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In the last chapter of his book "The Algebraic Theory of Modular Systems " published in 1916, F. S. Macaulay developped specific techniques for dealing with "unmixed polynomial ideals " by introducing what he called "inverse systems ". The purpose of this paper is to extend such a point of view to differential modules defined by linear multidimensional systems, that is by linear systems of ordinary differential (OD) or partial differential (PD) equations of any order, with any number of independent variables, any number of unknowns and even with variable coefficients. The first and main idea is to replace unmixed polynomial ideals by pure differential modules. The second idea is to notice that a module is 0-pure if and only if it is torsion-free and thus if and only if it admits an " absolute parametrization " by means of arbitrary potential like functions, or, equivalently, if it can be embedded into a free module by means of an " absolute localization ". The third idea is to refer to a difficult theorem of algebraic analysis saying that an r-pure module can be embedded into a module of projective dimension r, that is a module admitting a projective resolution with exactly r operators. The fourth and final idea is to establish a link between the use of extension modules for such a purpose and specific formal properties of the underlying multidimensional system through the use of involution and a "relative localization " leading to a " relative parametrization ". The paper is written in a rather effective self-contained way and we provide many explicit examples that should become test examples for a future use of computer algebra.

1) INTRODUCTION :

Let D = K[d 1 , ..., d n ] = K[d] be the ring of differential operators with coefficients in a differential field K with n commuting derivations ∂ 1 , ..., ∂ n and commutation relations d i a = ad i +∂ i a, ∀a ∈ K. If y 1 , ..., y m are m differential indeterminates, we may identify Dy 1 + ... + Dy m = Dy with D m and consider the finitely presented left differential module M with presentation D p → D m → M → 0 determined by a given linear multidimensional system with n independent variables, m unknowns and p equations. Applying the functor hom D (•, D), we get the exact sequence 0 → hom D (M, D) → D m → D p -→ N -→ 0 of right differential modules that can be transformed by a side-changing functor to an exact sequence of finitely generated left differential modules. This new presentation corresponds to the formal adjoint ad(D) of the linear differential operator D determined by the initial presentation but now with p unknowns and m equations, obtaining therefore a new finitely generated left differential module N and we may consider hom D (M, D) as the module of equations of the compatibility conditions (CC) of ad(D), a result not evident at all (Compare to [START_REF] Pommaret | QUADRAT: Localization and parametrization of linear multidimensional control systems[END_REF]). Using now a maximum free submodule 0 -→ D l -→ hom D (M, D) and repeating this standard procedure while using the well known fact that ad(ad(D)) = D, we obtain therefore an embedding 0 → hom D (hom D (M, D), D) → D l of left differential modules for a certain integer 1 ≤ l < m because K is a field and thus D is a noetherian bimodule over itself, a result leading to l = rk D (hom D (M, D)) = rk D (M ) < m as in ( [START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF], p 178,201)(See section 3 for the definition of the differential rankrk D ). Now, the kernel of the map ǫ : M → hom D (hom D (M, D), D) : m → ǫ(m)(f ) = f (m), ∀f ∈ hom D (M, D) is the torsion submodule t(M ) ⊆ M and ǫ is injective if and only if M is torsion-free, that is t(M ) = 0. In that case, we obtain by composition an embedding 0 → M → D l of M into a free module that can also be obtained by localization if we introduce the ring of fractions S -1 D = DS -1 when S = D -{0}. This result is quite important for applications as it provides a (minimum) parametrization of the linear differential operator D and amounts to the controllability of a classical control system when n = 1 ( [START_REF] Pommaret | QUADRAT: Localization and parametrization of linear multidimensional control systems[END_REF], p 258). This parametrization will be called an "absolute parametrization " as it only involves arbitrary "potential-like " functions (See [START_REF] Bjork | Analytic D-modules and Applications[END_REF], [START_REF] Kashiwara | Algebraic Study of Systems of Partial Differential Equations[END_REF], [START_REF] Pommaret | Partial Differential Control Theory[END_REF], [START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF], [START_REF] Pommaret | Parametrization of Cosserat Equations[END_REF], [START_REF] Pommaret | QUADRAT: Localization and parametrization of linear multidimensional control systems[END_REF], [START_REF] Pommaret | QUADRAT: Algebraic Analysis of Linear Multidimensional Control Systems[END_REF] and [START_REF] Zerz | Topics in Multidimensional Linear Systems Theory[END_REF] for more details and examples, in particular that of Einstein equations).

The purpose of this paper is to extend suh a result to a much more general situation, that is when M is not torsion-free, by using unexpected results first found by F.S. Macaulay in 1916 through his study of "inverse systems " for "unmixed polynomial ideals ".

For this we define the purity filtration : 0 = t n (M ) ⊆ t n-1 (M ) ⊆ ... ⊆ t 1 (M ) ⊆ t 0 (M ) = t(M ) ⊆ M by introducing t r (M ) = {m ∈ M | cd(Dm) > r} where the codimension of Dm is n minus the dimension of the characteristic variety determined by m in the corresponding system for one unknown. The module M is said to be r-pure if t r (M ) = 0, t r-1 (M ) = M or, equivalently, if cd(M ) = cd(N ) = r, ∀N ⊂ M and a torsion-free module is a 0-pure module. Moreover, when K = k = cst(K) is a field of constants and m = 1, a pure module is unmixed in the sense of Macaulay, that is defined by an ideal having an equidimensional primary decomposition.

Example 1.1 : As an elementary example with K = k = Q, m = 1, n = 2, p = 2, the differential module defined by d 22 y = 0, d 12 y = 0 is not pure because z ′ = d 2 y satisfies d 2 z ′ = 0, d 1 z ′ = 0 while z" = d 1 y only satisfies d 2 z" = 0 and ((χ 2 ) 2 , χ 1 χ 2 ) = (χ 1 ) ∩ (χ 1 , χ 2 ) 2 . We obtain therefore the purity filtration 0 = t 2 (M ) ⊂ t 1 (M ) ⊂ t 0 (M ) = t(M ) = M with strict inclusions as 0 = z ′ ∈ t 1 (M ) while z" ∈ t 0 (M ) but z" / ∈ t 1 (M ).

From the few (difficult) references ( [START_REF] Bjork | Analytic D-modules and Applications[END_REF], [START_REF] Kashiwara | Algebraic Study of Systems of Partial Differential Equations[END_REF], [START_REF] Palamodov | Linear Differential Operators with Constant Coefficients[END_REF], [START_REF] Pommaret | Partial Differential Control Theory[END_REF], [START_REF] Quadrat | Une Introduction à l'Analyse Algébrique Constructive et à ses Applications[END_REF]) dealing with extension modules ext r (M ) = ext r D (M, D) and purity in the framework of algebraic analysis, it is known that M is r-pure if and only if there is an embedding 0 → M → ext r D (ext r D (M, D), D). Indeed, the case r = 0 is exactly the one already considered because ext 0 D (M, D) = hom D (M, D) and the ker/coker exact sequence: 0 -→ ext 1 (N ) -→ M -→ ext 0 (ext 0 (M )) -→ ext 2 (N ) -→ 0 allows to test the torsion-free property of M in actual practice by using the double-duality formula t(M ) = ext 1 (N ) as in ( [START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF]). Also, when r ≥ 1, a similar construction that we shall recall and illustrate in section 4 provides a finitely generated module L with projective dimension pd D (L) = r, that is a minimum resolution of L with only r operators, and an embedding 0 → M → L that allows to exhibit a relative parametrization of D because now the parametrizing potential-like functions are no longer arbitrary but must only depend on arbitrary functions of nr variables.

Example 1.2 : With K = k = Q, m = 2, n = 3, r = 1, the differential module M defined by the involutive system Φ 1 ≡ d 3 y 1 = 0, Φ 2 ≡ d 3 y 2 = 0, Φ 3 ≡ d 2 y 1d 1 y 2 = 0 is 1-pure and admits the resolution 0 -→ D -→ D 3 -→ D 2 -→ M -→ 0. The differential module L defined by the system d 3 z = 0 is also 1-pure and admits the resolution 0 -→ D -→ D -→ L -→ 0. We finally obtain the relative parametrization y 1 = d 1 z, y 2 = d 2 z providing the strict inclusion M ⊂ L.

In a simple way, this result can be considered as a measure of how far a module is from being projective, recalling that a module P is projective if there exists another (projective) module Q and a free module F such that P ⊕ Q ≃ F .

We adapt the "relative localization" technique used by Macaulay and combine it with the "involution" technique used in the formal theory of systems of partial differential equations in order to obtain an explicit procedure for determining L when M is given. Many examples will illustrate these new methods that avoid the previous abstract arguments based on "double duality". In particular, original non-commutative examples will also be presented. However, we point out the fact that the latter method can be adapted without any change to the case of systems with variables coefficients as it only depends on the use of adjoint operators but the following example will explain by itself the type of difficulty involved.

Example 1.3 : Starting now with K = Q(x 1 , x 2 ), m = 2, n = 3, r = 1, the new differential module M defined by d 3 y 1 = 0, d 3 y 2 = 0, d 2 y 1 -d 1 y 2 + x 2 y 2 =
0 is also 1-pure and the differential module L is again defined by d 3 z = 0 as in the previous example. However we obtain the totally different relative parametrization

y 1 = d 12 z -x 2 d 2 z + z, y 2 = d 22 z providing the strict inclusion M ⊂ L.
More generally, we may consider a constant parameter a ∈ k = Q and consider the new system d 3 y 1 = 0, d 3 y 2 = 0, d 2 y 1d 1 y 2 + ax 2 y 2 = 0 depending on a. For a = 0 we find back the case of the previous example and we let the reader wonder why the situation only changes when a = 0.

The content of the paper is just following the introduction.

In section 2 we recall the definitions and results from the formal theory of systems of OD/PD equations that will be crucially used in the sequel. We pay a particular emphasize to the definition of involution and the way to introduce the Spencer operator in this framework. We also study the possibility and difficulty to use computer algebra in this framework.

In section 3 we recall the basic tools needed from module theory and homological algebra in a way adapted to our purpose, in particular the definition of the extension modules, and provide a few of their properties which, though well known by specialists of algebraic analysis, cannot be found easily in the literature. Meanwhile, we provide a few links with the preceding section which are not so well known. Many explicit examples will illustrate the main concepts in the commutative (constant field k) and the non-commutative (differential field K) framework.

In section 4 we shall recall the proof of the theorem already quoted showing how to embed an r-pure module M into another module L with projrective dimension equal to r. We shall provide for the first time explicit computations of this result in order to point out the difficulty encountered in such a procedure as a motivation for avoiding it.

In section 5 we extend the work of Macaulay, showing why only pure modules can fit with relative localization in a coherent way with what happens for torsion-free modules. Meanwhile, we shall extend for the first time this work to the non-commutative framework, showing in particular that the operator introduced by Macaulay ( [START_REF] Macaulay | The Algebraic Theory of Modular Systems[END_REF], §60) for studying inverse systems is nothing else than the Spencer operator. Many explicit examples, including highly non-trivial ones provided by Macaulay himself, will be fully treated in such a way that any engineer, even with a poor knowledge of homological algebra, will nevertheless become intuitively able to understand and apply these new techniques without reading the previous sections, just comparing to the way the same examples have been treated in section 4 by means of another approach.

