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Global hypoelliptic and symbolic estimates for the linearized

Boltzmann operator without angular cutoff

Radjesvarane Alexandre∗ Frédéric Hérau † Wei-Xi Li ‡

Abstract

In this article we provide global subelliptic estimates for the linearized inhomoge-
neous Boltzmann equation without angular cutoff, and show that some global gain in
the spatial direction is available although the corresponding operator is not elliptic
in this direction. The proof is based on a multiplier method and the so-called Wick
quantization, together with a careful analysis of the symbolic properties of the Weyl
symbol of the Boltzmann collision operator.
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1 Introduction

We consider the non-cutoff inhomogeneous Boltzmann equation:

∂tF + v.∂xF = Q(F,F ), (1)

with F standing for a probability density function, and a given Cauchy data at t = 0,
while the position x and velocity v are in R

3, see [14, 35] and references therein for more
details on Boltzmann equation. In (1), the collision kernel Q is defined by

Q(G,F )(t, x, v) =

∫

R3

∫

S2

B(v − v∗, σ)
(
F ′G′

∗ − FG∗
)
dv∗dσ

where F♯ = F (v♯) and F
′
♯ = F (v′♯) for short. v and v∗ are the velocities after collision, v′

and v′∗ before collision, with the following energy and momentum conservation rules

v′ + v′∗ = v + v∗, |v′|2 + |v′∗|2 = |v|2 + |v∗|2, (2)

and we will choose the so-called σ representation, for σ on the sphere S2,
{
v′ = v+v∗

2 + |v−v∗|
2 σ

v′∗ =
v+v∗
2 − |v−v∗|

2 σ
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We define the deviation angle by

cos θ =

〈
v − v∗
|v − v∗|

, σ

〉
.

In the case of inverse power laws, the collisional cross section B is approximatively given
by

B(v − v∗, σ) = |v − v∗|γb(cos θ). (3)

Without loss of generality, we assume B(v− v∗, σ) is supported on the set 〈v − v∗, σ〉 > 0
which corresponds to θ ∈]0, π/2], since as usual B can be replaced by its symmetrized
version

B(v − v∗, σ) = B(v − v∗, σ) +B(v − v∗,−σ).
Moreover, we assume that b has the following expression and singular behavior when
θ ∈]0, π/2[ :

0 ≤ sin θb(cos θ) ≈ C0θ
−1−2s, as θ −→ 0+,

for some constant C0 > 0, where the symbol ≈ means bounded from below and above by
some positive constants. In the preceding formulas, we will impose the following range of
parameters, coming from the physical derivation,

s ∈ (0, 1), γ ∈ (−3,∞), γ + 2s > −3.

Note that the last condition on γ+2s is weaker than in [7, 21] since we will deal only with
the linearized part of Boltzmann collisional operator.

The behavior of this singular kernel is strongly related to the following non-integrability
condition ∫ π/2

0
sin θb(cos(θ)dθ = ∞,

which implies some diffusion properties of the (linearized) Boltzmann kernel that we will
explain in a moment.

In some expressions involving the integral kernels, it may therefore happen that some
non-integrability happens and in this case the integrals in question have to be understood
as principal values (following [11]). Anyway we shall do most of the computations as if B
were integrable and use the principal value trick whenever needed.

In this work, we are interested in the linearized Boltzmann operator, around a normal-
ized Maxwellian distribution, which is described as follows. Let this normalized maxwellian
be

µ(v) = (2π)−3/2 e−|v|2/2.

Setting F = µ+
√
µf , the perturbation f satisfies the equation

∂tf + v · ∂xf − µ−1/2Q(µ,
√
µf)− µ−1/2Q(

√
µf, µ) = µ−1/2Q(

√
µf,

√
µf),

since ∂tF + v · ∂xF −Q(F, F ) = 0 and Q(µ, µ) = 0. Using the notation

Γ(g, f) = µ−1/2Q(
√
µg,

√
µf),

we may rewrite the above equation as

∂tf + Pf = Γ(f, f),
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where the linearized Boltzmann operator P takes the form

P = v · ∂x − L = v · ∂x − L1 − L2

with
L1f = Γ(

√
µ, f), L2f = Γ(f,

√
µ).

The operator P acts only in variables (x, v), is non selfadjoint, and consists of a transport
part which is skew-adjoint, and a diffusion part acting only in the v variable, see for
example [7, 21] and the references therein for more comments.

Our main goal is to improve these previous results, and the main theorem of this
paper deals with operator P, viewed as an unbounded operator in L2

(
R
3
x × R

3
v

)
with

norm denoted by
∥∥.
∥∥.

Theorem 1.1. For all l ∈ R, there exists a constant Cl such that for all f ∈ S(R6), we
have

∥∥ 〈v〉γ |Dv |2sf
∥∥2 +

∥∥ 〈v〉γ |v ∧Dv|2sf
∥∥2 +

∥∥〈v〉γ+2sf
∥∥2

+
∥∥ 〈v〉γ/(2s+1) |Dx|2s/(2s+1)f

∥∥2 +
∥∥ 〈v〉γ/(2s+1) |v ∧Dx|2s/(2s+1)f

∥∥2

≤ Cl

(∥∥Pf
∥∥2 +

∥∥ 〈v〉l f
∥∥2
)

where Dv = 1
i ∂v, Dx = 1

i ∂x.

Note that we can take the index l as negative as we wish on the r.h.s. Moreover, note
carefully that we do not need to take into account the finite dimensional kernel associated
with the linearized Botzmann operator [7, 21].

The previous result can be extended to a time dependent version as follows, by con-
sidering the time dependent operator

P̃ = ∂t + v · ∂x − L,

the functional spaces being now L2
(
[0, T ]× R

3
x × R

3
v

)
and S

(
[0, T ] × R

3
x × R

3
v

)
with norm

denoted by
∥∥.
∥∥
L2
T

. With this setting, one can show that

Theorem 1.2. For all l ∈ R, there exists a constant Cl such that for all f ∈ S
(
[0, T ] × R

6
x,v

)
,

we have

∥∥ 〈v〉
γ−2s
1+2s |Dt|

2s
1+2s f

∥∥
L2
T

+
∥∥ 〈v〉γ |Dv |2sf

∥∥2
L2
T

+
∥∥ 〈v〉γ |v ∧Dv|2sf

∥∥2
L2
T

+
∥∥〈v〉γ+2sf

∥∥2
L2
T

+
∥∥ 〈v〉γ/(2s+1) |Dx|2s/(2s+1)f

∥∥2
L2
T

+
∥∥ 〈v〉γ/(2s+1) |v ∧Dx|2s/(2s+1)f

∥∥2
L2
T

≤ Cl

(∥∥P̃ f
∥∥2
L2
T

+
∥∥ 〈v〉l f

∥∥2
L2
T

)

The preceding theorems are consequences of the fundamental pseudo-differential prop-
erties of the linearized Boltzmann operator. Indeed, as we shall see in Section 3, the
operator L = L1 + L2 can be splitted as

L1 = −aw −K1, L2 = −K2

where a ≥ 0 is real, its Weyl quantization aw being a pseudo-differential operator of order
2s, and K = K1 +K2 is controlled by aw (see Proposition 1.3 below and the review about
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Weyl Hörmander calculus in the appendix). Precise expressions of a and Ki will be given
in Section 3. The most significant part of L is therefore of a pseudo differential type and
by the next result, we have fundamental symbolic estimates for a, implying in particular
that operator aw is elliptic in its own calculus (although of infinite order). This very
strong property allows to avoid the systematic use of G̊arding type inequalities which are
not available here.

In the following, η denotes the dual variable of v and Γ ≡ dv2+dη2 is the flat metric in
R
6
v,η. Standard notions concerning symbolic estimates and the pseudo-differential calculus

are explained at the beginning of section 4.

Proposition 1.3. Define

ã(v, η) ≡ 〈v〉γ (1 + |η|2 + |η ∧ v|2 + |v|2)s, for all (v, η) ∈ R
6
v,η.

Then we can write L = −aw −K, where

i) the symbols a, ã are temperate w.r.t. Γ, a, ã ∈ S(ã,Γ), and there exists a positive
constant C such that C−1ã(v, η) ≤ a(v, η) ≤ Cã(v, η);

ii) for all ε > 0 there exists Cε such that

∥∥Kf
∥∥+

∥∥Rf
∥∥ ≤ ε

∥∥awf
∥∥+ Cε

∥∥ 〈v〉γ+2s f
∥∥;

iii) for a sufficiently large constant K depending only on the dimension, aK
def
= a +

K 〈v〉γ+2s belongs to S(ã,Γ), is invertible and its inverse (awK)−1 has the form

(awK)−1 = H1

(
a−1
K

)w
=
(
a−1
K

)w
H2,

with H1,H2 belonging to B(L2), the space of bounded operators on L2.

Recall that in Hörmander’s terminology, a ∈ S(ã,Γ) means that for all multi-indices
α and β, there exists a constant Cα,β such that

|∂αv ∂βη a(v, η)| ≤ Cα,β ã

and the same for ã. The temperance then implies a correct definition for the associated
operators. We postpone to section 3 and the appendix a review of these standard notions
of pseudo-differential calculus.

The exponents of derivative terms and weight terms in Theorem 1.1 and Theorem 1.2
seem to be optimal, since the symbolic estimates provided by Proposition 1.3 implies that
the operator P should behave locally like a generalized Kolmogorov type operator

∂t + v · ∂x + |Dv|2s ,

for which the exponent 2s/(2s + 1) for the regularity in the time and space variables is
indeed sharp by using a simple scaling argument (see also [28]). In the particular case
when s = 1, the coercivity estimate shows that the Boltzmann collision operator, is a
type of differential operator, just like the Landau equation which seems simpler to handle
than fractional derivatives, and our exponents in regularity terms and weight terms match
perfectly with thoses in [22].

The main ideas of our proofs of the above theorems rely on some formal computations in
[1], on the method by multiplier used in [22, 30] and some microlocal techniques developed
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by Lerner while using Wick quantization [26]. Let us note that functional estimates from
a series of work of Alexandre et al. [9, 8, 7, 6] and Gressman et al. [21] are also helpful for
a clear understanding of the structure of the collision operator, but a nice feature of our
method is that we will be able to completely avoid the use of these previous estimates.
Note that there are some other methods to study the regularity of the transport equation;
for instance the average arguments used by Bouchut [13] and a version of the uncertainty
principle used by Alexandre et al. [5] to prove the regularity in the time and space
variables t, x. However, these results do not provide any optimal hypoelliptic estimate for
the spatially inhomogeneous Boltzmann equation without angular cutoff.

Let us end this introduction by giving some bibliographical references about the hy-
poelliptic properties of the non cutoff Boltzmann equation and related kinetic models.
Note that the angular cross-section b is not integrable on the sphere due to the singularity
θ−2−2s, which leads to the formal statement that the nonlinear collision operator should
behave like a fractional Laplacian; that is,

Q(g, f) ≈ −Cg(−△v)
sf + lower order terms,

with Cg > 0 a constant depending only on the physical properties of g. Initiated by
Desvillettes [17, 18], there have been extensive works around this result and regarding the
smoothness of solutions for the homogeneous Boltzmann equation without angular cutoff,
c.f. [4, 10, 15, 19, 20, 24, 31, 33]. For the inhomogeneous case the study becomes more
complicated. We remark that there have been some related works concerned with the
linear model of spatially inhomogeneous Boltzmann equation, which takes the following
form

∂t + v · ∂x + e(t, x, v)(−△v)
s, inf

t,x,v
e(t, x, v) > 0.

This model equation was firstly studied by Morimoto and Xu [32], where a global but non
optimal hypoelliptic estimate was established. This study was then improved by Chen et
al. [16], and also by Lerner et al. in [28] for an optimal local result. We also mention
[3] where a simple proof of the subelliptic estimate for the above model operator is given.
For general inhomogeneous Boltzmann equation we refer to [9, 8, 7, 6] for recent progress
on its qualitative properties. Finally, let us also mention a recent global result by Lerner
et al. [29] in the radially symmetric case and the maxwellian case (which corresponds to
γ = 0 in our notations).

The paper is organized as follows. In Section 2, we provide precise estimates on the nice
terms appearing in the splitting of the collision operator L = L1 + L2, involving compact
parts and relatively bounded terms w.r.t. the operator of multiplication by 〈v〉γ+2s. In
Section 3 we deal with the main terms, which appear to be of pseudodifferential type, and
give precise symbolic estimates in the sense of the Weyl-Hörmander calculus. Section 4
is devoted to the proof of the main theorems. An appendix is devoted to a short review
of some tools used in this work (Wick quantization, cancellation Lemma and Carleman
representation).

Contents

1 Introduction 1

2 Estimates on the linearized Boltzmann kernel 6
2.1 Study of L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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2.2 Splitting of L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Relatively bounded terms in L1 . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Pseudodifferential parts 19
3.1 Study of the principal term L1,2,δ . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Study of the multiplicative term L1,δ,b . . . . . . . . . . . . . . . . . . . . . 27
3.3 Proof of Proposition 1.3 i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Study of the subprincipal term L1,1,δ . . . . . . . . . . . . . . . . . . . . . . 30

4 Proof of the main results 32
4.1 Proof of Proposition 1.3 ii) and iii) and related results . . . . . . . . . . . . 32
4.2 Coercivity and boundedness estimates . . . . . . . . . . . . . . . . . . . . . 39
4.3 Hypoelliptic estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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5.1 Integral representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Weyl-Hörmander calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Wick quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2 Estimates on the linearized Boltzmann kernel

In this section we study the linearized kernel L in order to get the full symbol as well as
symbolic and other properties on the remaining non pseudodifferential parts. Recall that
the linearized Boltzmann operator L is defined by

Lf = µ−1/2Q(µ, µ1/2f) + µ−1/2Q(µ1/2f, µ)

= µ−1/2

∫∫
dv∗dσB

(
µ′∗(µ

′)1/2f ′ − µ∗µ
1/2f + µ′(µ′∗)

1/2f ′∗ − µ(µ∗)
1/2f∗

)

=

∫∫
dv∗dσB(µ∗)

1/2
(
(µ′∗)

1/2f ′ − (µ∗)
1/2f + (µ′)1/2f ′∗ − (µ)1/2f∗

)

=

∫∫
dv∗dσB(µ∗)

1/2
(
(µ′∗)

1/2f ′ − (µ∗)
1/2f

)
+

∫∫
dv∗dσB(µ∗)

1/2
(
(µ′)1/2f ′∗ − (µ)1/2f∗

)

= L1f + L2f.

We shall study more precisely each part of L. Let us immediately point out that
they have completely different behavior. The non local term L2 behaves essentially like a
convolution term, with nice estimates, and is relatively compact w.r.t. the main part of
L1 which will appear to be of pseudodifferential type.

To simplify the notation, by A . B we mean that there exists a harmless constant
C > 0, such that A ≤ CB, and similarly for A & B. While the notation A ≈ B means
that both A . B and B . A hold.

2.1 Study of L2

Starting from the expression of L2 given by

L2f =

∫∫
dv∗dσB(µ∗)

1/2
(
(µ′)1/2f ′∗ − (µ)1/2f∗

)
,
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we split it into four terms which make sense even for strong singularities of B, i.e. in
particular for s ≥ 1/2. This point will be clear from the proof of Lemma 2.1 below.

L2f =

∫∫
dv∗dσB(µ∗)

1/2
(
(µ′)1/2f ′∗ − (µ)1/2f∗

)

=

∫∫
dv∗dσB

(
(µ1/2f)′∗(µ

′)1/2 − (µ1/2f)∗µ
1/2
)
+

∫∫
dv∗dσB(µ′)1/2

(
(µ∗)

1/2 − (µ′∗)
1/2
)
f ′∗

=

∫∫
dv∗dσB(µ1/2f)′∗

(
(µ′)1/2 − µ1/2

)

+ µ1/2
∫∫

dv∗dσB
(
(µ1/2f)′∗ − (µ1/2f)∗

)

+ µ1/2
∫∫

dv∗dσB
(
(µ∗)

1/2 − (µ′∗)
1/2
)
f ′∗

+

∫∫
dv∗dσB

(
(µ′)1/2 − (µ)1/2

)(
(µ∗)

1/2 − (µ′∗)
1/2
)
f ′∗

= L2,rf + L2,caf + L2,cf + L2,df.

L2,ca involves essentially a convolution term and can be treated using the cancellation
lemma (see [11] and the appendix herein), and the three other ones can be estimated by
hands. Let us note that the analysis of L2 was already given by [7], Lemma 2.15, but we
provide a somewhat direct and shorter proof.

Lemma 2.1. For all f ∈ S(R3
v) and for all α, β ∈ R there exists a constant Cα,β such

that ∥∥ 〈v〉α L2 〈v〉β f
∥∥ ≤ Cα,β

∥∥f
∥∥.

Proof. We start with L2,caf :

L2,caf = µ1/2
∫∫

dv∗dσB
(
(µ1/2f)′∗ − (µ1/2f)∗

)
.

