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UNIPOTENT GROUP ACTIONS ON DEL PEZZO CONES

TAKASHI KISHIMOTO, YURI PROKHOROV, AND MIKHAIL ZAIDENBERG

Abstract. In our previous paper [KPZ11b] we showed that for any del Pezzo surface
Y of degree d ≧ 4 and for any r ≧ 1, the affine cone X = coner(−KY )(Y ) admits an
effective Ga-action. In particular, the group Aut(X) is infinite dimensional. In this
note we prove that for a del Pezzo surface Y of degree ≤ 2 the generalized cones X
as above do not admit any non-trivial action of a unipotent algebraic group.

1. Introduction

We are working over an algebraically closed field k of characteristic 0. Let Y be a
smooth projective variety with a polarization H , where H is an ample Cartier divisor.
A generalized affine cone over (Y,H) is the normal affine variety

coneH(Y ) = Spec
⊕

ν≥0

H0(Y, νH) .

This variety coneH(Y ) is the usual affine cone over Y embedded in a projective space
Pn by the linear system |H| provided that H is very ample and the image of Y in Pn

is projectively normal.
In this paper we deal with a del Pezzo surface Y and a pluri-anticanonical divisor

H = −rKY on Y , where r ≥ 1; we call then coneH(Y ) a del Pezzo cone. This is a usual
cone if r ≥ 4− d (see e.g. [Dol12, Theorem 8.3.4]) and a generalized cone otherwise.

It is known [KPZ11b, 3.1.13] that for any smooth rational surface there is an ample
polarization such that the associated affine cone admits an effective Ga-action. Fur-
thermore, for any del Pezzo surface of degree ≧ 4 the corresponding del Pezzo cones
cone−rKY

(Y ) (r ≥ 1) admit such an action (loc.cit). The latter holds also for some
smooth rational Fano threefolds with Picard number 1 [KPZ11b, KPZ11a]. However,
for del Pezzo surfaces of small degrees the consideration turns out to be more compli-
cated. It is unknown so far whether the affine cone over a smooth cubic surface in P3

admits a Ga-action (cf. [KPZ11b, §4]). In this paper we investigate the cases d = 1
and d = 2. Our main result can be stated as follows.

Theorem 1.1. Let Y be a del Pezzo surface of degree d = KY
2 ≤ 2. Then for any

r ≥ 1 there is no non-trivial action of a unipotent group on the generalized affine cone

Xr = cone−rKY
(Y ) = SpecA, where A =

⊕

ν≥0

H0(Y,−νrKY ) .
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Corollary 1.2. In the notation as before assume that d ≤ 2 and r ≥ 4−d so that Xr =
cone−rKY

(Y ) is a usual del Pezzo cone. Then any algebraic subgroup G ⊂ Aut(Xr) is
isomorphic to a subgroup of Gm ×Aut(Y ), where Aut(Y ) is finite.

Proof. As follows from Theorem 1.1 G is a reductive group. Thus by Lemma 2.3.1 and
Proposition 2.2.6 in [KPZ11b] there are an injection and an isomorphism

G →֒ Lin(Xr) ≃ Gm × Lin(Y ) ⊂ Gm × Aut(Y ) ,

where the group Aut(Y ) is finite, see [Dol12]. �

We suggest the following

1.3. Conjecture. If d ≤ 2 then for any r ≥ d − 4 the full automorphism group

Aut(Xr) is a finite extension of the multiplicative group Gm.

Likewise in [KPZ11a, KPZ11b] we use a geometric criterion of existence of an effective
Ga-action on the affine cone coneH(Y ) (see [KPZ12] and Theorem 2.1 below).

Sections 2, 3, and 4 contain necessary preliminaries. Theorem 1.1 is proven in section
5. The proof proceeds as follows. Assuming to the contrary that there exists a non-
trivial unipotent group action on Xr = cone(−rKY )(Y ), there also exists an effective
Ga-action on Xr. By Theorem 2.1 there is an effective Q-divisor D on Y such that
D∼Q−KY and U = Y \D ∼= Z×A1, where Z is a smooth rational affine curve. Such a
principal open subset U is called in [KPZ11b] a (−KY )-polar cylinder. One of the key
points consists in an estimate for the singularities of the pair (Y,D). More precisely,
we consider the linear pencil L on Y generated by the closures of the fibers of the
projection U ∼= Z×A1 → Z. Letting S be the last exceptional divisor appearing in the
process of the minimal resolution of the base locus of L we compute the discrepancy
a(S;D). Using this and some subtle geometrical properties of the pair (Y,D) we finally
come to a contradiction.