2) TOOLS FROM SYSTEM THEORY :

If X is a manifold of dimension n with local coordinates (x) = (x 1 , ...x n ), we denote as usual by T = T (X) the tangent bundle of X, by T * = T * (X) the cotangent bundle, by ∧ r T * the bundle of r-forms and by S q T * the bundle of q-symmetric tensors. More generally, let E be a vector bundle over X, that is (roughly) a manifold with local coordinates (x i , y k ) for i = 1, ..., n and k = 1, ..., m simply denoted by (x, y), projection π : E → X : (x, y) → (x) and changes of local coordinates x = ϕ(x), ȳ = A(x)y. If E and F are two vector bundles over X with respective local coordinates (x, y) and (x, z), we denote by E× X F the fibered product of E and F over X as the new vector bundle over X with local coordinates (x, y, z). We denote by f : X → E : (x) → (x, y = f (x)) a global section of E, that is a map such that π • f = id X but local sections over an open set U ⊂ X may also be considered when needed. Under a change of coordinates, a section transforms like f (ϕ(x)) = A(x)f (x) and the derivatives transform like:

∂ f l ∂ xr (ϕ(x))∂ i ϕ r (x) = (∂ i A l k (x))f k (x) + A l k (x)∂ i f k (x)
We may introduce new coordinates (x i , y k , y k i ) transforming like:

ȳl r ∂ i ϕ r (x) = (∂ i A l k (x))y k + A l k (x)y k i
We shall denote by J q (E) the q-jet bundle of E with local coordinates (x i , y k , y k i , y k ij , ...) = (x, y q ) called jet coordinates and sections

f q : (x) → (x, f k (x), f k i (x), f k ij (x), ...) = (x, f q (x)) transforming like the sections j q (f ) : (x) → (x, f k (x), ∂ i f k (x), ∂ ij f k (x), ...) = (x, j q (f )(x))
where both f q and j q (f ) are over the section f of E. Of course J q (E) is a vector bundle over X with projection π q while J q+r (E) is a vector bundle over J q (E) with projection π q+r q , ∀r ≥ 0. DEFINITION 2.1: A linear system of order q on E is a vector sub-bundle R q ⊂ J q (E) and a solution of R q is a section f of E such that j q (f ) is a section of R q .

Let µ = (µ 1 , ..., µ n ) be a multi-index with

length |µ| = µ 1 + ... + µ n , class i if µ 1 = ... = µ i-1 = 0, µ i = 0 and µ + 1 i = (µ 1 , ..., µ i-1 , µ i + 1, µ i+1 , ..., µ n ). We set y q = {y k µ |1 ≤ k ≤ m, 0 ≤ |µ| ≤ q} with y k µ = y k when |µ| = 0.
If E is a vector bundle over X with local coordinates (x i , y k ) for i = 1, ..., n and k = 1, ..., m, we denote by J q (E) the q-jet bundle of E with local coordinates simply denoted by (x, y q ) and sections

f q : (x) → (x, f k (x), f k i (x), f k ij (x), ...) transforming like the section j q (f ) : (x) → (x, f k (x), ∂ i f k (x), ∂ ij f k (x), ...) when f is an arbitrary section of E.
Then both f q ∈ J q (E) and j q (f ) ∈ J q (E) are over f ∈ E and the Spencer operator just allows to distinguish them by introducing a kind of "difference" through the operator D :

J q+1 (E) → T * ⊗ J q (E) : f q+1 → j 1 (f q ) -f q+1 with local components (∂ i f k (x) -f k i (x), ∂ i f k j (x) -f k ij (x), ...) and more generally (Df q+1 ) k µ,i (x) = ∂ i f k µ (x) -f k µ+1i (x)
. In a symbolic way, when changes of coordinates are not involved, it is sometimes useful to write down the components of D in the form d i = ∂ iδ i and the restriction of D to the kernel S q+1 T * ⊗ E of the canonical projection π q+1 q : J q+1 (E) → J q (E) is minus the Spencer map δ = dx i ∧ δ i : S q+1 T * ⊗ E → T * ⊗ S q T * ⊗ E. The kernel of D is made by sections such that f q+1 = j 1 (f q ) = j 2 (f q-1 ) = ... = j q+1 (f ). Finally, if R q ⊂ J q (E) is a system of order q on E locally defined by linear equations Φ τ (x, y q ) ≡ a τ µ k (x)y k µ = 0 and local coordinates (x, z) for the parametric jets up to order q, the r-prolongation R q+r = ρ r (R q ) = J r (R q ) ∩ J q+r (E) ⊂ J r (J q (E)) is locally defined when r = 1 by the linear equations Φ τ (x, y q ) = 0, d i Φ τ (x, y q+1 ) ≡ a τ µ k (x)y k µ+1i + ∂ i a τ µ k (x)y k µ = 0 and has symbol g q+r = R q+r ∩ S q+r T * ⊗ E ⊂ J q+r (E) if one looks at the top order terms. If f q+1 ∈ R q+1 is over f q ∈ R q , differentiating the identity a τ µ k (x)f k µ (x) ≡ 0 with respect to x i and substracting the identity

a τ µ k (x)f k µ+1i (x)+∂ i a τ µ k (x)f k µ (x) ≡ 0, we obtain the identity a τ µ k (x)(∂ i f k µ (x)-f k µ+1i (x)
) ≡ 0 and thus the restriction D : R q+1 → T * ⊗ R q ([17], [START_REF] Pommaret | Partial Differential Control Theory[END_REF], [START_REF] Spencer | Overdetermined Systems of Partial Differential Equations[END_REF]). DEFINITION 2.2: R q is said to be formally integrable when the restriction π q+r+1 q+r : R q+r+1 → R q+r is an epimorphism ∀r ≥ 0 or, equivalently, when all the equations of order q + r are obtained by r prolongations only ∀r ≥ 0. In that case, R q+1 ⊂ J 1 (R q ) is a canonical equivalent formally integrable first order system on R q with no zero order equations, called the Spencer form.

Finding an intrinsic test has been achieved by D.C. Spencer in 1970 ([30]) along coordinate dependent lines sketched by M. Janet in 1920 ( [START_REF] Janet | Sur les Systèmes aux dérivées partielles[END_REF]) and W. Gröbner in 1940 ( [START_REF] Buchberger | Gröbner bases: an Algorithmic Methods in Polynomial Ideal Theory[END_REF], [START_REF] Öbner | Über die Algebraischen Eigenschaften der Integrale von Linearen Differentialgleichungen mit Konstanten Koeffizienten[END_REF]). The key ingredient, missing in the old approach, is provided by the following definition.

Let T * be the cotangent vector bundle of 1-forms on X and ∧ s T * be the vector bundle of s-forms on X with usual bases {dx I = dx i1 ∧ ... ∧ dx is } where we have set I = (i 1 < ... < i s ). Moreover, introducing the exterior derivative d : ∧ s T * -→ ∧ s+1 T * : ω = ω I (x)dx I -→ dω = ∂ i ω I (x)dx i ∧ dx I , we have d 2 = d • d = 0 and may introduce the Poincaré sequence:

∧ 0 T * d -→ ∧ 1 T * d -→ ∧ 2 T * d -→ ... d -→ ∧ n T * -→ 0 PROPOSITION 2.3: There exists a map δ : ∧ s T * ⊗ S q+1 T * ⊗ E → ∧ s+1 T * ⊗ S q T * ⊗ E which restricts to δ : ∧ s T * ⊗ g q+1 → ∧ s+1 T * ⊗ g q and δ 2 = δ • δ = 0.
Proof: Let us introduce the family of s-forms ω = {ω k µ = v k µ,i dx I } and set (δω

) k µ = dx i ∧ ω k µ+1i . We obtain at once (δ 2 ω) k µ = dx i ∧ dx j ∧ ω k µ+1i+1j = 0. Q.E.D.
The kernel of each δ in the first case is equal to the image of the preceding δ but this may no longer be true in the restricted case and we set: DEFINITION 2.4: We denote by H s q+r (g q ) the cohomology at ∧ s T * ⊗ g q+r of the restricted δ-sequence which only depends on g q . The symbol g q is said to be s-acyclic if H 1 q+r = ... = H s q+r = 0, ∀r ≥ 0, involutive if it is n-acyclic and finite type if g q+r = 0 becomes trivially involutive for r large enough. DEFINITION 2.5: R q is said to be involutive when it is formally integrable and its symbol g q is involutive, that is to say all the sequences ...

δ → ∧ s T * ⊗ g q+r δ → ... are exact ∀0 ≤ s ≤ n, ∀r ≥ 0.
Equivalently, the following procedure, where one may have to change linearly the independent variables if necessary, is the heart towards the next effective definition of involution. It is intrinsic even though it must be checked in a particular coordinate system called δ-regular ( [START_REF] Pommaret | Partial Differential Equations and Group Theory: New Perspectives for Applications[END_REF], [START_REF] Pommaret | Partial Differential Control Theory[END_REF],[29]) and is particularly simple for first order systems without zero order equations.

• Equations of class n: Solve the maximum number β n q of equations with respect to the jets of order q and class n. Then call (x 1 , ..., x n ) multiplicative variables.

----------------• Equations of class i ≥ 1: Solve the maximum number β i q of remaining equations with respect to the jets of order q and class i. Then call (x 1 , ..., x i ) multiplicative variables and (x i+1 , ..., x n ) non-multiplicative variables.

- ----------------• Remaining equations equations of order ≤ q -1: Call (x 1 , ..., x n ) non-multiplicative variables.

In actual practice, we shall use a multiplicative board where the multiplicative "variables" are represented by their index in upper left position while the non-multiplicative variables are represented by dots in lower right position. DEFINITION 2.6: A system of PD equations is said to be involutive if its first prolongation can be achieved by prolonging its equations only with respect to the corresponding multiplicative variables. In that case, we may introduce the characters α i q = m (q+n-i-1)! (q-1)!((n-i)! -β i q for i = 1, ..., n and we have dim(g q+1 ) = α 1 q + ... + α n q . Moreover, one can exhibit the Hilbert polynomial dim(R q+r ) in r with leading term (α/d!)r d with d ≤ n when α is the smallest non-zero character in the case of an involutive symbol. Such a prolongation allows to compute in a unique way the principal (pri) jets from the parametric (par) other ones. This definition may also be applied to nonlinear systems as well.

REMARK 2.7: For an involutive system with β = β n q < m, then (y β+1 , ..., y m ) can be given arbitrarily and may constitute the input variables in control theory, though it is not necessary to make such a choice. In this case, the intrinsic number α = α n q = mβ > 0 is called the n-character and is the system counterpart of the so-called "differential transcendence degree" in differential algebra. As we shall see in the next section, the smallest non-zero character and the number of zero characters are intrinsic numbers that cannot be known without bringing the system to involution and we have α 1 q ≥ ... ≥ α n q ≥ 0.

EXAMPLE 2.8: ([11], §38, p 40 where one can find the first intuition of formal integrability) The primary ideal q = ((χ 1 ) 2 , χ 1 χ 3χ 2 ) provides the system y 11 = 0, y 13y 2 = 0 which is neither formally integrable nor involutive. Indeed, we get d 3 y 11d 1 (y 13y 2 ) = y 12 and d 3 y 12d 2 (y 13y 2 ) = y 22 , that is to say each first and second prolongation does bring a new second order PD equation. Considering the new system y 22 = 0, y 12 = 0, y 13 -y 2 = 0, y 11 = 0, the question is to decide whether this system is involutive or not. One could use Janet or Gröbner algorithm but with no insight towards involution. In such a simple situation, as there is no PD equation of class 3, two evident permutations of coordinates (1, 2, 3) → (3, 2, 1) or (1, 2, 3) → (2, 3, 1) both provide one equation of class 3, 2 equations of class 2 and 1 equation of clas 1. It is then easy to check directly that the first permutation brings the involutive system y 33 = 0, y 23 = 0, y 22 = 0, y 13y 2 = 0 that will be used in the sequel and we have α

3 2 = 0, α 2 2 = 0, α 1 2 = 2. EXAMPLE 2.9: With n = 4, m = 1, q = 1, K = Q(x 1 , x 2 , x 3 , x 4
), let us consider the system R 1 :

{y 4 -x 3 y 2 -y = 0, y 3 -x 4 y 1 = 0
Again, the reader will check easily that the subsystem

R ′ 1 ⊂ R 1 :    u ≡ y 4 -x 3 y 1 -y = 0 v ≡ y 3 -x 4 y 1 = 0 w ≡ y 2 -y 1 = 0 1 2 3 4 1 2 3 • 1 2 • • namely the projection R (1)
1 of R 2 to R 1 , is formally integrable and even involutive with one equation of class 4, one equation of class 3 and one equation of class 2.

In the situation of the last remark, the following theorem will generalizing for PD control systems the well known first order Kalman form of OD control systems where the derivatives of the input do not appear ( [START_REF] Quadrat | Une Introduction à l'Analyse Algébrique Constructive et à ses Applications[END_REF], VI,1.14, p 802). For this, we just need to modify the Spencer form and we provide the procedure that must be followed in the case of a first order involutive system with no zero order equation, for example an involutive Spencer form.