Applying the Cancellation Lemma (see [11] or the appendix), we get, for some constant c
depending only on b:

L2,caf = cµ1/2
∫
dv∗|v − v∗|γ(µ1/2f)∗.

This is an integral operator with the kernel K(v, v∗) = cµ1/2(µ∗)1/2|v − v∗|γ for which we
can apply Schur’s Lemma to get

‖L2,caf‖ . ‖f‖.

Note that the assumption γ > −3 is needed at this point.
More generally, replacing L2,caf by 〈v〉α L2,ca 〈v〉β f leads to a kernel

Kα,β(v, v∗) = cµ1/2 〈v〉α (µ∗)1/2 〈v∗〉β |v − v∗|γ

for which we can use the same argument to get

∥∥ 〈v〉α L2,ca 〈v〉β f
∥∥ ≤ Cα,β

∥∥f
∥∥.
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Now we deal with L2,cf :

L2,cf = µ1/2
∫∫

dv∗dσB
(
(µ∗)

1/2 − (µ′∗)
1/2
)
f ′∗.

We split this term into a singular and a non-singular parts. First consider the non singular
part:

L2,c,nonsingf
def
= µ1/2

∫∫
dv∗dσB11|v′−v|≥1

(
(µ∗)

1/2 − (µ′∗)
1/2
)
f ′∗.

As noticed in [7], one has µ′∗µ
′ = µ∗µ ≤ (µ′∗µ)

1/5 due to the kinetic and momentum
relations in (2). Therefore

Af ≡ |L2,c,nonsingf | . µ1/10
∫∫

dv∗dσ|B|11|v′−v|≥1

∣∣∣(µ1/10f)′∗
∣∣∣

which writes in Carleman representation

Af . µ1/10
∫

R3
h

dh

∫

E0,h

dα11|h|≥111|α|≥|h|
|α+ h|1+γ+2s

|h|3+2s
|(µ1/10f)(α+ v)|.

Recall that E0,h denotes the hyperplane orthogonal to h and containing 0. By duality, we
get, for all g ∈ S,

|(Af, g)| .
∫

R3
v

dv

∫

R3
h

dh

∫

E0,h

dα11|h|≥111|α|≥|h|
|α+ h|1+γ+2s

|h|3+2s
|(µ1/10f)(α+ v)|

.

∫

R3
v

dv

∫

R3
h

dh

∫

E0,h

dα11|h|≥111|α|≥|h|
|α|1+γ+2s

|h|3+2s
|(µ1/10f)(α+ v)||(µ1/10g)(v)|

which upon using (75) yields

|(Af, g)| .
∫

R3
v

dv

∫

R3
α

dα

∫

E0,α

dh11|h|≥111|α|≥|h|
|α|γ+2s

|h|2+2s
|µ1/10f(α+ v)||µ1/10g(v)|

.

∫

R3
v

dv

∫

R3
α

dα|α|(γ+2s)+ |µ1/10f(α+ v)||µ1/10g(v)|.

Therefore
|(Af, g)| .

∥∥µ1/20f
∥∥∥∥µ1/20g

∥∥

from which we directly get

∥∥ 〈v〉α L2,c,nonsing 〈v〉β f
∥∥ ≤ Cα,β

∥∥f
∥∥ (4)

for all real α and β.
For the singular part L2,c,sing, Carleman’s representation (see 76) gives

L2,c,singf = µ1/2
∫

R3
h

dh

∫

E0,h

dαb̃(α, h)11|α|≥|h|11|h|≤1

(
µ1/2(α+ v − h)− µ1/2(α+ v)

) |α+ h|1+γ+2s

|h|3+2s
f(α+ v).
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Changing h→ −h and adding the resulting two formulas (so we see that formally we
cancel higher singularities, recall also that b̃(α, h) = b̃(±α,±h)) yields

L2,c,singf =
1

2
µ1/2

∫

h
dh

∫

E0,h

dαb̃11|α|≥|h|11|h|≤1×

(
µ1/2(α+ v − h) + µ1/2(α+ v + h)− 2µ1/2(α+ v)

) |α+ h|1+γ+2s

|h|3+2s
f(α+ v).

Factorizing by µ1/2(α+ v) we get

L2,c,singf =
1

2
µ1/2

∫

h
dh

∫

E0,h

dαb̃11|α|≥|h|11|h|≤1

(
e−2(α+v)·h + e−2(α+v)·h − 2

)

× |α+ h|1+γ+2s

|h|3+2s
µ1/2(α+ v)f(α+ v).

The term in parentheses is bounded by |h|2µ−1/4(α + v) thanks to the condition on the
support for h, and since |h| ≤ |α|, one has

|L2,c,singf | . µ1/2
∫

h
dh

∫

E0,h

dα11|α|≥|h|11|h|≤1
|α|1+γ+2s

|h|1+2s
µ1/4(α + v)|f(α + v)|.

Using again (75) and the duality argument as in the non-singular case (now the singularity
in h is integrable), we easily get

∥∥ 〈v〉α L2,c,sing 〈v〉β f
∥∥ ≤ Cα,β

∥∥f
∥∥ (5)

for all real α and β. At this point the assumption γ + 2s > −3 is needed.
We now analyze L2,rf . Recalling that

L2,rf =

∫∫
dv∗dσB(µ1/2f)′∗

(
(µ′)1/2 − µ1/2

)

we see immediately that, using the classical pre-post velocities change of variables that

(L2,rf, g) = (f,L2,cg)

and thus we are done for this term. It remains to study L2,df which is exactly

L2,df =

∫∫
dv∗dσB

(
(µ′)1/2 − (µ)1/2

)(
(µ∗)

1/2 − (µ′∗)
1/2
)
f ′∗

Using the equality a2 − b2 = (a− b)(a+ b) for the gaussian functions in the above factors,
we see again that we can put some power of a gaussian together with f , by using the
argument of [7]: that means that for some c > 0, d > 0, one has

|L2,df | . µd
∫∫

dv∗dσB
(
(µ′)1/4 − (µ)1/4

)(
(µ∗)

1/4 − (µ′∗)
1/4
)
(µc)′∗|f ′∗|

and then the remaining analysis is exactly similar to L2,c,singf .
2
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2.2 Splitting of L1

The operator L1 will also be cut into several pieces, which will require two different types of
arguments. For some of the nice parts, tools similar to the ones in the previous section will
be sufficient. The remaining pseudo-differential parts will be treated in the next Section.

Recall first that

L1f =

∫∫
dv∗dσB(µ∗)

1/2
(
(µ′∗)

1/2f ′ − (µ∗)
1/2f

)
.

Let δ > 0 be a small parameter, say δ = 1/100 fixed once and for all. We first split
the above integral according to whether or not |v′ − v| & δ. To this end, let ϕ be a
positive radial function supported on the unit ball and say 1 in the 1/4 ball. Consider
ϕδ(v) = ϕ(|v|2/δ2), which is therefore 0 for |v| ≥ δ and 1 for |v| ≤ δ/2. By abuse of
notations we shall also denote ϕδ(r) = ϕδ(v) when |v| = r. Set ϕδ(v) = 1− ϕδ(v), which
is therefore 0 for small values and 1 for large values.

Then L1f can decomposed as the sum of the following two terms

L1,δf =

∫∫
dv∗dσBϕδ(v

′ − v)(µ∗)
1/2
(
(µ′∗)

1/2f ′ − (µ∗)
1/2f

)

and

L1,δf =

∫∫
dv∗dσBϕδ(v

′ − v)(µ∗)
1/2
(
(µ′∗)

1/2f ′ − (µ∗)
1/2f

)
.

Note that L1,δ is a cutoff type Boltzmann operator. We split it into two terms since
there is no singularity any more

L1,δf =

∫∫
dv∗dσBϕδ(v

′ − v)(µ∗)
1/2(µ′∗)

1/2f ′

−
(∫∫

dv∗dσBϕδ(v
′ − v)(µ∗)

1/2(µ∗)
1/2

)
f

= L1,δ,af + L1,δ,bf.

As for L1,δ, again we split it into four terms:

L1,δf =

∫∫
dv∗dσBϕδ(v

′ − v)(µ∗)
1/2
(
(µ′∗)

1/2f ′ − (µ∗)
1/2f

)

=

∫∫
dv∗dσBϕδ(v

′ − v)(µ′∗)
1/2(f ′ − f)

(
(µ∗)

1/2 − (µ′∗)
1/2
)

+

(∫∫
dv∗dσBϕδ(v

′ − v)(µ′∗)
1/2
(
(µ∗)

1/2 − (µ′∗)
1/2
))

f

+

∫∫
dv∗dσBϕδ(v

′ − v)µ′∗
(
f ′ − f

)

+

(∫∫
dv∗dσBϕδ(v

′ − v)
(
µ′∗ − µ∗

))
f

= L1,1,δf + L1,4,δf + L1,2,δf + L1,3,δ.

Let us immediately notice that this splitting takes into account all values of s. However,
for small singularities 0 < s < 1/2, a simpler decomposition is available and avoids some
of the issues dealt with below. We note that L1,4,δf and L1,3,δf are of multiplicative type,
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and together with L1,δ,af , they will be studied in the next subsection. They will appear
later as relativeley bounded terms with respect to L1,1,δ + L1,2,δf . These last two parts
will appear to be of pseudodifferential type, and we shall estimate them very precisely in
section 3.

2.3 Relatively bounded terms in L1

Study of L1,3,δ

Using some arguments from the proof of the cancellation lemma, see for example [11], we
get the following

Lemma 2.2. For all f ∈ S(R3
v), we have, for all s < 1

‖L1,3,δf‖2 . δ2−2s‖ < v >γ f‖

and L1,3,δ commutes with the multiplication by 〈v〉α for all α ∈ R.

Proof. The last assertion is trivial since L1,3,δ is a multiplication operator. For the
inequality, recall first that

L1,3,δf(v) =

(∫∫
dv∗dσBϕδ(v

′ − v)
(
µ′∗ − µ∗

))
f

Going back to the proof of the cancellation Lemma, we get that

(∫∫
dv∗dσBϕδ(v

′ − v)
(
µ′∗ − µ∗

))
= S ∗v∗ µ(v)

where, letting ψδ(|z|) def
= ϕδ(z) for all z ∈ R

3, S has the following expression

S(z) ≡|z|γ
∫ π/2

0
dθ sin θb(cos θ)

(
ψδ(

|z|
cos θ

2

sin
θ

2
) cos−3−γ θ

2
− ψδ(|z| sin

θ

2
)

)

=|z|γ
∫ π/2

0
dθ sin θb(cos θ)ψδ(

|z|
cos θ

2

sin
θ

2
)

(
cos−3−γ θ

2
− 1

)

+ |z|γ
∫ π/2

0
dθ sin θb(cos θ)

(
ψδ(

|z|
cos θ

2

sin
θ

2
)− ψδ(|z| sin

θ

2
)

)

=S1(z) + S2(z).

The first part S1(z) is less than |z|γ since the integrand has small enough singularities in
the θ variable, and we have

|S1(z)| . |z|γ . (6)

The second part is zero if |z| ≤ δ/2, and we suppose therefore that |z| ≥ δ/2. Note also
that for z bounded, say for |z| ≤ C where C is sufficiently large to be fixed later, S2(z) is
also bounded. Since

|z|
cos θ

2

sin
θ

2
≥ |z| sin θ

2
,
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we get that if |z| sin θ
2 ≥ δ, the integrand is 0, and similarly for small values of θ. In

conclusion when |z| ≥ C, the second integral can be estimated as follows :

S2(z) = |z|γ
∫ cδ|z|−1

c′δ|z|−1

dθ sin θb(cos θ)

(
ψδ(

|z|
cos θ

2

sin
θ

2
)− ψδ(|z| sin

θ

2
)

)
,

where C is a posteriori chosen so that C−1cδ ≤ π/2. Using Taylor formulae, we get

|S2(z)| . δ−1|z|γ+1

∫ cδ|z|−1

c′δ|z|−1

dθθ2b(cos θ)[cos−1 θ/2− 1] . δ−1|z|γ+1

∫ cδ|z|−1

c′δ|z|−1

dθθ4b(cos θ)

. δ−1|z|γ+1

∫ cδ|z|−1

c′δ|z|−1

dθθ2−2s ∼ δ−1|z|γ+1δ3−2s|z|−3+2s

. δ2−2s|z|γ+2s−2.

From this estimate and (6), we get the result of the Lemma. 2

Study of L1,δ,a

We deal now with the non singular part L1,δ,a of L1 for which we have the following result

Lemma 2.3. For all f ∈ S(R3
v) and for all α, β ∈ R such that α+ β + γ ≤ 0, we have

∥∥ 〈v〉α L1,δ,a 〈v〉β f
∥∥ ≤ δ−1−2sCα,β

∥∥f
∥∥.

Proof. Recall that

L1,δ,af =

∫∫
dv∗dσBϕδ(v

′ − v)(µ∗)
1/2(µ′∗)

1/2f ′,

so that

〈v〉αL1,δ,a 〈v〉β f = 〈v〉α
∫∫

dv∗dσBϕδ(v
′ − v)(µ∗)

1/2(µ′∗)
1/2(〈v〉β f)′.

An application of Carlemann’s representation (see the appendix for instance) shows that

| 〈v〉α L1,δ,a 〈v〉β f | . 〈v〉α
∫

h
dh

∫

E0,h

dα11|α|≥|h|11|h|≥δ/2µ
1/2(α+ v)µ1/2(α+ v − h)

|h+ α|1+γ+2s

|h|3+2s
〈v − h〉β |f(v − h)|

. 〈v〉α
∫

h
dh

∫

E0,h

dα11|h|≥δ/2µ
1/2(α+ v)µ1/2(α+ v − h)

|α|1+γ+2s

|h|3+2s
〈v − h〉β |f(v − h)|,

(7)

where we used that |α| ≥ |h| for the second inequality, and E0,h denotes the vector plane
containing 0 and orthogonal to h. Now we can write

e−|α+v|2 = e−|α+S(h)v|2e|S(h)v|
2−|v|2
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and similarly

e−|α+v−h|2 = e−|α+S(h)(v)|2e|S(h)(v−h)|2−|v−h|2 ,

so that

µ1/2(α+ v)µ1/2(α+ v − h) = e−|α+S(h)v|2
(
e2(|S(h)v|

2−|v|2)+|v|2−|v−h|2
)1/2

= e−|α+S(h)v|2
(
e2(|S(h)v|

2−|v|2)+2v·h−|h|2
)1/2

.

Putting this in (7) gives

| 〈v〉αL1,δ,a 〈v〉β f | . 〈v〉α
∫

R3
h

dh

∫

E0,h

dα11|α|≥|h|11|h|≥δ/2
|α|1+γ+2s

|h|3+2s
〈v − h〉β |f(v − h)|

e−|α+S(h)v|2
(
e2(|S(h)v|

2−|v|2)+2v·h−|h|2
)1/2

.

Integrating with respect to α we have

| 〈v〉αL1,δ,a 〈v〉β f | . 〈v〉α
∫

R3
h

dh11|h|≥δ/2 〈S(h)v〉1+γ+2s 1

|h|3+2s
〈v − h〉β |f(v − h)|

(
e2(|S(h)v|

2−|v|2)+2v·h−|h|2
)1/2

.

∫

R3
z

dz11|v−z|≥δ/2 〈v〉α 〈S(v − z)v〉1+γ+2s 1

|v − z|3+2s
〈z〉β |f |(z)

(
e2(|S(v−z)v|2−|v|2)+2v.(v−z)−|v−z|2

)1/2

def
=

∫

R3
z

Kα,β(v, z)|f |(z)dz

with

Kα,β(v, z) = 11|v−z|≥δ/2 〈v〉α 〈z〉β 〈S(v − z)v〉1+γ+2s 1

|v − z|3+2s

(
e2(|S(v−z)v|2−|v|2)+2v.(v−z)−|v−z|2

)1/2
.

We want to apply Schur’s Lemma. To this end, let’s first integrate w.r.t. to z, to get

∫

R3
z

dzKα,β(v, z) =

∫

R3
z

dz11|v−z|≥δ/2 〈v〉α 〈z〉β 〈S(v − z)v〉1+γ+2s 1

|v − z|3+2s

(
e2(|S(v−z)v|2−|v|2)+2v.(v−z)−|v−z|2

)1/2

=

∫

R3
h

dh11|h|≥δ/2 〈v〉α 〈v − h〉β 〈S(h)v〉1+γ+2s 1

|h|3+2s

(
e2(|S(h)v|

2−|v|2)+2v·h−|h|2
)1/2

,

13



so that
∫

R3
z

dzKα,β(v, z)

=

∫

R3
h

dh11|h|≥δ/2 〈v〉α
(
1 + |v|2 − |v · h|h| |

2

)(1+γ+2s)/2 1

|h|3+2s
〈v − h〉β

(
e
−2|v· h

|h|
|2+2v·h−|h|2

)1/2

=

∫

R3
h

dh11|h|≥δ/2 〈v〉α
(
1 + |v|2 − |v|2

|h|2 |
v

|v| · h|
2

)(1+γ+2s)/2
1

|h|3+2s
〈v − h〉β

(
1 + |v|2 − 2|v| v|v| · h+ |h|2

)β/2(
e
−2

|v|2

|h|2
| v
|v|

·h|2+2|v| v
|v|

·h−|h|2
)1/2

.

