ∥∥

ℓN ;S(ã−1

K ,Γ)
,

where the semi-norm
∥∥ ·
∥∥
k;S(M,Γ)

is defined by (A.3). Moreover, using ii) of Proposition 3.7

(Formula (44)) for ε = K−1/2 yields

∥∥∂ηaK
∥∥
ℓN ;S(ãK ,Γ)

≤ C̃NK
− 1

2

and from the fact aK ∈ S(ãK ,Γ) it follows that a
−1
K ∈ S(ã−1

K ,Γ), and thus

∥∥∂v(a−1
K )
∥∥
ℓN ;S(ã−1

K ,Γ)
≤ C̃N

with C̃N a constant depending only on N but independent of K. As a result,

∥∥ (∂ηaK) ♯θ
(
∂v(a

−1
K )
) ∥∥

N ;S(1,Γ)
≤ CN C̃

2
NK

− 1

2 .

Similarly,

∥∥ (∂vaK) ♯θ
(
∂η(a

−1
K )
) ∥∥

N ;S(1,Γ)
≤ CN C̃

2
NK

− 1

2 .

Then

∥∥RK

∥∥
N ;S(1,Γ)

≤ 2CN C̃
2
NK

− 1

2 ,
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and thus by (A.4) ∥∥Rw
K

∥∥
B(L2)

≤ 2CCN C̃
2
NK

− 1

2

with C a constant depending only on the dimension. This implies Id−Rw
K is invertible in the

space B(L2) of bounded operators on L2 if we chooseK in such a way thatK ≥
(
4CCN C̃

2
N

)2
.

Moreover

(Id− Rw
K)

−1 =
∞∑

j=0

(Rw
K)

j ∈ B(L2).

Taking into account (51), we conclude

awK
(
(a−1

K )w (Id− Rw
K)

−1) = Id.

Similarly we can find a R̃K ∈ S(1,Γ) such that
((

Id− R̃w
K

)−1

(a−1
K )w

)
awK = Id.

These facts imply awK is invertible and its inverse (awK)
−1 has the form

(awK)
−1 = (a−1

K )w (Id−Rw
K)

−1 =
(
Id− R̃w

K

)−1

(a−1
K )w.

We have proved the conclusion in (i) in Lemma 4.3. The remaining proofs in (ii) and (iii)
can be deduced quite similarly and are therefore omitted. The proof of Lemma 4.3 is thus
complete. ✷

In the following, we always let K be fixed satisfying the condition in the above lemma
4.3.

Corollary 4.4. Let ε be an arbitrarily small number and let g ∈ S
(
εaK + ε−1 〈v〉2s+γ , Γ

)

uniformly with respect to ε. Then
∥∥g(v,Dv)f

∥∥
L2 +

∥∥gwf
∥∥
L2 . ε

∥∥awKf
∥∥+ ε−1

∥∥ 〈v〉2s+γ f
∥∥
L2 .

and
|(g(v,Dv)f, f)L2 |+ |(gwf, f)L2 | . ε (awKf, f)L2 + ε−1

∥∥ 〈v〉s+γ/2 f
∥∥2
L2 .

Recall aK is given in (6).

Proof. We first show that εaK+ε−1 〈v〉2s+γ is a temperate weight uniformly with respect to
ε. Recall aK(v, η) = a(v, η)+K 〈v〉γ . By Proposition 1.4 i), whose proof is given in Subsection
3.3, we see a is temperate weight with respect to Γ, i.e., there exist two constants N and C,
both depending only on γ, s, such that

∀ (v, η), (ṽ, η̃) ∈ R
6,

a(v, η)

a(ṽ, η̃)
≤ C (〈v − ṽ〉+ 〈η − η̃〉)N .
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As a result,

∀ (v, η), (ṽ, η̃) ∈ R
6,

εa(v, η)

εaK(ṽ, η̃) + ε−1 〈ṽ〉2s+γ ≤ εa(v, η)

εa(ṽ, η̃)
≤ C (〈v − ṽ〉+ 〈η − η̃〉)N .

Moreover, for any (v, η), (ṽ, η̃) ∈ R6,

εK 〈v〉2s+γ

εaK(ṽ, η̃) + ε−1 〈ṽ〉2s+γ ≤ εK 〈v〉2s+γ

εK 〈ṽ〉2s+γ ≤ 2|2s+γ| 〈v − ṽ〉|2s+γ| ,

the last inequality following from Peetre’s inequality (14). Similarly,

ε−1 〈v〉2s+γ

εaK(ṽ, η̃) + ε−1 〈ṽ〉2s+γ ≤ ε−1 〈v〉2s+γ

ε−1 〈ṽ〉2s+γ ≤ 2|2s+γ| 〈v − ṽ〉|2s+γ| .

The above inequalities yield, for any (v, η), (ṽ, η̃) ∈ R6,

εaK(v, η) + ε−1 〈v〉2s+γ

εaK(ṽ, η̃) + ε−1 〈ṽ〉2s+γ ≤
(
C + 21+|2s+γ|) (〈v − ṽ〉+ 〈η − η̃〉)N+|2s+γ| .

Observe the constant C above is independent of ε, and thus εaK+ε−1 〈v〉2s+γ is a temperate
weight uniformly with respect to ε.

Now we show the first inequality in the corollary. This is just a consequence of the
conclusion (i) in Lemma 4.3. In fact note that K ≥ K0 with K0 the constant given in
Lemma 4.3, and thus K + ε ≥ K0. Then the assumption in Lemma 4.3 is fulfilled and we
may apply the conclusion (i) in Lemma 4.3 to conclude that awK+ε−2 is invertible and its
inverse has the form

(
awK+ε−2

)−1
=
(
awK + ε−2 〈v〉2s+γ)−1

=
(
a−1
K+ε−2

)w
H

with H a bounded operator in L2. The assumption on g shows

ε−1g ∈ S
(
aK + ε−2 〈v〉2s+γ , Γ

)
,

and thus we can write

gw =
(
ε−1g

)w (
a−1
K+ε−2

)w
H

︸ ︷︷ ︸
∈ B(L2)

ε
(
awK + ε−2 〈v〉2s+γ) ,

which yields the desired estimate for gw. The estimate for g(v,Dv) is similar, since g(v,Dv) =(
J−1/2g

)w
with J−1/2g belonging to the same symbol class as g. We have obtained the de-

sired first estimate in Corollary 4.4. The second estimate in the corollary can be proven
exactly in the same way and we skip it. The proof is complete. ✷

We will apply the preceding lemma to specific pseudo-differential operators:
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Lemma 4.5. The symbols of as(v,Dv) and a
w − a(v,Dv) lie in S

(
εa+ ε−1 〈v〉2s+γ , Γ

)
for

all ε > 0 with seminorms independent of ε.

Proof. For the first operator as(v,Dv), this is point ii) of Proposition 3.8. For the second
one aw − a(v,Dv), we need more facts from the theory of Weyl and classical quantizations.
In order to get the result, we use the expansion of J1/2a, which reads (c.f. [33, Lemma 4.1.5]
and the appendix)

aw − a(v,Dv) =
(
J1/2a

)
(v,Dv)− a(v,Dv) = R(v,Dv)

with

R(v, η) =
1

2

∫ (
Jθ/2 (Dη · ∂va)

)
(v, η)dθ.

Proposition 3.7 implies that Dη · ∂va ∈ S (Mε, Γ) uniformly with respect to ε, where

Mε = εã+ ε−1 〈v〉2s+γ .

Then proceeding as in the proof of [33, Lemma 4.1.2], we conclude that Jθ/2 (Dη · ∂va)
belongs to the same symbol class S (Mε, Γ) as Dη · ∂va, due to the fact that

Mε(v + z, η + ζ) ≤ CMε(v, η)H(〈z〉 , 〈ζ〉)

with H(〈z〉 , 〈ζ〉) being some polynomial of 〈z〉 , 〈ζ〉 and C a constant independent of ε.
Observe ã . aK due to Proposition 1.4 i). Then we have proven that the classical symbol
of the difference a(v,Dv) − aw lies in S

(
εa+ ε−1 〈v〉2s+γ , Γ

)
. The Weyl symbol therefore

also belongs to this class by direct transformation. The proof is complete.

Proposition 4.6. Let ξ be the dual variable of x and let ℓ be an arbitrarily real number.
Then for any ε, there exists a constant Cε such that

∀ f ∈ S(R3
v),

∥∥ 〈v〉2s+γ f
∥∥
L2 ≤ ε

∥∥awKf
∥∥
L2 + Cε

(∥∥(iv · ξ − L)f
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

)
. (53)

Recall aK is given in (6).