• Look at the equations of class n solved with respect to y 1 n , ..., y β n . • Use integrations by part like: ,y m i with 0 ≤ i ≤ n -1 while the equations of class 1, ..., n -1 no longer contain y β+1 , ..., y m and their jets. Accordingly, as we shall see in the next section, any torsion element, if it exists, only depends on ȳ1 , ..., ȳβ .

y 1 n -a(x)y β+1 n = d n (y 1 -a(x)y β+1 ) + ∂ n a(x)y β+1 = ȳ1 n + ∂ n a(x)y β+1 • Modify y 1 , ...,
Proof: The first assertion comes from the absorption procedure. Now, if y m or y m i should appear in an equation of class ≤ n-1, prolonging this equation with respect to the non-multiplicative variable x n should bring y m n or y m in and (here involution is essential) we should get a linear combination of equations of various classes prolonged with respect to x 1 , ..., x n-1 only, but this is impossible and we get the desired reduced form.

Q.E.D.

When R q is involutive, the linear differential operator D :

E jq → J q (E) Φ → J q (E)/R q = F
0 of order q with space of solutions Θ ⊂ E is said to be involutive and one has the canonical linear Janet sequence ( [START_REF] Pommaret | Partial Differential Equations and Group Theory: New Perspectives for Applications[END_REF], p 144):

0 -→ Θ -→ T D -→ F 0 D1 -→ F 1 D2 -→ ... Dn -→ F n -→ 0
where each other operator is first order involutive and generates the compatibility conditions (CC) of the preceding one. As the Janet sequence can be cut at any place, the numbering of the Janet bundles has nothing to do with that of the Poincaré sequence for the exterior derivative, contrary to what many physicists believe. Moreover, the dimensions of the Janet bundles can be computed at once inductively from the board of multiplicative and non-multiplicative variables that can be exhibited for D by working out the board for D 1 and so on. For this, the number of rows of this new board is the number of dots appearing in the initial board while the number nb(i) of dots in the column i just indicates the number of CC of class i for i = 1, ..., n with nb(i) < nb(j), ∀i < j. It follows that the successive first order operators D 1 , ..., D n are automatically in reduced Spencer form. EXAMPLE 2.11: Coming back to Example 2.9 and changing slightly our usual notations, we get for D 1 the following first order involutive system of CC in reduced Spencer form:

   φ 3 ≡ d 4 v -d 3 u + x 4 d 1 u -x 3 d 1 v -v = 0 φ 2 ≡ d 4 w -d 2 u + d 1 u -x 3 d 1 w -w = 0 φ 1 ≡ d 3 w -d 2 v + d 1 v -x 4 d 1 w = 0 1 2 3 4 1 2 3 4 1 2 3 •
as d 4 u does not appear in φ 2 and φ 3 while u does not appear in φ 1 . We finally obtain for D 2 the only CC:

ψ ≡ d 4 φ 1 -d 3 φ 2 -d 1 φ 3 + x 4 d 1 φ 2 -x 3 d 1 φ 1 -φ 1 = 0 DEFINITION 2.12:
The Janet sequence is said to be locally exact at F r if any local section of F r killed by D r+1 is the image by D r of a local section of F r-1 . It is called locally exact if it is locally exact at each F r for 0 ≤ r ≤ n. The Poincaré sequence is locally exact, that is a closed form is locally an exact form but counterexamples may exist ( [START_REF] Pommaret | Partial Differential Control Theory[END_REF], p 373).

Equivalently, we have the involutive first Spencer operator D 1 : 

C 0 = R q j1 → J 1 (R q ) → J 1 (R q )/R q+1 ≃ T * ⊗ R q /δ(g q+1 ) = C 1 of order one induced by D : R q+1 → T * ⊗ R q . Introducing the Spencer bundles C r = ∧ r T * ⊗ R q /δ(∧ r-1 T * ⊗ g q+1 ), the first order involutive (r + 1)-Spencer operator D r+1 : C r → C r+1 is induced by D : ∧ r T * ⊗ R q+1 → ∧ r+1 T * ⊗ R q : α ⊗ ξ q+1 → dα ⊗ ξ q + (-1) r α ∧ Dξ
0 -→ Θ jq -→ C 0 D1 -→ C 1 D2 -→ C 2 D3 -→ ... Dn -→ C n -→ 0
as the canonical Janet sequence for the first order involutive system R q+1 ⊂ J 1 (R q ). The canonical Janet sequence and the canonical Spencer sequence can be connected by a commutative diagram where the Spencer sequence is induced by the locally exact central horizontal sequence which is at the same time the Janet sequence for j q and the Spencer sequence for J q+1 (E) ⊂ J 1 (J q (E)) ( [START_REF] Pommaret | Partial Differential Equations and Group Theory: New Perspectives for Applications[END_REF], p 153) but this result will not be used in this paper (See [START_REF] Cosserat | Théorie des Corps Déformables[END_REF], [START_REF] Pommaret | Parametrization of Cosserat Equations[END_REF], [START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF], [START_REF] Pommaret | A Pedestrian Approach to Cosserat/Maxwell/Weyl Theory[END_REF] for more details on Cosserat and Maxwell equations, see ( [START_REF] Pommaret | Dualité Différentielle et Applications[END_REF]- [START_REF] Pommaret | Macaulay Inverse Systems Revisited[END_REF]) and in particular ( [START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF], [START_REF] Pommaret | A Pedestrian Approach to Cosserat/Maxwell/Weyl Theory[END_REF]) for applications to engineering and mathematical physics). REMARK 2.13: We shall revisit Example 2.8 in order to explain the word "canonical " that has been used in the previous definitions. For this, starting with the inhomogeneous system y 33 = u, y 13y 2 = v, we obtain easily the following inhomogeneous involutive system with its corresponding board of multiplicative and non-multiplicative variables:

       Φ 4 ≡ y 33 = u Φ 3 ≡ y 23 = d 1 u -d 3 v Φ 2 ≡ y 22 = d 11 u -d 13 v -d 2 v Φ 1 ≡ y 13 -y 2 = v 1 2 3 1 2 • 1 2 • 1 • •
Using prolongation with respect to the 4 non-multiplicative variables involved should bring 4 first order CC for the right members and we could wait for 4 third order CC involving u and v. Surprisingly, we need the only CC Ψ ≡ d 33 vd 13 u + d 2 u = 0 and obtain the differential sequence:

0 -→ Θ -→ 1 -→ 2 -→ 1 -→ 0
as a single CC has no CC for itself (See ( [START_REF] Pommaret | Partial Differential Control Theory[END_REF],p365) for the effective general procedure). Such a differential sequence is quite different from the canonical Janet sequence:

0 -→ Θ -→ 1 D -→ 4 D1 -→ 4 D2 -→ 1 -→ 0
which is the only sequence that can provide the Spencer sequence as we already said and could not be obtained by simply using Gröbner bases. This remark will become essential in mathematical physics (foundations of continuum mechanics, gauge theory, general relativity) where only involutive operators must be used ( [START_REF] Pommaret | Parametrization of Cosserat Equations[END_REF], [START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF], [START_REF] Pommaret | A Pedestrian Approach to Cosserat/Maxwell/Weyl Theory[END_REF]). We also check that the Euler-Poincaré characteristic, namely the alternate sum of the circled dimensions of the vector bundles involved, does not depend on the differential sequence used as we get 1 -2 + 1 = 1 -4 + 4 -1 = 0 (See [START_REF] Pommaret | Partial Differential Control Theory[END_REF], p 378). In the same spirit, using certain parametric jet variables as new unknowns, we may set z 1 = y, z 2 = y 1 , z 3 = y 2 , z 4 = y 3 in order to obtain the following involutive first order system with no zero order equation:

   class 3 d 3 z 1 -z 4 = 0, d 3 z 2 -z 3 = 0, d 3 z 3 = 0, d 3 z 4 = 0 class 2 d 2 z 1 -z 3 = 0, d 2 z 2 -d 1 z 3 = 0, d 2 z 3 = 0, d 2 z 4 = 0 class 1 d 1 z 1 -z 2 = 0, d 1 z 4 -z 3 = 0 1 2 3 1 2 • 1 • •
where we have separated the classes. Contrary to what could be believed, this operator does not describe the Spencer sequence that could be obtained from the previous Janet sequence. Indeed, introducing the trivial vector bundle E with local coordinates (x 1 , x 2 , x 3 , y), it follows that

J 1 (E) has local coordinates (x 1 , x 2 , x 3 , z 1 , z 2 , z 3 , z 4 ). Now, the involutive system R 2 ⊂ J 2 (E) ⊂ J 1 (J 1 (E)) with involutive symbol g 2 ⊂ S 2 T * ⊗ E ⊂ T * ⊗ T * ⊗ E ⊂ T * ⊗ J 1 (E) projects onto J 1 (E) but dim(R 2 ) = 6 because par(R 2 )
= {y, y 1 , y 2 , y 3 , y 11 , y 12 } while we have only 4 unknowns (z 1 , z 2 , z 3 , z 4 ). Nevertheless, as R 2 projects onto J 1 (E), we may construct a canonical Janet sequence for this new system where the successive Janet bundles involved will be the Spencer bundles

C r = ∧ r T * ⊗ J 1 (E)/δ(∧ r-1 T * ⊗ g 2 )
with a shift by one step in the numbering of the bundles as now C 0 = J 1 (E) and the successive operators are induced by the composition of the inclusion R 2 ⊂ J 2 (E) with the Spencer operator D : J 2 (E) -→ T * ⊗ J 1 (E) as in ( [START_REF] Pommaret | Partial Differential Equations and Group Theory: New Perspectives for Applications[END_REF],p144,150) or ( [START_REF] Pommaret | Partial Differential Control Theory[END_REF],p356). In any case, it is essential to notice that, both in the canonical Spencer sequence and in the canonical Janet sequence, any intermediate operator can be constructed explicitely without knowing the previous ones.

EXAMPLE 2.14: With m = 1, n = 4, q = 2, one could treat similarly the involutive system: y 44 = 0, y 34 = 0, y 33 = 0, y 24y 13 = 0 with one equation of class 4, two equations of class 3 and one equation of class 2.

EXAMPLE 2.15:

Coming back to the involutive system of Example 2.9 with variable coefficients, we let the reader prove that the Janet sequence is:

0 -→ Θ -→ 1 D -→ 3 D1 -→ 3 D2 -→ 1 -→ 0 EXAMPLE 2.16:
Let us finally consider the following involutive system of PD equations with two independent variables (x 1 , x 2 ) and three unknowns (y 1 , y 2 , y 3 ), where again a is an arbitrary constant parameter and we have set for simplicity

y k i = d i y k :    y 2 2 + y 2 1 + y 3 2 -y 3 1 -ay 3 = 0 y 1 2 -y 2 1 -y 3 2 -y 3 1 -ay 3 = 0 y 1 1 -y 2 1 -2y 3 1 = 0 1 2 1 2 1 •
Then the corresponding Janet sequence is:

0 -→ Θ -→ 3 D -→ 3 D1 -→ 1 -→ 0
Finally, setting ȳ1 = y 1y 3 , ȳ2 = y 2 + y 3 , we obtain the new first order involutive system:

   ȳ2 2 -ȳ2 1 -ay 3 = 0 ȳ1 2 -ȳ2 1 -ay 3 = 0 ȳ1 1 -ȳ2 1 = 0 1 2 1 2 1 •
with two equations of class 2 and one equation of class 1 in which y 3 surprisingly no longer appears.

If χ 1 , ..., χ n are n algebraic indeterminates or, in a more intrinsic way, if χ = χ i dx i ∈ T * is a covector and

D : E -→ F : ξ -→ a τ µ k (x)∂ µ ξ k (x)
is a linear involutive operator of order q, we may introduce the characteristic matrix a(x, χ) = (a τ µ k (x)χ µ | µ = q) and the resulting map σ χ (D) : E -→ F is called the symbol of D at χ. Then there are two possibilities:

• If max χ rk(σ χ (D) < m ⇔ α n
q > 0: the characteristic matrix fails to be injective for any covector. • If max χ rk(σ χ (D) = m ⇔ α n q = 0: the characteristic matrix fails to be injective if and only if all the determinants of the m × m submatrices vanish. However, one can prove that this algebraic ideal a ∈ K[χ] is not intrinsically defined and must be replaced by its radical rad(a) made by all polynomials having a power in a. This radical ideal is called the characteristic ideal of the operator. DEFINITION 2.17: For each x ∈ X, the algebraic set defined by the characteristic ideal is called the characteristic set of D at x and V = ∪ x∈X V x is called the characteristic set of D.