Shifting to polar coordinates, with an axis along direction v/|v|, we obtain

∫

R3
z

dzKα,β(v, z) .

∫ π

0

∫ ∞

δ
drdϕ 〈v〉α sinϕ

(
1 + |v|2 − |v|2 cos2 ϕ

)(1+γ+2s)/2 1

r1+2s

(1 + |v|2 − 2|v|r cosϕ+ r2)β/2
(
e−2|v|2 cos2 ϕ+2|v|r cosϕ−r2

)1/2
.

Note here that if |v| ≤ 1, then we directly get that
∫
R3
z
dzKα,β(v, z) . 1. Assuming now

that |v| ≥ 1 and setting t = cosϕ, we get

∫

R3
z

dzKα,β(v, z)

.

∫ 1

−1

∫ ∞

δ
drdt 〈v〉α (1 + |v|2 − |v|2t2)(1+γ+2s)/2e(−2|v|2t2+2|v|rt−r2)/2 1

r1+2s

(1 + |v|2 − 2|v|rt+ r2)β/2

∼ 〈v〉α |v|−1

∫ |v|

−|v|

∫ ∞

δ
drdt(1 + |v|2 − t2)(1+γ+2s)/2e−(r−t)2/2 1

r1+2s
(1 + |v|2 − 2rt+ r2)β/2

∼ 〈v〉α |v|−1

∫ |v|

−|v|

∫ ∞

δ
drdt(1 + |v|2 − t2)(1+γ+2s)/2e−(r−t)2/2 1

r1+2s
(1 + |v|2 − t2 + (r − t)2)β/2.

In the inner term, note that |v|2 − t2 ≥ 0. We now use Peetre’s inequality

〈u〉β 〈u+w〉−|β| . 〈w〉β . 〈u〉β 〈u+ w〉|β| ,

to get here
(1 + |v|2 − t2 + (r − t)2)β/2 . (1 + |v|2 − t2)β/2 〈r − t〉|β| .
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In addition, since δ = 1/100, then r ≥ δ implies that r ≥ Cδ 〈r〉, for some C. Thus
∫

R3
z

dzKα,β(v, z)

. δ−1−2s 〈v〉α |v|−1

∫ |v|

−|v|

∫ ∞

−∞
drdt(1 + |v|2 − t2)(1+γ+2s+β)/2

(
〈r − t〉|β| e−(r−t)2/2

) 1

〈r〉1+2s

. δ−1−2s 〈v〉α |v|−1

∫ |v|

−|v|
dt(1 + |v|2 − t2)(1+γ+2s+β)/2 1

〈t〉1+2s

. δ−1−2s 〈v〉α−1
∫ |v|

0
dt(1 + |v|2 − t2)(1+γ+2s+β)/2 1

〈t〉1+2s .

(8)

Now for evaluating this quantity, we split the integral into two parts. First note that
∫ |v|/2

0
dt(1 + |v|2 − t2)(1+γ+2s+β)/2 1

〈t〉1+2s . 〈v〉1+γ+2s+β
∫ |v|/2

0
dt

1

〈t〉1+2s

. 〈v〉1+γ+2s+β 〈v〉−2s = 〈v〉1+γ+β .

(9)

For the remaining part, we write
∫ |v|

|v|/2
dt(1 + |v|2 − t2)(1+γ+2s+β)/2 1

〈t〉1+2s

. 〈v〉−1−2s
∫ |v|

|v|/2
dt(1 + |v|2 − t2)(1+γ+2s+β)/2

. 〈v〉−1−2s
∫ |v|

|v|/2
dt(1 + (|v| − t)(|v|+ t))(1+γ+2s+β)/2

. 〈v〉−1−2s
∫ |v|

|v|/2
dt(1 + |v|(|v| − t))(1+γ+2s+β)/2

Posing s = |v|(|v| − t), ds = −|v|dt, we get

. 〈v〉−1−2s |v|−1

∫ |v|2/2

0
ds(1 + s)(1+γ+2s+β)/2

. 〈v〉−1−2s |v|−1 〈v〉(1+γ+2s+β)+2

. 〈v〉1+γ+β .

(10)

Putting estimates (9) and (10) in (8) we get
∫

R3
z

dzKα,β(v, z) . δ−1−2s 〈v〉α−1 〈v〉1+γ+β

. δ−1−2s 〈v〉α+γ+β

. δ−1−2s if α+ β + γ ≤ 0.

In conclusion, we have obtained that if α+ β + γ ≤ 0, then
∫

R3
z

dzKα,β(v, z) . δ−1−2s. (11)
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Now we look for the integration w.r.t. variable v of Kα,β. We have

∫

R3
z

dvKα,β(v, z) =

∫

R3
z

dz11|v−z|≥δ/2 〈v〉α 〈z〉β 〈S(v − z)v〉1+γ+2s

(
e|S(v−z)v|2−|v|2+|S(v−z)(z)|2−|z|2

)1/2 1

|v − z|3+2s
,

since by direct computation

2(|S(v − z)v|2 − |v|2) + 2v.(v − z)− |v − z|2

= |S(v − z)v|2 − |v|2 + |S(v − z)(z)|2 − |z|2.

Taking h = v − z, dh = dv, we get
∫

R3
z

dvKα,β(v, z) =

∫

R3
h

dh11|h|≥δ/2 〈z + h〉α 〈z〉β 〈S(h)(z + h)〉1+γ+2s

(
e|S(h)(z+h)|2−|z+h|2+|S(h)(z)|2−|z|2

)1/2 1

|h|3+2s

=

∫

R3
h

dh11|h|≥δ/2 〈z + h〉α 〈z〉β 〈S(h)z〉1+γ+2s

(
e|S(h)z|

2−|z+h|2+|S(h)z|2−|z|2
)1/2 1

|h|3+2s
,

so that expanding again the brackets, we get
∫

R3
z

dvKα,β(v, z)

=

∫

R3
h

dh11|h|≥δ/2

(
1 + |z|2 + 2z.h + |h|2

)α/2 〈z〉β
(
1 + |z|2 − |z. h|h| |

2

)(1+γ+2s)/2

(
e
−|z. h

|h|
|2−2z.h−|h|2

e
−|z. h

|h|
|2
)1/2 1

|h|3+2s
.

We shift to spherical coordinates (along axis w.r.t z) (h = rω) to get

∫

R3
z

dvKα,β(v, z)

=

∫ π

0

∫ ∞

δ
dϕ sinϕdr 〈z〉β (1 + |z|2 + 2|z|r cosϕ+ r2)α/2(1 + |z|2 − |z|2 cos2 ϕ)(1+γ+2s)/2

(
e−|z|2 cos2 ϕ−2|z|r cosϕ−r2e−|z|2 cos2 ϕ

)1/2 1

r1+2s
.

Set t = cosϕ to get
∫

R3
z

dvKα,β(v, z)

=

∫ 1

−1
dt

∫ ∞

δ
dr 〈z〉β (1 + |z|2 + 2|z|rt+ r2)α/2(1 + |z|2 − |z|2t2)(1+γ+2s)/2

(
e−|z|2t2−2|z|rt−r2e−|z|2t2

)1/2 1

r1+2s
.
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We note again that if |z| ≤ 1, this integral is bounded uniformly. We therefore assume in
the following that |z| ≥ 1 and change variable t′ = |z|t to deduce that

∫

R3
z

dvKα,β(v, z)

= |z|−1

∫ |z|

−|z|
dt

∫ ∞

δ
dr 〈z〉β (1 + |z|2 + 2rt+ r2)α/2(1 + |z|2 − t2)(1+γ+2s)/2

e−(t+r)2/2e−t2/2 1

r1+2s

. |z|−1

∫ |z|

−|z|
dt

∫ ∞

δ
dr 〈z〉β (1 + |z|2 − t2)(1+γ+2s+α)/2 〈r + t〉|α| e−(t+r)2/2e−t2/2 1

r1+2s
,

where the last inequality is a consequence of Peetre’s inequalities. With exactly the same
argument as before for the integration w.r.t. r, for small δ, we obtain

∫

R3
z

dvKα,β(v, z) . δ−1−2s 〈z〉α+β+γ

and thus
∫

R3
z

dvKα,β(v, z) . δ−1−2s
(12)

when α + β + γ ≤ 0. From (11) and (12), Schur’s Lemma applies and this concludes the
proof of Lemma 2.3. 2

Study of L1,4,δ

Recalling that

L1,4,δf = f

∫∫
dv∗dσBϕδ(|v′ − v|2)(µ′∗)1/2

(
(µ∗)

1/2 − (µ′∗)
1/2
)

one has the following Lemma

Lemma 2.4. For all f ∈ S(R3
v), we have, for all s < 1

‖L1,4,δf‖2 . δ2−2s‖ < v >γ+2s f‖,

and L1,4,δ commutes with the multiplication by 〈v〉α for all α ∈ R.

Proof. The last assertion is again trivial since L1,3,δ is a multiplication operator. Using
the formula 2a(b− a) = b2 − a2 − (b− a)2, we get

L1,4,δf =
1

2
f

∫∫
dv∗dσBϕδ(v

′ − v)
(
(µ∗)− (µ′∗)

)

− 1

2
f

∫∫
dv∗dσBϕδ(v

′ − v)
(
(µ∗)

1/2 − (µ′∗)
1/2
)2

= A(v)f +D(v)f.
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We first deal with the first term. Using Carleman representation, we have

A(v) =
1

2

∫

R3
h

dh

∫

E0,h

dαb̃11|α|≥|h|ϕδ(h) (µ(α+ v − h)− µ(α+ v))
|α+ h|1+γ+2s

|h|3+2s
.

Again we have to kill high singularites and give a sense to this expression. For this purpose
we change h to −h and add the resulting two formulas; this gives

A(v) =
1

4

∫

h
dh

∫

E0,h

dαb̃11|α|≥|h|ϕδ(h)×

(µ(α+ v − h) + µ(α+ v + h)− 2µ(α+ v))
|α+ h|1+γ+2s

|h|3+2s
,

and thus

|A(v)| .
∫

h
dh

∫

E0,h

dαϕδ(h)×
∣∣∣
(
e2(α+v)·h−h2

+ e−2(α+v)·h−h2 − 2
)∣∣∣

× |α|1+γ+2sµ(α+ v)
1

|h|3+2s

.

∫

h
dh

∫

E0,h

dαϕδ(h)×
(
|α|1+γ+2sµ1/2(α+ v)

) 1

|h|1+2s
,

where we used that the big parenthesis is bounded by a constant times |h|2µ−1/2(α + v)
thanks to the condition on the support of h. Using (75) we get

|A(v)| .
∫

R3
α

dα

∫

E0,α

dhϕδ(h)|α|γ+2sµ1/2(α+ v)
1

|h|2s

. δ2−2s

∫

R3
α

dα|α|γ+2sµ1/2(α+ v) . δ2−2s 〈v〉γ+2s .

Again the condition γ + 2s > −3 is need in the last step.
For the second term D(v) we essentially follow the same procedure, except that we

don’t need to use a symmetrizing argument to kill singularities. We write

|D(v)| = 1

2

∫

R3
h

dh

∫

E0,h

dα11|α|≥|h|ϕδ(h)
(
µ1/2(α+ v − h)− µ1/2(α+ v)

)2 |α+ h|1+γ+2s

|h|3+2s

.

∫

R3
h

dh

∫

E0,h

dα11|α|≥|h|ϕδ(h)
(
e(α+v)·h−h2/2 − 1

)2
µ(α+ v)

|α + h|1+γ+2s

|h|3+2s

.

∫

R3
h

dh

∫

E0,h

dα11|α|≥|h|ϕδ(h)µ
1/2(α+ v)

|α|1+γ+2s

|h|1+2s

. δ2−2s 〈v〉γ+2s ,

following the same arguments as before. From the estimates on A(v) and D(v), the proof
is complete. 2
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3 Pseudodifferential parts

In this section we deal with the remaining parts of L1, namely a multiplicative operator
L1,δ,b, the main term L1,2,δ which will appear to be of pseudo-differential type, and the
term L1,1,δ are also of pseudo-differential type but with lower order, our goal being to
prove Proposition 1.3.

In the following, we keep the notation for ϕδ, the positive compactly supported function
equal to 1 in a δ-neighborhood of 0 as introduced previously in the definitions of the
operators, and let E0,ω denote the vector plane containing 0 and orthogonal to ω . We
study each operator separately. Proposition 1.3 will be obtained as a direct consequence
of Proposition 3.4 and Proposition 3.1 below.

3.1 Study of the principal term L1,2,δ

Recall that

L1,2,δf =

∫∫
dv∗dσBϕδ(v

′ − v)µ′∗
(
f ′ − f

)

where

B(v, σ) = |v − v∗|γb
(〈

v − v∗
|v − v∗|

, σ

〉)
.

This will appear to be a genuine pseudo differential operator of order 2s for which we can
control the weigths. Namely one has

Proposition 3.1. We can write

L1,2,δf = −ap(v,Dv)f,

where ap is a real symbol in (v, η) satisfying:

i) there exists C > 0 such that for all 0 < κ < 1,

C−1
(
−κ 〈v〉γ+2s + κ 〈v〉γ (|η|2s + |η ∧ v|2s)

)

≤ ap(v, η) ≤ C 〈v〉γ (1 + |η|2s + |η ∧ v|2s); (13)

ii) ap ∈ S
(
〈v〉γ (1 + |v|2s + |η|2s + |η ∧ v|2s),Γ

)
.

Proof. From the expression of L1,2,δ, using Carleman’s transformation as in previous
arguments and as in [1] (see also the Appendix), we get

L1,2,δf =

∫

R3
h

dh

∫

E0,h

11|α|≥|h|ϕδ(h)dαµ(α + v)|α+ h|1+γ+2s (f(v − h)− f(v))
1

|h|3+2s
.

This integral is typically undefined for large values of s, and we have to use its symmetrized
version in order to give a meaning in the principal value sense: for this, we change h to
−h and add the two expressions so that

L1,2,δf =
1

2

∫

h
dh

∫

E0,h

dαb̃11|α|≥|h|ϕδ(h)µ(α+ v)|α + h|1+γ+2s

(f(v − h) + f(v + h)− 2f(v))
1

|h|3+2s

≡ −ap(v,Dv)f(v) ≡ −
∫

R3
η

ap(v, η)f̂ (η)e
iη.vdη
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with

ap(v, η) ≡ −1

2

∫

R3
h

dh

∫

E0,h

dαb̃11|α|≥|h|ϕδ(h)µ(α + v)|α+ h|1+γ+2s
(
e−iη·h + eiη·h − 2

) 1

|h|3+2s

=

∫

R3
h

dh

∫

E0,h

dαb̃11|α|≥|h|ϕδ(h)µ(α + v)|α + h|1+γ+2s (1− cos(η · h)) 1

|h|3+2s
.

(14)

The non-negativity of ap(v, η) is clear and we work now with this symbol. First recall
that on the support of the integrand, we have |h| ≤ δ ≤ 1 and that α ⊥ h, so that

0 ≤ ap(v, η) .

∫

R3h
dh

∫

E0,h

11|α|≥|h|11|h|≤δdαµ(α + v) 〈α〉1+γ+2s (1− cos(η · h)) 1

|h|3+2s
.

Now we can shift to spherical coordinates h = rω, and (forgetting the truncation in α) we
get

ap(v, η) .

∫ δ

0

∫

S2
ω

drdω

∫

E0,ω

dαµ(α + v) 〈α〉1+γ+2s (1− cos(rη.ω))
1

r1+2s
.

It is possible to integrate directly w.r.t. r, and use the fact that

∫ δ

0
(1− cos(rη.ω))

1

r1+2s
dr ≤ Cs|η.ω|2s.

In fact, note that

∫ δ

0
(1− cos(rη.ω))

1

r1+2s
dr = |ω · η|2s

∫ δ|ω·η|

0
(1− cos(r))

1

r1+2s
dr

Next, we choose a small constant c such that 1− cos r & r2 if r ≤ c.
If |ω · η| ≥ c, then we get

∫ δ

0
(1− cos(rη.ω))

1

r1+2s
dr & |η.ω|2s

∫ cδ

0
(1− cos(r))

1

r1+2s
dr & δ2−2s|ω · η|2s,

while if |ω · η| ≤ c, then we get

∫ δ

0
(1− cos(rη.ω))

1

r1+2s
dr & |ω · η|2

∫ δ

0
r2

1

r1+2s
dr & δ2−2s|ω · η|2.

On the whole, we get

∫ δ

0
(1− cos(rη.ω))

1

r1+2s
dr & δ2−2s min{|ω · η|2, |ω · η|2s}. (15)

In fact the same type of arguments show that we get a similar upper bound, and eventually

δ2−2s min{|ω · η|2, |ω · η|2s} .