2. Criterion

Let Y be a projective variety and H be an ample divisor on Y . Recall [KPZ11b]
that an H-polar cylinder in Y is an open subset U = Y \supp(D) isomorphic to Z×A1

for some affine variety Z, where D =
∑

i δi∆i with δi > 0 ∀i is an effective Q-divisor
on Y such that qD is integral and qD ∼ H for some q ∈ N. Corollary 2.12 in [KPZ12]1

provides the following useful criterion of existence of an effective Ga-action on the affine
cone.

Theorem 2.1. Let Y be a normal projective algebraic variety with an ample polar-

ization H ∈ Div(Y ), and let X = coneH(Y ) be the corresponding generalized affine

cone. If X is normal then X admits an effective Ga-action if and only if Y contains

an H-polar cylinder.

We apply this criterion to a del Pezzo surface Y of degree d ≤ 2 and a generalized
cone

Xr = Spec
⊕

ν≥0

H0(Y,−νrKY )

associated with H = −rKY , where r ≥ 1. It follows, in particular, that if the cone Xr

admits an effective Ga-action then Y contains a cylinder Y \ suppD with qD ∼ −rKY .

1Cf. also [KPZ11b, 3.1.9].
2



Hence q

r
D ∼Q −KY . Replacing D by q

r
D we assume in the sequel that D ∼Q −KY .

This assumption leads finally to a contradiction, which proves Theorem 1.1.

3. Preliminaries on weak del Pezzo surfaces

A smooth projective surface Y is called a del Pezzo surface if the anticanonical divisor
−KY is ample, and a weak del Pezzo surface if −KY is big and nef. The degree of such
a surface is deg Y = K2

Y ∈ {1, . . . , 9}.

Lemma 3.1 (see e.g. [Dol12, Proposition 8.1.23]). Blowing up a point on a del Pezzo

surface of degree d ≥ 2 yields a weak del Pezzo surface of degree d− 1.

Theorem 3.2 (see e.g. [Dol12, Thm. 8.3.2]). Let Y be a del Pezzo surface of degree

d. Then the following hold.

(i) If d ≥ 3 then | −KY | defines an embedding Y →֒ Pd.

(ii) If d = 2 then | − KY | defines a double cover Φ : Y → P2 branched along a

smooth curve B ⊂ P2 of degree 4.
(iii) If d = 1 then | −KX | is a pencil with a single base point, say O. The linear

system |−2KY | defines a double cover Φ : Y → Q′ ⊂ P3, where Q′ is a quadric

cone with vertex at Φ(O). Furthermore Φ is branched along a smooth curve

B ⊂ Q′ cut out on Q′ by a cubic surface.

The Galois involution τ : Y → Y associated to the double cover Φ is a regular
morphism. It is called Geiser involution in the case d = 2 and Bertini involution in
the case d = 1.

Remark 3.3. Recall the following facts (see e.g. [Dol12]). For an irreducible curve C
on Y we have C2 ≥ −1 if Y is a del Pezzo surface and C2 ≥ −2 if Y is a weak del
Pezzo surface. In both cases C2 = −1 if and only if C is a (−1)-curve, if and only if
−KY ·C = 1, and C2 = −2 if and only if C is a (−2)-curve, if and only if −KY ·C = 0.
A weak del Pezzo surface is del Pezzo if and only if it has no (−2)-curve.

If d ≥ 2 then any curve C on Y such that −KY · C = 1 is an irreducible smooth
rational curve by (i) and (ii). By the adjunction formula such C must be a (−1)-curve.

Lemma 3.4. Let Y be a del Pezzo surface of degree d ≤ 2. Then any member R ∈
| −KY | is reduced and pa(R) = 1. Moreover, R is irreducible except in the case where

• d = 2, R = R1 +R2, R
2
i = −1, i = 1, 2, R1 · R2 = 2, and R2 = τ(R1).

Furthermore, Sing(R) ⊂ Φ−1(B) and for any P ∈ Φ−1(B) there is a unique member

R ∈ | −KY | singular at P .