Proof . Let us first recall the coercivity estimate (see for instance Theorem 1.1 and
Proposition 2.2 in [7] and [43, 44]) : for 0 < s < 1 and γ > −3,

∀ f ∈ S(R6),
∥∥ 〈v〉s+

γ
2 (Id−P)f

∥∥2
L2 . (−Lf, f)L2 ,

where Id stands for the identity operator and P is the L2-orthogonal projection onto the
null space

Span
{
µ1/2, v1µ

1/2, v2µ
1/2, v3µ

1/2, |v|2 µ1/2
}
.

Consequently we have, for any ℓ ∈ R,

∀ f ∈ S(R6),
∥∥ 〈v〉s+

γ
2 f
∥∥2
L2 . Re ((iv · ξ − L)f, f)L2 +

∥∥ 〈v〉ℓ−s−γ/2 f
∥∥2
L2 . (54)
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Now applying estimate (54) to the function 〈v〉s+
γ
2 f yields

∥∥ 〈v〉2s+γ f
∥∥2
L2 . Re

(
(iv · ξ − L) 〈v〉s+

γ
2 f, 〈v〉s+

γ
2 f
)

L2
+
∥∥f
∥∥2
L2
ℓ

.
∣∣∣
(
(iv · ξ −L)f, 〈v〉2s+γ f

)

L2

∣∣∣ +
∣∣∣
(
〈v〉s+

γ
2

[
L, 〈v〉s+

γ
2

]
f, f

)

L2

∣∣∣+
∥∥f
∥∥2
L2
ℓ

,

and therefore

∥∥ 〈v〉2s+γ f
∥∥2
L2 .

∥∥(iv · ξ − L)f
∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

+
∣∣∣
(
〈v〉s+

γ
2

[
L, 〈v〉s+

γ
2

]
f, f

)

L2

∣∣∣ . (55)

We have to treat the last term in the above estimate, which is bounded from above by
∣∣∣
(
〈v〉s+

γ
2

[
aw, 〈v〉s+

γ
2

]
f, f

)

L2

∣∣∣ +
∣∣∣
(
〈v〉s+

γ
2

[
K, 〈v〉s+

γ
2

]
f, f

)

L2

∣∣∣ . (56)

We apply (44) and [33, Theorem 2.3.8] to conclude that for any ε ∈]0, 1[ the symbol of the
operator

〈v〉−(2s+γ−1) 〈v〉s+
γ
2

[
aw, 〈v〉s+

γ
2

]

belongs to
S
(
εaK + ε−1 〈v〉2s+γ , Γ

)

uniformly with respect to ε. Then Corollary 4.4 gives, with ε̃ arbitrarily small,
∣∣∣
(
〈v〉s+

γ
2

[
aw, 〈v〉s+

γ
2

]
f, f

)
L2

∣∣∣ .
(
ε
∥∥awKf

∥∥
L2 + ε−1

∥∥ 〈v〉2s+γ f
∥∥
L2

) ∥∥ 〈v〉2s+γ−1 f
∥∥
L2

. ε
∥∥awKf

∥∥2
L2 + ε̃

∥∥ 〈v〉2s+γ f
∥∥2
L2 + Cε,ε̃

∥∥f
∥∥2
L2
ℓ

,

where in the last inequality we used the interpolation inequality:

∥∥ 〈v〉2s+γ−1 f
∥∥
L2 ≤ ε̃

∥∥ 〈v〉2s+γ f
∥∥
L2 + Cε̃

∥∥f
∥∥
L2
ℓ

.

Now we have to deal with the operator

〈v〉s+
γ
2

[
K, 〈v〉s+

γ
2

]

in (56). For this purpose, we split K into three parts :

K = −L2 − L̄1,δ,a︸ ︷︷ ︸
Ksmall

−L1,3,δ − L1,4,δ︸ ︷︷ ︸
Kmult

+ as(v,Dv) + (a(v,Dv)− aw)︸ ︷︷ ︸
Kpseudo

. (57)

For the second part Kmult, the estimate is easy since, as recalled in lemma 2.3 and 2.5,
operators L1,3,δ and L1,4,δ commute with the multiplication with a function of v. We therefore
have

∣∣∣
(
〈v〉s+

γ
2

[
Kmult, 〈v〉s+

γ
2

]
f, f

)

L2

∣∣∣ = 0.
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For the first part Ksmall of K in (57), we expand the commutators and use Cauchy-Schwarz
inequality to get
∣∣∣
(
〈v〉s+

γ
2

[
Ksmall, 〈v〉s+

γ
2

]
f, f

)
L2

∣∣∣

. Cε

∥∥ 〈v〉−s− γ
2

[
Ksmall, 〈v〉s+

γ
2

]
〈v〉−(s+γ) 〈v〉s+γ f

∥∥2
L2 + ε

∥∥ 〈v〉2s+γ f
∥∥2

. Cε

∥∥ 〈v〉−s− γ
2

[
Ksmall, 〈v〉−

γ
2

]
〈v〉s+γ f

∥∥2
L2 + Cε

∥∥[Ksmall, 〈v〉−s−γ] 〈v〉s+γ f
∥∥2
L2

+ ε
∥∥ 〈v〉2s+γ f

∥∥2

. Cε

(∥∥ 〈v〉−s− γ
2 L2 〈v〉−

γ
2 〈v〉s+γ f

∥∥2 +
∥∥ 〈v〉−s−γ L2 〈v〉s+γ f

∥∥2 +
∥∥L2 〈v〉−s−γ 〈v〉s+γ f

∥∥2
)

+ Cε

∥∥ 〈v〉−s− γ
2

[
L̄1,δ,a, 〈v〉−

γ
2

]
〈v〉s+γ f

∥∥2
L2

+ Cε

∥∥[L̄1,δ,a, 〈v〉−s−γ] 〈v〉s+γ f
∥∥2
L2

+ ε
∥∥ 〈v〉2s+γ f

∥∥2.

Then, we use Lemma 2.1 and conclusion (ii) in Lemma 2.4 with either α̃ = −s − γ/2,
β̃ = −γ/2 or α̃ = 0, β̃ = −s − γ (for which we have in both cases α̃ + β̃ + γ + s ≤ 0) and
we get

∣∣∣
(
〈v〉s+

γ
2

[
Ksmall, 〈v〉s+

γ
2

]
f, f

)
L2

∣∣∣ . C̃ε

∥∥ 〈v〉s+γ f
∥∥2 + ε

∥∥ 〈v〉2s+γ f
∥∥2

. C̃ε

∥∥f
∥∥2
L2
ℓ

+ 2ε
∥∥ 〈v〉2s+γ f

∥∥2

since s > 0.
Next we deal with the last part Kpseudo of K in (57). From Lemma 4.5, we already know

that Kpseudo belongs to
S
(
εa+ ε−1 〈v〉2s+γ , Γ

)

with uniform semi-norms with respect to ε. We follow the same strategy as in the lines just
after (56) for commutators involving aw. Using that ∂v 〈v〉µ = O(〈v〉µ−1) for all µ ∈ R, and
applying [33, Theorem 2.3.8] (see also appendix), we get that for any ε ∈]0, 1[ the symbol
of the operator

〈v〉−(2s+γ−1) 〈v〉s+
γ
2

[
Kpseudo, 〈v〉s+

γ
2

]

belongs to
S
(
εaK + ε−1 〈v〉2s+γ , Γ

)

uniformly with respect to ε. Then Corollary 4.4 gives, with ε̃ arbitrarily small,
∣∣∣
(
〈v〉s+

γ
2

[
Kpseudo, 〈v〉s+

γ
2

]
f, f

)

L2

∣∣∣ .
(
ε
∥∥awKf

∥∥
L2 + ε−1

∥∥ 〈v〉2s+γ f
∥∥
L2

) ∥∥ 〈v〉2s+γ−1 f
∥∥
L2

. ε
∥∥awKf

∥∥2
L2 + ε̃

∥∥ 〈v〉2s+γ f
∥∥2
L2 + Cε,ε̃

∥∥f
∥∥2
L2
ℓ

.

Combining these estimates we obtain
∣∣∣
(
〈v〉s+

γ
2

[
K, 〈v〉s+

γ
2

]
f, f

)

L2

∣∣∣ . ε
∥∥awKf

∥∥2
L2 + ε̃

∥∥ 〈v〉2s+γ f
∥∥2
L2 + Cε,ε̃

∥∥f
∥∥2
L2
ℓ

.

54



Now taking into account (55), the desired estimate (53) follows if we choose ε̃ small enough.
The proof is thus complete. ✷

In order to prove the main result, Proposition 4.2, we will need the conclusion in Propo-
sition 1.4. So let us firstly present the proof of this Proposition.