∫ δ

0
(1− cos(rη.ω))

1

r1+2s
dr . δ2−2s|ω · η|2s. (16)

Next, we deal with the upper bound on ap. A crude estimate is enough and we get

ap(v, η) .

∫

S2
ω

dω

∫

E0,ω

dαµ(α + v)|ω · η|2s 〈α〉1+γ+2s . (17)
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ω

η

v

S(v)η

S(v)ω
i = S(v)η/|S(v)η|

k = v/|v|

ϕ

θ

Figure 1: Polar coordinates

Splitting v = S(ω)v + (ω · v)ω, we have

|α+ v|2 = |α+ S(ω)v + (ω · v)ω|2 = |α+ S(ω)v|2 + |(ω · v)|2 (18)

since α and ω are orthogonal. We can therefore write

µ(α+ v) = e−|α+S(ω)v|2e−|(ω·v)|2

to get

ap(v, η) .

∫

S2
ω

dω

∫

E0,ω

dαe−|α+S(ω)v|2e−|(ω·v)|2 |ω · η|2s 〈α〉1+γ+2s . (19)

Next, note that

β(v, ω) =

∫

E0,ω

dαe−|α+S(ω)v|2 〈α〉1+γ+2s ∼< S(ω)v >1+γ+2s

and thus

ap(v, η) .

∫

S2
ω

dωe−|(ω·v)|2 < S(ω)v >1+γ+2s |ω · η|2s. (20)

We introduce polar coordinates in a coordinate system where i = S(v)η/|S(v) · η|,
k = v/|v|.
In this system, we note that (ω · k) = cos(ϕ). Besides we have η = (η.k)k+ S(v)η so that

ω · η = (η · k)(k · ω) + (S(v)η) · ω
= (η · k)(k · ω) + (S(v)η) · (S(v)ω)
= (η · k)(k · ω) + (i · (S(v)ω)) |S(v)η|
= η · k cos(ϕ) + |S(v)η| sin(ϕ) cos(θ).

and in a similar way

|S(ω)v|2 = |v|2 − |(v.ω)|2 = |v|2(1− cos2(ϕ)) = |v|2 sin2(ϕ).

We therefore get

ap(v, η) .

∫ π

0
dϕ

∫ 2π

0
dθ sin(ϕ)e−|v|2 cos2(ϕ)

(
1 + |v|2 sin2(ϕ)

)(1+γ+2s)/2

|η · k cos(ϕ) + |S(v)η| sin(ϕ) cos(θ)|2s.
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Setting cosϕ = t in the preceding formula, we get

ap(v, η) .

∫ 2π

0
dθ

∫ 1

0
dte−|v|2t2 (1 + |v|2(1− t2)

)(1+γ+2s)/2

|η · kt+ |S(v)η|
√

1− t2 cos(θ)|2s. (21)

If we bound roughly 1− t2 and cos(ϕ) by 1 we get

ap(v, η) .

∫ 2π

0
dθ

∫ 1

0
dt e−|v|2t2 (1 + |v|2

)(1+γ+2s)/2 (|η · kt|2s + |S(v)η|2s
)
.

If we set y = |v|t, we get

ap(v, η) .
1

|v| 〈v〉
1+γ+2s

∫ 2π

0
dθ

∫ |v|

0
dy e−y2

(
|η · k|2s y

2s

|v|2s + |S(v)η|2s
)

.
1

|v| 〈v〉
1+γ+2s

(
|η · k|2s 1

|v|2s + |S(v)η|2s
)

.
〈v〉1+γ+2s

|v|1+2s
|η|2s + 〈v〉1+γ+2s

|v| |S(v)η|2s.

(22)

For |v| ≥ 1, we therefore get

ap(v, η) . 〈v〉γ |η|2s + 〈v〉γ+2s |S(v)η|2s,

and thus

ap(v, η) . 〈v〉γ
(
|η|2s + |v ∧ η|2s

)
,

since |v ∧ η| = |v||S(v)η|. For |v| ≤ 1, a rough estimate gives directly |a(v, η)| ≤ 〈η〉2s so
that the preceding estimate is also true. The proof of the upper bound is complete.

Now we deal with the lower bound. In order to prove this result we shall use the
formula (14) that we recall

ap(v, η) =

∫

R3
h

dh

∫

E0,h

dαb̃ϕδ(h)11|α|≥|h|µ(α+ v)|α + h|1+γ+2s (1− cos(η · h)) 1

|h|3+2s
.

As we want a lower bound we can restrict the integration range to {|α| ≥ 10} since the
integrand is non negative. We use also the facts that b̃ is bounded from below by a positive
constant and that |α + h| ∼ |α| since α ⊥ h and |h| ≤ |α| in the preceding integral. This
gives

ap(v, η) &

∫

R3
h

dh

∫

E0,h

ϕδ(h)11|α|≥10dαµ(α + v) 〈α〉1+γ+2s (1− cos(η · h)) 1

|h|3+2s
.

We can use some of the previous computations, and from (15)-(16) we get as in (19), with
here Cδ ∼ δ2−2s,

ap(v, η) & Cδ

∫

S2
ω

dω

∫

E0,ω

dα11|α|≥10e
−|α+S(ω)v|2e−|(ω·v)|2min{|ω · η|2, |ω · η|2s} 〈α〉1+γ+2s .
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Consider

β10(v, ω) =

∫

E0,ω

dα1|α|≥10e
−|α+S(ω)v|2 〈α〉1+γ+2s ∼< S(ω)v >1+γ+2s .

Then

ap(v, η) & Cδ

∫

S2
ω

dωe−|(ω·v)|2 < S(ω)v >1+γ+2s min{|ω · η|2, |ω · η|2s}. (23)

We now consider an arbitrary real 0 < κ < 1. Using the fact that

min{|ω · η|2, |ω · η|2s} ≥ |ω · η|2s − 1,

and that the right member in (23) is non-negative, we get that

ap(v, η) & κCδ

∫

S2
ω

dωe−|(ω·v)|2 < S(ω)v >1+γ+2s min{|ω · η|2, |ω · η|2s}

& κCδ

∫

S2
ω

dωe−|(ω·v)|2 < S(ω)v >1+γ+2s (|ω · η|2s − 1)

& κCδ

∫

S2
ω

dωe−|(ω·v)|2 < S(ω)v >1+γ+2s |ω · η|2s

− κCδ

∫

S2
ω

dωe−|(ω·v)|2 < S(ω)v >1+γ+2s

≡ κCδapp − κCδapr.

(24)

We split the study of the two terms app and apr. For app, we can use the computations
thereafter and similarly to (20). This gives

app(v, η) =

∫ 2π

0
dθ

∫ 1

0
dte−|v|2t2 (1 + |v|2(1− t2)

)(1+γ+2s)/2

∣∣∣η · kt+ |S(v)η|
√

1− t2 cos(θ)
∣∣∣
2s
.

Now an easy remark is that the symbol a has the following parity properties:

app(±v,±η) = app(v, η).

We can therefore suppose that η ·k ≥ 0 in all the computations. Moreover we can restrict
the above integration to the following subsets

t ∈ [0,
√
3/2], θ ∈ [0, π/3], (25)

which implies that all terms inside the absolute value

|η · kt+ |S(v)η|
√

1− t2 cos(θ)|

are non negative. We therefore get, when (25) is fulfilled, that

(
1 + |v|2(1− t2)

)(1+γ+2s)/2 ≥
(
1 +

|v|2
4

)(1+γ+2s)/2

≥ cs,γ 〈v〉1+γ+2s
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and

|η · kt+ |S(v)η|
√

1− t2 cos(θ)|2s ≥ 4−2s|η · kt+ |S(v)η||2s

≥ cs
(
|η · kt|2s + |S(v)η|2s

)
.

Therefore we have

app(v, η) &

∫ π/3

0
dθ

∫ √
3/2

0
dt e−|v|2t2 〈v〉1+γ+2s (|η · kt|2s + |S(v)η|2s

)
.

As in the case of the upper bound, we set y = |v|t, and get for |v| ≥ 1 that

app(v, η) &
1

|v| 〈v〉
1+γ+2s

∫ π/3

0
dθ

∫ √
3|v|/2

0
dy e−y2

(
|η · k|2s y

2s

|v|2s + |S(v)η|2s
)

&
1

|v| 〈v〉
1+γ+2s

∫ π/3

0
dθ

∫ √
3/2

0
dy e−y2

(
|η · k|2s y

2s

|v|2s + |S(v)η|2s
)

&
1

|v| 〈v〉
1+γ+2s

(
|η · k|2s 1

|v|2s + |S(v)η|2s
)

&
(
〈v〉γ |η|2s + 〈v〉γ+2s |S(v)η|2s

)
,

where in the last inequality we use that η · k ≥ 0 and the fact that if η · k ≤ |η|/2 then

|S(v)η| ≥
√
3|η|/2.

Since |v ∧ η| = |v||S(v)η| we get for |v| ≥ 1 the desired result

app(v, η) & 〈v〉γ
(
|η|2s + |v ∧ η|2s

)
. (26)

For |v| ≤ 1, a direct verification, without the change of variables |v| t→ y, gives

app(v, η) &

∫ π/3

0
dθ

∫ √
3/2

0
dte−t2

(
|η · kt|2s + |S(v)η|2s

)
& |η · k|2s + |S(v)η|2s

& |η|2s + |v ∧ η|2s.

So the preceding estimate (26) is also true for |v| ≤ 1.
For the remainder term in (24), we can use similar computations as the ones done for

the upper bound for ap, and we easily get

apr . 〈v〉γ+2s .

Putting this estimate and (26) together into (24) completes the proof of the lower bound
in (13).

Now we deal with estimates on the derivatives in η and v of ap. Recall that

ap(v, η) =

∫

R3
h

dh

∫

E0,h

dαb̃11|α|≥|h|ϕδ(h)µ(α + v)|α+ h|1+γ+2s (1− cos(η · h)) 1

|h|3+2s
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which is clearly smooth with respect to v and η. Let us consider for ν1, ν2 ∈ N
3 the

derivative

∂ν1v ∂
ν2
η ap(v, η) =

∫

h
dh

∫

E0,h

dαb̃11|α|≥|h|ϕδ(h) (∂
ν1
v µ(α+ v)) |α+ h|1+γ+2s

(
∂ν2η (1− cos(η · h))

) 1

|h|3+2s
.

Setting again h = rω, and (forgetting the truncation in α) we get

∣∣∂ν1v ∂ν2η ap(v, η)
∣∣ .

∫ δ

0

∫

S2
ω

drdω

∫

E0,ω

dα|∂ν1v µ(α+ v)| 〈α〉1+γ+2s
∣∣∂ν2η (1− cos(rη.ω))

∣∣ 1

r1+2s
.

(27)

Since r ∈ [0, δ] we claim that we have the following rough estimate

Lemma 3.2. ∀ ν2 ∈ N
3,
∫ δ
0 dr

∣∣∂ν2η (1− cos(rω · η))
∣∣ 1
r1+2s ≤ Cδ,s 〈η.ω〉2s .

Proof of the Lemma. This is clear for ν2 = 0 from the previous upper bound
computation. For |ν2| = 1 we have to estimate

I(ν2) =

∫ δ

0
dr
∣∣(∂ν2η (1− cos(rω · η))

)∣∣ 1

r1+2s
≤
∫ δ

0
dr |sin(rω · η)| 1

r2s
.

Firstly, when s < 1/2, we directly get

I(ν2) ≤
∫ δ

0
dr

1

r2s
≤ Csδ ≤ Csδ 〈η.ω〉2s .

When s ≥ 1/2 we have

I(ν2) ≤ |η.ω|2s−1

∫ ∞

0

sin(t)

t2s
dt ≤ Cs|η.ω|2s−1 ≤ Cs 〈η.ω〉2s .

Eventually considering the case when |ν2| ≥ 2 then

I(ν2) =

∫ δ

0
dr
∣∣(∂ν2η (1− cos(rω · η))

)∣∣ 1

r1+2s
≤
∫ δ

0
dr |sin(rω · η)| 1

r2s−1
≤ Csδ ≤ Csδ 〈η.ω〉2s .

The proof of the lemma is complete. 2

End of the proof of Proposition 3.1 Now we go back to (27). We have also to estimate
the term (∂ν1v µ(α+ v)) in this integral. For this purpose, we directly use the fact that for
all ν1,

|∂ν1v µ(α+ v)| ≤ Cν1µ
1/2(α+ v). (28)

Thanks to Lemma 3.2 and the preceding estimate we get from (27) that

∣∣∂ν1v ∂ν2η ap(v, η)
∣∣ .

∫

ω
dω

∫

E0,ω

dαµ1/2(α+ v) 〈α〉1+γ+2s 〈η.ω〉2s .

For the final estimates, we can repeat exactly the proof of the case ν1 = ν2 = 0, to get the
desired result. The proof of Proposition (3.1) is complete. 2

For further use we shall also need the following estimate.
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Proposition 3.3. The symbol ap also satisfies the following estimate:

∂ηap ∈ S
(
〈v〉γ+1 (1 + |v|2s−1 + |η|2s−1 + |η ∧ v|2s−1),Γ

)
if s ≥ 1/2,

and ∂ηap ∈ S
(
〈v〉γ+2s ,Γ

)
if s < 1/2.

Proof. We can partially use the preceding arguments. We begin again with (27) and
we can write for |ν2| ≥ 1,

∣∣∂ν1v ∂ν2η ap(v, η)
∣∣ ≤ C

∫ δ

0

∫

S2
ω

drdω

∫

E0,ω

dα (∂ν1v µ(α+ v)) |

〈α〉1+γ+2s (∂ν2η (1− cos(rη.ω))
) 1

r1+2s
.

An inspection of the proof of Lemma 3.2 also shows that we have in fact for |ν2| ≥ 1

∫ δ

0
dr
∣∣(∂ν2η (1− cos(rω · η))

)∣∣ 1

r1+2s
≤ Cδ,s(1 + 〈η.ω〉2s−1),

and we therefore get using also (28) that

|∂ν1v ∂ν2ap(v, η)| .
∫

S2
ω

dω

∫

E0,ω

dαµ1/2(α+ v) 〈α〉1+γ+2s (1 + 〈η.ω〉2s−1).

For the remaining parts of the proof we can proceed exactly as in the case of the upper
bound without derivative.

Suppose first that s ≥ 1/2. Then we can write

∣∣∂ν1v ∂ν2η ap(v, η)
∣∣ .

∫

S2
ω

dω

∫

E0,ω

dαµ1/2(α+ v) 〈α〉1+γ+2s 〈η.ω〉2s−1 .

We then follow the computations from (17) with |ω ·η|2s there replaced here by 〈ω · η〉2s−1.
With the same computations, we then get after (22) that when |ν2| ≥ 1,

∣∣∂ν1v ∂ν2η ap(v, η)
∣∣ . 〈v〉γ

(
1 + |η|2s−1 + |v ∧ η|2s−1

)
,

which is the result.

Suppose now that s < 1/2. Then we have

∣∣∂ν1v ∂ν2η ap(v, η)
∣∣ .

∫

S2
ω

dω

∫

E0,ω

dαµ1/2(α+ v) 〈α〉1+γ+2s ,

and the preceding computations from (17 ) are valid with |ω · η|2s there replaced here by
1. We therefore get that when |ν2| ≥ 1,

∣∣∂ν1v ∂ν2η ap(v, η)
∣∣ . 〈v〉γ+2s

which is the result. The proof of Proposition 3.1 is complete. 2
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3.2 Study of the multiplicative term L1,δ,b

Recall that the multiplicative part L1,δ,b has the following form

L1,δ,bf = −
(∫∫

dv∗dσBϕδ(v
′ − v)µ∗

)
f.

A nice feature of the multiplicative function defining L1,δ,b is its good symbolic properties.

Proposition 3.4. We can write

L1,δ,buf = −am(v)f,

where am is a function in v satisfying the following symbolic estimates:

i) there exists C > 0 such that C−1 〈v〉γ+2s ≤ am(v, η) ≤ C 〈v〉γ+2s;

ii) am ∈ S(〈v〉γ+2s ,Γ).

Proof. Let us again use Carleman’s representation. We get

am(v) =

∫

R3
h

dh

∫

E0,h

dαb̃11|α|≥|h|ϕδ(h)µ(v + α− h)|α + h|1+γ+2s 1

|h|3+2s
. (29)

In this integral h ⊥ α and |α| ≥ |h| so that there exists Cs such that

C−1
s |α|1+γ+2s ≤ |α+ h|1+γ+2s ≤ Cs|α|1+γ+2s. (30)

Using this and shifting to spherical coordinates gives

am(v) .

∫∫
dωdr

∫

E0,ω

dα1|α|≥rϕδ(r
2)µ(v + α− rω)|α|1+γ+2s 1

r1+2s
.

Now we know that

|v + α− rω|2 = |α+ S(ω)v|2 + |(ω · v)− r|2

exactly as in (18) so that

e−|v+α−rω|2 = e−|α+S(ω)v|2e−|(ω·v)−r|2 .

Now we use that
∫

E0,ω

dα|α|1+γ+2sµ(α+ S(ω)v) ∼ 〈S(ω)v〉1+γ+2s ,

and we get (forgetting the truncation function in α)

am(v) .