Proof. We have pa(R) = 1 by adjunction. Let R1  R be a reduced irreducible
component. Then (−KY ) · R1 < (−KY ) · R = d and so d = 2 and R1 is a (−1)-curve
by Remark 3.3. Since R2 = d = 2, R 6= 2R1. Therefore R = R1 + R2, where the Ri

(i = 1, 2) are (−1)-curves and R1 · R2 = 1
2
(R2 − R2

1 − R2
2) = 2. Finally, in both cases

we have R = Φ−1(L), where L is a line in P2. Thus R is singular at P if and only if
Φ(P ) ∈ B and L is tangent to B at Φ(P ). �

Remark 3.5. Let R1 and R2 be (−1)-curves on a del Pezzo surface Y of degree 2 such
that R1 · R2 ≥ 2. Then R2 = τ(R1), R1 · R2 = 2, and R1 + R2 ∈ | − KY |. Indeed,
R1 + τ(R1) ∼ −KY . Hence τ(R1) · R2 = −1 and so τ(R1) = R2.
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4. (−K)-polar cylinders on del Pezzo surfaces

We adjust here some lemmas in [KPZ11b, §4] to our setting.

Notation 4.1. Let Y be a del Pezzo surface of degree d. Suppose that Y admits a
(−KY )-polar cylinder

(4.2) U = Y \ supp(D) ∼= Z × A1, where D =

n
∑

i=1

δi∆i ∼Q −KY (δi > 0)

and Z is a smooth rational affine curve. We let L be the linear pencil on Y defined
by the rational map Ψ : Y 99K P1 which extends the projection pr1 : U

∼= Z×A1 → Z.
Resolving, if necessary, the base locus of the pencil L we obtain a diagram

(4.3) W
p

~~}}
}}
}}
}} q

  
BB

BB
BB

BB

Y
Ψ

//_______ P1

where we let p : W → Y be the shortest succession of blowups such that the proper
transform LW := p−1

∗ L is base point free. Let S be the last exceptional curve of the
modification p unless p is the identity map, i.e., BsL = ∅. Notice that S is a unique
(−1)-curve in the exceptional locus p−1(P ) and a section of q. The restriction ΦLW

|U
is an A1-fibration and its fibers are reduced, irreducible affine curves with one place at
infinity, situated on S.

Lemma 4.4. One of the following holds.

(i) Bs L consists of a single point, say P ;

(ii) Bs L = ∅ and 5 ≤ d ≤ 8.

Proof. Since the general members of L are disjoint in U and each one meets the
cylinder U along an A1-curve, BsL consists of at most one point, which we denote by
P . Suppose that BsL = ∅. Then the pencil L yields a conic bundle Ψ : Y → P1 with
a section, which is a component of D, say ∆0. In particular d ≤ 8. For a general fiber
L of Ψ we have

L2 = 0, −KY · L = 2 = D · L = δ0.

Note that Ψ has exactly 8 − d degenerate fibers L1, . . . , L8−d. Each of these fibers is
reduced and consists of two (−1)-curves meeting transversally at a point. Let Ci be the
component of Li that meets ∆0. We claim that each Ci is a component of D. Indeed,
otherwise

1 = −KY · Ci = D · Ci ≥ δ0∆0 · Ci = δ0 = 2 ,

a contradiction. Therefore we may assume that Ci = ∆i and so

1 = D · Ci ≥ δ0∆0 · Ci + δiC
2
i = 2− δi .

Hence δi ≥ 1, i = 1, . . . , 8− d. We obtain

d = −KY ·D ≥
∑

δi ≥ δ0 +

8−d
∑

i=1

δi ≥ 2 + 8− d = 10− d .

Thus d ≥ 5 as stated. �
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Remark 4.5. If BsL = {P} (BsL = ∅, respectively) then all components of D
(all components of D except for ∆0, respectively) are contained in the fibers of Ψ.
Indeed, otherwise not all the fibers of Ψ|U were A1-curves, contrary to the definition
of a cylinder.

Lemma 4.6. The number of irreducible components of the reduced curve supp(D), say
n, is greater than or equal to 10− d.

Proof. Consider the exact sequence
n
⊕

i=1

Z[∆i] −→ Pic(Y ) −→ Pic(U) −→ 0.