One has the following important theorem ( [START_REF] Pommaret | Partial Differential Control Theory[END_REF],[29]) that will play an important part later on: THEOREM 2.18: (Hilbert-Serre) The dimension d(V ) of the characteristic set, that is the maximum dimension of the irreducible components, is equal to the number of non-zero characters while the codimension cd(V ) = nd(V ) is equal to the number of zero characters, that is to the number of "full " classes in the board of multiplicative variables of an involutive system. EXAMPLE 2.19: Coming back to Remark 2.12, we obtain a = ((χ 3 ) 2 , χ 2 χ 3 , (χ 2 ) 2 , χ 1 χ 3 ) =⇒ rad(a) = (χ 2 , χ 3 ) and thus cd(V ) = 2. However, if we take only into account Example 2.8, we should only get the radical ideal (χ 3 ) and the wrong result cd(V ) = 1. The reason for using the radical can be seen from the equivalent first order system that shoul provide b = ((χ 3 ) 4 , ...) with homogeneous polynomials of degree 4 and thus b ⊂ a with a strict inclusion though rad(a) = rad(b). A similar situation can be obtained with Examples 1.1 and 2.9.

3) TOOLS FROM MODULE THEORY :

We may roughly say that, if a reader familiar with Gröbner bases ( [START_REF] Buchberger | Gröbner bases: an Algorithmic Methods in Polynomial Ideal Theory[END_REF], [START_REF] Öbner | Über die Algebraischen Eigenschaften der Integrale von Linearen Differentialgleichungen mit Konstanten Koeffizienten[END_REF]) and computer algebra looks at the previous section, he will feel embarassed because he will believe that "intrinsicness is always competing with complexity " as can be seen from Examples 2.8 + 2.12. However, even if he admits that it may be useful to have intrinsic and thus canonical procedures, then looking at the existing literature on differential modules ([1], [START_REF] Kashiwara | Algebraic Study of Systems of Partial Differential Equations[END_REF],12]), he will really feel to be on another planet as the main difficulty involved in the theory of differentia modules is to understand why and where formal integrability and involution become essential tools to apply quite before dealing with the homological background of "algebraic analysis " involving extension modules. This is the main reason for which the case of variable coefficients is rarely treated "by itself " always refering to Weyl algebras for examples and the main difficulty we found when writing ( [START_REF] Pommaret | Partial Differential Control Theory[END_REF], in particular Chapter IV). The central concept, essential for applications but well hidden in the literature dealing with filtred modules ( [START_REF] Northcott | Lessons on Rings, Modules and Multiplicities[END_REF],p 383) and totally absent from the use of Gröbner bases because it amounts to formal integrability by duality, is that of a "strict morphism ". Accordingly, the purpose of this section will be to explain why such a definition, which seems to be purely technical, will be so important for studying extension modules and purity.

If P = a µ d µ ∈ D = K[d],
the highest value of |µ| with a µ = 0 is called the order of the operator P and the ring D with multiplication (P, Q) -→ P • Q = P Q is filtred by the order q of the operators. We have the filtration 0

⊂ K = D 0 ⊂ D 1 ⊂ ... ⊂ D q ⊂ ... ⊂ D ∞ = D.
Moreover, it is clear that D, as an algebra, is generated by K = D 0 and T = D 1 /D 0 with D 1 = K ⊕ T if we identify an element ξ = ξ i d i ∈ T with the vector field ξ = ξ i (x)∂ i of differential geometry, but with ξ i ∈ K now. It follows that D = D D D is a bimodule over itself, being at the same time a left D-module by the composition P -→ QP and a right D-module by the composition P -→ P Q. We define the adjoint functor ad : D -→ D op : P = a µ d µ -→ ad(P ) = (-1) |µ| d µ a µ and we have ad(ad(P )) = P . It is easy to check that ad(P Q) = ad(Q)ad(P ), ∀P, Q ∈ D. Such a definition can also be extended to any matrix of operators by using the transposed matrix of adjoint operators (See [START_REF] Pommaret | Partial Differential Control Theory[END_REF], [START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF], [START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF] for more details and applications to control theory and mathematical physics).

Accordingly, if y = (y 1 , ..., y m ) are differential indeterminates, then D acts on y k by setting

d i y k = y k i -→ d µ y k = y k µ with d i y k µ = y k µ+1i
and y k 0 = y k . We may therefore use he jet coordinates in a formal way as in the previous section. Therefore, if a system of OD/PD equations is written in the form Φ τ ≡ a τ µ k y k µ = 0 with coefficients a ∈ K, we may introduce the free differential module Dy = Dy As a byproduct, the differential modules we shall consider will always be finitely generated (k = 1, ..., m < ∞) and finitely presented (τ = 1, ..., p < ∞). Equivalently, introducing the matrix of operators D = (a τ µ k d µ ) with m columns and p rows, we may introduce the morphism D p D -→ D m : (P τ ) -→ (P τ Φ τ ) : P -→ P Φ = P D over D by acting with D on the left of these row vectors while acting with D on the right of these row vectors and the presentation of M is defined by the exact cokernel sequence D p -→ D m -→ M -→ 0. It is essential to notice that the presentation only depends on K, D and Φ or D, that is to say never refers to the concept of (explicit or formal) solutions. It is at this moment that we have to take into account the results of the previous section in order to understant that certain presentations will be much better than others, in particular to establish a link with formal integrability and involution.

It follows from its definition that M can be endowed with a quotient filtration obtained from that of D m which is defined by the order of the jet coordinates y q in D q y. We have therefore the inductive limit 0 ⊆ M 0 ⊆ M 1 ⊆ ... ⊆ M q ⊆ ... ⊆ M ∞ = M with d i M q ⊆ M q+1 and M = DM q for q ≫ 0 with prolongations D r M q ⊆ M q+r , ∀q, r ≥ 0. DEFINITION 3.1: ([14],p 383) If M and N are two differential modules and f : M -→ N is a morphism over D compatible with the filtration, that is if f (M q ) ⊂ N q with induced morphism f q : M q -→ N q , then f is a strict morphism if f q (M q ) = f (M ) ∩ N q , ∀q ≥ 0.

Equivalently, chasing in the following diagram:

0 0 0 ↓ ↓ ↓ M q fq -→ N q -→ coker(f q ) -→ 0 ↓ ↓ ↓ M f -→ N -→ coker(f ) -→ 0 then f is strict if the induced morphism coker(f q ) -→ coker(f ) is a monomorphism ∀q ≥ 0.
DEFINITION 3.2: An exact sequence of morphisms finishing at M is said to be a resolution of M . If the differential modules involved apart from M are free, we shall say that we have a free resolution of M . Moreover, a sequence of strict morphisms is called a strict sequence.

LEMMA 3.3: If f is a strict morphism as in the last definition, there are exact sequences 0 -→ coker(f q ) -→ coker(f q+1 ), ∀q ≥ 0.

Proof: As f is compatible with the filtrations and M q ⊆ M q+1 , N q ⊆ N q+1 , we have an induced morphism coker(f q ) -→ coker(f q+1 ). Now, as f is also strict, we have the following commutative and exact diagram:

0 -→ coker(f q ) -→ coker(f ) ↓ 0 -→ coker(f q+1 ) -→ coker(f )
The lemma finally follows from an elementary chase.

Q.E.D.

Having in mind that K is a left D-module with the standard action (D, K) -→ K : (d i , a) -→ ∂ i a and that D is a bimodule over itself, we have only two possible constructions: DEFINITION 3.4: We define the system R = hom K (M, K) = M * and set R q = hom K (M q , K) = M * q as the system of order q. We have the

projective limit R = R ∞ -→ ... -→ R q -→ ... -→ R 1 -→ R 0 . It follows that f q ∈ R q : y k µ -→ f k µ ∈ K with a τ µ k f k µ =
0 defines a section at order q and we may set f ∞ = f ∈ R for a section of R. For an arbitrary differential field K, such a definition has nothing to do with the concept of a formal power series solution (care). Proof: As D is generated by K and T as we already said, let us define:

(af )(m) = af (m), ∀a ∈ K, ∀m ∈ M (ξf )(m) = ξf (m) -f (ξm), ∀ξ = a i d i ∈ T, ∀m ∈ M
In the operator sense, it is easy to check that d i a = ad i + ∂ i a and that ξηηξ = [ξ, η] is the standard bracket of vector fields. We finally get (

d i f ) k µ = (d i f )(y k µ ) = ∂ i f k µ -f k µ+1i
and thus recover exactly the Spencer operator of the previous section though this is not evident at all. We also get (

d i d j f ) k µ = ∂ ij f k µ -∂ i f k µ+1j -∂ j f k µ+1i + f k µ+1i+1j =⇒ d i d j = d j d i , ∀i, j = 1, ..

., n and thus

d i R q+1 ⊆ R q =⇒ d i R ⊂ R induces a well defined operator R -→ T * ⊗ R : f -→ dx i ⊗ d i f
. This result has been discovered (up to sign) by Macaulay in 1916 ([11]). For more details on the Spencer operator and its applications, the reader may look at ( [START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF], [START_REF] Pommaret | A Pedestrian Approach to Cosserat/Maxwell/Weyl Theory[END_REF]).

Q.E.D.

As D is a bimodule over itself, it follows from this proposition that that D * = hom K (D, K) is a left D-module. Moreover, using Baer's criterion ( [START_REF] Rotman | An Introduction to Homological Algebra[END_REF]), it is known that D * is an injective D-module as there is a canonical isomorphism:

M * = hom K (M, K) ≃ hom D (M, D * )
where both sides are well defined ( [START_REF] Bourbaki | Algèbre homologique[END_REF], Prop 11, p 18;)( [START_REF] Rotman | An Introduction to Homological Algebra[END_REF], p 37). DEFINITION 3.7: With any differential module M we shall associate the graded module G = gr(M ) over the polynomial ring gr(D) ≃ K[χ] by setting G = ⊕ ∞ q=0 G q with G q = M q /M q+1 and we get g q = G * q where the symbol g q is defined by the short exact sequences:

0 -→ M q-1 -→ M q -→ G q -→ 0 =⇒ 0 -→ g q -→ R q -→ R q-1 -→ 0
We have the short exact sequences 0 -→ D q-1 -→ D q -→ S q T -→ 0 leading to gr q (D) ≃ S q T and we may set as usual T * = hom K (T, K) in a coherent way with differential geometry. Moreover any compatible morphism f : M -→ N induces a morphism gr(f ) : gr(M ) -→ gr(N ).

EXAMPLE 3.8: If K = Q(x), m = 1, n = 1, let us consider the system y xxxy x = 0 for which we may exhibit the basis of sections {f = (1, 0, 0, 0, ...), f ′ = (0, 1, 0, 1, ...), f " = (0, 0, 1, 0, ...)} as in ( [START_REF] Macaulay | The Algebraic Theory of Modular Systems[END_REF], §59,p 67) or ( [START_REF] Pommaret | Macaulay Inverse Systems Revisited[END_REF]). We obtain d x f = 0, d x f ′ = -f -f ", d x f " = -f ′ and check that all the sections can be generated by a single one, namely f " which describes the power series of ch(x)-1. With now m = 2, let us consider the module defined by the system y 1 xx = 0, y 2 x = 0. Setting y = y 2 -xy 1 , we successively get y x = -xy 1

xy 1 , y xx = -2y 1 x , y xxx = 0 =⇒ y 1 = x 2 y xxy x , y 2 = x 2 2 y xxxy x + y and a differential isomorphism with the module defined by the new system y xxx = 0. All the sections of the second system are easily seen to be generated by the single section f = (0, 0, 1, ...), a result leading to the only generating section

f 1 (x) = x 2 , f 1 x = -1 2 , f 1 xx = 0, ..., f 2 (x) = x 2
2 , f 2 x = 0, ... of the initial system but these sections do not describe solutions because ∂ x f 1f 1

x = 1 = 0 and ∂ x f 2f 2

x = x = 0. We do not know any reference in computer algebra dealing with sections (See [START_REF] Pommaret | Macaulay Inverse Systems Revisited[END_REF] for more details)

Coming back to the presentation of M under study, we notice that the morphism D involved is not compatible unless we shift the index of the filtration by ord(D) = q. In that case, we obtain im(D) = I ⊂ Dy and may set I q+r = I ∩ D q+r y but we have in general D p r D ⊆ I q+r only, that is the equations of order q+r may not be produced by r prolongations only. We have thus obtained: PROPOSITION 3.9: The morphism induced by D is strict if and only if D is formally integrable. Accordingly, the module version of both the Janet sequence and the Spencer sequence are strictly exact sequences.