∫∫
dωdrϕδ(r

2) 〈S(ω)v〉1+γ+2s e−|(ω·v)−r|2 1

r1+2s
.

We can now integrate w.r.t. r and compute by virtue of Peetre’s inequality (forgetting
now the dependance on δ for the constants)
∫
drϕδ(r

2)e−|(ω·v)−r|2 1

r1+2s
.

∫
drϕδ(r

2)e−|(ω·v)−r|2 〈r − ω · v〉1+2s 〈ω · v〉−(1+2s)

. 〈ω · v〉−(1+2s) ,
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and thus

am(v) .

∫

S2
ω

dω 〈ω · v〉−(1+2s) 〈S(ω)v〉1+γ+2s .

We therefore have a similar integral as in (20) and using exactly the same change of

polar coordinates and computations as therein with e−|(ω·v)|2 replaced by 〈ω · v〉−(1+2s)

(see Figure 1), we get

am(v) .

∫ π

0
dϕ

∫ 2π

0
dθ 〈|v| cosϕ〉−(1+2s) sinϕ

(
1 + |v|2 sin2 ϕ

)(1+γ+2s)/2
. 〈v〉γ+2s .

For the lower bound we can do essentially the same computations : because of the
non-negative sign of am we can restrict the computations to subdomains in (α, h) namely

{|α| ≥ 10} and {|h| ≤ 10} ,

and following (29) and using (30) we get

am(v) &

∫∫
dωdr

∫

E0,ω

dα11|α|≥10111≤r≤10µ(v + α− rω)|α|1+γ+2s 1

r1+2s

&

∫∫
dωdr

∫

E0,ω

dα11|α|≥10111≤r≤10µ(α+ S(ω)v)e−|ω·v|2 |α|1+γ+2s 1

r1+2s

since ϕδ = 1 in the set {1 ≤ r ≤ 10} (recall δ = 1/100), and

|v + α− rω|2 = |S(ω)v + α|2 + |ω · v − r|2 ≤ |S(ω)v + α|2 + |ω · v|2 + 100

for r ≤ 10. Then as before we can use the fact that
∫
dα11|α|≥10|α|1+γ+2sµ(α+ S(ω)v) ∼ 〈S(ω)v〉1+γ+2s

and ∫
dr111≤r≤10

1

r1+2s
∼ C

and we get for a new constant C that

am(v) ≥ C−1

∫
dω 〈S(ω)v〉1+γ+2s e−|(ω·v)|2 ,

and again we can follow the computations as in (23) and after to get

am(v) ≥ C−1 〈v〉γ+2s .

The proof is thus complete. 2
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3.3 Proof of Proposition 1.3 i)

In this subsection we prove part i) of Proposition 1.3 concerning the so-called symbol a.
We first give its definition, the prove the Proposition, and we shall en this section by giving
additional properties of a needed in the sequel.

Definition 3.5. We define a to be the following real symbol:

a = ap + am,

where ap is defined in Proposition 3.1 and am is defined in Proposition 3.4.

We now give the proof of Proposition 1.3 i). From Proposition 3.1 and Proposition 3.4
we know respectively that

C−1 〈v〉γ+2s ≤ am(v, η) ≤ C 〈v〉γ+2s

and for all 0 < κ ≤ 1,

C−1
(
−κ 〈v〉γ+2s + κ 〈v〉γ (1 + |η|2s + |η ∧ v|2s)

)
≤ ap(v, η) ≤ C 〈v〉γ (1 + |η|2s + |η ∧ v|2s),

where in both cases C denotes a constant independent of κ (but depending on δ, s).
Choosing κ sufficiently small and fixed from now on, and adding the two inequalities gives

C−1
(
〈v〉γ+2s + 〈v〉γ (|η|2s + |η ∧ v|2s)

)
≤ a(v, η) ≤ C 〈v〉γ+2s+C 〈v〉γ (1+ |η|2s+ |η∧v|2s).

so that

C−1 〈v〉γ
(
1 + |v|2 + |η|2 + |η ∧ v|2

)s
≤ a(v, η) ≤ C 〈v〉γ

(
1 + |v|2 + |η|2 + |η ∧ v|2

)s

for a new constant C. This proves the lower and upper bounds for a. Using the definition
of ã

ã(v, η) = 〈v〉γ
(
1 + |v|2 + |η|2 + |η ∧ v|2

)s
(31)

we get
C−1ã ≤ a ≤ Cã. (32)

From the same Proposition 3.1 and Proposition 3.4, we also directly get by addition
that

a ∈ S(ã,Γ).

A direct computation also gives that

ã ∈ S(ã,Γ),

and it only remains to check the temperance of a and ã. From (32) it is sufficient to verify
that there exists N such that for all Y = (y, η), Y ′ = (y′, η′) there exists CN > 0 such that

ã(Y ′) ≤ CN ã(Y )(1 + Γ(Y − Y ′))N .

This is a direct consequence of Peetre’s inequality since we have powers of polynomial type
quantities. The proof is complete. 2

For further use we also give here two propositions concerning a and ã, which will be
of great interest in the next section.
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Proposition 3.6. We have

i) for any |α| ≥ 0 and any |β| ≥ 1 , there exists a constant Cα,β > 0 such that

∣∣∣∂αv ∂βη a(v, η)
∣∣∣ ≤ Cα,β





〈v〉1+γ
(
1 + |v|2 + |η|2 + |η ∧ v|2

)s− 1

2

, 1
2 ≤ s ≤ 1;

〈v〉2s+γ , 0 < s < 1
2

and ∣∣∣∂βη ã
∣∣∣ ≤ Cα,β 〈v〉γ+1

(
1 + |v|2 + |η|2 + |η ∧ v|2

)s−1/2
;

ii) the following estimate is true for any 0 < ε ≤ 1, with semi-norms independent of ε:

∂η ã, ∂ηa ∈ S
(
a1/2 〈v〉γ/2+s , Γ

)
⊂ S(εa+ ε−1 〈v〉2s+γ , Γ); (33)

iii) there exists a constant such that

|ξ · ∂ηã| . 〈v〉γ
(
1 + |v|2 + |η|2 + |η ∧ v|2

)s− 1

2
(
|ξ|2 + |v ∧ ξ|2

)1/2
. (34)

Proof. The point i) holds because of Proposition 3.3 and direct verification for ã, while
the first conclusion in (33) follows from the estimates in i) and the second one is obvious.
Point iii) in Proposition 3.6 is a direct consequence of the estimates on ã. The proof is
complete. 2

3.4 Study of the subprincipal term L1,1,δ

Proposition 3.7. We can write

L1,1,δf = −as(v,Dv)f,

where as is a (complex valued) classical symbol in (v, η) satisfying

i) we have

as(v, η) ∈
{
S
(
〈v〉γ+1

(
〈v〉2s−1 + 〈η〉2s−1 + 〈v ∧ η〉2s−1

)
,Γ
)

if s ≥ 1/2;

S(〈v〉γ+2s ,Γ) if s < 1/2;
(35)

ii) for all 0 < s < 1 and any 0 < ε ≤ 1, we have, with semi-norms independent of ε,

as(v, η) ∈ S
(
a1/2 〈v〉γ/2+s ,Γ

)
⊂ S

(
εa+ ε−1 〈v〉γ+2s ,Γ

)
. (36)

Proof. We recall that

L1,1,δf =

∫∫
dv∗dσBϕδ(|v′ − v|2)(µ′∗)1/2[f ′ − f ]

(
(µ∗)

1/2 − (µ′∗)
1/2
)
.
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We shift to Carleman’s representation and get

L1,1,δf =

∫

R3
h

dh

∫

E0,h

dαb̃1|α|≥|h||α+ h|1+γ+2sϕδ(|h|2)µ
1

2 (α+ v)[f(v − h)− f(v)]

(
µ

1

2 (α+ v − h)− µ
1

2 (α+ v)
) 1

|h|3+2s

= −
∫

R3
η

f̂(η)eiv.ηas(v, η)dη

with

as(v, η) = −
∫

R3
h

dh

∫

E0,h

dαb̃1|α|≥|h||α+ h|1+γ+2sϕδ(|h|2)µ
1

2 (α+ v)[e−ih.η − 1]

(
µ

1

2 (α+ v − h)− µ
1

2 (α+ v)
) 1

|h|3+2s
.

For the study of this symbol, we shall essentially follow the same computations as in
the L1,2,δ case. We first note that we have the following bound for all h 6= 0

∣∣∣∣
(
µ

1

2 (α+ v − h)− µ
1

2 (α+ v)
) 1

|h|

∣∣∣∣ ≤ C.

So that using also that |α+ h| ≤ 2|α| we get

|as(v, η)| .
∫

R3
h

dh

∫

E0,h

〈α〉1+γ+2s µ
1

2 (α+ v)ϕδ(|h|2)
|e−ih.η − 1|
|h|2+2s

.

Now we shift to spherical coordinates taking h = rω and we get

|as(v, η)| .
∫∫

ω
dωdr

∫

E0,ω

〈α〉1+γ+2s µ
1

2 (α+ v)ϕδ(r
2)
|e−irω·η − 1|

r2s
.

We can directly integrate w.r.t. r and this gives

∫ ∞

0
ϕδ(r

2)
|e−irω·η − 1|

r2s
.

{
Cs|η.ω|2s−1, if s ≥ 1/2 ;
Cs, if 0 < s < 1/2 ,

which yields

|as(v, η)| .
{ ∫

S2
ω
dωdr

∫
E0,ω

〈α〉1+γ+2s µ
1

2 (α+ v)|η.ω|2s−1 if s ≥ 1/2 ;
∫
S2
ω
dωdr

∫
E0,ω

〈α〉1+γ+2s µ
1

2 (α+ v) if 0 < s < 1/2 .
(37)

Suppose now that s ≥ 1/2.
In this case we can do exactly the same computations as in the L1,2,δ case, with the

factors µ(α + v) and |η.ω|2s in formula (17) replaced respectively by µ1/2(α + v) and
|η.ω|2s−1 here. We directly get, following the computations after (17), that

|as(v, η)| . 〈v〉γ+1 (|η|2s−1 + |v ∧ η|2s−1)

for |v| > 1. For |v| ≤ 1, a rough estimate gives directly |a(v, η)| ≤ 〈η〉2s so that the
preceding estimate is also true in this case.
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Suppose now that s ≤ 1/2.
We can follow the same type of computations as after (17), and we get easily

|as(v, η)| . 〈v〉γ+2s . (38)

Again the proof of the estimates for higher order derivatives of as is similar to the one
of order 0, and we skip this part of the proof. This completes part i) of proposition 3.7.
The second part ii) is just an immediate consequence of the estimates in i). The proof of
Proposition 3.7 is complete. 2

4 Proof of the main results

This section is devoted to the proof of the main Theorems 1.1 and 1.2. We shall use
extensively properties of the classical, Weyl and Wick quantization, for which we postpone
a brief review in the Appendix. In Section 5.2, we give some coercivity estimates, and
recover a result of coercivity of [7] implying the so-called triple norm. In 4.1 we make the
reduction to the hypoelliptic problems for a simplified operator, by virtue of Proposition
1.3 whose proof is also presented in this subsection. In Subsection 4.2 we give a direct
proof of the well-known coercivity. The proof of the main results is then achieved in the
last subsection, Subsection 4.3.

4.1 Proof of Proposition 1.3 ii) and iii) and related results

In the previous sections, we splitted operator L into several pieces in the following way,
with a = ap + am defined in Proposition 3.1 and Proposition 3.4, and as defined in
Proposition 3.7,

L = −a(v,Dv) + L2 + L1,δ,a + L1,3,δ + L1,4,δ + L1,δ,a − as(v,Dv)

= −aw −
(
−L2 − L1,δ,a − L1,3,δ − L1,4,δ + as(v,Dv) + (a(v,Dv)− aw)

)
︸ ︷︷ ︸

K

,

so that we can write
P = v · ∂x + aw +K.

Notice that the diffusion term aw + K above is only an operator with respect to the
velocity variable v. So we only work on the resulting operator after performing partial
Fourier transform in the x variables, considering the dual variables ξ of x as parameter.
More precisely we will study the operator

P̂K = i (v · ξ) + awK ,

where
aK = a+K 〈v〉2s+γ .

with K a fixed number, constructed in Lemma 4.2 and Lemma 4.8 below, depending only
on the integer N in (77). Accordingly we also introduce the weight function

ãK = ã+K 〈v〉2s+γ ,
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where ã is the weight function given in Proposition 1.3. We note that aK ∈ S(ãK ,Γ)
uniformly in K, and more generally (aK)r ∈ S(ãrK ,Γ) uniformly w.r.t. K for all r ∈ [0, 1].
The advantage of working on awK instead of aw is that we can construct the inverse of the
former; see Lemma 4.2 below. This is of big importance in the following, in the treatment
of hypoelliptic estimates.

Notations. In what follows let K be fixed, satisfying the assumptions in Lemma
4.2 and Lemma 4.8 below, and let ℓ ∈ R be an arbitrary number, fixed and as small as
we want. To simplify the notation, by A . B we mean there exists a positive constant
C, which may depend on K and ℓ but is independent of the parameters ξ, such that
A ≤ CB, and similarly for A & B. While the notation A ≈ B means both A . B and
B . A hold. Given a symbol q and a weight function M , by q ∈ S(M,Γ) we alway mean,
in the following discussions, q lies in S(M,Γ) uniformly w.r.t. K and ξ.

Now we state the main result of this subsection, which shows it is sufficient to study
the operator P̂K instead of the original one.

Proposition 4.1. The conclusion in Theorem 1.1 follows if the estimate

∥∥ã(v, ξ)
1

1+2s f
∥∥+

∥∥awKf
∥∥ .

∥∥P̂Kf
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

(39)

holds uniformly with respect to ξ.

We proceed to prove the above proposition through several lemmas. Firstly we begin
with constructing the inverses of operators.

Lemma 4.2. There exists a K0 large sufficiently, which depends only on the dimension,
such that for all K ≥ K0 we have

(i) awK is invertible and its inverse (awK)−1 has the form

(awK)−1 = H1

(
a−1
K

)w
=
(
a−1
K

)w
H2,

with H1,H2 belonging to B(L2), the space of bounded operators on L2, and
∥∥Hj

∥∥
B(L2)

independent of K for j = 1, 2;

(ii)
(
a
1/2
K

)w
is invertible and its inverse

[(
a
1/2
K

)w]−1
has the form

[(
a
1/2
K

)w]−1
= G1

(
a
−1/2
K

)w
=
(
a
−1/2
K

)w
G2

with G1, G2 ∈ B(L2) and
∥∥Gj

∥∥
B(L2)

independent of K for j = 1, 2;

(iii)
(
ã
1/2
K a

1/2
K

)w
is invertible and its inverse

[(
ã
1/2
K a

1/2
K

)w]−1
has the form

[(
ã
1/2
K a

1/2
K

)w]−1
= Q1

(
ã
−1/2
K a

−1/2
K

)w
=
(
ã
−1/2
K a

−1/2
K

)w
Q2

with Q1, Q2 ∈ B(L2) and
∥∥Qj

∥∥
B(L2)

independent of K for j = 1, 2.

Proof. We firstly prove the conclusion in (i). Using (78) and (79), we may write

awK(a−1
K )w = Id−Rw

K , (40)
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where

RK = −
∫ 1

0
(∂ηaK) ♯θ

(
∂v(a

−1
K )
)
dθ +

∫ 1

0
(∂vaK) ♯θ

(
∂η(a

−1
K )
)
dθ

with g♯θh defined by

g♯θh(Y ) =

∫∫
e−2iσ(Y −Y1,Y−Y2)/θ 1

2i
g(Y1)h(Y2)dY1dY2/(πθ)

6. (41)

In what follows let N be the integer which is given in (77) and depends only on the
dimension. By [12, Proposition 1.1] we can find a constant CN and a positive integer ℓN ,
both depending only on N but independent of K and θ, such that

∥∥ (∂ηaK) ♯θ
(
∂v(a

−1
K )
) ∥∥

N ;S(1,Γ)
≤ CN

∥∥∂ηaK
∥∥
ℓN ;S(ãK ,Γ)

∥∥ (∂v(a−1
K )
) ∥∥

ℓN ;S(ã−1

K
,Γ)
.

Moreover, using (33) for ε = K−1/4 yields

∥∥∂ηaK
∥∥
ℓN ;S(ãK ,Γ)

≤ C̃NK
− 1

4

and

∥∥∂v(a−1
K )
∥∥
ℓN ;S(ã−1

K
,Γ)

≤ C̃N

with C̃N a constant depending only on N but independent of K. As a result,

∥∥ (∂ηaK) ♯θ
(
∂v(a

−1
K )
) ∥∥

N ;S(1,Γ)
≤ CN C̃

2
NK

− 1

4 .

Similarly,

∥∥ (∂vaK) ♯θ
(
∂η(a

−1
K )
) ∥∥

N ;S(1,Γ)
≤ CN C̃

2
NK

− 1

4 .