Since Pic(Z) = 0 and U ∼= Z × A1 we have Pic(U) = 0. Hence n ≥ ρ(Y ) = 10 − d, as
stated. �

Lemma 4.7. Assume that BsL = {P}. Let L be a member of L and C be an

irreducible component of L. Then the following hold.

(i) supp(L) is simply connected and supp(L) \ {P} is an SNC divisor;

(ii) C is rational and smooth outside P ;

(iii) if P ∈ C then C \ {P} ≃ A1.

Proof. All the assertions follow from the fact that q in (4.3) is a rational curve fibration
and the exceptional locus of p coincides with p−1(P ). �

In the next lemma we study the singularities of the pair (Y,D). We refer to [Kol97]
or to [KM98, Chapter 2] for the standard terminology on singularities of pairs.

Lemma 4.8 (Key Lemma). Assume that BsL = {P}. Then the pair (Y,D) is not

log canonical at P . More precisely, in notation as in 4.1 the discrepancy a(S;D) of S
with respect to KY +D is equal to −2.

Proof. We write

(4.9) KW +DW ∼Q p
∗(KY +D) + a(S;D)S +

∑

a(E;D)E,

where the summation on the right hand side ranges over the components of the excep-
tional divisor of p except for S, and DW is the proper transform of D on W . Letting l
be a general fiber of q, by (4.9) we obtain

−2 = (KW +DW ) · l = a(S;D).

Indeed, KY +D∼Q 0 and l does not meet the curve supp(DW +p∗(P )−S). This proves
the assertion. �

Corollary 4.10. If BsL = {P} then multP (D) > 1.

Proof. Indeed, otherwise the pair (Y,D) would be canonical by [Kol97, Ex. 3.14.1], and
in particular, log canonical at P , which contradicts Lemma 4.8. �

Corollary 4.11. If BsL = {P} then every (−1)-curve C on Y passing through P is

contained in supp(D).

Proof. Assume to the contrary that C is not a component of D. Then

multP D ≤ C ·D = −KY · C = 1,

which contradicts Corollary 4.10. �
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Convention 4.12. From now on we assume that d ≤ 3. By Lemma 4.4 we have
BsL = {P}.

Lemma 4.13. We have ⌊D⌋ = 0 i.e. δi < 1 for all i = 1, . . . , n.

Proof. For the case d = 3 see [KPZ11b, Lemma 4.1.5]. Consider the case d = 1. By
Lemma 4.6 n ≥ 9. For any i = 1, . . . , n we have

1 = −KY ·D =
n
∑

j=1

δj(−KY ) ·∆j > δi(−KY ) ·∆i .

Since the anticanonical divisor −KY is ample, it follows that δi < 1, as required.
Let further d = 2. Assuming that δ1 ≥ 1 we obtain:

(4.14) 2 = −KY ·D =
n
∑

i=1

δi(−KY ) ·∆i > δ1(−KY ) ·∆1 ≥ −KY ·∆1 ,

where n ≥ 8 by Lemma 4.6. It follows that −KY ·∆1 = 1, i.e. ∆1 is a (−1)-curve. Then
C := τ(∆1) is also a (−1)-curve, where τ is the Geiser involution, and ∆1+C ∼ −KY .
If C ⊂ supp(D), e.g. C = ∆2, then by (4.14) we obtain that δ2 < 1. Now ∆1+∆2∼QD
yields a relation with positive coefficients

(1− δ2)∆2 ∼Q (δ1 − 1)∆1 +
n
∑

i=3

δi∆i.

This implies that C2 = ∆2
2 ≥ 0, a contradiction.

Hence C 6⊂ supp(D). Thus C∼QD−∆1, where the right hand side is effective. This
leads to a contradiction as before. �

Lemma 4.15. 2 For a member L of L , any irreducible component of L passes through

the base point P of L .

Proof. Assume to the contrary that there exists a component C of L such that P 6∈ C.
Then clearly C2 < 0 (see the proof of Lemma 4.4). Since also −KY · C > 0, C is a
(−1)-curve. Let C ′ be a component of L meeting C. If P 6∈ C ′, then C and C ′ are
both (−1)-curves and so L = C + C ′. Thus L = |C + C ′| is base point free, which
contradicts Lemma 4.4. Hence C ′ passes through P . Since P is a unique base point
of L , C does not meet any member L′ ∈ L different from L. By Lemma 4.7 L is
simply connected, so C ′ is the only component of L meeting C. Note that supp(D)
is connected because D is ample. Hence C ′ must be contained in supp(D). In fact,
supposing to the contrary that C ′ is not contained in supp(D), the curve C must be
contained in supp(D). Indeed, the affine surface U = Y \ supp(D) does not contain
any complete curve. Since supp(D) is connected there is an irreducible component of
supp(D) intersecting C and passing through P . This contradicts Lemma 4.7. Thus we
may suppose that C ′ = ∆1.