Proof: Using q + r instead of q in Lemma 3.3 and applying hom K (•, K), we obtain the epimorphisms R q+r+1 -→ R q+r -→ 0, ∀r ≥ 0.

Q.E.D.

The reader will find in ( [START_REF] Pommaret | Partial Differential Control Theory[END_REF], IV,3) more details on the relations existing between G and M which are needed in order to study the non-commutative situation, at least when K is a differential field as such a case is hard enough. We obtain in particular the Hilbert polynomial 

dim K (M q+r ) = dim K (R q+r ) = α d! r d + ...
0 -→ D 2 -→ D 2 -→ M -→ 0 ↓ ↓ 0 -→ D -→ D -→ M -→ 0 (P, Q) -→ (P (d 2 -1), Qd) ↓ ↓ (P d + Q) -→ ((P d + Q)(d 3 -d))
If now we consider the differential module M defined by y 1 xxay 1 = 0, y 2 x = 0 where a is a constant parameter, we cannot find a differentially primitive element when K = Q if a = 0 but we can when K = Q(x) for any value of a, as in Example 3.8.

We may check the following definition in a constructive way ( [START_REF] Quadrat | Une Introduction à l'Analyse Algébrique Constructive et à ses Applications[END_REF]): DEFINITION 3.12: t r (M ) = {m ∈ M | cd(Dm) > r} is the greatest differential submodule of M having codimension > r. PROPOSITION 3.13: cd(M ) = cd(V ) = r ⇐⇒ α n-r q = 0, α n-r+1 q = ... = α n q = 0 ⇐⇒ t r (M ) = M, t r-1 (M ) = ... = t 0 (M ) = t(M ) = M and this intrinsic result can be most easily checked by using the Spencer form of the system defining M .

We are now in a good position for defining and studying purity for differential modules.

DEFINITION 3.14: M is r-pure ⇐⇒ t r (M ) = 0, t r-1 (M ) = M ⇐⇒ cd(Dm) = r, ∀m ∈ M .
In particular, M is 0-pure if t(M ) = 0 and, if cd(M ) = r but M is not r-pure, we may call M/t r (M ) the pure part of M . It follows that t r-1 (M )/t r (M ) is equal to zero or is r-pure (See the picture in [START_REF] Pommaret | Partial Differential Control Theory[END_REF], p 545). Finally, when t r-1 (M ) = t r (M ), we shall say that there is a gap in the purity filtration: 

0 = t n (M ) ⊆ t n-1 (M ) ⊆ ... ⊆ t 1 (M ) ⊆ t 0 (M ) = t(M ) ⊆ M
= t 3 (M ) ⊂ t 2 (M ) = t 1 (M ) ⊂ t 0 (M ) = t(M ) = M
with one gap and two strict inclusions.

We now recall the definition of the extension modules ext i D (M, D) that we shall simply denote by ext i (M ) and the way to use their dimension or codimension. We point out once more that these numbers cannot be obtained without bringing the underlying systems to involution in order to get informations on M from informations on G. We divide the procedure into four steps that can be achieved by means of computer algebra ( [START_REF] Quadrat | Une Introduction à l'Analyse Algébrique Constructive et à ses Applications[END_REF]):

• Construct a free resolution of M , say:

... -→ F i -→ ... -→ F 1 -→ F 0 -→ M -→ 0
• Suppress M in order to obtain the deleted sequence: D) in order to obtain the dual sequence heading backwards:

... -→ F i -→ ... -→ F 1 -→ F 0 -→ 0 • Apply hom D (•,
... ←-hom D (F i , D) ←-... ←-hom D (F 1 , D) ←-hom D (F 0 , D) ←-0 • Define ext i (M ) to be the cohomology at hom D (F i , D) in the dual sequence with ext 0 (M ) = hom D (M, D).
The following nested chain of difficult propositions and theorems can be obtained, even in the non-commutative case, by combining the use of extension modules and bidualizing complexes in the framework of algebraic analysis. The main difficulty is to obtain first these results for the graded module G = gr(M ) by using techniques from commutative algebra before extending them to the filtred module M as in ( [START_REF] Bjork | Analytic D-modules and Applications[END_REF], [START_REF] Kashiwara | Algebraic Study of Systems of Partial Differential Equations[END_REF], [START_REF] Pommaret | Partial Differential Control Theory[END_REF], [START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF]). THEOREM 3.17: The extension modules do not depend on the resolution of M used. When n = 3 and the torsion-free module M is defined by the formally surjective div operator, the formal adjoint of div is -grad which defines a torsion module. Also, when n = 1 as in classical control theory, a controllable system allows to define a torsion-free module M which is free in that case and hom D (M, D) is thus also a free module.

THEOREM 3.22:

ext i (M ) = 0, ∀i ≥ n + 1.

THEOREM 3.23: cd(ext i (M )) ≥ i. PROPOSITION 3.24: ext i (M ) = 0, ∀i < cd(M ). THEOREM 3.25: cd(M ) ≥ r ⇔ ext i (M ) = 0, ∀i < r. PROPOSITION 3.26: cd(M ) = r =⇒ cd(ext r (M )) = r and ext r (M )is r-pure. PROPOSITION 3.27: ext r (ext r (M )) is equal to 0 or is r-pure, ∀0 ≤ r ≤ n.
PROPOSITION 3.28: If we set t -1 (M ) = M , there are exact sequences ∀0 ≤ r ≤ n:

0 -→ t r (M ) -→ t r-1 (M ) -→ ext r (ext r (M )) THEOREM 3.29: If cd(M ) = r, then M is r-pure if and only if there is a monomorphism 0 -→ M -→ ext r (ext r (M )) of left differential modules. THEOREM 3.30: M is pure ⇐⇒ ext s (ext s (M )) = 0, ∀s = cd(M ).
The last two theorems are known to characterize purity but it is however evident that they are not very useful in actual practice. THEOREM 3.31: When M is r-pure, the characteristic ideal is thus unmixed, that is a finite intersection of prime ideals having the same codimension r and the characteristic set is equidimensional, that is the union of irreducible algebraic varieties having the same codimension r. REMARK 3.32: For the reader knowing more about commutative algebra, we add a few details about the localization used in the primary decomposition of a module which are not so well known ([3], [START_REF] Pommaret | Partial Differential Control Theory[END_REF], [START_REF] Pommaret | Macaulay Inverse Systems Revisited[END_REF], [START_REF] Zariski | Commutative Algebra[END_REF]). For simplicity, setting k = cst(K), we shall denote by A = k[χ] the polynomial ring isomorphic to D = k[d] and consider a module M over A. We denote as usual by spec(A) the set of proper prime ideals in A, by max(A) the subset of maximal ideals in A and by ass(M ) = {p ∈ spec(A)|∃0 = m ∈ M, p = ann A (m)} the (finite) set {p 1 , ..., p t } of associated prime ideals, while we denote by {p 1 , ...p s } the subset of minimum associated prime ideals. It is well known that M = 0 =⇒ ass(M ) = ∅. We recall that an ideal q ⊂ A is pprimary if ab ∈ q, b / ∈ q =⇒ a ∈ rad(q) = p ∈ spec(A). We say that a module Q is p-primary if am = 0, 0 = m ∈ Q =⇒ a ∈ p = rad(q) ∈ spec(A) when q = ann A (Q) or, equivalently, ass(Q) = {p}. Similarly, we say that a module P is p-prime if am = 0, 0 = m ∈ P =⇒ a ∈ p ∈ spec(A) when p = ann A (P ). It follows that any p-prime or p-primary module is r-pure with nr = trd(A/p), a result generalizing ( [START_REF] Macaulay | The Algebraic Theory of Modular Systems[END_REF], §4, p 43). Accordingly, a module M is r-pure if and only if a = ann A (M ) admits a primary decomposition a = q 1 ∩...∩q s and rad(a) = p 1 ∩...∩p s with cd(A/p i ) = cd(M ) = r, ∀i = 1, ..., s. In that case, the monomorphism 0 -→ M -→ ⊕ p∈ass(M) M p induces a monomorphism 0 -→ M -→ Q 1 ⊕ ... ⊕ Q s called primary embedding where the primary modules Q i are the images of the localization morphisms M -→ M pi = S -1 M with S = Ap inducing epimorphisms M -→ Q i -→ 0 for i = 1, ..., s. Macaulay was only considering the case M = A/a with primary decomposition a = q 1 ∩ ... ∩ q s . EXAMPLE 3.33:

With k = Q and n = 3, then a = rad(a) = (χ 1 , χ 2 χ 3 ) = (χ 1 , χ 2 ) ∩ (χ 1 , χ 3 ) is unmixed and M = A/a is 2-pure while a = rad(a) = (χ 1 χ 2 , χ 1 χ 3 ) = (χ 1 )∩(χ 2 , χ 3
) is mixed, though an intersection of two minimum prime ideals and M = A/a is not 1-pure. On the contrary, if one has the primary decomposition a = ((χ

1 ) 2 , χ 1 χ 2 , χ 1 χ 3 , χ 2 χ 3 ) = (χ 1 , χ 2 ) ∩ (χ 1 , χ 3 ) ∩ (χ 1 , χ 2 , χ 3 ) 2 = p 1 ∩ p 2 ∩ m 2 and M = A/a, then ass(M ) = {p 1 , p 2 , m} with p i ⊂ m for i = 1, 2, though rad(a) = p 1 ∩ p 2 as before. In that case, there is an embedding 0 -→ M -→ Q 1 ⊕ Q 2 ⊕ Q 3 where Q i = A/p i is the image of the localization morphism M -→ M pi for i = 1, 2 because p 1 is killed by χ 3 ∈ A -p 1 , p 2 is killed by χ 2 ∈ A -p 2 and Q 3 = A/m 2 is m-primary because rad(m 2 ) = m ∈ max(A).
We have also an embedding 0 -→ M -→ M p1 ⊕ M p2 ⊕ M m but no element of the multiplicative set Am = {1 + a|a ∈ m} can kill any element of M and the image of M into M m is thus isomorphic to M which is not a primay module. It is important to notice that the example of Macaulay q = ((χ 3 ) 2 , χ 2 χ 3 , (χ 2 ) 2 , χ 1 χ 3χ 2 ) provides a p-primary module A/q with p = (χ 3 , χ 2 ) even though the annihilating ideal of G = gr(M ) is the homogeneous

ideal a = ((χ 3 ) 2 , χ 2 χ 3 , (χ 2 ) 2 , χ 1 χ 3 ) = ((χ 2 ) 2 , χ 3 ) ∩ (χ 1 , χ 2 , χ 3 ) 2 which is a mixed ideal because ass(A/a) = {(χ 2 , χ 3 ), (χ 1 , χ 2 , χ 3 )}.
However, we get rad(a) = (χ 2 , χ 3 ) in a coherent way.

PROBLEM : Is it possible to have a test for checking whether a differential module is pure or not without using the previous results ?

4) MOTIVATION :

As we already said in the introduction and in the previous section, a torsion-free module M is 0-pure because in that case t 0 (M ) = t(M ) = 0. Accordingly, M can be embedded into a free module F and the inclusion, which may not be strict when n > 1, provides a parametrization by means of a finite number of potential-like arbitrary functions in the classical language of elasticity (Airy function) or electromagnetism (EM 4-potential). As it is clear that such a situation is only a very particular case of purity, it remains to wonder what can happen for an r-pure module whenever r ≥ 1. One has the following result ([9], [START_REF] Pommaret | Partial Differential Control Theory[END_REF], compare to [START_REF] Bjork | Analytic D-modules and Applications[END_REF], p494): THEOREM 4.1: If M is an r-pure differential module with r ≥ 1, there exists a differential module L with pd(L) ≤ r and an embedding M ⊆ L.