Proof of Proposition 1.4 ii) and iii). We have shown Proposition 1.4 iii) in Lemma
4.3. For the conclusion ii), let us rewrite the linearized Boltzmann operator L as

L = −aw + L2 + L̄1,δ,a + L1,3,δ + L1,4,δ − as(v,Dv)− (a(v,Dv)− aw)︸ ︷︷ ︸
−K

.

As a direct consequence of Lemma 2.1, conclusion (i) in Lemma 2.4, Lemma 2.3, Lemma
2.5 we have ∥∥ (L2 + L̄1,δ,a + L1,3,δ + L1,4,δ

)
f
∥∥
L2 .

∥∥ 〈v〉2s+γ f
∥∥
L2 .

Moreover from Lemma 4.5 we know that for any ε > 0,

−Kpseudo = −as(v,Dv)− (aw − a(v,Dv)) ∈ Opweyl

(
εa+ ε−1 〈v〉2s+γ , Γ

)

uniformly with respect to ε, and thus
∥∥Kpseudof

∥∥
L2 . ε

∥∥awKf
∥∥+ ε−1

∥∥ 〈v〉2s+γ f
∥∥
L2

due to Corollary 4.4.
The proof of point ii) of Proposition 1.4 is complete. ✷

The rest of this subsection is devoted to the

Proof of Proposition 4.2. Now assuming that (50) holds, we have

∥∥ã(v, ξ) 1

1+2s f
∥∥+

∥∥awKf
∥∥ .

∥∥ (iv · ξ − L) f
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

+
∥∥
(
iv · ξ − L− P̂K

)
f
∥∥
L2 .

On the other hand, note that

iv · ξ − L− P̂K = aw +K − (a+K 〈v〉2s+γ)w = K −K 〈v〉2s+γ ,

and thus Proposition 1.4 yields, with ε arbitrarily small,

∥∥
(
iv · ξ −L− P̂K

)
f
∥∥
L2 . ε

∥∥awKf
∥∥
L2 + Cε

∥∥ 〈v〉2s+γ f
∥∥
L2

. ε
∥∥awKf

∥∥+ Cε

(∥∥(iv · ξ −L)f
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

)
,

the last inequality following from (53) . Combining these inequalities and letting the above
ε be sufficiently small, we get

∥∥ã(v, ξ) 1

1+2s f
∥∥+

∥∥awKf
∥∥ .

∥∥(iv · ξ − L)f
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

.
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Now we have

〈v〉γ/(2s+1) 〈ξ〉2s/(2s+1) + 〈v〉γ/(2s+1) 〈v ∧ ξ〉2s/(2s+1)
. ã(v, ξ)1/(2s+1)

so that taking the square and working in the ξ Fourier side where all operators act like
multiplication operators, we have

∥∥ 〈v〉γ/(2s+1) 〈ξ〉2s/(2s+1) f
∥∥2 +

∥∥ 〈v〉γ/(2s+1) 〈v ∧ ξ〉2s/(2s+1) f
∥∥2

≤ Cl

(∥∥(iv · ξ − L)f
∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

)
.

Taking the inverse Fourier transform in ξ yields then

∥∥ 〈v〉γ/(2s+1) (〈ξ〉2s/(2s+1))wf
∥∥2 +

∥∥ 〈v〉γ/(2s+1) (〈v ∧ ξ〉2s/(2s+1))wf
∥∥2

≤ Cl

(∥∥Pf
∥∥2 +

∥∥ 〈v〉l f
∥∥2
)

since P = v · ∂x −L.
We deal now with the other part acting only in velocity, for which we work in the usual

Fourier side and for which it is sufficient to prove that

∥∥ 〈v〉γ (〈η〉2s)wf
∥∥
L2

+
∥∥ 〈v〉γ (〈v ∧ η〉2s)wf

∥∥
L2

+
∥∥ 〈v〉2s+γ f

∥∥
L2

.
∥∥awKf

∥∥
L2
. (58)

since
For this we introduce

a1 = 〈v〉γ ♯ 〈η〉2s , a2 = 〈v〉γ ♯ 〈v ∧ η〉2s , a3 = 〈v〉γ+2s .

We check then that for all j in {1, 2, 3} we have
∥∥awj f

∥∥ =
∥∥awj (awK)−1awKf

∥∥ =
∥∥ awj (a−1

K )w
︸ ︷︷ ︸

∈B(L2)

H2︸︷︷︸
∈B(L2)

awKf
∥∥ .

∥∥awKf
∥∥,

where we used point i) in Lemma 4.3, and that aj♯a
−1
K ∈ S(1,Γ) gives rise to a bounded

operator for all j since

∀j ∈ {1, 2, 3} , aj ∈ S(ãK ,Γ), a−1
K ∈ S(ã−1

K ,Γ).

We therefore get (58) and we obtain the desired estimate in Theorem 1.1. The proof of
Proposition 4.2 is complete. ✷

4.2. Proof of Theorem 1.2 and boundedness estimates

In this section we prove first Theorem 1.2 about coercivity. As mentioned in the intro-
duction it can be understood as an exact estimate for the so called triple norm introduced in
[7] and recalled in Remark 4.8 below. It involves the pseudo-differential part aw, for which
we have elliptic properties stated in Proposition 1.4. Theorem 1.2 is a direct consequence of
the following Lemma:

56



Lemma 4.7. We have for a sufficiently large constant C and for all ℓ ∈ R with ℓ ≤ γ/2+s,

∥∥ 〈v〉γ/2 (〈η〉s)wf
∥∥2 +

∥∥ 〈v〉γ/2 (〈v ∧ η〉s)wf
∥∥2 +

∥∥ 〈v〉γ/2+s f
∥∥2

≈ (awf, f) + C
∥∥ 〈v〉γ/2+s f

∥∥2 ≈ − (Lf, f) +
∥∥ 〈v〉ℓ f

∥∥2,

where in the last equivalence the constant depends on ℓ.

Proof. We first show the second equivalence. To do so rewrite the linearized Boltzmann
operator L as

L = −aw + L2 + L̄1,δ,a + L1,3,δ + L1,4,δ − as(v,Dv)− (a(v,Dv)− aw)︸ ︷︷ ︸
−K

.

As a direct consequence of Lemma 2.1, conclusion (i) in Lemma 2.4, Lemma 2.3, Lemma
2.5 we have ∣∣((L2 + L̄1,δ,a + L1,3,δ + L1,4,δ

)
f, f

)
L2

∣∣ .
∥∥ 〈v〉γ/2+s f

∥∥2
L2 .

Moreover from (46) and Lemma 4.5 we know that

−Kpseudo = −as(v,Dv)− (aw − a(v,Dv)) ∈ Op
(
εaK + ε−1 〈v〉γ+2s , Γ

)
,

and thus for any ε > 0,

∣∣(Kpseudof, f)L2

∣∣ . ε
∥∥ (awK)

1/2 f
∥∥2 + ε−1

∥∥ 〈v〉γ/2+s f
∥∥2
L2

due to Lemma 4.4 and (ii) of Lemma 4.3. Combining these estimates we conclude

− (Lf, f)L2 = (awf, f)L2 + (Kf, f)L2

with

|(Kf, f)L2 | . ε
∥∥ (awK)

1/2 f
∥∥2 + ε−1

∥∥ 〈v〉γ/2+s f
∥∥2
L2 .

We therefore get taking K sufficiently large and ε small, now both fixed, that

− (Lf, f)L2 − (K + ε−1)
∥∥ 〈v〉γ/2+s f

∥∥2
L2

. (awf, f)L2 . − (Lf, f)L2 + (K + ε−1)
∥∥ 〈v〉γ/2+s f

∥∥2
L2 .

This gives for a sufficiently large constant C that

− (Lf, f)L2 +
∥∥ 〈v〉γ/2+s f

∥∥2
L2

. (awf, f)L2 + C
∥∥ 〈v〉γ/2+s f

∥∥2
L2 . − (Lf, f)L2 +

∥∥ 〈v〉γ/2+s f
∥∥2
L2
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Now (54) implies also that for all ℓ in R we have

∥∥ 〈v〉γ/2+s f
∥∥2
L2 . − (Lf, f)L2 +

∥∥ 〈v〉ℓ f
∥∥2
L2,

so that restricting to ℓ ≤ γ/2 + s we get

− (Lf, f)L2 +
∥∥ 〈v〉ℓ f

∥∥2
L2

. (awf, f)L2 + C
∥∥ 〈v〉γ/2+s f

∥∥2
L2

. − (Lf, f)L2 +
∥∥ 〈v〉ℓ f

∥∥2
L2 .