If C ⊂ supp(D), say, C = ∆2, then

1 = −KY · C =

(

n
∑

i=1

δi∆i

)

·∆2 = δ1 − δ2.

Hence δ1 = δ2 + 1 > 1, which contradicts Lemma 4.13.

2Cf. [KPZ11b, Lemma 4.1.6].
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Therefore C 6⊂ supp(D) and so

1 = −KY · C =

(

n
∑

i=1

δi∆i

)

· C = δ1,

which again gives a contradiction by Lemma 4.13. �

5. Proof of Theorem 1.1

According to our geometric criterion 2.1, Theorem 1.1 is a consequence of the fol-
lowing proposition.

Proposition 5.1. Let Y be a del Pezzo surface of degree d ≤ 2. Then Y does not

admit any (−KY )-polar cylinder.

Convention 5.2. We let Y be a del Pezzo surface of degree d ≤ 2. We assume to the
contrary that Y possesses a (−KY )-polar cylinder U as in (4.2). By Lemma 4.4 we
have BsL = {P}.

Lemma 5.3. For any R ∈ | −KY | we have supp(R) * supp(D).

Proof. Suppose to the contrary that supp(R) ⊂ supp(D). Let λ ∈ Q>0 be maximal
such that D − λR is effective. We can write

D = λR +Dres ,

where Dres is an effective Q-divisor such that supp(R) * supp(Dres). For t ∈ Q≥0 we
consider the following linear combination

Dt := D − tR +
t

1− λ
Dres ∼Q −KY .

We have D0 = D and Dλ = 1
1−λ

Dres. For t < λ, the Q-divisor Dt is effective with
supp(Dt) = supp(D). By Lemma 4.8 applied to Dt instead of D, for any t < λ the pair
(Y,Dt) is not log canonical at P , with discrepancy a(S;Dt) = −2. Since the function
t 7→ a(S;Dt) is continuous, passing to the limit we obtain a(S;Dλ) = −2. Hence the
pair (Y,Dλ) is not log canonical at P either and so multP (Dλ) > 1.

Assume that R is irreducible. Since R ⊂ supp(D), R is a component of a member
of L . Hence the curve R is smooth outside P and rational (see Lemma 4.7(ii)). Since
pa(R) = 1, R is singular at P and multP (R) = 2. Since R is different from the
components of Dλ and multP (Dλ) > 1 we obtain

(5.4) 2 ≥ K2
Y = Dλ · R ≥ multP (Dλ)multP (R) > 2,

a contradiction.
Let further R be reducible. By Lemma 3.4 we have d = 2 and R = R1 +R2, where,

say, Ri = ∆i, i = 1, 2, are (−1)-curves passing through P (see Lemma 4.15). We may
assume that δ1 ≤ δ2 and so λ = δ1. Since ∆1 is not a component of Dλ we obtain

1 = −KY · R1 = Dλ ·∆1 ≥ multP (Dλ) > 1,

a contradiction. This finishes the proof. �
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Proof of Proposition 5.1 in the case d = 1. Since dim | −KY | = 1 there is C ∈ |−KY |
passing through P . Furthermore, by Lemma 3.4 C is irreducible. By Lemma 5.3 C
is not contained in supp(D). Likewise in (5.4) we get a contradiction. Indeed, by
Corollary 4.10 we have

1 = C2 = D · C ≥ multP D ·multP C > 1 .

�

Convention 5.5. We assume in the remaining part that d = 2.

Lemma 5.6. A member R ∈ | −KY | cannot be singular at P .

Proof. Assume that P ∈ Sing(R). By Lemma 3.4 we have two possibilities for R. Sup-
pose first that R is irreducible. By Lemma 5.3 R 6⊂ supp(D) and we get a contradiction
likewise in (5.4). In the second case R = R1 + R2, where R1 and R2 are (−1)-curves
passing through P . Hence R1, R2 ⊂ supp(D) by Corollary 4.11. The latter contradicts
Lemma 5.3. �

Notation 5.7. We let f : Y ′ → Y be the blowup of P and E ′ ⊂ Y ′ be the exceptional
divisor. By Lemma 3.1 Y ′ is a weak del Pezzo surface of degree 1.