Proof: First of all we notice that we have r > 0 and thus any element m ∈ M is surely a torsion element because cd(Dm) > 0, that is

M = t(M ) is a torsion module with ext 0 (M ) = hom D (M, D) = 0 because D is an integral domain. Let now ... -→ F r -→ ... -→ F 1 -→ F 0 -→ N -→ 0 be
a free resolution of the right differential module N = ext r (M ). According to Proposition 3.26, we have cd(N ) = r > 0 too and N is also a torsion module with ext 0 (N ) = hom D (N, D) = 0. Applying the functor hom D (•, D) to the previous sequence or , equivalently, constructing the adjoint sequence in the operator framework while using the fact that ext i (N ) = 0, ∀i < r according to Theorem 3.25, we obtain the finite long exact sequence with exactly r morphisms because N is finitely presented and ext r (N ) = 0:

0 -→ hom D (F 0 , D) -→ ... -→ hom D (F r-1 , D) -→ hom D (F r , D) -→ L -→ 0
where the left differential module L is the cokernel of the last morphism on the right. As hom D (F, D) is free whenever F is free because of the bimodule structure of D = D D D , the corresponding deleted complex is:

0 -→ hom D (F 0 , D) -→ ... -→ hom D (F r-1 , D) -→ hom D (F r , D) -→ 0
Applying again hom D (•, D) and using the reflexivity of any free module F , that is the isomorphism hom D (hom D (F, D), D) ≃ F , we obtain the dual sequence:

0 -→ F r -→ ... -→ F 1 -→ F 0 -→ 0
and a similar procedure may be followed with operators as we shall see in the next illustrating examples ( [START_REF] Pommaret | Partial Differential Control Theory[END_REF], [START_REF] Quadrat | Une Introduction à l'Analyse Algébrique Constructive et à ses Applications[END_REF]). This sequence is exact everywhere but at F r and at F 0 where its cohomology is just N by definition, that is to say ext r (L) = N = ext r (M ). Looking for the cohomology at hom D (F r , D) in the sequence obtained by duality from the resolution of N with coboundry module B r and cocycle module Z r , we obtain the following commutative and exact diagram:

0 0 ↓ ↓ 0 -→ B r = B r -→ 0 ↓ ↓ 0 -→ Z r -→ hom D (F r , D) ↓ ↓ 0 -→ ext r (N ) -→ L ↓ ↓ 0 0
Finally, composing the bottom monomorphism with the monomorphism 0 -→ M -→ ext r (N ) provided by Theorem 3.29, we get the desired embedding M ⊆ L. It must be noticed that such a procedure can be followed equally well in the commutative and non-commutative framework, that is when K is a field of constants or a true differential field. Q.E.D. 

       Φ 4 ≡ y 44 = 0 Φ 3 ≡ y 34 = 0 Φ 2 ≡ y 33 = 0 Φ 1 ≡ y 24 -y 13 = 0 1 2 3 4 1 2 3 • 1 2 3 • 1 2 • •
From the board of multiplicative variables we may construct at once the Janet sequence:

0 -→ Θ -→ 1 D -→ 4 D1 -→ 4 D2 -→ 1 -→ 0
where D 1 is defined by the involutive system:

       Ψ 4 ≡ d 4 Φ 3 -d 3 Φ 4 = 0 Ψ 3 ≡ d 4 Φ 2 -d3Φ 3 = 0 Ψ 2 ≡ d 4 Φ 1 -d 2 Φ 4 + d 1 Φ 3 = 0 Ψ 1 ≡ d 3 Φ 1 -d 2 Φ 3 + d 1 Φ 2 = 0 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 •
and D 2 by the (trivially) involutive system:

Ω ≡ d 4 Ψ 1 -d 3 Ψ 2 + d 2 Ψ 4 -d 1 Ψ 3 = 0 1 2 3 4
We have therefore the resolution: ←-1 ←-0 which is not a Janet sequence. As M is a torsion module, using now Theorem 3.25 we get ext 0 (M ) = 0, ext 1 (M ) = 0 and we check that N = ext 2 (M ) = 0. For this, dualizing Ψ by λ and Ω by θ, we have to look for the CC of the inhomogeneous system:

0 -→ D -→ D 4 -→ D 4 -→ D -→ M -→
       Ψ 1 -→ -d 4 θ = λ 1 Ψ 2 -→ d 3 θ = λ 2 Ψ 3 -→ d 1 θ = λ 3 Ψ 4 -→ -d 2 θ = λ 4
which are not already provided by the system:

       Φ 1 -→ -d 4 λ 2 -d 3 λ 1 = 0 Φ 2 -→ -d 4 λ 3 -d 1 λ 1 = 0 Φ 3 -→ -(d 4 λ 4 -d 2 λ 1 ) + (d 3 λ 3 -d 1 λ 2 ) = 0 Φ 4 -→ d 3 λ 4 + d 2 λ 2 = 0
One can check that the torsion module N can be generated by {u

= d 2 λ 3 + d 1 λ 4 , v = d 3 λ 3 -d 1 λ 2 } satisfying the involutive system:        φ 4 ≡ d 4 u -d 1 v = 0 φ 3 ≡ d 4 v = 0 φ 2 ≡ d 3 u -d 2 v = 0 φ 1 ≡ d 3 v = 0 1 2 3 4 1 2 3 4 1 2 3 • 1 2 3 •
with the two CC:

ψ 2 ≡ d 4 φ 2 -d 3 φ 4 + d 2 φ 3 -d 1 φ 1 = 0 ψ 1 ≡ d 4 φ 1 -d 3 φ 3 = 0 1 2 3 4 1 2 3 4
Accordingly, we have the following strict free resolution of N :

0 -→ D 2 -→ D 4 -→ D 2 -→ N -→ 0 with deleted complex: 0 -→ D 2 -→ D 4 -→ D 2 -→ 0
Applying hom D (•, D), we get the desired resolution of L, namely:

0 ←-L ←-D 2 ←-D 4 ←-D 2 ←-0
Dualizing ψ by z, we finally discover that L is defined by the involutive system:

       -φ 1 -→ d 4 z 1 -d 1 z 2 = 0 -φ 2 -→ d 4 z 2 = 0 -φ 3 -→ d 3 z 1 -d 2 z 2 = 0 φ 4 -→ d 3 z 2 = 0 1 2 3 4 1 2 3 4 1 2 3 • 1 2 3 •
and is therefore 2-pure with pd(L) ≤ 2 and a strict inclusion M ⊂ L defined by y = z 1 . .

REMARK 4.3:

In this example, we discover that, if L were also r-pure, we should therefore have an embedding 0 -→ L -→ ext r (ext r (L)) = ext r (N ) and thus an isomorphism ext r (N ) = L leading to an isomorphism Z r = hom D (F r , D) and to F r+1 = 0, as can be checked on this example with r = 2. It has been a challenge for the author during many months to find the following counter-example showing that, sometimes L may not even be a torsion module. 

       φ 4 ≡ d 33 θ = 0 φ 3 ≡ d 23 θ = 0 φ 2 ≡ d 22 θ = 0 φ 1 ≡ d 13 θ + d 2 θ = 0 1 2 3 1 2 • 1 2 • 1 • •
We obtain the first order involutive system of CC:

       ψ 4 ≡ d 3 φ 3 -d 2 φ 4 = 0 ψ 3 ≡ d 3 φ 2 -d 2 φ 3 = 0 ψ 2 ≡ d 3 φ 1 -d 1 φ 4 -φ 3 = 0 ψ 1 ≡ d 2 φ 1 -d 1 φ 3 -φ 2 = 0 1 2 3 1 2 3 1 2 3 1 2 •
with the only CC :

ω ≡ d 3 ψ 1d 2 ψ 2 + d 1 ψ 4 + ψ 3 = 0 . We may therefore introduce in reverse order the corresponding adjoint operators of the ones involved in the Janet sequence we have just constructed:

       ψ 4 -→ -d 1 λ = ν 4 ψ 3 -→ λ = ν 3 ψ 2 -→ d 2 λ = ν 2 ψ 1 -→ -d 3 λ = ν 1        φ 4 -→ µ 4 ≡ d 2 ν 4 + d 1 ν 2 = 0 φ 3 -→ µ 3 ≡ -(d 3 ν 4 -d 1 ν 1 ) + (d 2 ν 3 -ν 2 ) = 0 φ 2 -→ µ 2 ≡ -d 3 ν 3 -ν 1 = 0 φ 1 -→ µ 1 ≡ -d 3 ν 2 -d 2 ν 1 = 0
This last operator is defining L but is not involutive. We have the two torsion elements:

µ 5 ≡ d 2 ν 3 -ν 2 , µ 6 ≡ d 1 ν 3 + ν 4
which are generating ext 2 (N ) and are easily seen to satisfy the involutive system:

d 3 µ 6 -µ 5 = 0, d 3 µ 5 = 0, d 2 µ 6 -d 1 µ 5 = 0, d 2 µ 5 = 0 because d 2 µ 5 ≡ d 2 µ 3 + d 3 µ 4 + d 1 µ 1 = 0.
Finally, using the first equation, we may eliminate µ 5 and identify µ 6 with y because we have indeed d 33 µ 6 = 0, d 13 µ 6d 2 µ 6 = 0 in order to obtain the strict inclusion M ⊂ L. Equivalently, we may also eliminate ν 1 and ν 2 respectively from µ 2 and µ 3 in order to obtain:

µ 4 -→ d 13 (d 1 ν 3 + ν 4 ) -d 2 (d 1 ν 3 + ν 4 ) = 0, µ 1 -→ d 33 (d 1 ν 3 + ν 4 ) = 0
but we may notice that L is not 2-pure and thus a torsion module because ν 3 (similarly ν 4 ) is not by itself a torsion element of L. Such a situation is well known in control theory with the SISO (single input u, single output y) system ẏu = 0 because u (similarly y) is not by itself a torsion element but z = yu is a torsion element because ż = 0 (See the pages 9 and 10 of the introduction in [START_REF] Pommaret | Partial Differential Equations and Group Theory: New Perspectives for Applications[END_REF] for more details on such a comment).

PROBLEM : Is it possible to find an analogue of the previous theorem or of the case r = 0, where L should be also r-pure with a free resolution having exactly r morphisms ?.

5) ABSOLUTE AND RELATIVE LOCALIZATIONS :

Surprisingly, the positive answer to such a problem has been given by Macaulay in ( [START_REF] Macaulay | The Algebraic Theory of Modular Systems[END_REF]) for differential modules defined by systems with constant coefficients and only one unknown. Our purpose in this section is to generalize this resul to arbitrary differential modules defined by systems of PD equations with coefficients in a differential field. Now we hope that, after reading the previous section, the reader is convinced that the use of extension modules is a quite important though striking tool for studying linear multidimensional systems. Of course, as for any new language, it is necessary to apply it on many explicit examples before being familiar with it. However, it is evident that it should be even more important to have a direct approach allowing to exhibit the purity filtration and, in particular, to recognize whether a differential module is pure or not. The purpose of this section is to combine the module approach with the system approach, while taking into account the specific properties of the Spencer form in a way rather similar to the use of the Kalman form of a control system when testing controllability, namely to check that an ordinary differential module is 0-pure. For this, we shall divide the procedure into a few successive constructive steps that will be illustrated on explicit examples.

• STEP 1: Whenever a system R q ⊂ J q (E) is given, there is no way to obtain informations on the corresponding module without bringing this system to an involutive or at least formally integrable system by means of prolongations and projections as in the Example 2.8 of Macaulay where only the projection R

(2) 2 ⊂ R 2 of R 4 to R 2 is involutive. Of course, an homogeneous system with constant coefficients is automatically formally integrable and one only needs to use a finite number of prolongations in order to obtain an involutive symbol, though it is known that 2-acyclicity is sufficient to obtain first order generating CC ( [START_REF] Pommaret | Partial Differential Equations and Group Theory: New Perspectives for Applications[END_REF]). However, it is essential to notice that it is only with an involutive system that we are sure that the CC system is first order both with the following ones in the Janet sequence. EXAMPLE 5.1: With K = Q, m = 1, n = 3, q = 2, the homogeneous second order systems y 33 = 0, y 23y 11 = 0, y 22 = 0 or y 33y 11 = 0, y 23 = 0, y 22y 11 = 0 both have a 2-acyclic symbol g 3 of dimension 1 at order 3 (exercise) and a trivially involutive symbol g 4 = 0 at order 4, such a result leading to only one CC of order 2 with cd(M ) = 3 in both cases. We let the reader treat the system y 3 = 0, y 12 = 0 similarly and conclude (Hint: (χ 3 , χ 1 χ 2 ) = (χ 3 , χ 1 ) ∩ (χ 3 , χ 2 ) is unmixed). It is however not evident that the homogeneous system y 11 = 0, y 12 = 0, y 13 = 0, y 23 = 0 of Example 3.33 is involutive.