Then

∥∥RK

∥∥
N ;S(1,Γ)

≤ 2CN C̃
2
NK

− 1

4 ,

and thus by (77) ∥∥Rw
K

∥∥
B(L2)

≤ 2CCN C̃
2
NK

− 1

4

with C a constant depending only on the dimension. This implies Id − Rw
K is invertible

in the space B(L2) of bounded operators on L2 if we choose K in such a way that K ≥(
4CCN C̃

2
N

)4
. Moreover

(Id−Rw
K)−1 =

∞∑

j=0

(Rw
K)j ∈ B(L2).

Taking into account (40), we conclude

awK

(
(a−1

K )w (Id−Rw
K)−1

)
= Id.
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Similarly we can find a R̃K ∈ S(1,Γ) such that
((

Id− R̃w
K

)−1
(a−1

K )w
)
awK = Id.

These imply awK is invertible and its inverse (awK)−1 has the form

(awK)−1 = (a−1
K )w (Id−Rw

K)−1 =
(
Id− R̃w

K

)−1
(a−1

K )w.

We have proven the conclusion in (i) in Lemma 4.2. The remaining ones in (ii) and (iii)
can be deduced quite similarly. So we omit it here for brevity. The proof of Lemma 4.2 is
thus complete. 2

In what follows we always let K be fixed satisfying the condition in the above lemma
4.2.

Corollary 4.3. Let ε be an arbitrarily small number and let g ∈ S
(
εa+ ε−1 〈v〉2s+γ , Γ

)

uniformly with respect to ε. Then
∥∥g(v,Dv)f

∥∥
L2 +

∥∥gwf
∥∥
L2 . ε

∥∥awKf
∥∥+ ε−1

∥∥ 〈v〉2s+γ f
∥∥
L2 .

Proof. This is just a consequence of the conclusion (i) in Lemma 4.2. In fact by Lemma
4.2 we see the operator aK+ε−1−2s = aK + ε−2 〈v〉2s+γ is invertible and its inverse satisfies
that

∀ h ∈ S (aK+ε−2, Γ) , hw
(
aK + ε−2 〈v〉2s+γ

)−1
∈ B(L2).

Thus the assumption on g allows us write

gw =
(
ε−1g

)w (
aK + ε−2 〈v〉2s+γ

)−1

︸ ︷︷ ︸
∈ B(L2)

ε
(
aK + ε−2 〈v〉2s+γ

)
,

which yields the desired estimate for gw. The estimate for g(v,Dv) is similar, since
g(v,Dv) =

(
J−1/2g

)w
with J−1/2g belonging to the same symbol class as g. We have

obtained the desired estimate in Corollary 4.3. The proof is complete. 2

We will apply the preceding lemma to precise pseudodifferential operators:

Lemma 4.4. The symbols of as(v,Dv) and a
w − a(v,Dv) lie in S

(
εa+ ε−1 〈v〉2s+γ , Γ

)

for all ε > 0 with seminorms independant of ε.

Proof. For the first operator as(v,Dv), this is point ii) of Proposition 3.7. For the
second one aw − a(v,Dv), we enter more deeply into the theory of Weyl and classical
quantization. In order to get the result, we use the expansion of J1/2a, which reads (c.f.
[25, Lemma 4.1.5] and the appendix)

aw − a(v,Dv) =
(
J1/2a

)
(v,Dv)− a(v,Dv) = R(v,Dv)

with

R(v, η) =
1

2

∫ (
Jθ/2 (Dη · ∂va)

)
(v, η)dθ.
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Proposition 3.6 implies Dη · ∂va ∈ S (Mε, Γ) uniformly with respect to ε, where

Mε = εã+ ε−1 〈v〉2s+γ .

Then proceeding as in the proof of [25, Lemma 4.1.2], we conclude Jθ/2 (Dη · ∂va) belongs
to the same symbol class S (Mε, Γ) as Dη · ∂va, due to the fact that

Mε(v + z, η + ζ) ≤ CMε(v, η)H(〈z〉 , 〈ζ〉)

with H(〈z〉 , 〈ζ〉) being some polynomial of 〈z〉 , 〈ζ〉 and C a constant independent of ε.
Observe ã . aK due to Proposition 3.1. Then we have proven that the classical symbol of

the difference a(v,Dv) − aw lies in S
(
εa+ ε−1 〈v〉2s+γ , Γ

)
. The Weyl symbol therefore

also belongs to this class by direct transformation. The proof is complete.

Proposition 4.5. For any ε there exists a constant Cε such that

∀ f ∈ S(Rn
v ),

∥∥ 〈v〉2s+γ f
∥∥
L2 ≤ ε

∥∥awKf
∥∥
L2 + Cε

(∥∥(iv · ξ − L)f
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

)
. (42)

Proof. The starting point is the weight estimate

∀ f ∈ S(R6),
∥∥ 〈v〉s+

γ
2 f
∥∥2
L2 . Re ((iv · ξ − L)f, f)L2 +

∥∥ 〈v〉ℓ−s−γ/2 f
∥∥2
L2 , (43)

which is just an immediate consequence of the coercivity estimate established in [7].
Thanks to the explicit symbolic estimates for aw, we are able to give here a direct proof
of such a coercivity estimate. Indeed, let

L = L2 + L1,δ + L1,δ,a + L1,δ,b

be the splitting given in Section 2.2. Straightforward computation shows that

(−L1,δf, f)L2 =
1

2

∫∫
dv∗dσBϕδ(v

′ − v)
(
(µ′∗)

1/2f ′ − (µ∗)
1/2f

)2
≥ 0,

and

(
−L1,δ,bf, f

)
L2 &

∥∥ 〈v〉γ/2+s f
∥∥2
L2

because of Proposition 3.4, and

∣∣(L2,δf, f)L2

∣∣+
∣∣(L1,δ,af, f

)
L2

∣∣ .
∥∥ 〈v〉γ/2 f

∥∥2
L2

due to Lemma 2.1 and Lemma 2.3. These estimates, together with the fact that s > 0,
yield

∥∥ 〈v〉γ/2+s f
∥∥2
L2 . (−Lf, f)L2 + ε

∥∥ 〈v〉γ/2+s f
∥∥2
L2 + Cε,ℓ̃

∥∥ 〈v〉ℓ̃ f
∥∥2
L2

for any ε > 0 and any ℓ̃ ∈ R. This gives the estimate (43).

Now applying the estimate (43) to the function 〈v〉s+
γ
2 f yields

∥∥ 〈v〉2s+γ f
∥∥2
L2 . Re

(
(iv · ξ − L) 〈v〉s+

γ
2 f, 〈v〉s+

γ
2 f
)
L2

+
∥∥f
∥∥2
L2
ℓ

.
∣∣∣
(
(iv · ξ − L)f, 〈v〉2s+γ f

)
L2

∣∣∣+
∣∣∣
(
〈v〉s+

γ
2

[
L, 〈v〉s+

γ
2

]
f, f

)
L2

∣∣∣+
∥∥f
∥∥2
L2
ℓ

.
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This yields

∥∥ 〈v〉2s+γ f
∥∥2
L2 .

∥∥(iv · ξ − L)f
∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

+
∣∣∣
(
〈v〉s+

γ
2

[
L, 〈v〉s+

γ
2

]
f, f

)
L2

∣∣∣ . (44)

We have to treat the last term in the above estimate, which is bounded from above by

∣∣∣
(
〈v〉s+

γ
2

[
aw, 〈v〉s+

γ
2

]
f, f

)

L2

∣∣∣+
∣∣∣
(
〈v〉s+

γ
2

[
K, 〈v〉s+

γ
2

]
f, f

)

L2

∣∣∣ . (45)

We apply (33) and [25, Theorem 2.3.19] to conclude that for any ε ∈]0, 1[ the symbol of
the operator

〈v〉−(2s+γ−1) 〈v〉s+
γ
2

[
aw, 〈v〉s+

γ
2

]

belongs to

S
(
εaK + ε−1 〈v〉2s+γ , Γ

)

uniformly with respect to ε. Then Corollary 4.3 gives, with ε̃ arbitrarily small,

∣∣∣
(
〈v〉s+

γ
2

[
aw, 〈v〉s+

γ
2

]
f, f

)
L2

∣∣∣ .
(
ε
∥∥awKf

∥∥
L2 + ε−1

∥∥ 〈v〉2s+γ f
∥∥
L2

) ∥∥ 〈v〉2s+γ−1 f
∥∥
L2

. ε
∥∥awKf

∥∥2
L2 + ε̃

∥∥ 〈v〉2s+γ f
∥∥2
L2 + Cε,ε̃

∥∥f
∥∥2
L2
ℓ

,

where in the last inequality we used the interpolation inequality:

∥∥ 〈v〉2s+γ−1 f
∥∥
L2 ≤ ε̃

∥∥ 〈v〉2s+γ f
∥∥
L2 + Cε̃

∥∥f
∥∥
L2
ℓ

.

Now we have to deal with operator

〈v〉s+
γ
2

[
K, 〈v〉s+

γ
2

]

in (45). For this we split K into three parts :

K = −L2 − L1,δ,a︸ ︷︷ ︸
Ksmall

−L1,3,δ − L1,4,δ︸ ︷︷ ︸
Kmult

+ as(v,Dv) + (a(v,Dv)− aw)︸ ︷︷ ︸
Kpseudo

. (46)

For the second part Kmult, the estimate is easy since, as recalled in lemma 2.2 and 2.4,
operators L1,3,δ and L1,4,δ commute with the multiplication with a function of v. We
therefore have

∣∣∣
(
〈v〉s+

γ
2

[
Kmult, 〈v〉s+

γ
2

]
f, f

)
L2

∣∣∣ = 0.

For the first partKsmall of K in (46), we develop the commutators and use Cauchy Schwartz
inequality to get

∣∣∣
(
〈v〉s+

γ
2

[
Ksmall, 〈v〉s+

γ
2

]
f, f

)
L2

∣∣∣

. Cε

∥∥ 〈v〉−s− γ
2 L2 〈v〉s−

γ
2 〈v〉γ f

∥∥2 + Cε

∥∥L2 〈v〉−γ 〈v〉γ f
∥∥2

+ Cε

∥∥ 〈v〉−s− γ
2 L1,δ,a 〈v〉s−

γ
2 〈v〉γ f

∥∥2 + Cε

∥∥L1,δ,a 〈v〉−γ 〈v〉γ f
∥∥2

+ ε
∥∥ 〈v〉2s+γ f

∥∥2.
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We use then Lemmas 2.3 and 2.1 with either α = −s−γ/2, β = s−γ/2 or α = 0, β = −γ
(for which we have in both cases α+ β + γ ≤ 0) and we get

∣∣∣
(
〈v〉s+

γ
2

[
Ksmall, 〈v〉s+

γ
2

]
f, f

)

L2

∣∣∣ . C̃ε

∥∥ 〈v〉γ f
∥∥2 + ε

∥∥ 〈v〉2s+γ f
∥∥2

. C̃ε

∥∥f
∥∥2
L2
ℓ

+ 2ε
∥∥ 〈v〉2s+γ f

∥∥2

since s > 0.
Next we deal with the last part Kpseudo of K in (46). From Lemma 4.4, we already

know that Kpseudo belongs to

S
(
εa+ ε−1 〈v〉2s+γ , Γ

)

with uniform semi-norms with respect to ε. We follow the same strategy that after (45)
for commutators involving aw. Using that ∂v 〈v〉µ = O(〈v〉µ−1) for all µ ∈ R, and applying
[25, Theorem 2.3.19] (see also appendix), we get that for any ε ∈]0, 1[ the symbol of the
operator

〈v〉−(2s+γ−1) 〈v〉s+
γ
2

[
Kpseudo, 〈v〉s+

γ
2

]

belongs to

S
(
εaK + ε−1 〈v〉2s+γ , Γ

)

uniformly with respect to ε. Then Corollary 4.3 gives, with ε̃ arbitrarily small,
∣∣∣
(
〈v〉s+

γ
2

[
Kpseudo, 〈v〉s+

γ
2

]
f, f

)
L2

∣∣∣ .
(
ε
∥∥awKf

∥∥
L2 + ε−1

∥∥ 〈v〉2s+γ f
∥∥
L2

) ∥∥ 〈v〉2s+γ−1 f
∥∥
L2

. ε
∥∥awKf

∥∥2
L2 + ε̃

∥∥ 〈v〉2s+γ f
∥∥2
L2 + Cε,ε̃

∥∥f
∥∥2
L2
ℓ

.

Combining these estimates we obtain
∣∣∣
(
〈v〉s+

γ
2

[
K, 〈v〉s+

γ
2

]
f, f

)
L2

∣∣∣ . ε
∥∥awKf

∥∥2
L2 + ε̃

∥∥ 〈v〉2s+γ f
∥∥2
L2 + Cε,ε̃

∥∥f
∥∥2
L2
ℓ

.

Now taking into account (44), the desired estimate (42) follows if we choose ε̃ small enough.
The proof is thus complete. 2

In order to prove the main result, Proposition 4.1, we will need the conclusion in
Proposition 1.3. So let us firstly present the latter’s proof.

Proof of Proposition 1.3 ii) and iii). We have shown Proposition 1.3 iii) in Lemma
4.2. For the conclusion ii), let us rewrite the linearized Boltzmann operator L as

L = −aw + L2 + L1,δ,a + L1,3,δ + L1,4,δ − as(v,Dv)− (a(v,Dv)− aw)︸ ︷︷ ︸
−K

.

As a direct consequence of Lemma 2.1, Lemma 2.3, Lemma 2.2, Lemma 2.4 we have

∥∥ (L2 + L1,δ,a + L1,3,δ + L1,4,δ

)
f
∥∥
L2 .

∥∥ 〈v〉2s+γ f
∥∥
L2 .

Moreover from Lemma 4.4 we know that for any ε > 0,

Kpseudo ≡ −as(v,Dv)− (aw − a(v,Dv)) ∈ Opweyl

(
εa+ ε−1 〈v〉2s+γ , Γ

)
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uniformly with respect to ε, and thus
∥∥Kpseudof

∥∥
L2 . ε

∥∥awKf
∥∥+ ε−1

∥∥ 〈v〉2s+γ f
∥∥
L2

due to Corollary 4.3.
The proof of point ii) of Proposition 1.3 is complete. 2

The rest of this subsection is occupied by the

Proof of Proposition 4.1. Now supposing (39) holds, we have

∥∥ã(v, ξ)
1

1+2s f
∥∥+

∥∥awKf
∥∥ .

∥∥ (iv · ξ − L) f
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

+
∥∥
(
iv · ξ −L− P̂K

)
f
∥∥
L2 .

On the other hand, note that

iv · ξ − L− P̂K = aw +K − (a+K 〈v〉2s+γ)w = K −K 〈v〉2s+γ ,

and thus Proposition 1.3 yields, with ε arbitrarily small,

∥∥
(
iv · ξ − L− P̂K

)
f
∥∥
L2 . ε

∥∥awKf
∥∥
L2 +Cε

∥∥ 〈v〉2s+γ f
∥∥
L2

. ε
∥∥awKf

∥∥+ Cε

(∥∥(iv · ξ − L)f
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

)
,

the last inequality following from (42) . Combining these inequalities and letting the above
ε be small sufficiently, we get

∥∥ã(v, ξ)
1

1+2s f
∥∥+

∥∥awKf
∥∥ .

∥∥(iv · ξ − L)f
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

.

Taking into account the relation that

〈v〉γ/(2s+1) 〈ξ〉2s/(2s+1) + 〈v〉γ/(2s+1) 〈v ∧ ξ〉2s/(2s+1) ≈ ã(v, ξ)2s/(2s+1)

and that
∥∥ 〈v〉γ 〈Dv〉2s f

∥∥
L2 +

∥∥ 〈v〉γ 〈v ∧Dv〉2s f
∥∥
L2 +

∥∥ 〈v〉2s+γ f
∥∥
L2 .

∥∥awK
∥∥
L2

due to the conclusion (i) in Lemma 4.2, we obtain the desired estimate in Theorem 1.1.
The proof of Proposition 4.1 is complete. 2

4.2 Coercivity and boundedness estimates

In this section we prove the following result that can be understood as an exact estimate
for the so called triple norm introduced in [7] and recalled in Remark 4.7 below. It involves
the pseudodifferential part aw, for which we have elliptic properties stated in Proposition
1.3.