We prove now the first equivalence. Recall first that

aK = a +K 〈v〉γ/2+s

We introduce now

ǎ = 〈η〉s ♯ 〈v〉γ/2 ♯ 〈v〉γ/2 ♯ 〈η〉s + 〈v ∧ η〉s ♯ 〈v〉γ/2 ♯ 〈v〉γ/2 ♯ 〈v ∧ η〉s + 〈v〉γ/2+s .

Note that

(ǎwf, f) =
∥∥ 〈v〉γ/2 (〈η〉s)wf

∥∥2 +
∥∥ 〈v〉γ/2 (〈v ∧ η〉s)wf

∥∥2 +
∥∥ 〈v〉γ/2+s f

∥∥2 (59)

We define similarly to ak and ãK the following symbol

ǎK = ǎ +K 〈v〉γ/2+s .

The main remark is that ǎ satisfies the same hypotheses than a in Proposition 1.4 and 4.3.
We skip the proof which is very similar to the one concerning ã:

ǎ ∈ S(ã,Γ), C−1ã ≤ ǎ ≤ Cã

for some constant C > 0 and (ǎ
1/2
K )w is invertible with inverse satisfying ((ǎ

1/2
K )w)−1 =

((ǎ
−1/2
K ))wǦ2 with Ǧ2 bounded on L2(R3), invertible (and therefore with inverse bounded).

As a consequence, and using also the conclusions (ii) of Lemma 4.3 for a or ǎ we have the
chain of equivalences

(awKf, f) ≈
∥∥
(
a
1/2
K

)w
f
∥∥2
L2 ≤

∥∥
(
a
1/2
K

)w
((ǎ

1/2
K )w)−1(ǎ

1/2
K )wf

∥∥2
L2

≤
∥∥ (a1/2K )w((ǎ

−1/2
K ))w︸ ︷︷ ︸

∈B(L2)

Ǧ2︸︷︷︸
∈B(L2)

(ǎ
1/2
K )wf

∥∥2 .
∥∥(ǎ1/2K )wf

∥∥2 . (ǎwKf, f)

where we used that the quantification of a
1/2
K ♯ǎ

−1/2
k ∈ S(1,Γ) yields a Bounded operator.

Similarly, the converse inequality

(ǎwKf, f) . (awKf, f)
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can be proven exactly in the same way. Together with equality (59), this gives the first
equivalence in Lemma 4.7 and the proof is complete. ✷

Remark 4.8. In [7], the authors introduced the following non-isotropic norm

|||f |||2 def
=

∫∫∫
Φ(|v − v∗|)b(cos θ)µ∗ (f − f ′)

2
+

∫∫∫
Φ(|v − v∗|)b(cos θ)f 2

∗

(√
µ′ −√

µ
)2
,

where the integration is over R3
v ×R3

v∗ ×S2
σ. For such a norm, Theorem 1.1 of [7]) says, with

ℓ ∈ R arbitrary (and equivalence norm depending on ℓ),

∥∥ 〈v〉γ/2 〈Dv〉s f
∥∥2 +

∥∥ 〈v〉γ/2+s f
∥∥ . |||f |||2 . −

(
Lf, f

)
+ C2

∥∥ 〈v〉ℓ f
∥∥2,

provided the Boltzmann cross-section B satisfies (3) with 0 < s < 1 and γ > −3. In Lemma
4.7 above, we are therefore able to exhibit the complete form of this triple norm |||f |||.

Now we focus on the more difficult subelliptic estimate stated in 1.1. We begin with
another coercivity estimate for the Weyl quantization awK .

Lemma 4.9. Let P̂K be the operator defined at the beginning of Subsection 4.1. Then there
exists a positive number k0 > 0 such that for all K ≥ k0 and any f ∈ S(R3), we have

∥∥
(
a
1/2
K

)w
f
∥∥2 ≈ (awKf, f)L2 = Re

(
P̂Kf, f

)

L2
(60)

and ∥∥
(
ã
1/2
K a

1/2
K

)w
f
∥∥2 ≈ ((ãKaK)

w f, f)L2 . (61)

Proof. The arguments are similar to the ones used in the proof of Lemma 4.3. Together
with (A.5) and (A.6), we may write

(a
1/2
K )w(a

1/2
K )w = awK − Rw, (62)

where

R = −
∫ 1

0

(
∂η(a

1/2
K )
)
♯θ

(
∂v(a

1/2
K )
)
dθ +

∫ 1

0

(
∂v(a

1/2
K )
)
♯θ

(
∂η(a

1/2
K )
)
dθ

with g♯θh defined in (52). Using (44) for ε = K−1/4, we conclude that

∂η(a
1/2
K ) ∈ S(K−1/4a

1/2
K , Γ)

uniformly with respect to K. On the other hand, it is clear that ∂v(a
1/2
K ) ∈ S(a

1/2
K , Γ). As

a result, [14, Proposition 1.1] yields
(
∂η(a

1/2
K )
)
♯θ

(
∂v(a

1/2
K )
)
,
(
∂v(a

1/2
K )
)
♯θ

(
∂η(a

1/2
K )
)
∈ S(K−1/4aK , Γ)
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uniformly w.r.t. K. Thus R ∈ S(K−1/4aK , Γ) uniformly w.r.t. K. Then the conclusion (ii)
in Lemma 4.3 allows us to rewrite Rw as

Rw = K−1/4(a
1/2
K )wK1/2

[
(a

1/2
K )w

]−1
Rw
[
(a

1/2
K )w

]−1

︸ ︷︷ ︸
∈B(L2) uniformly w.r.t. K

(a
1/2
K )w,

which gives

|(Rwf, f)L2 | ≤ C0K
−1/4

∥∥(a1/2K )wf
∥∥2

with C0 some constant independent of K. Taking into account the relation (62) we obtain

(awKf, f)L2 ≤
(
(a

1/2
K )w(a

1/2
K )wf, f

)
L2

+ C0K
−1/4

∥∥(a1/2K )wf
∥∥2 ≤ (C0 + 1)

∥∥(a1/2K )wf
∥∥2

and
(
(a

1/2
K )w(a

1/2
K )wf, f

)
L2

≤ (awKf, f)L2 + C0K
−1/4

∥∥(a1/2K )wf
∥∥2.

The desired estimate (60) follows if we take K sufficiently large such that K ≥ k0
def
= 16C4

0 .
Since the second estimate (61) can be deduced similarly by virtue of (iii) in Lemma 4.3, we
omit it here. The proof is thus complete. ✷

Corollary 4.10. Let ℓ be an arbitrary real number. The following estimate

∀ f ∈ S(R3
v),

∥∥ 〈v〉2s+γ f
∥∥
L2 +

∥∥(a1/2K )w 〈v〉s+γ/2 f
∥∥
L2 .

∥∥P̂Kf
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

(63)

holds uniformly with respect to ξ. Recall aK is defined by (6).

Proof. We have obtained in the proof of Lemma 4.7 the estimate

∥∥ 〈v〉2s+γ f
∥∥
L2 .

∥∥(a1/2K )w 〈v〉s+γ/2 f
∥∥
L2.

Moreover using the coercivity estimate (60) applied to the function 〈v〉s+γ/2 f , we have

∥∥ 〈v〉2s+γ f
∥∥2
L2 +

∥∥(a1/2K )w 〈v〉s+γ/2 f
∥∥2
L2

.
∣∣∣
(
P̂K 〈v〉s+γ/2 f, 〈v〉s+γ/2 f

)
L2

∣∣∣

.
∣∣∣
([
P̂K , 〈v〉s+γ/2]f, 〈v〉s+γ/2 f

)
L2

∣∣∣+
∣∣∣
(
P̂Kf, 〈v〉2s+γ f

)
L2

∣∣∣

.
∣∣∣
([
aw, 〈v〉s+γ/2]f, 〈v〉s+γ/2 f

)

L2

∣∣∣ + ε−1
∥∥P̂Kf

∥∥2
L2 + ε

∥∥ 〈v〉2s+γ f
∥∥2
L2 .

We apply (44) and [33, Theorem 2.3.8] to conclude that the symbol of the operator

[
aw, 〈v〉s+

γ
2

]
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belongs to

S
(
a
1/2
K 〈v〉2s+γ−1 , Γ

)
.

This fact, together with Lemma 4.3 (ii), allows us to write

[
aw, 〈v〉s+

γ
2

]

= ǫ−1 〈v〉s−1+ γ
2 〈v〉−(s−1+ γ

2 )
[
aw, 〈v〉s+

γ
2

]
〈v〉−(s+

γ
2 )
[(
a
1/2
K

)w]−1

︸ ︷︷ ︸
∈ B(L2)

ǫ
(
a
1/2
K

)w
〈v〉s+

γ
2 .