5.8. Applying Proposition 5.1 with d = 1, we can conclude that Y ′ is not del Pezzo
because it contains a −KY -polar cylinder. Indeed, let D′ be the crepant pull-back of
D on Y ′, that is,

KY ′ +D′ = f ∗(KY +D) and f∗D
′ = D .

Then

(5.9) D′ =

6
∑

i=1

δi∆
′
i + δ0E

′, where δ0 = multP (D)− 1 > 0

(see Lemma 4.10) and ∆′
i is the proper transform of ∆i on Y ′. Thus D′ is an effective

Q-divisor on Y ′ such that D′ ∼Q −KY ′ and Y ′ \ suppD′ ≃ U ≃ Z×A1 is a −KY -polar
cylinder.

Lemma 5.10. We have multP (D) < 2 and ⌊D′⌋ = 0.

Proof. Suppose first that all components of D are (−1)-curves. Then ∆i · ∆j = 1 for
i 6= j by Remark 3.5 and Lemma 5.3. Hence f is a log resolution of the pair (Y,D).
Therefore 1 −

∑

δi = a(Y,E ′) < −1 by Lemma 4.8, so
∑

δi > 2. On the other hand
2 = −KY ·D =

∑

δi, a contradiction. This shows that there exists a component ∆i of
D which is not a (−1)-curve. By the dimension count there exists an effective divisor
R ∈ | −KY | passing through P and a general point Q ∈ ∆i. On the other hand, there
is no (−1)-curve in Y passing through Q. So by Lemma 3.4 we may assume that R
is reduced and irreducible. By Lemma 5.3 R is different from the components of D.
Assuming that multP (D) ≥ 2 we obtain

2 = R ·D ≥ multP (D) + δi > 2,

a contradiction. This proves the first assertion. Now the second follows since δ0 > 0 in
(5.9). �

Corollary 5.11. The pair (Y ′, D′) is Kawamata log terminal in codimension one and

is not log canonical at some point P ′ ∈ E ′.
8



Proof. This follows from Lemma 5.10 taking into account that D′ is the crepant pull-
back of D, see [Kol97, L. 3.10]. �

Since dim | − KY ′ | = 1 there exists an element C ′ ∈ | − KY ′| passing through the
point P ′ as in Corollary 5.11.

Lemma 5.12. The point P ∈ Y is a smooth point of the image C = f∗C
′.

Proof. This follows by Lemma 5.6 since C ∈ | −KY | passes through P . �

Corollary 5.13. E ′ is not a component of C ′.

Proof. We can write f ∗C = C ′ + kE ′ for some k ∈ Z. Then k = −kE ′2 = C ′ · E ′ = 1.
By Lemma 5.12 the coefficient of E ′ in f ∗C is equal to 1 as well. Now the assertion
follows. �

Lemma 5.14. C is reducible.

Proof. Indeed, otherwise C ′ is irreducible by Corollary 5.13. Since multP ′ D′ > 1 by
Corollary 5.11 and D′ ·C ′ = K2

Y ′ = 1, C ′ is a component of D′. Hence C is a component
of D. This contradicts Lemma 5.3. �

Lemma 5.15. We have C ′ = C ′
1 + C ′

2, where C1 is a (−1)-curve, C ′
2 is a (−2)-curve,

and C ′
1 · C

′
2 = 2. Furthermore, P ′ ∈ C ′

2 \ C
′
1, and C2 = f(C ′

2) is a (−1)-curve.

Proof. Since C is reducible and C ∈ | −KY |, by Lemma 3.4 C = C1 + C2, where C1,
C2 are (−1)-curves with C1 · C2 = 2. By Lemma 5.12 P /∈ C1 ∩ C2, where C2 is a
component of D by Corollary 4.11, while by Lemma 5.3 C1 is not. So we may assume
that P ∈ C2 \ C1. Now the lemma follows from Corollary 5.11. �

5.16. Letting in the sequel C2 = ∆1 we can write D = δ1C2 +Dres, where δ1 > 0, Dres

is an effective Q-divisor, and C2 is not a component of Dres. Similarly

D′ = δ1C
′
2 +D′

res + δ0E
′,

where D′
res is the proper transform of Dres and δ0 = multP (D)− 1 (cf. (5.9)).