Lemma 4.6. We have for a sufficiently large constant C and for all l ∈ R with l ≤ γ/2+s,

∥∥ 〈v〉γ/2 〈Dv〉s f
∥∥2 +

∥∥ 〈v〉γ/2 〈v ∧Dv〉s f
∥∥2 +

∥∥ 〈v〉γ/2+s f
∥∥2

∼ (awf, f) + C
∥∥ 〈v〉γ/2+s f

∥∥2 ∼ − (Lf, f) +
∥∥ 〈v〉l f

∥∥2,

where in the last equivalence the constant depends on l.
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Proof. The second equivalence is a consequence of Proposition 1.3 and estimate (43),
while the first one holds because of the coercivity estimate (47) below, since

∥∥
(
a
1/2
K

)w
f
∥∥2
L2 ∼

∥∥ 〈v〉γ/2 〈Dv〉s f
∥∥2 +

∥∥ 〈v〉γ/2 〈v ∧Dv〉s f
∥∥2 +

∥∥ 〈v〉γ/2+s f
∥∥2

due to the conclusion (ii) in Lemma 4.2. 2

Remark 4.7 In [7], the authors introduced the following non-isotropic norm

|||f |||2 def
=

∫∫∫
Φ(|v − v∗|)b(cos θ)µ∗

(
f − f ′

)2
+

∫∫∫
Φ(|v − v∗|)b(cos θ)f2∗

(√
µ′ −√

µ
)2
,

where the integration is over R
3
v × R

3
v∗ × S

2
σ. For such a norm Theorem 1.1 of [7]) says,

with l ∈ R arbitrary (and equivalence norm depending on l),

∥∥ 〈v〉γ/2 〈Dv〉s f
∥∥2 +

∥∥ 〈v〉γ/2+s f
∥∥ . |||f |||2 . −

(
Lf, f

)
+ C2

∥∥ 〈v〉l f
∥∥2,

provided the Boltzmann cross-section B satisfies (3) with 0 < s < 1 and γ > −3. In
Proposition 4.6 above, we were able to exhibit the complete form of this triple norm |||f |||.

Now we focus on the more difficult subelliptic estimate stated in 1.1. we begin with
an other coercivity estimate for the Weyl quantization awK .

Lemma 4.8. Let P̂K be the operator defined at the beginning of Subsection 4.1. Then
there exists a positive number k0 > 0 such that for all K ≥ k0 and any f ∈ S(R3), we
have ∥∥

(
a
1/2
K

)w
f
∥∥2 ∼ (awKf, f)L2 = Re

(
P̂Kf, f

)
L2

(47)

and ∥∥
(
ã
1/2
K a

1/2
K

)w
f
∥∥2 ∼ ((ãKaK)w f, f)L2 . (48)

Proof. The argument is similar as in the proof of Lemma 4.2. Using (78) and (79), we
may write

(a
1/2
K )w(a

1/2
K )w = awK −Rw, (49)

where

R = −
∫ 1

0

(
∂η(a

1/2
K )

)
♯θ

(
∂v(a

1/2
K )

)
dθ +

∫ 1

0

(
∂v(a

1/2
K )

)
♯θ

(
∂η(a

1/2
K )

)
dθ

with g♯θh defined in (41). Using (33) for ε = K−1/4, we conclude

∂η(a
1/2
K ) ∈ S(K−1/4a

1/2
K , Γ)

uniformly with respect to K. On the other hand, it is clear that ∂v(a
1/2
K ) ∈ S(a

1/2
K , Γ).

As a result, [12, Proposition 1.1] yields

(
∂η(a

1/2
K )

)
♯θ

(
∂v(a

1/2
K )

)
,
(
∂v(a

1/2
K )

)
♯θ

(
∂η(a

1/2
K )

)
∈ S(K−1/4aK , Γ)
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uniformly w.r.t. K. Thus R ∈ S(K−1/4aK , Γ) uniformly w.r.t. K. Then the conclusion
(ii) in Lemma 4.2 allows us to rewrite Rw as

Rw = K−1/4(a
1/2
K )wK1/2

[
(a

1/2
K )w

]−1
Rw
[
(a

1/2
K )w

]−1

︸ ︷︷ ︸
∈B(L2) uniformly w.r.t. K

(a
1/2
K )w,

which gives

|(Rwf, f)L2 | ≤ C0K
−1/4

∥∥(a1/2K )wf
∥∥2

with C0 some constant independent of K. Taking into account the relation (49) we obtain

(awKf, f)L2 ≤
(
(a

1/2
K )w(a

1/2
K )wf, f

)
L2

+ C0K
−1/4

∥∥(a1/2K )wf
∥∥2 ≤ (C0 + 1)

∥∥(a1/2K )wf
∥∥2

and
(
(a

1/2
K )w(a

1/2
K )wf, f

)
L2

≤ (awKf, f)L2 + C0K
−1/4

∥∥(a1/2K )wf
∥∥2.

The desired estimate (47) follows if we take K sufficiently large such that K ≥ k0
def
= 16C4

0 .
Since the second estimate (48) can be deduced similarly by virtue of (iii) in Lemma 4.2,
we omit it here. The proof is thus complete. 2

Corollary 4.9. The following estimate

∀ f ∈ S(R3
v),

∥∥ 〈v〉2s+γ f
∥∥
L2 +

∥∥(a1/2K )w 〈v〉s+γ/2 f
∥∥
L2 .

∥∥P̂Kf
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

(50)

holds uniformly with respect to ξ.

Proof. We use the above coercivity estimate (47) to the function 〈v〉s+γ/2 f , and argue
as in the proof of Lemma 4.5; this gives the conclusions . 2

Corollary 4.10.

((
〈v〉2s+γ)Wick

f, f
)
L2

.
((
ã(v, η)

)Wick
f, f

)
L2

.
∣∣∣
(
P̂Kf, f

)
L2

∣∣∣ . (51)

Proof. The first inequality is due to the positivity of Wick quantization. The second
one is just an immediate consequence of (47) and Lemma 4.2, since we may write

(
ã(v, η)

)Wick
=
(
a
1/2
K

)w [(
a
1/2
K

)w]−1(
ã(v, η)

)Wick[(
a
1/2
K

)w]−1

︸ ︷︷ ︸
∈B(L2)

(
a
1/2
K

)w
.

The proof is complete.
2

41



4.3 Hypoelliptic estimates

We prove in this last subsection the main results, Theorem 1.1 and Theorem 1.2. As
explained in Proposition 4.1, we only work on P̂K instead of P . So in this subsection ξ
and τ are considered as parameters. Recall ã is defined in (31), whose explicit form, as
to be seen below, will be convenient for use. The main result we will show here can be
stated as follows.

Proposition 4.11. Under the conditions in Theorem 1, we have, for any ℓ ∈ R,

∥∥ã(v, ξ)
1

1+2s f
∥∥+

∥∥awKf
∥∥ .

∥∥P̂Kf
∥∥
L2 +

∥∥ 〈v〉ℓ f
∥∥
L2 .

We will prove the above proposition in several steps, following the multiplier strategy
announced in [22]. To this end we let, throughout this section, χ ∈ C∞

0 (R; [0, 1]) such
that χ = 1 in [−1, 1] and supp χ ⊂ [−2, 2], and let g be a symbol given by

g(v, η) = gξ(v, η) =
a3(v, η)

ã(v, ξ)
2s

1+2s

ψ(v, η), (52)

where

ψ(v, η) = χ

(
ã(v, η)

ã(v, ξ)
1

1+2s

)
(53)

and

a3(v, η) = 〈v〉γ
(
1 + |v|2 + |ξ|2 + |v ∧ ξ|2

)s−1 (
ξ · η + (v ∧ ξ) · (v ∧ η)

)
. (54)

The main property linking a3 and ã is that

{a3(v, η), v · ξ} = ã(v, ξ) − 〈v〉γ+2
(
1 + |v|2 + |ξ|2 + |v ∧ ξ|2

)s−1
. (55)

where {·, ·} is the Poisson bracket defined in (84). Thanks to the explicit symbolic esti-
mates for ã, g and ψ also have good behavior as symbols; that is,

g, ψ ∈ S(1, |dv|2 + |dη|2)

uniformly with respect to ξ. Moreover direct computation shows that

|ξ · ∂ηψ| . ã(v, η). (56)

Lemma 4.12. Under the conditions in Theorem 1, we have

∀ f ∈ S(R3),
∥∥ã(v, ξ)

1

1+2s f
∥∥2 .

∥∥P̂Kf
∥∥2
L2 +

∥∥f
∥∥
L2
ℓ

.

Proof. The proof is divided into three steps.
Step 1) Let gWick be the Wick quantization of the symbol g given in (52). We claim

∣∣∣
(
awKf, g

Wickf
)
L2

∣∣∣ .
∣∣∣
(
P̂Kf, f

)
L2

∣∣∣ . (57)

To confirm this, let’s write, denoting by H the inverse of
(
a
1/2
K

)w
,

(
awKf, g

Wickf
)
L2

=
(
HawKH

(
a1 2
K

)w
f,
(
a
1/2
K

)w
gWickH

(
a
1/2
K

)w
f
)
L2
.
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Note that HawKH and
(
a
1/2
K

)w
gWickH are bounded operators on L2 due to Lemma 4.2.

Then one has
∣∣∣
(
awKf, g

Wickf
)
L2

∣∣∣ .
∥∥
(
a
1/2
K

)w
f
∥∥2
L2 .

∣∣∣
(
P̂Kf, f

)
L2

∣∣∣ ,

the last inequality following from (47).
Step 2) We now prove

∥∥ã(v, ξ)
1

2+4s f
∥∥
L2 .

∥∥ã(v, ξ)−
1

2+4s P̂Kf
∥∥
L2 . (58)

Note that g ∈ S(1,Γ) and ã(v, ξ)r ∈ S (ã(v, ξ)r ,Γ) for any r ∈ R. Then the above estimate
will follow if we can show that

∥∥ã(v, ξ)
1

2+4s f
∥∥2
L2 .

∣∣∣
(
P̂Kf, f

)
L2

∣∣∣+
∣∣∣
(
P̂Kf, g

Wickf
)
L2

∣∣∣ . (59)

To prove the above inequality we make use of the relation

Re
(
i (v · ξ) f, gWickf

)
L2

= Re
(
P̂Kf, g

Wickf
)
L2

−Re
(
awKf, g

Wickf
)
L2

and (57), to conclude

Re
(
i (v · ξ) f, gWickf

)

L2
.
∣∣∣
(
P̂Kf, f

)

L2

∣∣∣+
∣∣∣
(
P̂Kf, g

Wickf
)

L2

∣∣∣ . (60)

Next we will give a lower bound of the term on the left hand side. Observe that by (82),

v · ξ = (v · ξ)Wick .

Then we have, by (83),

Re
(
i (v · ξ) f, gWickf

)

L2
=

1

4π

({
g, v · ξ

}Wick
f, f

)

L2
. (61)

Using (55) we compute

{
g, v · ξ

}

= ã(v, ξ)
1

1+2sψ −
〈v〉γ+2

(
1 + |v|2 + |ξ|2 + |v ∧ ξ|2

)s−1

ã(v, ξ)
2s

1+2s

ψ +
a3(v, η)

ã(v, ξ)
2s

1+2s

ξ · ∂ηψ

= ã(v, ξ)
1

1+2s − ã(v, ξ)
1

1+2s (1− ψ) −
〈v〉γ+2

(
1 + |v|2 + |ξ|2 + |v ∧ ξ|2

)s−1

ã(v, ξ)
2s

1+2s

ψ

+
a3(v, η)

ã(v, ξ)
2s

1+2s

ξ · ∂ηψ.

This along with (60) and (61) yields

((
ã(v, ξ)

1

1+2s
)Wick

f, f
)
L2

.

3∑

j=1

Tj +
∣∣∣
(
P̂Kf, f

)
L2

∣∣∣+
∣∣∣
(
P̂Kf, g

Wickf
)
L2

∣∣∣ , (62)
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with

T1 =

((
ã(v, ξ)

1

1+2s (1− ψ)
)Wick

f, f

)

L2

,

T2 =

((
〈v〉γ+2

(
1 + |v|2 + |ξ|2 + |v ∧ ξ|2

)s−1
ã(v, ξ)−

2s
1+2sψ

)Wick

f, f

)

L2

,

T3 =

((
− a3(v, η)

ã(v, ξ)
2s

1+2s

ξ · ∂ηψ
)Wick

f, f

)

L2

.

Note that ã(v, ξ)
1

1+2s ≤ ã(v, η) on the support of 1− ψ, and thus

ã(v, ξ)
1

1+2s (1− ψ) ≤ ã(v, η).

Then the positivity of Wick quantization gives

T1 .
(
(ã(v, η))Wick f, f

)
L2 .

∣∣∣
(
P̂Kf, f

)
L2

∣∣∣ , (63)

where the last inequality follows from (51). Similarly, observing

〈v〉γ+2
(
1 + |v|2 + |ξ|2 + |v ∧ ξ|2

)s−1
ã(v, ξ)−

2s
1+2sψ ≤ 〈v〉2s+γ ,

we have

T2 .

((
〈v〉2s+γ

)Wick
f, f

)

L2

.
∣∣∣
(
P̂Kf, f

)
L2

∣∣∣ . (64)

As for T3, it follows from (56) that

− a3(v, η)

ã(v, ξ)
2s

1+2s

ξ · ∂ηψ . ã(v, η).

Thus

T3 .
(
(ã(v, η))Wick f, f

)
L2 .

∣∣∣
(
P̂Kf, f

)
L2

∣∣∣ .

This, together with (62), (63) and (64), gives

((
ã(v, ξ)

1

1+2s
)Wick

f, f
)

L2
.
∣∣∣
(
P̂Kf, f

)

L2

∣∣∣+
∣∣∣
(
P̂Kf, g

Wickf
)

L2

∣∣∣ .

As a result the desired estimate (59) folows, since by (82),

(
ã(v, ξ)

1

1+2s
)Wick

=

∫
ã(v − ṽ, ξ)

1

1+2s e−2πṽ223dṽ,

which is bounded from below by ã(v, ξ)1/(1+2s) by direct verification (see for instance the
arguments used in the proof of [22, Lemma 3.14]).

Step 3) Now applying the inequality (59) to the function ã(v, ξ)
1

2+4s f , we get

∥∥ã(v, ξ)
1

1+2s f
∥∥
L2 .

∥∥ã(v, ξ)−
1

2+4s P̂K ã(v, ξ)
1

2+4s f
∥∥
L2

.
∥∥P̂Kf

∥∥
L2 +

∥∥ã(v, ξ)−
1

2+4s
[
awK , ã(v, ξ)

1

2+4s
]
f
∥∥
L2 .
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In view of (79), the symbol of ã(v, ξ)−1/(2+4s)
[
awK , ã(v, ξ)

1/(2+4s)
]
has the form

ã(v, ξ)−
1

2+4s

∫ 1

0
(∂ηaK) ♯θ

(
∂v(ã

1/(2+4s))
)
dθ,

which, arguing as in the proof of Lemma 4.2, belongs to

S
(
a1/2 〈v〉s+γ/2 , Γ

)
.

As a result, we can use (ii) in Lemma 4.2 to write

ã(v, ξ)−
1

2+4s
[
awK , ã(v, ξ)

1

2+4s
]

= ã(v, ξ)−
1

2+4s
[
awK , ã(v, ξ)

1

2+4s
]
〈v〉−(s+γ/2)

((
a
1/2
K

)w)−1

︸ ︷︷ ︸
∈ B(L2)

(a
1/2
K )w 〈v〉s+γ/2 .

This gives

∥∥ã(v, ξ)−
1

2+4s
[
awK , ã(v, ξ)

1

2+4s
]
f
∥∥
L2 .

∥∥(a1/2K )w 〈v〉s+γ/2 f
∥∥
L2

.
∥∥P̂Kf

∥∥
L2 +

∥∥f
∥∥
L2
ℓ

,

where the last inequality follows from (50). Combining these inequalities, we get the
desired estimate

∥∥ã(v, ξ)
1

1+2s f
∥∥
L2 .

∥∥P̂Kf
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

.

The proof of Lemma 4.12 is thus complete. 2

Lemma 4.13. Under the conditions in Theorem 1, we have, for any ℓ ∈ R,

∥∥awKf
∥∥
L2 .

∥∥P̂Kf
∥∥
L2 +

∥∥ 〈v〉ℓ f
∥∥
L2 .

Proof. The proof is divided into four steps. In what follows let ε > 0 be an arbitrarily
small number, which is to be determined later, and denote by Cε the different suitable
constants depending only on ε.

Step 1) We define ρε by

ρε(v, η) = χ

(
ã(v, ξ)

1

1+2s

εã(v, η)

)
,

where χ ∈ C∞
0 (R; [0, 1]) such that χ = 1 in [−1, 1] and supp χ ⊂ [−2, 2]. Let λ1,ε and λ2,ε

be two symbols defined by

λ1,ε(v, η) = ρε(v, η)ã(v, η) (65)

and

λ2,ε(v, η) =
(
1− ρε(v, η)

)
ã(v, η). (66)
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Then ρε(v, η) ∈ S (1, Γ),

λ1,ε, λ2,ε ∈ S (ã(v, η), Γ) and λ2,ε ∈ S
(
ε−1ã(v, ξ)

1

1+2s , Γ
)
, (67)

uniformly with respect to ξ and ε, due to the conclusion (i) in Proposition 1.3 and the

fact that ã(v, η) ≤ ε−1ã(v, ξ)
1

1+2s on the support of λ2,ε.
Step 2) Let λ1,ε(v, η) be given in (65). In this step we show

∣∣∣
([
v · ξ, λw1,ε

]
f, f

)

L2

∣∣∣ ≤ ε
∥∥awKf

∥∥2
L2 . (68)

In fact, the symbol of the above commutator
[
v · ξ, λw1,ε

]
is

− 1

2iπ
ξ · ∂ηλ1,ε(v, η),

which belongs to S
(
ε(1+2s)/2sã(v, η)2, Γ

)
uniformly with respect to ξ and ε, due to (34)

and the fact that

|ξ|+ |v ∧ ξ| . ã(v, ξ)
1

2s 〈v〉−
γ
2s ≤ ε

1+2s
2s ã(v, η)

1+2s
2s 〈v〉−

γ
2s

on the support of λ1,ε. Thus writing

[
v · ξ, λw1,ε

]
= εawK (awK)−1

[
v · ξ, λw1,ε

]
(awK)−1

︸ ︷︷ ︸
∈B(L2)

awK ,

we obtain
∣∣∣
([
v · ξ, λw1,ε

]
f, f

)
L2

∣∣∣ . ε
∥∥awKf

∥∥2
L2 .