Then
∣∣∣
([
aw, 〈v〉s+γ/2]f, 〈v〉s+γ/2 f

)
L2

∣∣∣ . ε
∥∥
(
a
1/2
K

)w
〈v〉s+

γ
2 f
∥∥2
L2 + ε−1

∥∥ 〈v〉2s+γ−1 f
∥∥2
L2

. ε
∥∥
(
a
1/2
K

)w
〈v〉s+

γ
2 f
∥∥2
L2 + ε

∥∥ 〈v〉2s+γ f
∥∥2
L2

+Cε

∥∥ 〈v〉ℓ f
∥∥2
L2
.

Letting ε be small sufficiently gives the conclusions. ✷

Corollary 4.11.

((
〈v〉2s+γ)Wick

f, f
)
L2

.
((
ã(v, η)

)Wick
f, f

)
L2

.
∣∣∣
(
P̂Kf, f

)
L2

∣∣∣ . (64)

Proof. The first inequality is due to the positivity of Wick quantization. The second one
is just an immediate consequence of (60) and Lemma 4.3, since we may write

(
ã(v, η)

)Wick
=
(
a
1/2
K

)w [(
a
1/2
K

)w]−1(
ã(v, η)

)Wick[(
a
1/2
K

)w]−1

︸ ︷︷ ︸
∈B(L2)

(
a
1/2
K

)w
,

where we use the fact (see the appendix) that ãWick = bw with b belonging to the same
symbol class as ã. The proof is complete.

✷

4.3. Hypoelliptic estimates and proof of Theorems 1.1 and 1.3

This last subsection is devoted to the proofs of the main results, Theorem 1.1 and
Theorem 1.3. As explained in Proposition 4.2, we only work on P̂K instead of P . Therefore,
in this subsection, ξ and τ are considered as parameters. Recall that ã is defined in (40),
whose explicit form, as to be seen below, will be of convenient use. The main result to be
shown here can be stated as follows
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Proposition 4.12. Under the conditions of Theorem 1, we have, for any ℓ ∈ R,

∥∥ã(v, ξ) 1

1+2s f
∥∥+

∥∥awKf
∥∥ .

∥∥P̂Kf
∥∥
L2 +

∥∥ 〈v〉ℓ f
∥∥
L2.

Recall aK is defined by (6).

The above proposition will be proved in several steps, following the multiplier strategy
introduced in [28]. To this end, throughout this section, we let χ ∈ C∞

0 (R; [0, 1]) such that
χ = 1 in [−1, 1] and supp χ ⊂ [−2, 2], and let g be a symbol given by

g(v, η) = gξ(v, η) =
a3(v, η)

ã(v, ξ)
2s

1+2s

ψ(v, η), (65)

where

ψ(v, η) = χ

(
ã(v, η)

ã(v, ξ)
1

1+2s

)
(66)

and

a3(v, η) = 〈v〉γ
(
1 + |v|2 + |ξ|2 + |v ∧ ξ|2

)s−1
(
ξ · η + (v ∧ ξ) · (v ∧ η)

)
. (67)

The main property linking a3 and ã is that

{a3(v, η), v · ξ} = ã(v, ξ)− 〈v〉γ+2 (1 + |v|2 + |ξ|2 + |v ∧ ξ|2
)s−1

. (68)

where {·, ·} is the Poisson bracket defined in (A.11). Thanks to the explicit symbolic
estimates for ã, g and ψ also have good behavior as symbols, that is,

g, ψ ∈ S(1, |dv|2 + |dη|2)

uniformly with respect to ξ, where we use the estimate

|a3(v, η)| . ã(v, ξ)
2s−1

2s ã(v, η)
1

2s .

Moreover direct computation shows that

|ξ · ∂ηψ| . ã(v, η). (69)

Lemma 4.13. Under the conditions in Theorem 1, we have

∀ f ∈ S(R3),
∥∥ã(v, ξ) 1

1+2s f
∥∥2 .

∥∥P̂Kf
∥∥2
L2 +

∥∥f
∥∥
L2
ℓ

.

Proof. The proof is divided into three steps.
Step 1) Let gWick be the Wick quantization of the symbol g given in (65). We claim

∣∣∣
(
awKf, g

Wickf
)

L2

∣∣∣ .
∣∣∣
(
P̂Kf, f

)

L2

∣∣∣ . (70)
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Indeed, let us write, denoting by H the inverse of
(
a
1/2
K

)w
,

(
awKf, g

Wickf
)

L2
=
(
HawKH

(
a1 2
K

)w
f,
(
a
1/2
K

)w
gWickH

(
a
1/2
K

)w
f
)

L2
.

Note that HawKH and
(
a
1/2
K

)w
gWickH are bounded operators on L2 due to Lemma 4.3 and

the fact that gWick = g̃w with g̃ ∈ S(1,Γ) (see the appendix). Then one has
∣∣∣
(
awKf, g

Wickf
)
L2

∣∣∣ .
∥∥
(
a
1/2
K

)w
f
∥∥2
L2 .

∣∣∣
(
P̂Kf, f

)
L2

∣∣∣ ,

the last inequality following from (60).
Step 2) We now prove

∥∥ã(v, ξ) 1

2+4sf
∥∥
L2 .

∥∥ã(v, ξ)− 1

2+4s P̂Kf
∥∥
L2 . (71)

Note that g ∈ S(1,Γ) and ã(v, ξ)r ∈ S (ã(v, ξ)r,Γ) for any r ∈ R. Then the above estimate
will follow if we can show that

∥∥ã(v, ξ) 1

2+4s f
∥∥2
L2 .

∣∣∣
(
P̂Kf, f

)

L2

∣∣∣+
∣∣∣
(
P̂Kf, g

Wickf
)

L2

∣∣∣ . (72)

To prove the above inequality we make use of the relation

Re
(
i (v · ξ) f, gWickf

)
L2

= Re
(
P̂Kf, g

Wickf
)
L2

− Re
(
awKf, g

Wickf
)
L2

and (70), to conclude that

Re
(
i (v · ξ) f, gWickf

)

L2
.
∣∣∣
(
P̂Kf, f

)

L2

∣∣∣+
∣∣∣
(
P̂Kf, g

Wickf
)

L2

∣∣∣ . (73)

Next we will give a lower bound of the term on the left hand side. Observe that by (A.9),

v · ξ = (v · ξ)Wick .

Then we have, by (A.10),

Re
(
i (v · ξ) f, gWickf

)
L2

=
1

4π

({
g, v · ξ

}Wick
f, f

)
L2
. (74)

Using (68) we compute
{
g, v · ξ

}

= ã(v, ξ)
1

1+2sψ − 〈v〉γ+2 (1 + |v|2 + |ξ|2 + |v ∧ ξ|2
)s−1

ã(v, ξ)
2s

1+2s

ψ +
a3(v, η)

ã(v, ξ)
2s

1+2s

ξ · ∂ηψ

= ã(v, ξ)
1

1+2s − ã(v, ξ)
1

1+2s (1− ψ)− 〈v〉γ+2 (1 + |v|2 + |ξ|2 + |v ∧ ξ|2
)s−1

ã(v, ξ)
2s

1+2s

ψ

+
a3(v, η)

ã(v, ξ)
2s

1+2s

ξ · ∂ηψ.
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This along with (73) and (74) yields

((
ã(v, ξ)

1

1+2s

)Wick
f, f

)

L2
.

3∑

j=1

Tj +
∣∣∣
(
P̂Kf, f

)

L2

∣∣∣+
∣∣∣
(
P̂Kf, g

Wickf
)

L2

∣∣∣ , (75)

with

T1 =

((
ã(v, ξ)

1

1+2s (1− ψ)
)Wick

f, f

)

L2

,

T2 =

((
〈v〉γ+2 (1 + |v|2 + |ξ|2 + |v ∧ ξ|2

)s−1
ã(v, ξ)−

2s
1+2sψ

)Wick

f, f

)

L2

,

T3 =

((
− a3(v, η)

ã(v, ξ)
2s

1+2s

ξ · ∂ηψ
)Wick

f, f

)

L2

.

Note that ã(v, ξ)
1

1+2s ≤ ã(v, η) on the support of 1− ψ, and thus

ã(v, ξ)
1

1+2s (1− ψ) ≤ ã(v, η).

Then the positivity of Wick quantization gives

T1 .
(
(ã(v, η))Wick f, f

)
L2 .