Finally, according to section 2 and 3, this first step provides the characters α 1 q ≥ ... ≥ α n q ≥ 0 and the smallest non-zero character α = α n-r q = 0 providing cd(M ) = r, a result leading at once to t r (M ) ⊂ M with a strict inclusion while t r-1 (M ) = ... = t 0 (M ) = t(M ) = M . Of course, if α = α n q = 0, then M cannot be a torsion module and t(M ) ⊂ M with a strict inclusion. The following example proves nevertheless that it is much more delicate to study systems with variable coefficients. EXAMPLE 5.2: With K = Q(x 2 ), n = 3, m = 1, q = 1, let us consider the differential module M defined by the trivially involutive system y 3x 2 y 1 = 0. We have cd(M ) = 1 but we can only say that cd(Dz) ≥ 1, ∀z ∈ M . If we set z = y 2 , proceeding as in Remark 2.12, we get the involutive system: operators involving only d 1 , ..., d n-1 in a quasi linear way with coefficients in K, the remaining of the matrix only depending on d 1 , ..., d n-1 for the (Φ p+1 , ..., Φ m ) of strict class n. Therefore, if we have K = k = cst(K), the absolute localization is simply done by setting d i -→ χ i and the determinant of the square matrix is equal to (χ n ) p + ... where the dots denote a polynomial of degree < p in χ p with coefficients involving only χ 1 , ..., χ n-1 . It follows that each Φ 1 , ..., Φ p can be expressed as a linear combination over k(χ 1 , ..., χ n ) of the Φ of strict class n. The result is similar for the variable coefficient case by using the graded machinery but needs much more work. In any case, setting the Φ of strict class n equal to zero, we should obtain a zero graded module for the Φ 1 , ..., Φ p which must be eequal to zero too. It must finally be noticed that the first order CC used are in reduced Spencer form as the d n of the Φ of strict class n do not appear in the CC we have used and these Φ do not appear in the other CC too.

Q.E.D EXAMPLE 5.8: Coming back to Example 2.11, we notice that the only CC is an identity in (u, v, w) and we may forget about u in order to obtain the new system for (v, w):

   φ 3 ≡ d 4 v -x 3 d 1 v -v = 0 φ 2 ≡ d 4 w -x 3 d 1 w -w = 0 φ 1 ≡ d 3 w -x 4 d 1 w -d 2 v + d 1 v = 0 1 2 3 4 1 2 3 4 1 2 3 •
defining a new module M with cd(M ) = 1 as the class 4 is now full. The same CC as before can be written again in the form: • STEP 4: In this section we come back to the commutative situation with a field k of constants and generalize the results of Macaulay in the following theorem which is recapitulating the results so far obtained. For exampe, with k = Q, n = 2, m = 2, q = 2, r = 1, the differential module M defined by the involutive system y 22 = 0, y 12 = 0 may also be defined by the first order involutive system z 1 = y, z 2 = y 1 , z 3 = y 2 =⇒ d 2 z 3 = 0, d 2 z 2 = 0, d 2 z 1z 3 = 0, d 1 z 3 = 0, d 1 z 1z 2 = 0. Then M 1 is defined by the first order system d 1 z 3 = 0, d 1 z 1z 2 = 0 with torsion module t(M 1 ) generated by z 3 and the tensor product of M by k(χ 1 ) is defined by d 2 z 3 = 0, d 2 z 2 = 0, d 2 z 1 = 0, d 1 z 3 = 0, z 3 = 0, χ 1 z 1z 2 = 0 after division by χ 1 in a coherent way with Example 1.1. Q.E.D.

(d 4 -x 3 d 1 -1)φ 1 = (d 3 -x 4 d 1 )φ 2 -(d 2 -d 1 )φ 3
Finally, when M r is torsion-free as a differential module over k[d 1 , ..., d n-r ], then t r (M ) = 0 and we get the following generalization of a result provided by Macalualy ( [START_REF] Macaulay | The Algebraic Theory of Modular Systems[END_REF], §41, p 43): COROLLARY 5.10: The differential module M is r-pure if and only if cd(M ) = r and there is a monomorphism 0 -→ M -→ k(χ 1 , ..., χ n-r ) ⊗ M .

• STEP 5: The final idea is to embed M r into a free module over K[d 1 , ..., d n-r ] in order to parametrize the corresponding system and substitute into the equations of class n-r+1, ..., n. However, if we look at Example 1.2, we should find after the substitution Φ 1 ≡ z 13 = 0, Φ 2 ≡ z 23 = 0 with one CC d 2 Φ 1d 1 Φ 2 = 0, that is on one side a module L which is not 1-pure and, on the other side a module L having a finite free resolution with 2 operators. However, we forgot that M , being pure, may be identified with its embedding into its localization. Hence, we get in fact χ 1 z 3 = 0, χ 2 z 3 = 0 and thus only z 3 = 0 is providing a convenient parametrizing module L.

Our purpose is to explain and illustrate this procedure for finding such an L in the general situation. Again, the main idea will be provided by this example. Indeed, we obtain the only CC Ψ ≡ d 3 Φ 3d 2 Φ 1 + d 1 Φ 2 = 0. Substituting the parametrization, we get of course Φ 3 = 0 ⇐⇒ χ 1 y 2 = χ 2 y 1 , that is, among the two unknowns y 1 , y 2 we are left with only one, say y 1 and, similarly, among the two equations Φ 1 , Φ 2 we are left with only one, say Φ 1 , because χ 1 Φ 2 = χ 2 Φ 1 from the CC which is of course compatible with the localization and we choose z 3 = 0 as χ 1 z 3 = 0 =⇒ z 3 = 0.

The general situation may be treated similarly. Indeed, according to the previous step, we are only concerned with the equations of class nr + 1, ... , class n while the localization has only to do with the β equations of strict class nr (care) allowing to express β unknowns as linear combinations of the α remaining unknowns with coefficients in k(χ 1 , ..., χ n-r ). To each such equation are associated exactly r dots and each dot of index nr + i provides a reduction of the respective equations of class nr + i for i = 1, ..., r. It follows that we are left with α equations of each such class. When we "delocalize", replacing χ i by d i , we have to take into account the need to take out the denominators and may find a few "simplifications" as in the example just considered.. Finally, the maximum number r -1 (care again) of dots found for one equation is obtained for the equations of strict class nr + 1 = n -(r -1) and we have thus exhibited a system defining a module L which is r-pure and admits a free resolution with exactly (r -1) + 1 = r operators. In any case, the reader must not forget that the localization of a module is useful only if we already know that this module is torsion-free by means of the double-duality formula t(M ) = ext 1 (N ) given in the introduction. Substituting in the four equations of class 3, we only obtain the two equations: using arbitrary potential-like functions for the parametrization, the idea is now to use potentiallike functions which must satisfy a kind of minimum differential constraint limiting, in some sense, the number of independent variables appearing in these functions, in a way similar to the situation met in the Cartan-Khäler theorem of analysis. For such a purpose, we have exhibited new links between purity and involutivity, providing also a new insight into the primary decomposition of modules and ideals by means of tools from the formal theory of linear multidimensional systems.

THEOREM 2 . 10 :

 210 y β to ȳ1 , ..., ȳβ in order to "absorb" the various y β+1 n , ..., y m n only appearing in the equations of class n. We have the following unexpected result providing what we shall call reduced Spencer form: The new equations of class n only contain y β+1 i , ...

  q+1 and we obtain the canonical linear Spencer sequence ([START_REF] Pommaret | Partial Differential Equations and Group Theory: New Perspectives for Applications[END_REF], p 150):

  1 + ... + Dy m ≃ D m and consider the differential submodule I = DΦ ⊂ Dy which is usually called the module of equations, both with the differential module M = Dy/DΦ or D-module and we may set M = D M if we want to specify the ring of differential operators. The work of Macaulay only covers the case m = 1 with K replaced by k ⊆ cst(K). Again, we may introduce the formal prolongation with respect to d i by setting d i Φ τ ≡ a τ µ k y k µ+1i + ∂ i a τ µ k y k µ in order to induce maps d i : M -→ M : ȳk µ -→ ȳk µ+1i by residue if we use to denote the residue Dy -→ M : y k -→ ȳk by a bar as in algebraic geometry. However, for simplicity, we shall not write down the bar when the background will indicate clearly if we are in Dy or in M .

DEFINITION 3 . 5 :PROPOSITION 3 . 6 :

 3536 We may define the right differential module hom D (M, D). When M is a left D-module, then R is also a left D-module.

  where α is called the multiplicity of M and we use to set cd D (M ) = cd(M ) = nr, rk D (M ) = rk(M ) = α if cd(M ) = 0 and 0 otherwise. EXAMPLE 3.10: Coming back to the Example 2.8 of Macaulay, we obtain from Remark 2.13 the free resolution 0 -→ D -→ D 2 -→ D -→ M -→ 0 but only the morphism on the left is strict as for the morphism on the right we know that its image is indeed I 2 = {y 33 , y 23 , y 22 , y 13y 2 } and not just {y 33 , y 13 -y 2 }. However, bringing the system to involution, we get the strict free resolution 0 -→ D -→ D 4 -→ D 4 -→ D -→ M -→ 0 as the module version of the Janet sequence and we let the reader exhibit the module version of the corresponding Spencer sequence as an exercise. If M is a differential module over the ring D = K[d] of differential operators and m ∈ M , then the differential submodule Dm ⊂ M is defined by a system of OD or PD equations for one unknown and we may look for its codimension cd(Dm). A similar comment can be done for any differential submodule M ′ ⊂ M . Sometimes, a single element m ∈ M , called differentially primitive element, may generate M if Dm = M . EXAMPLE 3.11: With K = Q, let us consider the differential moduleM defined by the system y 1 xxy 1 = 0, y 2 x = 0. Then, setting y = y 1y 2 , we get y x = y 1 x , y xx = y 1 xx = y 1 , y xxy = y 2 and thus y xxxy x = 0 provides another way to describe M by means of a single element as in ([18], p435). We have the following commutative and exact diagram:

PROPOSITION 3 .

 3 15: t r (M ) does not depend on the presentation or on the filtration of M . EXAMPLE 3.16: If K = Q and M is defined by the involutive system y 33 = 0, y 23 = 0, y 13 = 0, then z = y 3 satifies d 3 z = 0, d 2 z = 0, d 1 z = 0 and cd(Dz) = 3 while z ′ = y 2 only satisfies d 3 z ′ = 0 and cd(Dz ′ ) = 1. We have the purity filtration 0

PROPOSITION 3 . 18 :

 318 Applying hom D (•, D) provides right D-modules that can be transformed to left D-modules by means of the side changing functor and vice-versa. Namely, ifN D is a right D-module, then D N = ∧ n T ⊗ K N D is the converted left D-module while, if D N is a left D-module, then N D = ∧ n T * ⊗ K D N is the converted right D-module.PROPOSITION 3.19: Instead of applying hom D (•, D) and the side changing functor in the module framework, we may use ad in the operator framework. Namely, to any operator D : E -→ F we may associate the formal adjoint ad(D) : ∧ n T * ⊗ F * -→ ∧ n T * ⊗ E * with the useful though striking relation rk D (ad(D)) = rk D (D). PROPOSITION 3.20: ext i (M ) is a torsion module ∀1 ≤ i ≤ n but ext 0 (M ) = hom D (M, D) may not be a torsion module. EXAMPLE 3.21: When M is a torsion module, we have hom D (M, D) = 0 (exercise).