This gives the desired upper bound. We have proven (68).
Step 3) Let λ2,ε(v, η) be given in (66). We claim

∣∣∣
([
v · ξ, λw2,ε

]
f, f

)
L2

∣∣∣ . ε
∥∥(v · ξ)f

∥∥2
L2 + Cε

(∥∥P̂Kf
∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

)
. (69)

To confirm this, we write
[
v · ξ, λw2,ε

]
= v · ξλw2,ε − λw2,εv · ξ; this gives

∣∣∣
([
v · ξ, λw2,ε

]
f, f

)
L2

∣∣∣ ≤ 2
∥∥ (v · ξ) f

∥∥
L2

∥∥λw2,εf
∥∥
L2 .

Moreover it follows from (67) that

∥∥λw2,εf
∥∥
L2 . ε−1

∥∥ã(v, ξ)1/(1+2s)f
∥∥
L2 . ε−1

(∥∥P̃f
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

)
,

the last inequality using Lemma 4.12. Combining these inequalities, we obtain the desired
estimate (69).

Step 4) Now we are ready to prove

∥∥awKf
∥∥2
L2 .

∥∥P̂Kf
∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

, (70)

which will follows if we can show that

|Re (i(v · ξ)f, ãwKf)L2 | . ε
∥∥awKf

∥∥2
L2 + Cε

(∥∥P̂Kf
∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

)
(71)
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and ∥∥awKf
∥∥2 ≤ Re (awKf, ã

w
Kf)L2 + ε

∥∥awKf
∥∥2 + Cε

(∥∥P̂Kf
∥∥2 +

∥∥f
∥∥2
)
, (72)

due to the relation

Re
(
P̂Kf, ã

w
Kf
)
L2

= Re (i(v · ξ)f, ãwKf)L2 +Re (awKf, ã
w
Kf)L2 .

To prove (71), we compute

|Re (i(v · ξ)f, ãwKf)L2 | =
∣∣∣∣
i

2

([
v · ξ, ãwK

]
f, f

)
L2

∣∣∣∣ =
∣∣∣∣
i

2

([
v · ξ, ãw

]
f, f

)
L2

∣∣∣∣

.
∣∣∣
([
v · ξ, λw1,ε

]
f, f

)
L2

∣∣∣+
∣∣∣
([
v · ξ, λw2,ε

]
f, f

)
L2

∣∣∣

with λ1,ε, λ2,ε defined in (65) and (66). Combining the above inequalities and the conclu-
sion in the previous two steps, we have

|Re (i(v · ξ)f, ãwKf)L2 | . ε
∥∥awKf

∥∥2
L2 + ε

∥∥(v · ξ)f
∥∥2
L2 + Cε

(∥∥P̂Kf
∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

)
.

This along with the relation

∥∥(v · ξ)f
∥∥2
L2 .

∥∥P̂Kf
∥∥2
L2 +

∥∥awKf
∥∥2
L2

implies the desired estimate (71).
We now prove (72). In view of (79) we may write

(ãK♯aK)w = (ãKaK)w + rw, (73)

where

r(Y ) =

∫ 1

0

∫∫
e−2iσ(Y −Y1,Y−Y2)/θ 1

2i
σ(∂Y1

, ∂Y2
)ã(Y1)aK(Y2)dY1dY2dθ/(πθ)

6.

Note that (33) also holds with a replaced by ãK or aK . Then by view of [12, Proposition
1.1], we can verify that

r ∈ S
(
a
3/2
K 〈v〉s+γ/2 , Γ

)
,

and thus we may use Lemma 4.2 to rewrite rw as

rw = ε1/2awK (awK)−1 rw 〈v〉−(s+γ/2) [(a1/2K

)w]−1

︸ ︷︷ ︸
∈B(L2)

ε−1/2
(
a
1/2
K

)w
〈v〉s+γ/2 .

This gives

|(rwf, f)L2 | . ε
∥∥awKf

∥∥2
L2 + ε−1

∥∥
(
a
1/2
K

)w
〈v〉s+γ/2 f

∥∥2
L2

. ε
∥∥awKf

∥∥2
L2 + ε−1

(∥∥P̂Kf
∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

)
,

the last inequality following from (50). Taking into account (73), one has

Re ((ãKaK)w f, f)L2 . Re (awKf, ãKf)L2 + ε
∥∥awKf

∥∥2
L2 + ε−2

(∥∥P̂Kf
∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

)
,
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which along with (48) yields

∥∥
(
ã
1/2
K a

1/2
K

)w
f
∥∥2
L2 . Re (awKf, ãKf)L2 + ε

∥∥awKf
∥∥2
L2 + ε−2

(∥∥P̂Kf
∥∥2
L2 +

∥∥f
∥∥2
L2
ℓ

)
.

Moreover note that ∥∥awKf
∥∥2
L2 .

∥∥
(
ã
1/2
K a

1/2
K

)w
f
∥∥2
L2

due to the conclusion (iii) in Lemma 4.2. Then the desired estimate (72) follows from the
above inequalities, completing the proof of Lemma 4.13. 2

Combining the conclusions in Lemma 4.12 and Lemma 4.13, we obtain Proposition
4.11. Thus Theorem 1.1 follows due to Proposition 4.1. Now it remains to do the

Proof of Theorem 1.2. Let τ be the dual variable of t and let P̂τ be the operator
defines as follows

P̂τ = iτ + iv · ξ − L = i (τ + v · ξ) + aw +K.
Just proceeding as in the proof of Lemma 4.12 and Lemma 4.13, we have the maximal
hypoelliptic estimate

∥∥ 〈v〉2s+γ f
∥∥
L2 +

∥∥ (τ + v · ξ) f
∥∥
L2 +

∥∥awf
∥∥
L2 +

∥∥ 〈v〉
γ

1+2s |ξ|
2s

1+2s f
∥∥
L2 .

∥∥P̂τf
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

.

(74)
Now it remains to prove

∥∥ 〈v〉
γ−2s
1+2s 〈τ〉

2s
1+2s f

∥∥
L2 .

∥∥P̂τf
∥∥
L2 +

∥∥f
∥∥
L2
ℓ

.

To do so, we compute

〈v〉
γ−2s
1+2s |τ |

2s
1+2s . 〈v〉

γ−2s
1+2s |τ + v · ξ|

2s
1+2s + 〈v〉

γ−2s
1+2s |v · ξ|

2s
1+2s

. 〈v〉
γ−2s
1+2s |τ + v · ξ|

2s
1+2s + 〈v〉

γ
1+2s |ξ|

2s
1+2s

. 〈v〉γ−2s + |τ + v · ξ|+ 〈v〉
γ

1+2s |ξ|
2s

1+2s ,

where the last inequality follows from the Young’s inequality:

〈v〉
γ−2s
1+2s |τ + v · ξ|

2s
1+2s ≤

(
〈v〉

γ−2s
1+2s

)1+2s

1 + 2s
+

2s

1 + 2s

(
|τ + v · ξ|

2s
1+2s

)(1+2s)/(2s)
.

As a result we have,

∥∥ 〈v〉
γ−2s
1+2s |τ |

2s
1+2s f

∥∥
L2 .

∥∥ (τ + v · ξ) f
∥∥
L2 +

∥∥ 〈v〉γ−2s f
∥∥
L2 +

∥∥ 〈v〉
γ

1+2s |ξ|
2s

1+2s f
∥∥
L2

.
∥∥P̂τf

∥∥
L2 +

∥∥f
∥∥
L2
ℓ

,

where the last inequality follows from (74). The proof of Theorem 1.2 is complete. 2

5 Appendix

In this section we briefly review some tools used through the proofs. The first section
is devoted to the links between some integral concerning the Boltzmann kernel. In the
second one recall some basic facts about the Weyl-Hörmander quantization, and in the
last one we recall some ideas and results about the Wick quantization.
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5.1 Integral representations

Throughout parts 2 and 3 of this paper, we change any time needed of integral represen-
tation for the singular Boltzmann kernel.

A basic formula

The first tool we use is the following Fubini-type formula, derived by rather explicit com-
putation:

Consider a measurable function 0 ≤ F (α, h) of variables h and α ∈ R
3. For any h ∈ R

3,
we denote by E0,h the (hyper-)vector plane orthogonal to h. Then

∫

R3
h

dh

∫

E0,h

dαf(α, h) =

∫

R3
α

dα

∫

E0,α

dh
|h|
|α|f(α, h). (75)

Carleman representation

The second formula is the so-called ω-representation. It says that we have the following
(almost) equalities when all sides are well-defined :

∫∫
dv∗dσb(cosθ)|v − v∗|γF (v, v∗, v′, v′∗)

= 4

∫

R3
h

dh

∫

E0,h

dα
1

|α + h| |h|b(cosθ)Φ(|h|)F (v, v + α− h, v − h, v + α)

∼
∫

R3
h

dh

∫

E0,h

dα11|α|≥|h|
1

|α+ h| |h|b
( |α|2 − |h|2

|α+ h|2
)
|α+h|γF (v, v+α− h, v− h, v+α).

These formulae are consequences of the following properties (see picture 2):

1. We make the change of variables (v∗, σ) 7−→ (α, h) with v′ = v − h, v∗ = v + α− h,
v′∗ = v + α.

2. Since we restricted by symmetrization to the case σ ·(v−v∗) ≥ 0 (which is equivalent
to cosθ ≥ 0), this implies |α| ≥ |h|. Note also that h ⊥ α and therefore |α + h|2 =
|α− h|2 = |α|2 + |h|2.

3. By immediate trigonometric properties we have cos θ = |α|2−|h|2
|α+h|2 and sin θ = 2|α| |h|

|α+h|2 .

From the singular behavior of the singular kernel we deduce

0 ≤ b(cos θ) ∼ Kθ−2−2s ∼ K̃(sin θ)−2−2s ∼ K̃
|α+ h|4+4s

|α|2+2s|h|2+2s
≡ |α+ h|2+2s

|h|2+2s
,

since |α|2 ≤ |α + h|2 ≤ 2|α|2, and where ≈ means that the ratio is bounded from below
and above by universal constants. At the end we get

∫∫
dv∗dσb(cosθ)Φ(|v − v∗|)F (v, v∗, v′, v′∗)

=

∫

R3
h

dh

∫

E0,h

dαb̃(α, h)11|α|≥|h|
|α+ h|γ+1+2s

|h|3+2s
F (v, v + α− h, v − h, v + α). (76)
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θ

v′

v
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∗
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θ/2

Figure 2: σ and Carleman representations

where b̃(α, h) is bounded from below and above by positive constants, and b̃(α, h) =
b̃(±α,±h). Figure 2 shows the preceding relations between all vectors and angles.

The cancellation lemma

We give here an other formula, in a slightly different version than the original one presented
in [11]. We consider a function G(|v − v∗|, |v − v′|). Then for smooth f , we have

(∫∫
dv∗dσG(|v − v∗|, |v − v′|)b(cos θ)

(
f ′∗ − f∗

))
= S ∗v∗ f(v),

where for all z ∈ R
3, S has the following expression

S(z) =2π

∫ π/2

0
dθ sin θb(cos θ)

(
G

( |z|
cos θ

2

,
|z|

cos θ
2

sin
θ

2

)
cos−3 θ

2
−G(|z|, |z| sin θ

2
)

)

This applies in particular to functions of type

G(|v − v∗|, |v − v′|, cos θ) = b(cos θ)|v − v∗|γϕ(v − v′).

5.2 Weyl-Hörmander calculus

We recall here some notations and basic facts of symbolic calculus, and refer to [23, Chapter
18] for detailed discussion on the pseudo-differential calculus.

From now on we pose Γ = |dv|2 + |dη|2, and let M be an admissible weight function.
Considering symbols q(ξ, v, η) as a function of (v, η) with parameters ξ, we say that q ∈
S (M,Γ) uniformly with respect to ξ, if

∀ α, β ∈ Z
3
+, ∀ v, η ∈ R

3,
∣∣∣∂αv ∂βη q(ξ, v, η)

∣∣∣ ≤ Cα,βM,

with Cα,β a constant depending only on α and β, but independent of ξ. For simplicity of
notations, in the sequel discussion we omit the parameters in symbols, and by q ∈ S(M,Γ)
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we always mean that q satisfies the above inequality uniformly with respect to ξ. The space
S(M,Γ) endowed with the seminorms

∥∥q
∥∥
k;S(m,Γ)

= max
0≤|α|+|β|≤k

sup
(v,η)∈R6

∣∣∣M(v, η)−1∂αv ∂
β
η q(v, η)

∣∣∣ ,

becomes a Frchet space. Denote by Op (S(M,Γ)) the class of pseudo-differential operators
qw with q ∈ S (M,Γ). Here qw stands for the Weyl quantization of symbol q, defined by

qwu(v) =
1

(2π)6

∫

R6

ei(v−z)·ηq

(
v + z

2
, η

)
u(z) dzdη.

An elementary property to be used frequently is the L2 continuity theorem in the class
S (1, g), which says that there exists a constant C and a positive integer N , depending
only the dimension, such that

∀ u ∈ L2,
∥∥qwu

∥∥
L2 ≤ C

∥∥q
∥∥
N ;S(1,Γ)

∥∥u
∥∥
L2 . (77)

We just recall here the composition formula of Weyl quantization. Given pi ∈ S(Mi,Γ)
we have

pw1 p
w
2 = (p1♯p2)

w (78)

with p1♯p2 ∈ S (M1M2, Γ) admitting the expansion

p1♯p2 = p1p2+

∫ 1

0

∫∫
e−2iσ(Y −Y1,Y−Y2)/θ 1

2i
σ(∂Y1

, ∂Y2
)p1(Y1)p2(Y2)dY1dY2dθ/(πθ)

6, (79)

where σ is a symplectic form in R
6 given by

σ
(
(z, ζ), (z̃, ζ̃)

)
= ζ · z̃ − ζ̃ · z.

Given q ∈ S(M,Γ), we have the formula of changing quantization (see Proposition 1.1.10
and Lemma 4.1.2 of [25]):

qw =
(
J1/2q

)
(v,Dv), (80)

where J1/2 : S ′ → S ′ is defined by

(J1/2q)(v.η) = 2n
∫∫

e−4iπy·ζq(v + z, η + ζ)dzdζ. (81)

5.3 Wick quantization

Finally let’s recall some basic properties of the Wick quantization, and refer the reader to
the works of Lerner [27, 26, 25] for thorough and extensive presentations of this quanti-
zation and some of its applications. Let Y = (v, η) be a point in R

6. The wave-packets
transform of a function u ∈ S

(
R
3
v

)
is defined by

Wu(Y ) = (u, ϕY )L2(R3
v)

= 23/4
∫

R3

u(z)e−π|z−v|2e2iπ(z−v/2)·η dz,

with
ϕY (z) = 23/4e−π|z−v|2e2iπ(z−v/2)·η , z ∈ R

3.
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Then W is an isometric mapping from L2(R3
v) to L

2(R6) with adjoint W ∗. We define the
Wick quantization of any L∞ symbol q as

pWick =W ∗pW.

The main property of the Wick quantization is the positivity, i.e.,

q(v, η) ≥ 0 for all (v, η) ∈ R
6 implies qWick ≥ 0.

According to Proposition 2.4.3 in [25], the Wick and Weyl quantizations of a symbol q are
linked by the following identities

qWick =
(
q ∗ 23e−2π|·|2

)w
= qw + rw (82)

with

r(Y ) =

∫ 1

0

∫

R6

(1− θ)q′′(Y + θZ)Z2e−2π|Z|223 dZdθ.

We also recall the following composition formula obtained in the proof of Proposition 3.4
in [27]

qWick
1 qWick

2 =
[
q1q2 −

1

4π
q′1 · q′2 +

1

4iπ

{
q1, q2

}]Wick
+ T, (83)

with T a bounded operator in L2(R2n), when q1 ∈ L∞(R2n) and q2 is a smooth symbol
whose derivatives of order ≥ 2 are bounded on R

6. The notation {q1, q2} denotes the
Poisson bracket defined by

{
q1, q2

}
=
∂q1
∂η

· ∂q2
∂v

− ∂q1
∂v

· ∂q2
∂η

. (84)
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