∣∣∣
(
P̂Kf, f

)
L2

∣∣∣ , (76)

where the last inequality follows from (64). Similarly, observing that

〈v〉γ+2 (1 + |v|2 + |ξ|2 + |v ∧ ξ|2
)s−1

ã(v, ξ)−
2s

1+2sψ ≤ 〈v〉2s+γ ,

we have

T2 .
((

〈v〉2s+γ)Wick
f, f

)
L2

.
∣∣∣
(
P̂Kf, f

)
L2

∣∣∣ . (77)

As for T3, it follows from (69) that

− a3(v, η)

ã(v, ξ)
2s

1+2s

ξ · ∂ηψ . ã(v, η).

Thus

T3 .
(
(ã(v, η))Wick f, f

)
L2 .

∣∣∣
(
P̂Kf, f

)

L2

∣∣∣ .

This, together with (75), (76) and (77), gives

((
ã(v, ξ)

1

1+2s

)Wick
f, f

)

L2
.
∣∣∣
(
P̂Kf, f

)

L2

∣∣∣+
∣∣∣
(
P̂Kf, g

Wickf
)

L2

∣∣∣ .
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Moreover by (A.9),

(
ã(v, ξ)

1

1+2s

)Wick
=

∫
ã(v − ṽ, ξ)

1

1+2s e−2πṽ223dṽ,

which is bounded from below by ã(v, ξ)1/(1+2s) by a direct check. In fact observe
∫
ã(v − ṽ, ξ)

1

1+2s e−2πṽ223dṽ &

∫

1/4≤|ṽ|≤1/2

ã(v − ṽ, ξ)
1

1+2sdṽ,

and for any 1/4 ≤ |ṽ| ≤ 1/2 we use Peetre’s inequality to compute

ã(v − ṽ, ξ) & 〈v − ṽ〉γ+2s + 〈v − ṽ〉γ
(
|ξ|2 + |(v − ṽ) ∧ ξ|2

)s

& 〈v〉γ+2s + 〈v〉γ
(
|ξ|2 + (|v ∧ ξ| − |ξ| /2)2

)s

& 〈v〉γ+2s + 〈v〉γ (|v ∧ ξ|+ |ξ| /2)2s ≈ ã(v, ξ).

As a result, the desired estimate (72) follows.

Step 3) Now applying inequality (72) to the function ã(v, ξ)
1

2+4s f , we get
∥∥ã(v, ξ) 1

1+2s f
∥∥
L2 .

∥∥ã(v, ξ)− 1

2+4s P̂K ã(v, ξ)
1

2+4s f
∥∥
L2

.
∥∥P̂Kf

∥∥
L2 +

∥∥ã(v, ξ)− 1

2+4s

[
awK , ã(v, ξ)

1

2+4s

]
f
∥∥
L2 .

In view of (A.6), the symbol of ã(v, ξ)−1/(2+4s)
[
awK , ã(v, ξ)

1/(2+4s)
]
has the form

ã(v, ξ)−
1

2+4s

∫ 1

0

(∂ηaK) ♯θ
(
∂v(ã

1/(2+4s))
)
dθ,

which, arguing as in the proof of Lemma 4.3, belongs to

S
(
a1/2 〈v〉s+γ/2 , Γ

)
.

As a result, we can use (ii) in Lemma 4.3 to write

ã(v, ξ)−
1

2+4s

[
awK , ã(v, ξ)

1

2+4s

]

= ã(v, ξ)−
1

2+4s

[
awK , ã(v, ξ)

1

2+4s

]
〈v〉−(s+γ/2)

((
a
1/2
K

)w)−1

︸ ︷︷ ︸
∈ B(L2)

(a
1/2
K )w 〈v〉s+γ/2 .

This gives
∥∥ã(v, ξ)− 1

2+4s

[
awK , ã(v, ξ)

1

2+4s

]
f
∥∥
L2 .

∥∥(a1/2K )w 〈v〉s+γ/2 f
∥∥
L2

.
∥∥P̂Kf

∥∥
L2 +

∥∥f
∥∥
L2
ℓ

,

where the last inequality follows from (63). Combining these inequalities, we get the desired
estimate

∥∥ã(v, ξ) 1

1+2s f
∥∥
L2 .

∥∥P̂Kf
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

.

The proof of Lemma 4.13 is thus complete. ✷
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Lemma 4.14. Under the conditions in Theorem 1, we have, for any ℓ ∈ R,

∥∥awKf
∥∥
L2

.
∥∥P̂Kf

∥∥
L2

+
∥∥ 〈v〉ℓ f

∥∥
L2
.

Proof. The proof is divided into four steps. In the following, let ε > 0 be an arbitrarily
small number, to be fixed later on, and denote by Cε different suitable constants depending
only on ε and appearing in the the estimations below.

Step 1) We define ρε by

ρε(v, η) = χ

(
ã(v, ξ)

1

1+2s

εã(v, η)

)
,

where χ ∈ C∞
0 (R; [0, 1]) such that χ = 1 in [−1, 1] and supp χ ⊂ [−2, 2]. Let λ1,ε and λ2,ε

be two symbols defined by

λ1,ε(v, η) = ρε(v, η)ã(v, η) (78)

and

λ2,ε(v, η) =
(
1− ρε(v, η)

)
ã(v, η). (79)

Then ρε(v, η) ∈ S (1, Γ),

λ1,ε, λ2,ε ∈ S (ã(v, η), Γ) and λ2,ε ∈ S
(
ε−1ã(v, ξ)

1

1+2s , Γ
)
, (80)

uniformly with respect to ξ and ε, due to the conclusion (i) in Proposition 1.4 and the fact

that ã(v, η) ≤ ε−1ã(v, ξ)
1

1+2s on the support of λ2,ε.
Step 2) Let λ1,ε(v, η) be given in (78). In this step we show that

∣∣∣
([
v · ξ, λw1,ε

]
f, f

)
L2

∣∣∣ ≤ ε
∥∥awKf

∥∥2
L2. (81)

In fact, the symbol of the above commutator
[
v · ξ, λw1,ε

]
is

− 1

2iπ
ξ · ∂ηλ1,ε(v, η),

which belongs to S
(
ε(1+2s)/2sã(v, η)2, Γ

)
uniformly with respect to ξ and ε, due to (45) and

the fact that
|ξ|+ |v ∧ ξ| . ã(v, ξ)

1

2s 〈v〉−
γ
2s ≤ ε

1+2s
2s ã(v, η)

1+2s
2s 〈v〉−

γ
2s

on the support of λ1,ε. Thus writing

[
v · ξ, λw1,ε

]
= εawK (awK)

−1
[
v · ξ, λw1,ε

]
(awK)

−1

︸ ︷︷ ︸
∈B(L2)

awK ,
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we obtain
∣∣∣
([
v · ξ, λw1,ε

]
f, f

)
L2

∣∣∣ . ε
∥∥awKf

∥∥2
L2.

This gives the desired upper bound and therefore the proof of (81).
Step 3) Let λ2,ε(v, η) be given in (79). We claim that

∣∣∣
([
v · ξ, λw2,ε

]
f, f

)

L2

∣∣∣ . ε
∥∥(v · ξ)f

∥∥2
L2 + Cε

(∥∥P̂Kf
∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

)
. (82)

Indeed, we write
[
v · ξ, λw2,ε

]
= v · ξλw2,ε − λw2,εv · ξ to get

∣∣∣
([
v · ξ, λw2,ε

]
f, f

)
L2

∣∣∣ ≤ 2
∥∥ (v · ξ) f

∥∥
L2

∥∥λw2,εf
∥∥
L2 .

Moreover it follows from (80) that

∥∥λw2,εf
∥∥
L2 . ε−1

∥∥ã(v, ξ)1/(1+2s)f
∥∥
L2 . ε−1

(∥∥P̃f
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

)
,

the last inequality using Lemma 4.13. Combining these inequalities, we obtain the desired
estimate (82).

Step 4) Now we are ready to prove that

∥∥awKf
∥∥2
L2

.
∥∥P̂Kf

∥∥2
L2

+
∥∥f
∥∥2
L2
ℓ

. (83)

This inequality will be obtained if we can show that

|Re (i(v · ξ)f, ãwKf)L2 | . ε
∥∥awKf

∥∥2
L2 + Cε

(∥∥P̂Kf
∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

)
(84)

and ∥∥awKf
∥∥2 ≤ Re (awKf, ã

w
Kf)L2 + ε

∥∥awKf
∥∥2 + Cε

(∥∥P̂Kf
∥∥2 +

∥∥f
∥∥2
)
, (85)

due to the relation

Re
(
P̂Kf, ã

w
Kf
)
L2

= Re (i(v · ξ)f, ãwKf)L2 + Re (awKf, ã
w
Kf)L2 .