EXAMPLE 4 . 2 :

 42 With K = Q, m = 1, n = 4, q = 2, let us study the 2-pure differential module M defined by the involutive system:

  0 leading to pd(M ) ≤ 3 and the deleted complex is:0 -→ D -→ D 4 -→ D 4 -→ D -→ 0Applying hom D (•, D) to this sequence, we get the sequence:0 ←-D ←-D 4 ←-D 4 ←-D ←-0which can be described by the following adjoint sequence:

EXAMPLE 4 . 4 :

 44 According to the proof of the theorem, N = ext r (M ) does not depend on the resolution of M used while L does indeed depend on the resolution of N used. Coming back to the system studied in Example 2.8 and Remark 2.12 with r = 2, we may use the shortest finite free resolution of M already presented, namely 0 -→ D -→ D 2 -→ D -→ M -→ 0. Therefore, taking the adjoint of the only CC found, we may define N by the system:v -→ d 33 θ = 0 -u -→ d 13 θ + d 2 θ = 0and obtain the corresponding involutive system:

  that we can localize in (d 1 , d 2 , d 3 ) with:φ 1 = 0 =⇒ (d 3x 4 d 1 )w = (d 2d 1 )v =⇒ v = (d 3x 4 d 1 )y, w = (d 2d 1 )yWe let the reader check that we have indeed:φ 2 ≡ (d 4x 3 d 1 -1)(d 3x 4 d 1 )y = (d 3x 4 d 1 )u = 0 =⇒ u = 0 φ 3 ≡ (d 4x 3 d 1 -1)(d 2d 1 )y = (d 2d 1 )u = 0 =⇒ u = 0We finally obtain for M a relative parametrization with the only constraint u ≡ (d 4 -x 3 d 1 -1)y = 0 in a coherent way with Example 2.11.

THEOREM 5 . 9 :

 59 One has the commutative and exact diagram:0 -→ t(M r ) -→ M r -→ k(χ 1 , ..., χ n-r ) ⊗ M r ↓ ↓ ↓ 0 -→ t r (M ) -→ M -→ k(χ 1 , ..., χ n-r ) ⊗ MFor simplifying the notations in this diagram of modules over D, we have identified M r as a module over k[d 1 , ..., d n-r ] with M r as a module over k[d n-r+1 , ..., d n , d 1 , ..., d n-r ] = k[d 1 , ..., d n ] = D while the localization of M just tells that the coefficients are now in the field k(χ 1 , ..., χ n-r ), exactly following Macaulay. Moreover the central column is exact according to the definitionof M r and the right column is exact because localization preserves the exactness of a sequence.

EXAMPLE 5 . 11 :d 3 y 4 + d 1 y 2 -d 1 y 1 = 0 d 3 y 3 -α 1 1 = 4 .

 511342314 Let M be defined by the involutive system:d 2 y 4 + d 1 y 2d 1 y 1 = 0 d 3 y 2 + d 1 y 2 = 0 d 3 y 1d 1 y 4 + d 1 y 2 = 0 d 2 y 2d 1 y 4 + d 1 y 1 = 0 d 2 y 1d 1 y 3 + d 1 y 1 Itfollows that cd(M ) = 1 as only the class 4 is full and we obtain the following relative localization showing that M is 1-pure:y 1 = χ 1 y, y 2 = χ 1 z, y 3 = (χ 1 + χ 2 )y, y 4 = χ 1 y + χ 2 z

The differential submodule Dz ⊂ M is defined by the second order involutive system:

and we get cd(Dz) = 1 exactly. However, even on such a very elementary example, it is not evident that t 0 (M ) = t(M ) = M is 1-pure. We also understand that the decoupling system for any autonomous element in engineering sciences, like in magnetohydrodynamics, cannot be studied without these new techniques if we want intrinsic results. Finally, if we denote by I the left ideal of D = Dy generated by y 3 -x 2 y 1 , we notice the relation ann(G) = (χ 3 -x 2 χ 1 ) = gr(I) = rad(gr(I)). However, we have ann(gr(Dz)) = ((χ 3x 2 χ 1 ) 2 , χ 2 (χ 3x 2 χ 1 )) with radical equal to the prime ideal (χ 3x 2 χ 1 ) as before. Hence, in this example, the strict inclusion Dz ⊂ M does not imply gr((Dz) ⊂ gr(M ) = G because otherwise we should get ann(G) ⊆ ann(gr(Dz) and this is the reason for which only the radical must be considered as it does not depend on the filtration.

• STEP 2: Once we have obtained cd(M ) = r, in order to check that M is r-pure, it remains to prove that t r (M ) = 0 as we already know that t r-1 (M ) = M . For this, the second step will be to use the specific properties of the Spencer form R q+1 ⊂ J 1 (R q ). More generally, it is possible to use any equivalent involutive first order system of the form R 1 ⊂ J 1 (E) with no zero order equations, that is with an induced epimorphism R 1 -→ E -→ 0 and such that the corresponding differential module is isomorphic and thus identified to the initial module as in Remark 2.13 . We have now the characters α 1 1 ≥ ... ≥ α n 1 ≥ 0 and the smallest non-zero character is is still α = α n-r 1 = 0 providing of course the same codimension cd(M ) = r as in the first step. Accordingly, the number r of non-zero characters and the number r of full classes is the same as in the previous step. However, it must be noticed that the filtration may be different and the following example explains once more why only the radical of the characteristic ideal must be used. EXAMPLE 5.3: K = Q, n = 2, m = 1, q = 2.For the involutive system y 22 = 0, y 12 = 0, the characteristic ideal is a = ((χ 2 ) 2 , χ 1 χ 2 ) =⇒ rad(a) = (χ 2 ) =⇒ r = 1. Setting z 1 = y, z 2 = y 1 , z 3 = y 2 , we get the equivalent first order system d 2 z 3 = 0, d 2 z 2 = 0, d 2 z 1z 3 = 0, d 1 z 1z 2 = 0, d 1 z 3 = 0 and the polynomial ideal generated by the 3 × 3 minors of the characteristic matrix is a = ((χ 2 ) 3 , (χ 2 ) 2 χ 1 , χ 2 (χ 1 ) 2 ). Hence the characteristic ideal is rad(a) = (χ 2 ) and r = 1 too. EXAMPLE 5.4: For Example 2.8 we may set z 1 = y, z 2 = y 1 , z 3 = y 2 , z 4 = y 3 and obtain the first order involutive system :

with no zero-order equation. We have

We let the reader treat Example 4.2 similarly and obtain

It is at this moment that we discover that such systems have particular properties not held by other systems, apart from the fact that a canonical sequence may be constructed exactly like the Spencer sequence or the first order part of the Janet sequence.

Shrinking the board of multiplicative variables, we obtain from the definition of involutiveness: PROPOSITION 5.5: For an involutive first order system with no zero order equations and solved with respect to the principal (pri) first order jets expressed by means of the parametric (par) other first order jets, the system obtained by looking only at the PD equations of class 1+ ... + class i only contains d 1 , ..., d i and is still involutive ∀i = 1, ..., n, after adopting the ordering d i+1 , ..., d n , d 1 , ..., d i . EXAMPLE 5.6: Looking at Example 2.9, we notice that the systems:

are both involutive. Also, looking at Example 5.4, we notice that the system:

is still involutive and we let the reader treat Example 4.2 similarly.

We shall denote the corresponding differential module by M n-i and we notice that M = M 0 is defined by more equations than M n-i . Accordingly, we have an epimorphism (specialization) M n-i -→ M -→ 0 and similarly epimorphisms M n-i -→ M n-i-1 -→ 0. Finally, as cd(M ) = r, we notice that the classes nr + 1, ..., n are full and we find therefore (χ n ) m , ..., (χ n-r+1 ) m among the m × m minors with lower powers of χ 1 , ..., χ n-r for the other minors because the numbers of equations of the lower classes are decreasing and thus strictly smaller than m. The characteristic ideal is thus (χ n , ..., χ n-r+1 ) if we set χ 1 , ..., χ n-r to zero, in a coherent way. Finally, choosing i = nr, we get an epimorphism M r -→ M -→ 0. The background will always indicate clearly the meaning of the lower index and cannot be confused with the filtration index of M .

• STEP 3: We are now in position to study M r with more details as a system in nr variables ( [START_REF] Macaulay | The Algebraic Theory of Modular Systems[END_REF], §77, p 86). Its defining system has β n-r 1 = β = mα equations of strict class nr, a smaller number of equations of class nr -1, ... , and eventually an even smaller number of equations of class 1. Studying this system for itself, we may look for t(M r ) exactly following the known techniques working for any differential module, in particular double duality as described in section 4. However, if one could find any (relative) torsion element z ∈ M r , we could project it to an element z ∈ M and we have N = Dz ⊆ M where we do not put a residue bar on the new z for simplicity. Introducing the respective annihilator ideal a and b of M and N , we should have a ⊆ rad(a) ⊆ rad(b) as it is the only result not depending on the filtration of the modules. However, we know that z must be killed by at least one operator involving only d 1 , ..., d n-r , in addition to the operators involving separately (d n ) m + ..., ..., (d n-r-1 ) m + ... and we should obtain t r-1 (M ) = M but t r (M ) = 0, that is M should not be pure. Hence M is r-pure if and only if M r is torsion-free as a differential module over K[d 1 , ..., d n-r ]. In such a case, the system defining M r can be parametrized by α arbitrary unknowns among {y 1 , ..., y m } by using a so-called minimum parametrization in the sense of ( [START_REF] Pommaret | QUADRAT: Localization and parametrization of linear multidimensional control systems[END_REF]). In actual practice, as shown on all the examples, one can use a relative localization with respect to (d 1 , ..., d n-r ) only by keeping (d n-r+1 , ..., d n ) untouched and replacing (d 1 , ..., d n-r ) by (χ 1 , ..., χ n-r ) considered as (constant) "parameters" in the language of Macaulay ([11], §43, p 45 and §77, p 86 with r instead of nr and a different ordering). Such a method provides therefore a quite useful and simple test for checking purity by linking it to involutivity. An important intermediate result is provided by the next proposition.

PROPOSITION 5.7: The partial localization "kills" the equations of class 1 up to class n-r -1 (care) and finally only depends on the equations of strict class nr.

Proof: Instead of using the column nr in the multiplicative board, we provide the proof when r = 0 by using the column n. Working out as usual the first order CC, we only look at the p < m CC of class n for the equations Φ 1 , ..., Φ p of class 1 up to class n -1 if we order the Φ starting from the lower class involved. These p CC will be of a very specific form with a square p × p operator matrix for (Φ 1 , ..., Φ p ) with diagonal operators of the form d n + ... where the dots denote

after a division by χ 1 , χ 2 and χ 1 + χ 2 . The parametrizing module L is thus defined by the two equations:

which are differentially independent and we have the relative parametrization:

, a striking result showing that M can be embedded into the direct sum of two primary differential modules according to Remark 3.32 (See [START_REF] Pommaret | Partial Differential Control Theory[END_REF] for more details). EXAMPLE 5.12: With k = Q, m = 1, n = 3, let us consider the polynomial map χ 1 = u 5 , χ 2 = u 3 , χ 3 = u 4 as in ([11], p 53). We have the exact sequence 0

) is a prime ideal ( [START_REF] Pommaret | Partial Differential Control Theory[END_REF], p 126). The corresponding prime differential module M is defined by the involutive system:

and is 2-pure. The localized system is finite type over k(χ 1 )[d 2 , d 3 ] with par = {y, y 2 , y 3 , y 22 , y 23 }.

One can prove that p 2 is not a primary ideal even though rad(p 2 ) = p. 

) is a prime ideal. It is not evident at all that the corresponding prime differential module M can be defined by the homogeneous involutive system (exercise): = 0 y 44 + y 24y 13 = 0

and is thus also 2-pure. The localized system is finite type over k(χ 1 , χ 2 )[d 3 , d 4 ] with par = {y, y 3 , y 4 , y 33 } and we have for example χ 2 y 34χ 1 y 33 + (χ 1 ) 3 y = 0 in a coherent way with the comments of Macaulay in ( [START_REF] Macaulay | The Algebraic Theory of Modular Systems[END_REF], §78, p 88, formula (A) and §88,89, p 98).

6) CONCLUSION :

In 1916, F.S. Macaulay discovered a new localization technique for studying unmixed polynomial ideals. We have been able to generalize this procedure for studying pure differential modules, obtaining in particular a kind of relative parametrization generalizing the absolute parametrization already known for torsion-free modules and equivalent to controllability in classical control theory. In the language of multidimensional systems theory, which is more intuitive, instead of