Lemma 5.17. We have 2δ1 ≤ 1.

Proof. This follows from

0 ≤ Dres · C1 = (D − δ1C2) · C1 = 1− 2δ1 .

�

Lemma 5.18. In the notation as before δ0 +D′
res · C

′
2 > 1.

Proof. Let us show first that {P ′} = C ′
2 ∩ E ′ = C ′

2 ∩ supp(D′
res). Indeed, P ′ ∈ E ′

by construction, P ′ ∈ C ′
2 by Lemma 5.15, and P ′ ∈ supp(D′

res) because otherwise P ′

would be a node of D′ (indeed, E ′ meets C ′
2 transversally at P ′) and so the pair (Y ′, D′)

would be log canonical at P ′ contrary to Corollary 5.11. On the other hand, the curves
C ′

2 and D′
res have only one point in common by Lemma 4.7(i).

Since δ1 < 1 the pair (Y ′, C ′
2+D′

res + δ0E
′) is not log canonical at P ′. Now applying

[KM98, Corollary 5.57] we obtain

1 < (D′
res + δ0E

′) · C ′
2 = δ0 +D′

res · C
′
2,

as stated. �
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Proof of Proposition 5.1 in the case d = 2. We use the notation as above. Since C ′
2 is

a (−2)-curve, by virtue of Lemmas 5.17 and 5.18 we obtain

1− δ0 < D′
res · C

′
2 = (D′ − δ1C

′
2 − δ0E

′) · C ′
2 = 2δ1 − δ0 ≤ 1− δ0,

a contradiction. Now the proof of Proposition 5.1 is completed. �

Remark 5.19. Our proof of Proposition 5.1 goes along the lines of that of Lemmas 3.1
and 3.5 in [Chel08]. 3 However, this proposition does not follow immediately from the
results in [Chel08]. Indeed, in notation of [Chel08] by Lemma 4.8 we have lct(Y,D) < 1.
This is not sufficient to get a contradiction with [Chel08, Theorem 1.7]. The point is
that our boundary D is not arbitrary, in contrary, it is rather special (see Lemma 4.7).

Acknowledgements. This work was done during a stay of the second and third
authors at the Max Planck Institute für Mathematik at Bonn and a stay of the first
and the second authors at the Institute Fourier, Grenoble. The authors thank these
institutions for their hospitality and support.

References

[Chel08] I. Cheltsov. Log canonical thresholds of del Pezzo surfaces. Geom. Funct. Anal. 18 (2008),
1118–1144.

[Dol12] I. Dolgachev. Classical Algebraic Geometry: A Modern View. Cambridge University Press,
2012.

[KM98] J. Kollár and S. Mori. Birational geometry of algebraic varietie. Cambridge Tracts in Mathe-
matics 134. Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens
and A. Corti, Translated from the 1998 Japanese original.

[Kol97] J. Kollár. Singularities of pairs. In Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure
Math. 62, 221–287. Amer. Math. Soc., Providence, RI, 1997.

[KPZ11a] T. Kishimoto, Yu. Prokhorov, and M. Zaidenberg. Affine cones over Fano threefolds and
additive group actions. arXiv:1106.1312 (2011), 20p.

[KPZ11b] T. Kishimoto, Yu. Prokhorov, and M. Zaidenberg. Group actions on affine cones. In Affine
algebraic geometry, 123–163. Peter Russell’s Festschrift, CRM Proc. Lecture Notes, 54, Amer. Math.
Soc., Providence, RI, 2011.

[KPZ12] T. Kishimoto, Yu. Prokhorov, and M. Zaidenberg. Ga-actions on affine cones.
arXiv:1212.4249 (2012), 14p.

Department of Mathematics, Faculty of Science, Saitama University, Saitama 338-

8570, Japan

E-mail address : tkishimo@rimath.saitama-u.ac.jp

Department of Algebra, Faculty of Mathematics, Moscow State University, Moscow

117234, Russia and Laboratory of Algebraic Geometry, SU-HSE, 7 Vavilova Str.,

Moscow 117312, Russia

E-mail address : prokhoro@gmail.com
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