To prove (84), we compute

|Re (i(v · ξ)f, ãwKf)L2 | =
∣∣∣∣
i

2

([
v · ξ, ãwK

]
f, f

)

L2

∣∣∣∣ =
∣∣∣∣
i

2

([
v · ξ, ãw

]
f, f

)

L2

∣∣∣∣

.
∣∣∣
([
v · ξ, λw1,ε

]
f, f

)
L2

∣∣∣+
∣∣∣
([
v · ξ, λw2,ε

]
f, f

)
L2

∣∣∣

with λ1,ε, λ2,ε defined in (78) and (79). Combining the above inequalities and the conclusion
in the previous two steps, we have

|Re (i(v · ξ)f, ãwKf)L2 | . ε
∥∥awKf

∥∥2
L2 + ε

∥∥(v · ξ)f
∥∥2
L2 + Cε

(∥∥P̂Kf
∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

)
.
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This inequality along with the relation

∥∥(v · ξ)f
∥∥2
L2 .

∥∥P̂Kf
∥∥2
L2 +

∥∥awKf
∥∥2
L2

implies the desired estimate (84).
We now prove (85). In view of (A.6) we may write

(ãK♯aK)
w = (ãKaK)

w + rw, (86)

where

r(Y ) =

∫ 1

0

∫∫
e−2iσ(Y −Y1,Y−Y2)/θ

1

2i
σ(∂Y1

, ∂Y2
)ã(Y1)aK(Y2)dY1dY2dθ/(πθ)

6.

Note that (44) also holds true, with a replaced by ãK or aK . Then in view of [14, Proposition
1.1], we can check that

r ∈ S
(
a
3/2
K 〈v〉s+γ/2 , Γ

)
,

and thus we may use Lemma 4.3 to rewrite rw as

rw = ε1/2awK (awK)
−1 rw 〈v〉−(s+γ/2) [(a1/2K

)w]−1

︸ ︷︷ ︸
∈B(L2)

ε−1/2
(
a
1/2
K

)w
〈v〉s+γ/2 .

This gives

|(rwf, f)L2 | . ε
∥∥awKf

∥∥2
L2 + ε−1

∥∥
(
a
1/2
K

)w
〈v〉s+γ/2 f

∥∥2
L2

. ε
∥∥awKf

∥∥2
L2 + ε−1

(∥∥P̂Kf
∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

)
,

the last inequality following from (63). Taking into account (86), one has

Re ((ãKaK)
w f, f)L2 . Re (awKf, ãKf)L2 + ε

∥∥awKf
∥∥2
L2 + ε−2

(∥∥P̂Kf
∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

)
,

which along with (61) yields

∥∥
(
ã
1/2
K a

1/2
K

)w
f
∥∥2
L2 . Re (awKf, ãKf)L2 + ε

∥∥awKf
∥∥2
L2 + ε−2

(∥∥P̂Kf
∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

)
.

Moreover note that ∥∥awKf
∥∥2
L2 .

∥∥
(
ã
1/2
K a

1/2
K

)w
f
∥∥2
L2

due to the conclusion (iii) in Lemma 4.3. Then the desired estimate (85) follows from the
above inequalities, completing the proof of Lemma 4.14. ✷

Combining the conclusions in Lemma 4.13 and Lemma 4.14, we obtain Proposition 4.12.
Thus Theorem 1.1 follows due to Proposition 4.2. Now it remains to do the
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Proof of Theorem 1.3. Let τ be the dual variable of t and for τ fixed let P̃τ be the
operator defines as follows

P̃τ = iτ + iv · ξ − L = i (τ + v · ξ) + aw + K.

Just proceeding as in the proof of Lemma 4.13 and Lemma 4.14, we have the maximal
hypoelliptic estimate

∥∥ 〈v〉2s+γ f
∥∥
L2+

∥∥ (τ + v · ξ) f
∥∥
L2+

∥∥awf
∥∥
L2+

∥∥ 〈v〉
γ

1+2s |ξ| 2s
1+2s f

∥∥
L2 .

∥∥P̃τf
∥∥
L2+

∥∥f
∥∥
L2
ℓ

. (87)

Now it remains to prove

∥∥ 〈v〉
γ−2s
1+2s 〈τ〉 2s

1+2s f
∥∥
L2 .

∥∥P̃τf
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

.

To do so, we compute

〈v〉
γ−2s
1+2s |τ | 2s

1+2s . 〈v〉
γ−2s
1+2s |τ + v · ξ| 2s

1+2s + 〈v〉
γ−2s
1+2s |v · ξ| 2s

1+2s

. 〈v〉
γ−2s
1+2s |τ + v · ξ| 2s

1+2s + 〈v〉
γ

1+2s |ξ| 2s
1+2s

. 〈v〉γ−2s + |τ + v · ξ|+ 〈v〉
γ

1+2s |ξ| 2s
1+2s ,

where the last inequality follows from the Young’s inequality:

〈v〉
γ−2s
1+2s |τ + v · ξ| 2s

1+2s ≤

(
〈v〉

γ−2s
1+2s

)1+2s

1 + 2s
+

2s

1 + 2s

(
|τ + v · ξ| 2s

1+2s

)(1+2s)/(2s)

.

As a result we have,

∥∥ 〈v〉
γ−2s
1+2s |τ | 2s

1+2s f
∥∥2
L2 .

∥∥ (τ + v · ξ) f
∥∥2
L2 +

∥∥ 〈v〉γ−2s f
∥∥2
L2 +

∥∥ 〈v〉
γ

1+2s |ξ| 2s
1+2s f

∥∥2
L2

.
∥∥P̃τf

∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

,

where the last inequality follows from (87). Integrating with respect to τ , then coming back
into the Fourier side in time gives the result. The proof of Theorem 1.3 is complete. ✷

Appendix A.

In this section we briefly review some tools used through the proofs. The first section is
devoted to the statemetn of a Schur Lemma used in this article. The second section is the
links between some integrals concerning the Boltzmann kernel. In the third one, we recall
some facts about the Weyl quantization and Weyl-Hörmander calculus. In the last section
we recall some ideas and results about the Wick quantization.
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Appendix A.1. Schur’s Lemma

Let K be an operator whose corresponding integral kernel (y, z) → k(y, z) satisfies

M1 = sup
y∈Rd

∫

Rd

|k(y, z)| dz < +∞,

M2 = sup
z∈Rd

∫

Rd

|k(y, z)| dy < +∞.

Then K can be extended from C∞
0 (Rd) to a linear continuous operator on L2(Rd) (still

denoted by K) whose norm satisfies

∥∥K
∥∥ ≤

√
M1M2.

Appendix A.2. Integral representations

Appendix A.2.1. Principal values

Let q(θ) be a given measurable function such that

∫

R

|q(θ)| dθdθ = ∞,

∫

R

θ2 |q(θ)| dθ <∞.

Then for any ψ(θ) ∈ C2(R), the function

θ −→ q(θ) (ψ(θ) + ψ(−θ)− 2ψ(0))

belongs to L1 locally. In particular, when q(θ) is moreover an even and compactly supported
function, we use the notation

∫

R

q(θ)ψ(θ)dθ
def
=

1

2

∫

R

q(θ) (ψ(θ) + ψ(−θ)− 2ψ(0)) dθ.

In our paper, we use it for the function q(θ) = |θ|−1−2s 1|θ|≤π/2.

Appendix A.2.2. A basic formula

The first tool we use is the following Fubini-type formula, derived by rather explicit
computation.

Consider a measurable function 0 ≤ F (α, h) of variables h and α ∈ R3. For any h ∈ R3,
we denote by E0,h the (hyper-)vector plane orthogonal to h. Then

∫

R3
h

dh

∫

E0,h

dαF (α, h) =

∫

R3
α

dα

∫

E0,α

dh
|h|
|α|F (α, h). (A.1)
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Appendix A.2.3. Carleman representation

The second formula is the so-called ω-representation. It says that we have the following
(almost everywhere) equalities when all sides are well-defined :

∫∫
dv∗dσb(cos θ)|v − v∗|γF (v, v∗, v′, v′∗)

= 4

∫

R3
h

dh

∫

E0,h

dα
1

|α+ h| |h|b(cos θ)|α− h|γF (v, v + α− h, v − h, v + α)

≈
∫

R3
h

dh

∫

E0,h

dα11|α|≥|h|
1

|α+ h| |h|b
( |α|2 − |h|2

|α+ h|2
)
|α + h|γ

F (v, v + α− h, v − h, v + α).

These formulae are consequences of the following properties (see picture A.2):

1. We make the change of variables (v∗, σ) 7−→ (α, h) with v′ = v − h, v∗ = v + α − h,
v′∗ = v + α.

2. Since we restricted by symmetrization to the case σ · (v− v∗) ≥ 0 (which is equivalent
to cos θ ≥ 0), this implies |α| ≥ |h|. Note also that h ⊥ α and therefore |α + h|2 =
|α− h|2 = |α|2 + |h|2.

3. By immediate trigonometric properties we have cos θ = |α|2−|h|2
|α+h|2 and sin θ = 2|α| |h|

|α+h|2 .

From the singular behavior of the singular kernel we deduce

0 ≤ b(cos θ) ≈ Kθ−2−2s ≈ K̃(sin θ)−2−2s ≈ K̃
|α+ h|4+4s

|α|2+2s|h|2+2s
≈ |α+ h|2+2s

|h|2+2s
,

since |α|2 ≤ |α+ h|2 ≤ 2|α|2. At the end we get

∫∫
dv∗dσb(cos θ)|v − v∗|γF (v, v∗, v′, v′∗)

=

∫

R3
h

dh

∫

E0,h

dαb̃(α, h)11|α|≥|h|
|α + h|γ+1+2s

|h|3+2s
F (v, v + α− h, v − h, v + α). (A.2)

where b̃(α, h) is bounded from below and above by positive constants, and b̃(α, h) = b̃(±α,±h).
Figure A.2 shows the preceding relations between all vectors and angles.

Appendix A.2.4. The cancellation lemma

We give here an other formula, in a slightly different version than the original one pre-
sented in [11]. We consider a function G(|v − v∗|, |v − v′|). Then for smooth f , we have

(∫∫
dv∗dσG(|v − v∗|, |v − v′|)b(cos θ) (f ′

∗ − f∗)

)
= S ∗v∗ f(v),
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θ

v′

v
k
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Figure A.2: σ and Carleman representations

where for all z ∈ R3, S has the following expression

S(z) =2π

∫ π/2

0

dθ sin θb(cos θ)

(
G

( |z|
cos θ

2

,
|z|
cos θ

2

sin
θ

2

)
cos−3 θ

2
−G(|z|, |z| sin θ

2
)

)

This applies in particular to functions of type

G(|v − v∗|, |v − v′|, cos θ) = b(cos θ)|v − v∗|γϕ(v − v′).

Appendix A.3. Weyl-Hörmander calculus

We recall here some notations and basic facts of symbolic calculus, and refer to [31,
Chapter 18] or [33] for detailed discussions on the pseudo-differential calculus.

From now on, we set Γ = |dv|2+ |dη|2, and letM be an admissible weight function w.r.t.
Γ, that is the weight function M satisfies the following conditions:

(a) (slowly varying condition) there exists a constant δ such that

∀X, Y |X − Y | ≤ δ, M(X) ≈M(Y );

(b) (temperance) there exist two constants C and N such that

∀ X, Y ∈ R
6, M(X)/M(Y ) ≤ C 〈X − Y 〉N .

Considering symbols q(ξ, v, η) as a function of (v, η) with parameters ξ, we say that q ∈
S (M,Γ) uniformly with respect to ξ, if

∀ α, β ∈ Z
3
+, ∀ v, η ∈ R

3,
∣∣∂αv ∂βη q(ξ, v, η)

∣∣ ≤ Cα,βM,
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with Cα,β a constant depending only on α and β, but independent of ξ. For simplicity of
notations, in the following discussion, we omit the parameters dependence in the symbols,
and by q ∈ S(M,Γ) we always mean that q satisfies the above inequality, uniformly with
respect to ξ. The space S(M,Γ) endowed with the semi-norms

∥∥q
∥∥
k;S(M,Γ)

= max
0≤|α|+|β|≤k

sup
(v,η)∈R6

∣∣M(v, η)−1∂αv ∂
β
η q(v, η)

∣∣ , (A.3)

becomes a Fréchet space. Let q ∈ S ′(R3
v × R3

η) be a tempered distribution and let t ∈ R.
the operator optq is an operator from S(R3

v) to S ′(R3
v), whose Schwartz kernel Kt is defined

by the oscillatory integral:

Kt(z, z
′) = (2π)−3

∫

R3

ei(z−z′)·ζq((1− t)z + tz′, ζ)dζ.

In particular we denote q(v,Dv) = op0q and qw = op1/2q. Here qw is called the Weyl
quantization of symbol q.

An elementary property to be used frequently is the L2 continuity theorem in the class
S (1, g), see [33, Theorem 2.5.1] or [16] for instance, which says that there exists a constant
C and a positive integer N depending only the dimension, such that

∀ u ∈ L2,
∥∥qwu

∥∥
L2 ≤ C

∥∥q
∥∥
N ;S(1,Γ)

∥∥u
∥∥
L2 . (A.4)

Let us also recall here the composition formula of Weyl quantization. Given pi ∈ S(Mi,Γ)
we have

pw1 p
w
2 = (p1♯p2)

w (A.5)

with p1♯p2 ∈ S (M1M2, Γ) admitting the expansion

p1♯p2 = p1p2 +

∫ 1

0

∫∫
e−iσ(Y −Y1,Y−Y2)/(2θ)

i

2
σ(∂Y1

, ∂Y2
)p1(Y1)p2(Y2)dY1dY2dθ/θ

6, (A.6)

where σ is the symplectic form in R6 given by

σ
(
(z, ζ), (z̃, ζ̃)

)
= ζ · z̃ − ζ̃ · z.

Several times in this article we use the following result for which we refer to Bony [14]
for a general metric:

Theorem Appendix A.1. Let pi ∈ S(Mi,Γ) for i = 1, 2. For all N ∈ N, there exists a
constant CN and a positive integer ℓN , both depending only on N and uniform in θ sucha
that

∥∥p1♯θp2
∥∥
N ;S(M1M2,Γ)

≤ CN

∥∥p1
∥∥
ℓN ;S(M1,Γ)

∥∥p2
∥∥
ℓN ;S(M2,Γ)

,

where the semi-norm
∥∥ ·
∥∥
k;S(M,Γ)

is defined by (A.3).
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For the relation between the classical pseudo-differential operator q(v,Dv) and Weyl
quantization qw, we have the formula:

qw =
(
J1/2q

)
(v,Dv), (A.7)

where J1/2 : S ′ → S ′ is defined by

(J1/2q)(v.η) = (2π)−3

∫∫
e−iz·ζq(v + z, η + ζ)dzdζ. (A.8)

Appendix A.4. Wick quantization
Finally let us recall some basic properties of the Wick quantization, which is also called

anti-Wick in [45]. The importance in studying the Wick quantization lies in the facts
that positive symbols give rise to positive operators. There are several equivalent ways of
defining Wick quantization and one is defined in terms of coherent states. The coherent
states method essentially reduces the partial differential operators to ODEs, by virtue of the
Wick calculus. We refer the readers to the works [12, 13, 24, 35, 34, 33, 45] and references
therein for extensive presentations of this quantization and its applications in mathematics
and mathematical physics.

Let Y = (v, η) be a point in R6. The Wick quantization of a symbol q is given by

qWick = (2π)−3

∫

R6

q(Y )ΠY dY,

where ΠY is the projector associated to the Gaussian ϕY which is defined by

ϕY (z) = π−3/4e−
1

2
|z−v|2eiz·η/2, z ∈ R

3.

The main property of the Wick quantization is its positivity, i.e.,

q(v, η) ≥ 0 for all (v, η) ∈ R
6 implies qWick ≥ 0.

According to Theorem 24.1 in [45], the Wick and Weyl quantizations of a symbol q are
linked by the following identities

qWick =
(
q ∗ π−3e−|·|2

)w
= qw + rw (A.9)

with

r(Y ) = π−3

∫ 1

0

∫

R6

(1− θ)q′′(Y + θZ)Z2e−|Z|2 dZdθ.

As a result, qWick is a bounded operator in L2 if q ∈ S(1, g) due to (A.4).
We also recall the following composition formula obtained in the proof of Proposition 3.4

in [35]

qWick
1 qWick

2 =
[
q1q2 − q′1 · q′2 +

1

i

{
q1, q2

}]Wick
+ T, (A.10)

with T a bounded operator in L2(R2n), when q1 ∈ L∞(R2n) and q2 is a smooth symbol
whose derivatives of order ≥ 2 are bounded on R6. The notation {q1, q2} denotes the
Poisson bracket defined by

{
q1, q2

}
=
∂q1
∂η

· ∂q2
∂v

− ∂q1
∂v

· ∂q2
∂η

. (A.11)
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